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ALTERNATING SEQUENCES AND INDUCED OPERATORS

M. A. AKCOGLU AND R. E. BRADLEY

Abstract. We show that when a positive L contraction is equipped with

a norming function having full support, then it is related in a natural way

to an operator on any other L space, 1 < p < oo. This construction is

used to generalize a theorem of Rota concerning the convergence of alternating

sequences.

1. Introduction

Let L be the usual Banach space of complex-valued functions. Denote by

Lp the class of L functions taking nonnegative values. An Lp operator T is

positive if TL+p C Lp . It is a contraction if \\Tf\\p < \\f\\p for every f £ Lp .

We say u is semi-invariant for a positive Lp contraction T if both u and Tu

have full support and \\Tu\\p = \\u\\p .

(1.1) Theorem. Suppose 1 < p < oo and 1 < r < oo.  If T is a positive L

contraction with a semi-invariant function u, then the formula

Trf=(Tu)p/r-XT(uX-p/rf),

where f £ Lr, defines a positive Lr contraction. This operator is independent

of the choice of semi-invariant function. We call Tr the Lr operator induced by

T.

We apply this notion of induced operators to the question of convergence

of alternating sequences. For simplicity of notation, the following theorem is

stated for L* only. The analogous result is proved for all of L .   T* denotes

the adjoint of T; it is an operator on Lq where q = p(p — l)~x . Whenever

u is semi-invariant for an L   operator T, then (Tu)p~   is semi-invariant for

r.
(1.2) Theorem. Suppose I < p < oo and 1 < r < oo. Let (Tn)^=x be a sequence

of positive Lp contradictions with semi-invariant functions defined over a o-finite
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Lebesgue space. Then

(T¡)r---(K)r(Tn-.-Txf)p/r

converges a.e. for every f £ Lp .

This theorem generalizes Rota's theorem of the alternating procedure [Rt].

We say an operator is bistochastic if 7T = T*l = 1, where 1 is the function

taking the value 1 everywhere.

(1.3) Theorem (Rota). If(Tn)°^=x is a sequence of positive bistochastic operators

over a probability space, then

(1.4) rx..-rnTn.--Txf

converges a.e. for every f £ L , where 1 < p < oo.

A positive bistochastic operator is a contraction of every Lp , where 1 < p <

oo ; thus the expression (1.4) is well defined for every p . A positive L con-

traction with a semi-invariant function does not necessarily have this property,

but we may use the operator induced by T* to define a "pseudo-adjoint" of T

which operates on L .

In the finite measure case, 1 is semi-invariant for any bistochastic operator

and for its adjoint. Furthermore, T* = T* for any r, 1 < r < oo. Thus,

Rota's theorem is a consequence of ( 1.1 ) with r = p .

2. Preliminaries

(2.1) Definitions. For any er-finite measure space (X, AF, p), let J¡f(dp) be

the vector space of ^"-measurable complex-valued functions defined on X.

Let J?+(dp) be the class of functions in Jt(dp) whose ranges are subsets of

R+ = [0, oo). Let Jf+(dp) be the set of ^"-measurable functions on X with

values in the extended nonnegative reals, [0, oo].

The usual Banach space of functions in Jt(dp) for which fx \f\p dp < oo

is denoted by Lp(dp), where 1 < p < oo, while L^dp) denotes the space

of essentially bounded functions Jf(dp). We also use Lp(dp) = Lp(dp) xx

JA*(dp). All of the relations between the functions in these classes are in the

p-a.e. sense, even when this is not made explicit. With the convention 0-oc = 0,

functions in Jf+(dp) may be multiplied pointwise.

Let (Y, 2?, v) be another a-finite measure space. Consider the class of all

mappings

T:^ + (dp)^^ + (dv)

which satisfy the following two conditions:

(2.2) T is "positive-linear"; that is, if q, ß £ E+ and f, g £ IM* (dp), then

T(af+ßg) = aTf+ßTg.
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(2.3) T is "order-continuous" in the sense that Tfn \ Tf v-a.e. whenever fn ]

f p-a.e. (the arrows indicate monotone nondecreasing pointwise convergence

in R+).

If T is such a mapping, then its restriction to J?+(dp) need not be ex-

tendable linearly to Jf(dp). Thus, these mappings should not necessarily be

associated with the usual class of linear operators. Nonetheless, it is convenient

to make the following definition.

(2.4) Definition A mapping satisfying (2.2) and (2.3) will be called a positive

operator on JC*(dp) (or from Jf+(dp) to ^+(dv)).

(2.5) Lemma. Given a positive operator T: JA + (dp) -, JA + (dv) there exists a

unique positive operator T* : Jr + (du) -, ^ + (dp) such that

[ fT*gdp= f Tf-gdv
JX JY

for every f £ Jf+(dp) and g £ Jf + (dv).

Proof. Given g £ Jf+(dv), the mapping

f£^ + (dp)^ Í Tf.gdv£R+

is integration with respect to some measure on (X, y ) which is absolutely

continuous with respect to p . This measure may be represented as p dp for

some p £ JÍ+(dp). Define T* by T*g = p .   D

(2.6) Definition. The operator T* defined above is called the adjoint of T.

If T: Lp(dp) -, L (du) is a positive operator in the usual sense, then its

restriction to Lp(dp) can be extended to a positive operator on Jf+(dp),

which will also be called T. It is unique by the requirement that it satisfy

(2.3). If a positive operator on Jf+(dp) in the sense of (2.4) can be obtained

in this way, then we will call it a positive Lp operator on Jf + (dp). The

following definition states this in a different way.

(2.7) Definition. A positive operator T on Jf+(dp) is said to be a positive

L   operator ifp

ij(Tf)pdu f£J? +(dp) and jfpdp<l\ll?l|* = si

is finite. If, furthermore, ||T||   < 1, then T is called a positive Lp contraction.

Throughout this paper, whenever a number p with 1 < p < oo is understood,

then q denotes the adjoint index; that is, the number p(p - l)~x . Note that

T is a positive Lp operator if and only if T* is a positive L operator. In

this case, the definition of the adjoint operator agrees with the usual definition

in the Banach space sense.

The following theorem is a standard result. Under the hypothesis one easily

shows that the operator is a contraction of both Lx and Lx . The conclusion

then follows by the Riesz convexity theorem.
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(2.8) Theorem. Let T be a positive operator such that TI < 1 and T*\ < 1.

Then T is a positive Lp contraction for all p, 1 < p < oo.

(2.9) Definition. If T is a positive Lp operator and u £ L is a function

satisfying \\Tu\\p = ||T||p||w||p, we say that m is a norming function for T.

We say that u is semi-invariant for T if ||T«|| = ||w|| and both u and Tu

are strictly positive a.e. A semi-invariant function for a contraction is clearly a

norming function.

(2.10) Lemma. If u is a norming function for a positive L   operator T, then

T*(Tu)p-X = \\T\\ppup-X.

Consequently, if u is semi-invariant for a positive contraction T, then (Tu)p~

is semi-invariant for T*.

Proof.

