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SOME MODEL THEORY OF COMPACT LIE GROUPS

ALI NESIN AND ANAND PILLAY

Abstract. We consider questions of first order definability in a compact Lie

group G . Our main result is that if such G is simple (and centerless) then the

Lie group structure of G is first order definable from the abstract group struc-

ture. Along the way we also show (i) if G is non-Abelian and connected then

a copy of the field R is interpretable, in (G, •), and (ii) any "1-dimensional"

field interpretable in (R, +, •) is definably (i.e., semialgebraically) isomorphic

to the ground field R .

0. Introduction

It was observed a long time ago (Cartan, van der Waerden) that if G is a

compact (semi)simple Lie group, then the Lie group structure of G is "implic-

itly" defined from the abstract group structure, i.e., any abstract automorphism

of G is a homeomorphism (and is thus analytic). We