\\Tu\\pp=   Í(Tu)(Tu)p~X dv = ¡uT*(Tuf~X dp

<\\u\\p\\T*(Tu)p-1\\q<\\u\\p\\T\\\(Tu)p-l\\q

= mp\\t\\p\\tu\çx = \\tu\]pp,
where the first inequality follows from Holder's inequality. Thus, we have equal-

ity in Holder's inequality, and so T*(Tuf~   is a constant multiple of up~  .   D

(2.11) Definition. Suppose T is a positive operator on Jf +(dp). A set E £ AF

is called a reducing set for T if T(xE) • T(\ - xE) — 0, where xE *s tne

characteristic function of the set E.

(2.12) Lemma. The support of a norming function is a reducing set.

Proof. Let u be a norming function for T, and E be the support of u. Then

j(Tu)p~xT(l - xE)dv = j T*(Tu)p-x(\ - xE) dp

= \\T\\Ppju -x(l-XE)dp = 0.

Hence (Tuf  XT(1 - xE) = 0, and so (Tu)T(l - xE) = 0. Now approximate

\lXE from below by simple functions.   Conclude by (2.3) and positivity that

T(xE)T(\-xE) = 0.    U

The following lemma concerning functions of a real variable is needed. Ob-

serve that the conclusion of the lemma remains valid if we replace tr in the

hypothesis by any differentiable function which is strictly monotone almost

everywhere.

(2.13) Lemma. Let tf>, 6: R+ -, K+ be measurable functions satisfying

(2.14)

/•oo /*oo

/    4>(t)dt= /    6(t)dt <oo,
Jo Jo

¡X (p(t)dt<  f  6(t)dt,
Jo Jo
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and
roo roo

(2.15) /    tr4>(t)dt= /    tr6(t)dt
Jo Jo

for every a > 0 and some r > 0. Then <j> = 6 a.e.

Proof.

r trtp(t)dt= rr/~x (r<t>(t)dt) ̂

>  f°° rsr~x (T6(t)dt\ ds= f°° tr6(t)dt.

By (2.15), we have equality. Thus, the set of points at which inequality (2.14)

is strict has measure zero. Since

rot re

/   <t>(t)dt= /
Jo Jo

6(t)dt

for a.a. a, and tf) and 6 are positive functions, it follows that tf> = 6 a.e., as

desired.   D

(2.16) Definition. A point transformation x: X —y X is called an automorphism

if it is invertible and both t and x~x are measurable and nonsingular. An auto-

morphism induces two measures, pox~ and pox, both absolutely continuous

with respect to p. Let p denote the Radon-Nikodym derivative of p o x~x

with respect to p . If 1 < p < oo , then define Q: Lp -, Lp by

Qf=pX/p(for-X)

for f £ L . We call Q the Lp isometry induced by x .

(2.17) Lemma. If Q is the Lp isometry induced by an automorphism x, then

Q~x is the Lp isometry induced by x~   and Q* is the Lq-isometry induced by

x~x.

Proof. This follows immediately from the definitions if one observes that when

p is the Radon-Nikodym derivatives of p o x~ with respect to p, then the

Radon-Nikodym derivatives of pox with respect to p is l/(p ox).   D

(2.18) Definition. Suppose 1 < p < oo and 1 < r < oo. Define ip  r: L  -, Lr

by means of the equation

[Vpr(f)](x) = sign(f(x))\f(x]
lP/r

where sign(z) is the complex number of unit modulus having the same argu-

ment as z . When p and r are understood, we refer to this embedding simply

as \p .  Usually /*  is used to represent ipp qf.  Perhaps the most important

property of \p  r is that when f £Lp, then ||y    /||r = ||/||£/r.
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(2.19) Lemma. Let 1 < p < oo and 1 < r < oo. Suppose Qp and Qr are,

respectively, the Lp  and Lr isometries induced by an automorphism x.   If

V =Vp,r   and f ELp- tnen

Qrvf=vQpf.
Proof.

Qrwf = pllr[sign(f)\f\Plr]ox-x

= si%n(fox~x)px'r\fox-x\p'r

= sièn[pX/p(fox-X)]\pX/p(fox-X)\p/r

= wQpf.  o

(2.20) Definition. When (X, SF, p) is a measure space and AF' is a sub-cr-

algebra of F, then E(-\SF') denotes the conditional expectation operator with

respect to &'. We adopt the convention that E(f\AF') is 0 on any atom of

&~' of infinite measure.

(2.21) Theorem (Martingale convergence theorem for finite cr-algebras). Let

(X, y, p) be a o-finite measure space. For each k>l, suppose ^k is a finite

sub-o-algebra of A? and ^k Q&k+X. Let ^ = o(\J^=x^k), the smallest o-

algebra containing the algebra (J^li &k ■ Suppose 1 < p < oo and f £ Lp(dp).

Let fk = E(f\^k) for 1 < k < oo. Then fk—yk a.e. and in Lp norm.
If p > 1, then the fk 's have a maximal function; more precisely, there is a

function g £ Lp  with \fk\ < g for every k>l, and \\g\\p < q\\f\\p .

Proof. See any reference on martingales, e.g. [S, pp. 89-94].

(2.22) Lemma. Let (^'k)kx>=l be as in the previous theorem and suppose (^)^l]

is another monotone sequence of finite sub-o-algebras of F. Let

Let f £ Lp(dp), where 1 < p < oo, and fk = E(f\S?k). Then

E(f[\^k) -, E{fj*J

a.e. and in Lx norm.

Proof. Let (pk = fk for each k > 1 . Then g = sup fk £ Lp by the martingale

convergence theorem. Thus 0 < <f>k < 6 = gp £ Lx, and 4>k -+ (f)^ a.e. The

proof is then completed by the following more general lemma.

(2.23) Lemma. Let 0 < (pk < 6 £ Lx for k > 1, and let <pk -, tp^ a.e. Then

E(4>k\^k) ->-E^ool^oo) a.e. and in L{  norm.

Proof. Let

^ = inf>n     and     rlk = sxiptf>n.
n>k n>k
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Then (vk-Çk) I 0 a.e. and in L, norm, by the dominated convergence theorem.

We have, for any n > k,

E(ik\8r>„)<E(in\3?n)<E(<t>n]&n)

<E(nn\?n)<E(nk\&n).

If n

Thus

oo with k fixed, then

mk\$J < MW„\&n) < ^E(t¡>n\^n) < E(nk\^

limE(<pn\$n)-limE(<t>n\&n)

II  - II fit       £k<P(^J-^|^0y,[1^„^-sfe„1

which can be made arbitrarily small. This completes the proof.   D

We will need the following four lemmas from [AS2], where they are numbered

(2.2), (2.3), (2.5), and (2.8) respectively. Lp always refers to the case 1 < p <

oo over a er-finite measure space.

(2.24) Lemma. Let fk £ Lp for every k,   1 < k < n.  If V: L

positive bounded linear operator, then

Lp is a

max \Vf.\ < V [ max \f.
X<k<n        K \X<k<n    K

and, consequently,

max |K/.| <\W\ max |/. |
x<k<n   k

(2.25) Lemma. T^r each e > 0 there is a ô > 0 such that if E: L

a conditional expectation operator, f £ L , and

\\f-Ef\\<e

Lp is

p-\\Ef\\p<ô\\f\\p,then

(2.26) Lemma. Let f.    £ L   for every m > 0 and every k,   1 < k < n.  If

lim
'km

- fjp = 0 for each k, then.114

lim
m>0

"?,a?  \fkm\- .rP,a?  I/*
X<k<n X<k<n

= 0.

(2.27)  Lemma. Let   (/„)^10   be a sequence of functions in   Lp   such that

(suP«>ol/«D€Lp- Then (f„)7=o converges a.e. if and only if

lim
n>0

suPl/fc-/J
k>n

= 0.

The following are analogous to Lemmas (2.6) and (2.7) in [AS2]. The first one

follows from a result of Mazur [M], since the mapping y/ f may be regarded

as a composition of his map F from Lx to Lr and his map G from L to

Lx , both uniformly continuous on the unit ball.
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(2.28) Lemma (Uniform continuity of ipp r). Let 1 < p < oo and 1 < r < oo.

Given e > 0 and M > 0, there is a ó > 0 depending only on e, M, p, and r

suchthat \\yff-ytg\\r<e whenever \\f\\p<M, \\g\\p < M, and \\f-g\\p<S.

(2.29) Lemma. Given e > 0 and M > 0 there is a ô > 0 depending only on e,

M, p, and r such that if (4)jtio is a sequence in L with || sup/k>0 |^.||| < M

and || sup^o \fk - fQ\\\p < ô then

sup\y/fk-xpf0\
k>0

< e.

r

Proof. Let ô be as given in the uniform continuity of y/ corresponding to e/2,

M, p, and r. Let n > 1 he given. Fix a partition {Ax, ... , An} of X such

that
n

o™V¥fk " ^/o1 = 2Z 1^4 - yfo\x,
-  - m=X

L*f = Z"m=lfmXA  , so that

max \y/fk - y/fQ\ = \y/f- y/f0\.
0<k<n u "

We have \\f\\p < M, ||/0||p < M, and ||/ - f0\\ < \\ supfc>0 \fk - /0| ||p . There-
fore, if this last norm is less than ô , the uniform continuity of ip implies that

Il Vf - Vfo\\r < e/2. This completes the proof.   D

We also need the following, which is an immediate consequence of

\\Tnfn - Tf\\p < \\TH\\ ■ ||/„ - f\\p + \\TJ - Tf\\p .

(2.30) Lemma. Suppose (Tn)°^=x and T are Lp contractions and

Jim || T„f- Tf\\p = 0

whenever f £ L . If fn -, f in Lp norm, then

^xWJn-Tf\\p = 0.

3. Induced operators

In this section, we will be interested primarily in positive L   operators with

strictly positive norming functions. We begin, however, with two more general

lemmas.

(3.1) Lemma. Let T be a positive operator on ^+(dp). Suppose u£j?+(dp)

is strictly positive. If there is a a £ R+ such that

(3.2) T*(Tu)p~X <aV~\

then T is a positive Lp operator with ||T||p<A.

(3.3) Remarks. In the Borel case, this follows from a result in [ASI] concerning

dilations. The general case was considered in [KI]. We have included the

following short proof to make this paper more self-contained.
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Proof. If a = 0, it is easy to see that T = 0, since f(Tu)p~x(Tf) dp = 0 for

every / 6 JA + (dp).

Suppose a > 0 and let v = Tu. Because of (3.2), the cr-finiteness of p

and the fact that u is finite a.e., one argues that v is finite a.e. (The proof is

essentially contained in [ASI, p. 391].)

Let dp =updp and du' = (v /Xf dv . Define an operator R: Jf +(dp) -,

Jf + (dv') by Rf = xG^T(uf) for f£ J? + (dp!), where G is the support of
v . This is clearly a positive operator in the sense of (2.4). A routine computa-

tion shows that the adjoint, 7?*: J? + (dv') —» Jf + (dp), is given by

R*g = ^—X(vp~xg)

for g £ ~AW + (dv'). Thus 7?1 < 1 and TTl < 1, so by Theorem (2.8), 7? is an

L   contraction. This means that if / £ JA + (dp), then

j(Rf)pdv' < j fdp!.

If f £ JA + (dp), then f = uf for some / £ JA + (dp!). Hence

j'Tff du = j[T(uf)]p du = kp j(Rf)p dv'

<XP jfpdp' = Xp jfdp.

This shows that T is an L   operator with ||T||   < a .   D

(3.4) Lemma. Let T be a positive operator on Jf + (dp). Suppose u£JA+(dp)

is strictly positive, and that there is a A £ R+ such that

T*(Tu)p-X<fif-X.

Let v = Tu and let G be the support of v . Let r be any exponent, 1 < r < oo.

Then
Sf = xG^)P/r-lT(ux-^f),

for f £jfJr(dp), defines a positive Lr operator S: Jf + (dp) ^Jf + (dv) with

\\S\\r<A.

Proof.  S* : ^+(du) —» ̂ + (dp)  is easily calculated; one sees that for g £

^ + (dv),
o* /i    A-Plrrr*i   p/r-X ,
S g = (lu)   n T (vPI     xGg) ■

Let ü = up/r. Then it is strictly positive a.e., and S*(Su)r~x < kru~x . Thus,

Lemma (3.1) completes the proof.   D

(3.5) Lemma. Suppose if, and u2 are strictly positive norming functions for a

positive Lp operator T on ^ + (dp). For any a £ R+, the set

Ea = {x£XU-A^\>a)a     I ux(x)        J

is a reducing set for T.
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Proof. As in the proof of Lemma (3.1), let dp! = upxdp and dv = (vx/X)p dv ,

where vx = Tux and A = ||Tj| . Observe that even if vx is not strictly positive

a.e., its support is equal to the support of v2 = Tu2 a.e. Without loss of

generality then, we may replace the set Y with this common support. Define

R:^ + (dp')^^ + (dv') for / eJt+(dp!) by Rf = T(uxf)/vx .
7?1 = 7?*1 = 1, so R is an Lp contraction.  1 is a norming function for 7? ;

we now show that u = u2/ux is another. One may verify that R*(Ru)p~x =

up~ , from which \\Ru\\p = ||m||   easily follows. Let v = Ru.

Let a > 0 be arbitrary. Let ua = uAa, the function u truncated at the value

a . Observe that En is the support of u-u  . Also note that Ru   < v  =vAa,
a rr a a —     a '

hence

(3.6) uadp =     Ruadv'<     vadv'.

Let 4>: R+ -, R+ be the distribution of u ; that is, <j>(t) = p'{x: u(x) > t).

Let 6 be the distribution of v , similarly defined with respect to v . Inequality

(3.6) has the equivalent form

(3.7) /  4>(t)dt< f  6(t)dt.
Jo Jo

Since ||w||   = \\v\\p , we have

< oo.

f°°     -1 f°°     -1
(3.8) /    t°   tp(t)dt= /    r°   6(t)dt.

Jo Jo

Finally, u £ Lx(dp), since p > 1 and p  is a finite measure. Since  |w

\\v\\x , we have

roo roo

(3.9) /    4>(t)dt= /    6(t)dt
Jo Jo

Conditions (3.7)-(3.9) allow us to invoke Lemma (2.13) and conclude that

4> = 6 a.e. in Lebesgue measure. Since

H"-"X=W     t°-X<p(t)dt,
Ja

we have

\\u-u ||„ = \\v -v ||„ < \\R(u-u )||„,ll a"p >' a"p  —   M      v a'"p '

where the inequality follows because Rua < vn. As 7? is a contraction, we

conclude that the norms are in fact equal. Thus, u-un is a norming function.

By Lemma (2.12), then, its support is a reducing set for 7?. It easily follows

that E   also reduces T.   G
a

(3.10) Remarks. One may replace the "less than" in the definition of Ea by any

other inequality, simply by considering complements or reversing the roles of

ux and u2. The complement of a reducing set is a reducing set; it is also easy
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to show that the intersection of reducing sets is a reducing set. In fact, the class

of reducing sets of a bounded Lp operator is a sub-rj-algebra of the underlying

measure space. This is shown in [K2], which also includes a different proof of

the above lemma.

(3.11) Theorem. Suppose T is a positive Lp operator on JA+(dp), and ux and

u2 are strictly positive norming functions for T. Let v¡ = Tui for i =1,2 and

let G be the support of the vAs. Let 1 < r < oo, and define positive operators

Sx and S2 on ^ + (dp) by

SJ = XG\\T\\Xp-plrvp'r-XT(uX-plrf)

for f £ JA +(dp) and i = 1, 2. Then Sxf = S2f a.e. for every f £ ÂA +(dp).

Proof. By (2.3), it suffices to consider / £ ^+(dp).

Let 5 = p/r - 1 . If 5 = 0, there is nothing to prove. Otherwise, let e > 0

be given, and choose a positive integer N > 1/e .

For each n > 1, let

HX£X
N + n - 1      u7(x) ^ N +

and

X£X

N

N + n- 1

N
<

ux(x)

U\(X)

u2(x)
<

N

N + n

'-)

Also, let EQ be the set of points in A where ux(x) = u2(x). Then {En\n £ Z}

is a partition of X into reducing sets.

Let / £ Jf+(dp) be given and let fn = fxE   for every n £ Z. The /'s

have disjoint support, as do the functions T(u\~sfn) and T(u2sfn).

Now suppose n > 1 and s > 0. Since T is positive, we have

(3.12)
N fn < T fn

\u\J -     \us2J - \N + n-lj      \u\
<

N fn

Let uin = ulxE and vin = T(uin) for every n £ Z and i = 1,2. The

functions T(u~sfn) and vmi will have disjoint supports unless m = n; thus

Sjfn depends only on T(u~s fn) and vsni. We have

N + n- 1V  »   .   s    . (N + n   '
(3.13)

Therefore

(3.14)

N VnX < Vn2 < N JnX

(N+n-lV (   N+n   V
^   N + n   ) V„<V„< [N + n_l) SxFNN + n   J     lJn -   2J" - \N + n- 1

If (Sxfn)(x) = 0, then (S2fn)(x) must be zero as well. Otherwise,

(3.15)
(S2fn)(x)

(Sxfn)(x)

i/*
1 < J_

N + n- 1
< e,
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If j < 0, then the order of the terms in (3.14) is reversed, but (3.15) remains

valid.

If n < -1, the argument is symmetric, with the conclusion

f(v,)wy/,_1 <_l_<£
\(S2fn)(x)J - N + n-1 <S-

It is clear that Sxf0 = S2f0. Since e > 0 is arbitrary, we conclude that

Sxfn = S2fn a.e. for each n £ Z. Thus Sxf = S2f a.e., as desired.   D

(3.16) Theorem. Suppose 1 < p < oo and 1 < r < oo. Let T be a positive L

operator with a strictly positive norming function u. Let v = Tu and let G be

the support of v . Then

Trf = Xg\\T\\X-p/rvp/r-XT(uX-p/rf),

for f £ Jf+(dp), defines a positive Lr operator Tr: JA + (dp) -, Jf + (dv)

such that ||Tr||r = ||T|| . This operator, called the Lr operator induced by T,

is independent of the choice of u.

Proof. Whether T is given as an L operator in the Banach space sense or

in the sense of Definition (2.4), it is clear that Tr is a positive operator in the

sense of (2.4). Lemmas (2.10) and (3.4) combine to show that Tr is in fact an

Lr operator with norm bounded by || T\\p . To see that this norm is actually

achieved, let / = w . Theorem (3.11) demonstrates that Tr does not depend

on the choice of norming function,   a

(3.17) Corollary. Suppose T is an Lp contraction with a semi-invariant function

where 1 < p < oo. For every r,  1 < r < oo,

Trf = vp,r-XT(uX-p/rf)

defines a positive contraction of Lr.

(3.18) Remarks. If T is an L isometry induced by an automorphism x (as in

(2.16)), then Tr is simply the Lr isometry induced by x. When the underlying

space has finite measure, we may take u = 1 and v = px'p . The general cr-finite

case is not much harder to check.

A larger and more important class of operators has the form EQE, where

Q is an L isometry induced by an automorphism and E is a conditional

expectation operator of finite rank. Such operators where crucial to the proof

of the pointwise ergodic theorem for positive L contractions (see [A]). Thus,

the following lemma is of some general interest as well as being necessary for

§5 of this paper.

(3.19) Lemma. Suppose 1 < p < oo, 1 < r < oo, and that Qp and Qr are,

respectively, the L   and Lr isometries induced by an automorphism x over a

measure space (X, AF, p). Let ^ be a sub-o-algebra of A?~ and let p. be the



ALTERNATING SEQUENCES AND INDUCED OPERATORS 777

restriction of p to ¡7. Let E be conditional expectation with respect to A? and

suppose

T:Lp(X,9-,~p)-,Lp(X,$-,~p)

is given by T = EQE. If T has a semi-invariant function u, then Tr = EQrE.

Proof. Let v = Tu. For /£ Lr(X,Srr,p),v/e have

Trf = vp/r-xT(uX-p/rf)

= vp/r-XE(pX,p(uox-X)X-p/r[(Ef)ox-X])

= vp/r-xE[px/p(uox-x)x-p/r(fox-X)],

where the third line follows because / is already y-measurable. Because

IML — \\u\\p ' ß is an isometry and p > 1, we conclude that Q u must already

be ^-measurable, lest some norm be lost in taking the conditional expectation.

Thus v = px   (u o x~ ) and

Trf=E[vplr-XpXlp(uox-x)x-p'r(fox-X)]

= E[(pX/p)p/r-X(u o x-X)p/r-XpX/p(u o x-X)X-p/r(fox-X)]

= E[px/r(fox-X)] = EQrf = EQrEf   D

(3.20) Lemma. Let 1 < p < oo, 1 < r < oo, and let Q be the Lp isometry

induced by an automorphism x. Let T = EQE for some conditional expectation

operator E. If T has a semi-invariant function and R = Rr is the Lr isometry

induced by x~x, then (T*)r = ERE.

Proof. (T*)r = (EQ*E)r = (ERqE)r = ERE. We have used the self-adjoint-

ness of E and Lemmas (3.19) and (2.17) for the fact that Q* is the Lr isometry

induced by t-1 .   o

4. FlNITE-DIMENSIONAL APPROXIMATION

In [AK], it was shown that all positive contractions over the unit interval are

induced by a point mapping of some type, followed by a conditional expectation.

For positive contractions with semi-invariant functions, the argument is easier

and does not require the underlying space to be interval. However, we will want

to extract a point mapping from a set mapping, so we will require our measure

spaces to be Lebesgue spaces. That is, a measure space (X, AF, p) where X is

a complete metric space and AF is the Borel cr-algebra. We allow the space to

have (7-finite measure. Since a separable metric space is second countable, the

rj-algebra of measurable sets in a Lebesgue space can always be generated by a

countable algebra of sets.

The details of the construction give us a family of finite-dimensional oper-

ators (Tn)°^=x (these are ordinary superscripts, not powers), each with a semi-

invariant function un, where un —> u a.e. Furthermore, these operators have
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the property that (Tn)rf -, Trf a.e. and in Lr norm for every f £ Lr. These

finite-dimensional approximations to the induced operator provide the key to

the proof of the Theorem (1.2).

(4.1 ) Definitions. Let X = (X, y, p) be a cr-finite Lebesgue space and suppose

T: Lp(dp) -, Lp(dp) has a semi-invariant function u. Let I = (7, 3§, m) be

the usual Lebesgue space of the unit interval. Let W = (W,J¡T,co) = XxI.

Let J" = {F x I\F £ A?}, the "vertical" sub-cr-algebra of 3¡A, and let v be

the J^-measurable function given by v(x, y) = (Tu)(x) for every v in the

unit interval.

Suppose  (^)^li  is an increasing sequence of finite sub-er-algebras of y

such that o(\J^=xFn) = A?. That is, y is the smallest cr-algebra containing

all the y/s. Let J"n = {F x I\F £ Fn] .
k

For each n > 1, fix an enumeration {7^ T^,  of the atoms of AF.  Let

yn 0 = 0, and for each i, 1 <i <kn, let

and

Hni = {(x,y)£W

k
Let ß?n be the finite sub-cr-algebra of A%A generated by the partition {77n ¡}¿x

of IT. Let Yln be the set mapping from ^ to ^ determined by n^T^ . =

77n (. for each i, 1 < i < n .

(4.2) Lemma. There is a point mapping n: W -, X such that n~ Fn . = Hn ¡

for every n > 1 and every i,  I < i <kn.

Proof. The family of set mappings nn determines a unique set mapping of the

algebra U^ti^¡ > because of Fn's form a monotone sequence. This mapping

preserves unions and complements, and it extends to a homomorpnism of the

measure algebras of (X,AF) and (W, AiïA). Since the sets underlying both

spaces are complete metric spaces, there is a point mapping n defined from

almost all of IT onto almost all of X which induces the set mapping (see [Ry,

p. 329]). Thus if Y1F = 77, then n~xF = 77. Since UFn ( = TlnFn ,, the

desired result follows.   D

(4.3) Lemma. 7w every F £.9r, JFup dp = Jn-¡F vp dœ.

?„,,_,(*) <y<  7„/x)

(Tu)(x) (Tu)(x)
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Proof. If F = Fn ¡■ £ y for some n > 1 and some i, 1 < / < kn, then

• n ,i      'n, i— X
[     vpdco= [ (Tu)p

Jn-'F Jx Tu
dp

= / (Tuf XT(uxF)dp
Jx

=  / uT*(Tuf~ dp= / vc°dp.

The lemma is true for a generating subalgebra of y. The proof is easily com-

pleted.   D

(4.4) Lemma. Suppose <f> is an F-measurable function and 6 is a A% -measur-

able function with tf> > 0 p-a.e. and 6 > 0 co-a.e. such that

1/^ = 1 6dto
'F

for every F £ F. Then, if 1 < p < oo,

Ico

(   6   \xlP

sf=(l^)  (/°*»-

for f £ Lp(dp), defines an isometry S: Lp(dp) -> Lp(dco)

Proof. First suppose / = tf> 'pxF for some F £ F. Then

= [      6dto= f tpdp =
Jn~{F Jf

In the general case, approximate f<j>~xlP by y-simple functions.   D

This isometry yields a result analogous to the theorem of Akcoglu and Koop

[AK].

(4.5) Theorem. Define Q: Lp(dp) -, Lp(dco) by

Q = l¡hi{fo7t)   f°rf^Lp(dp).

If to' is co restricted to <F, and we identify X with (IT, J*", to), then Tf =

E(Qf\F) for every F£Lp(dp).

Proof. By the two previous lemmas, we see that Q is an isometry of the indi-

cated spaces. Suppose / = uxF for some F £F. Then

[E(Qf\S)](x) = f (Qf)(x,y)dy= [ v(x, y)xK->F(x, y)dy
Jo Jo

= {Tu){x){-jTWxT)={Tf){x)-
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For a general y-measurable /, approximate fu~x  by y-simple func-

tions.   D

(4.6) Lemma. Suppose F is a finite sub-o-algebra of F and p. is the restriction

of p to y. If v £ L (dta) satisfies v > 0 a.e., then there is a unique AF-

measurable function ü such that, for every F £¡F,

if dp= vp dto.
Jf Jk~]F

Furthermore, the mapping

f £ Lp(X ,F,p)^,^(fon)£ Lp(dto)

is an isometry which transforms ü to v .

Proof. Let {F¡}¡=1 be an em

for each i, 1 < i < k . Then

Proof. Let {Fi}¡=x be an enumeration of the atoms of F. Let 77; = n  lF¡

""5 GH"") **•■

k     r       fP k

¿Í ' Jn->F¡(üon)p tí
u/u;,

If / = Ef=, ctxFi eLp(X,F,p), then

P k r ~p

[fon)
u°n

as desired.   D

(4.7) Theorem. For each n > 1, let vn = E(v\ufn). Let un be the corresponding

Fn-measurable functions as given by Lemma (4.6). Then un -» u  p-a.e.

Proof. Let un = £*!, uH ,xF    ■ Then

i/dp
»F.,Af,., j (to//.,r7„  .»'«''»)

Thus

■< — |$gWK>-«l-

By the martingale convergence theorem, with p = 1, we have £(2/^) -» wp

/¿-a.e., and E(vp\ßlAn) -, E(vp\%f) to-a.e. By Lemma (2.22), we also have

E(vp\^n) -, E(vp\%f)  to-a.e. Therefore

i^ OTT — E(u"\Fn)on,

and so up -> up //-a.e., by the martingale convergence theorem. This completes

the proof.   G
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(4.8) Definition. For each n > 1, let un and vn be as defined in the hypothesis

of the previous lemma. Define

Q":Lp(X,Fn,pn)^Lp(dto),

where pn is the restriction of p to Fn , by

q7=-^-(/°k)
unon

for f£Lp(X,Fn,pn).
By Lemma (4.6), this is an isometry. If ton is the restriction of to to J^ ,

and we make the obvious identification of (IT, J^, ton) with (X,Fn, pn),

then define Tn : Lp(dp) -, Lp(X, Fn, pn) by

Tnf = E(Q"E(f\Fn)\Sn)

for / £ Lp(X). Each T" is a positive contraction, and it is easy to see that if

/ £ Lp(dp), then T"f -, Tf p-a.e.

Observe that un is a semi-invariant function for each T" ; the reason is that

vn is already J^-measurable. (In fact, it is easy to see that un is the only

normalized semi-invariant function for T" .) Thus, the induced operator (Tn)r

is defined for any r, 1 < r < oo. For brevity, denote it Rn .

(4.9) Theorem.   \\RJ - Trf\\r ^ 0 as n -, oo, for every f £ Lr(dp).

Proof. If / is ^-measurable, then

n    r P/r—Xr^n,    X—p/rr.

Rnf = Vn T  K /)

P/r-X rr

= Vn E
V^(ul-p,ron)(fon)\^

unon

= E (/°*)M£
unon

since v„ is F -measurable. Whether or not / is y-measurable, define
n n J n '

vPlr(    V      \p/r

Then RJ = E^J^) for any / £ Lr(dp). Similarly, if </> = (v /uonf'r(fon),

then Trf = E(4>\S).
Clearly 4>n —> <j> a.e.; if we can show that \\<i>n\\r -* ||0||r, we may conclude

that <!>„-* tf) in Lr norm (see [Ry, p. 118]):

Kl = \\Qn{[E(f\Fn)]
r/pX

= \\[E(f\Fn)]r/p\\pp = \\E(f\FX^\\f\\rr,

as E(f\Fn) is an Lr martingale.  The second line follows because Qn is an

isometry. Also ||^||r = ||/||r by a similar calculation. This tells us that

114,-fllr-O.
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To conclude the proof, observe that

\\RJ - Trf\\r < \\E(<t>n\Sn) - E(<pn\S)\\r + \\E(tpn\S) - E(<t>\S)\\r.

The first term tends to zero by the martingale convergence theorem and the

second term is dominated by \\4>n - </>||r.   D

5. Convergence of the alternating sequence

This section is in many ways analogous to §§3 and 4 of [AS2], and so the

reader will often be referred there for details. Where we follow [AS2] closely,

every effort is made to keep the notation consistent.

(5.1) Definitions. Suppose 1 < p < oo, 1 < r < oo, and let ip = y/p r.

Let (Tn)^=x be a sequence of positive linear contractions with semi-invariant

functions operating on the Lp space of a cr-infinite Lebesgue space. Call such

a sequence of operators a norming sequence. Call a norming sequence special

if all operators are finite dimensional.

Let V0 and U0 be the identities on Lp and Lr respectively, and make the

following definitions for each n > 1 :

K = Tn---Tx, Un = (rx)r.-.(T*n)r.

For a given / e Lp and an n > 0, let gn = Uny/(Vnf). Observe that g0 = ipf

and that ||g0||r = ||/||f.
We say that Estimate A holds for a norming sequence (Tn)^=x if

sup|g„
«>o

< (9||/||//r(= QPlr\\gX)

for every f £ L .

We say that Estimate B holds for a norming sequence (Tn)™=x  if for every

£ > 0 there is a ô > 0, depending only on e , p , and r, such that

SUP|£„-£0|
«>0

whenever f £ L„ is such thatJ        p

<£\\f\\T   (=e|l*oUp
r

-lim\\Vnf\\p<ô\\f\\p.

Given a norming sequence (Tn)™=x , a fixed n > 1, and a function f £ Lp ,

let /= Vnf. For every k > 1, let fk = Tn+k . Let V0 and Ü0 be the identities

on L   and Lr respectively. For each k > 1 , let

Vk = Tk--fx,        Uk = (ï'x)r--(ïl)„

and for each k > 0, let gk = Üky/(Vkf). Observe that gn+k = Ungk for every

k >0.
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(5.2) Theorem. Suppose Estimates A and B are satisfied for every norming se-

quence. Then given a norming sequence (Tn)™=x and an f £ Lp, (c?„)^L0

converges a.e.

Proof. Because of Estimate A, (supn>0 \gn\) £ Lr. Therefore, by Lemma (2.27),

it suffices to show that

lim
n>0

WQ\gn+k-8n
k>n

= 0.

Let ß = lim„>0 ||Tn/||p and distinguish two cases:

Case 1 : ß = 0. Given e > 0, find «0 > 1 such that

1 /e\r/p

q

Fix n > «0 and define / and gk as above. Observe that

have

i V", <;(§)'
<\\Kf\\p.We

sup \gn+k - gn
k>0

sup\Ungk-UJ0\
k>0

< supI^-SqI
A->0

<2 sup |^|
it>0

<2(^||/||//r<£,

where the first inequality follows from Lemma (2.24) and the third follows from

Estimate A for the sequence (Tfc)^=1.

Case 2:   ß > 0. Given e > 0, choose ô > 0 as given by Estimate B, corre-

sponding to e/\\f\\pp/r.   Choose n0 > 1   such that \\Vn f\\p < (l+ö)ß.   Fix

n > n0 and define / and gk as above.   Observe that ß < \\f\\  , since the

ll^/Hp's form a monotone sequence. We have

1,-^11^/11, = WKfWp -ß < (i +&)ß-ß <s\\ï\\p.

Now apply Estimate B for (fk)?!, ; we conclude

SUP|*„+fc-£fc
it>0

< supl^-^ol
yt>0

<
hxPlr

P/r

P    '

<e,

where the first inequality follows as in Case 1.   D

(5.3) Lemma. If Estimate A holds for every special norming sequence, then it

holds for every norming sequence.

Proof. Suppose (Tn)~ , is a uniform norming sequence for which Estimate A

fails. Then there is a function f £ L   and an n > 1 such that

max \gk
0<k<n      k

> qP/rU0l
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Suppose (Fm)°^=x is a monotone sequence of finite sub-a-algebras of F with

^ - <T(öm=i^m) > me smallest a-algebra containing the algebra |J~=1 Fm . For

each k and m, 1 < k < n and m > 1, let Tk be the finite-dimensional

operator as defined in (4.8). Let fm = E(f\FJ .
Let m > 1 be arbitrary. Let V™ and t/0m be 7s(-|^„) operating on L and

Lr respectively. For each k, 1 < k < n , let

1k   '" 1\ u: {{T;f)r---((rk)m)r.

For f £ Lp, m>l, and each k , 0 < /V < « , let

^m = ^ V(Vk  f) = Uk  VlVk  f   )•

By the martingale convergence theorem, limm>11|/ - /w||   = 0.  We will

show that

(5-4) Km\\gkm-gk\\r = 0

as well. Therefore, by applying Lemma (2.26),

lim
m>X

max \gkm\- max |#
0<K<« 0<K<«

= 0.

Thus, for a suitably large integer mfí ,

maxJ^J    Xilir-I nPA

since the same inequality holds for / and the g,'s. Because y    is finite, the

operators (Txm°, ... , T™°) are essentially finite dimensional. Therefore, they

form the initial portion of a special norming sequence for which Estimate A

fails, contradicting the hypothesis of the lemma.

To prove (5.4), we first prove

(5-5) ljm\\Vkmf-Vkf\\p = 0

for every k, 0 < k < n . When k = 0, this is simply the martingale conver-

gence theorem. For the inductive step, observe that

«C/" Vk+xfWP = \\T:+xVkf-Tk,xVkf\\p,

where limm>1 \\Vkm f - Vkf\\   = 0 by the inductive hypothesis. We apply The-

orem (4.9) with r = p and Lemma (2.30) to conclude that

i™\\vkm+xf-vk+xf\\p = o,

completing the induction.

Because of the uniform continuity of y ,

X^xpVkmf-xuVkf\\p = 0

for each k , 0 < k < n .
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We now perform another induction similar to the proof of (5.5) to show that

when g £ Lr,

hm\\U™g-Ukg\\r = 0,

for each k, 0 < k < n . This completes the proof.   □

(5.6) Lemma. Suppose that for every <* > 0, there is an r\ > 0 depending only

on Ç, p, and r such that

max \g'k-g'0\
0<it<n

< tw/C

whenever (T'n)^Lx is a special norming sequence, n > 1, and f £ L is such

that \f\p-W'nf\p < iWfWp' wnere K and g'n are defined exactly as Vn

and gn in (5.1), relative to (T'n)^Lx. Then Estimate B holds for every norming

sequence.

Proof. Let (Tn)™=x be a norming sequence and suppose Z, > 0 is given. Choose

n > 0 from the hypothesis of the lemma, corresponding to ¿¡/2. If Estimate B

fails for <7X=1, then there is a function f £ Lp with \\f\\p - \\ VJ\\p < n\\f\\p ,
but for which

.s,ls* - *>'>1»It
p   '

As in the proof of the previous lemma, we approximate the operators Tk

with the operators Tk from (4.8). Define gkm as before, for each m > 1 and

each k, 0 < k < n , and let hk = gk - g0 and hkm = gkm - g0m for the same

set of indices. Then

Whm - KI ^ Ukm ~ Skl + Km ~ «ol »
and we have seen that both of these terms tend to zero as m increases. Thus

nmm>i Wnkm ~nkK — 0> ana* we maY apply Lemma (2.26) to conclude

lim
m>X

maxj^-^j-maxj^-^l 0.

At the same time, we have

lim ||/- fm||   =0    and     lim \\Vnf - Vnmf
m>X y m>X

0.

Thus, we may choose an mQ sufficiently large that we maintain the relations

and

11/"

maX   \Skrn
0<k<n     kmo

K%<n\\f

Son > fiirif.
As Fm is finite, (Txm°, ... , T™°) form the initial portion of a special norming

sequence for which the hypothesis of the lemma fails.   D
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We have reduced the proof of Theorem ( 1.2) to verifying that finitary versions

of Estimates A and B hold for every special norming sequence. In order to show

that this is true, we introduce a dilation of these operators similar to the one

given in [A].

(5.7) Definitions. Let (X, F, p) be a measure space in which F is a finite

set. Let {7^}/=, be an enumeration of the atoms of F of positive measure.

Let the indices i and ; range through the integers {1, ... , d}. If T is a

positive operator with a semi-invariant function u, let u = ^2¡a¡xF and Tu =

lZ¡ ßiXF ■ We have a, > 0 and ßi > 0 for each i. Let m, = p(F,) and let

a¡j = to[n~ F¡ xx (f. x [0, 1])], with n and to as given in §4. Observe that

y_V a,j = mi for each j, and that for each /,

apmi =      u"dp= vpdto = YJ ßP^ij ■
J Fi Jn    F¿ ;

Let

t...(L)'ii.
It is easy to verify that J2. b¡¡ = 1 . Observe also that a.. = 0 if and only if

bu = o.

We are going to construct a set Z m the coordinate plane R and an isometry

of its Lp space. The construction is virtually identical to the one given in [A]

and used in [AS2], except that some of the subrectangles may have measure

zero. However, because of the last observation, this will cause no problems.

Let (/;);_! be disjoint intervals on the x-axis of the coordinate plane, each of

length m,. Let (•7,)(=1 be disjoint intervals on the y-axis, each of unit length.

Let 7> = 7. x /. and Z = U, P¡ ■ Let Z = (Z , 3S, X), where 3S is the Borel

a-algebra of Z and A is the restriction of Lebesgue measure on R to Z . let

Lp denote Lp(Z), and let F> be the partition {7> }f=1 of Z . Let E = E(-\F>)

and let / = EL .
Define a further partitioning of Z as follows. Each 7   is partitioned into

d subintervals (/,..) /=1, each of length <a( .   Each Ji is partitioned into d

subintervals (^,,),=1, each of length b¡¡. Let 7?;; = 7. x /¿., a horizontal strip

of Pi, and Sfj = 7.  x J., a vertical strip of 7> .

Define a point transformation t: Z —► Z by mapping each 7?. of nonzero

measure to the corresponding 5. , in such a way that the Radon-Nikodym

derivative for the mapping of these rectangles is constant. Thus, x "squeezes"

the width of 7?. from m¡ to a¡¡ and "stretches" its height from b¡j to 1; this

deformation determines the constant value of

í7(aot_1)

p = -^x—
on Su .
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X(R¡.) = 0 if and only if A(5; ) = 0, because of the corresponding property

of a,- • and b(¡ , and so x is an automorphism of Z . An automorphism of Z

determined in this manner by any pair of sequences of a^-'s and by's satisfying

£\ a¡j = mj, J2j bjj = 1, and au = 0 if and only if bi} = 0, is called an ad-

missible automorphism. Each admissible automorphism induces an admissible

Lp isometry Q in the usual manner by Qf = p    (f° x~ ).

(5.8) Theorem. The action of EQ on I   is isomorphic to the action of the orig-

inal operator T on L (X).

Proof. Let i range through {1, ... , d}. Let O be given by

i i

This is an isometric isomorphism since X(P¡) = p(F¿) = mt.

Let W = (IT, A%, to), n, J7 , and v be as given in Theorem (4.5). Ac-

cording to that theorem, if we define R: Lp(dp) -, Lp(dto) by

Rg = Trhr^8° *) 'u°n

then Tg = E(Rg\Jr) for every g £ Lp(dp). Since u = Y,¡aiXF  and Tu =

Zi ßtXFi, we have Rg = (ßj/ai)ci on each n~xFi xx (Fj x [0, 1]) Ç Fj x I.

When f £ lp, then Qf = p\]pci on each S(¡ ç P , where ptj is the constant

value of the Radon-Nikodym derivatives p on the rectangle S¡ •. Observe that

J_(RJ^m1blL_
PiJ     HSU)       au

We also have to[it~xFi n (F. x [0, 1])] = X(Si}) = a¡... This means that

Qf and Rg are simple functions taking the same range of values over sets of

identical measure. Therefore, Tg = E(Rg\Jr) = &(EQf) as desired.   D

The proof of the convergence of the alternating sequence is now reduced to

an examination of the actions of admissible isometries of Z, intertwined with

the conditional expectation operator with respect to AF .

(5.9) Definitions. Let G be a subset R . A subset F of G is called a vertical

subset of G if

F = (F' xR)rxG

for some subset F' of the x-axis. Similarly, if

77 = (R x 77') n G

for some subset 77' of the v-axis, then 77 is called a horizontal subset of G.

We say that a function / is constant on vertical lines if f(xx, yx) = f(x2, y2)

whenever xx = x2. We say that / is constant on horizontal lines if f(xx, yx) =

f(x2, y2) whenever y, = y2.

The following is a summary of Lemmas (4.5) through (4.12) from [AS2].
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(5.10) Lemma. Let x be an admissible automorphism, and let Q be the induced

Lp isometry.

(a) Suppose & is a finite partition of Z in which each atom is a vertical

subset of some P,. Let f be an L function which is constant on vertical

lines. Then

QE(f\2?) = E(Qf\F>Vx&).

(a1) Suppose %f is a finite partition of Z in which each atom is a horizontal

subset of some P¡. Let f be an Lp function which is constant on

horizontal lines. Then

Q~XE(f\ßT) = E(Q~xf\F> V xJ?).

(b) If fx and f2 are Lp functions that are constant on vertical lines and

Efx = Ef2, then also EQfx = EQf2.
(b') If fx and f2 are Lp functions that are constant on horizontal lines and

Efx = Ef2, then also EQ~xfx = EQ~xf2.
(c) If f is constant on vertical lines, then Qf is constant on vertical lines.

(c) If f is constant on horizontal lines, then Q~ f is constant on horizontal

lines.

(5.11) Definitions. Let « be a fixed integer, n > 1, and let k range through

{0,1,...,«}. If 1 < k < n, let xk be an admissible isometry of Z , let Qk

be the L   isometry induced by xk , and let 7?^. be the Lr isometry induced by

xkx . Let Q0 and 7?0 be the identities on Lp and Lr respectively. Let

Tk = EQkE,     Vk = Tk.--T0,     Wk = Qk.Q0,

Sk = ERkE,     Uk = S0 ■ ■ ■ Sk,     Dk=R0-Rk.

Observe that Sk = (Tk)r by Lemma (3.20).

Let / be a fixed but arbitrary function in Lp.  Let gk = Uky/(Vkf) and

4>k = WkxEWkEf. Observe that g0 = y/<po = y/Ef.

(5.12) Lemma. For any f £Lp,  VJ = EWkEf.

Proof. This is Lemma (4.14) of [AS2]. When k = 0 this is immediate from

the definitions. The inductive step is given by Lemma (5.10)(b) and (c).   D

(5.13) Lemma. 7w any g £ Lr, Ukg = EDkEg.

Proof. We will show that

(5.14) Sr-SJg = ERr-RJEg

for every pair i, j with 0 < i < j < n . This will prove the lemma, since the

desired identity is (5.14) with /' = 0 and j = k . The proof is by induction on

j - i. When /'=/', (5.14) is simply the definition of S¡g .
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Now suppose (5.14) holds for some pair /' + 1, j + 1 with 0 < i < j < n .

We have

ERi+x...Rj+xEg = ESi+x..-SJ+xg,

by the inductive hypothesis and the idempotence of E, the outermost operator

in Si+X. Ri+X ■ .Rj+xEg is constant on horizontal lines, by repeated applica-

tion of Lemma (5.10)(c). Thus, by Lemma (5.10)(b'), we have

ER(Ri+l ■ ■ ■ Rj+xEg = ERtSi+x ■ ■ ■ Sj+X = St • • • SJ+xg.

This completes the induction.   D

(5.15) Lemma.  gk = Ei//(tf>k).

Proof.

Sk = VkV(Vkf) = EDkE¥(EWkEf)

= EDk¥(EWkEf) = EW[(R0f ■ ■ ■ (RkfEWkEf].

The second line follows from the two previous lemmas. The third line follows

because \p maps ^-measurable functions to ^-measurable functions. For the

fourth line, we use (R¡f to denote the Lp isometry induced by x~x. Thus,

this line follows by an application of Lemma (2.19).  By Lemma (2.17), that
-i

isometry is Qi   . Thus

,-i
gk = Exp(WkRWkEf) = Eip(tpk),

as desired.   D

(5.16) Lemma. There exists a monotone sequence S?n ç &n_x ç ■■■ ç3?0 of finite

o-algebras such that

<pk = w;xE(wnEf\sk).

Proof. ThisisLemma(4.16)of[AS2]. Wemaytake &n = F . Lemma (5.10) (a)
provides the induction step needed to show that we may take

when 1 < k < n .   D

(5.17) Definition. Let uk = E(WnEf\2?k), where the S?ks are as in the previous

lemma. Observe that tf>k = W~ ' uk .

(5.18) Theorem. The sequence (u0, ... , un) is an L   martingale. Furthermore,

<0||«ollP

and

Proof.

max \u,
0<k<n     K

max  m. - uA
0<k<n     k "

<ill"n wn"p

uk = E(WnEf\2?k) = E(E(WnEf\^)Wk) = E{u0\2?k),
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since &k ç ^ for every k , 0 < k < n . As well,

uk-un= E(u0\3?k) - E(unWk) = E(u0 - un\$k).

In the first case, this follows from the above computation. In the second case,

un = E(un\^k) because un is already constant on the atoms of &k .

The lemma now follows by an application of the martingale convergence

theorem for L .   D

(5.19) Theorem.   || maxQ<fc<n \gk\\\r < (q
\Plr

r-X
Proof. Since cj)k = Wn   uk and Wn     is a positive isometry, we have \<f>k\ =

W;x\uk\ and max0<k<n\tt>k\ = W-X(max0<k<n\uk\) and so

(5.20) ™a* l<^l     =   3B\uk\     <Q\\Uq\\p<Q

The inequalities follow by an application of Theorem (5.18) and the fact that

\K\\p = \\Ef\\p.
Since gk = Eip((j)k), we have

max \gk| < E ( max \y/(<f>k)\ ) = Eip ( max \tpk\) ,
0<k<n     k \0<it<« K   ) \0<k<n     k )

where Lemma (2.24) was used for the inequality. Thus

max  gk
0<k<n     k

< A, max \4>k
\0<k<n     k

P/r

max |0,
0<k<n     k

< (Q\\fl
\P/r

D

(5.21) Theorem. For any ¿¡ > 0 there is an n > 0 depending only on £, p, and

r such that

o^V^'^ < ¿11/11p/r

\VJ\\p<n\\Ef\\p.whenever

Proof. Since un = 7?(w0|.fJ , we may apply Lemma (2.25) to choose an w > 0.

depending only on ô (which will be specified later) and p so that

*0Hp K\\p<m\uon,

implies

l"o-M, < 2^l"oll,

We have already observed that ||m0||   = \\Ef\\p . As well, we note that ||m„||p =

||F„/||p . Thus, if ||/||p - \\Vj\\p < n\\Ef\\p , we have

max | m   - m |
0<k<n

<2 max \u, - w„
0<k<n     K "

<2q\\u0-uJp <t\\u0\\p,

where the second inequality follows from Theorem (5.18).



ALTERNATING SEQUENCES AND INDUCED OPERATORS 791

As in the proof of the previous theorem, we deduce

max \<j>k - tj)J = IT-1 ( max \uk - u0\) ,
0<k<n     k U "      \0<k<n     k U/

and so || max0^<„ \tf>k - <f>0\\\p < S\\Ef\\p .
Since the inequality || maxiem <q\\Ef\\p is simply a restatement of (5.20),

we are in a position to apply Lemma (2.29). Choose ô from that lemma cor-

responding to £,, q (which depends only on p ), p and r, and conclude that

max \v(4>k) - V(<t>0)\
0<k<n

<i\\Ef\\
P/r

whenever |KB/||,<*P?/||,.
Now apply Lemma (2.24):

max \gk - g0\
0<k<n     k U

< E (maxjip((t)k) - ip(tf>0)\j

xiP/r
<S\\Ef\\p

This completes the proof of this theorem, and hence of Theorem (1.2).   D
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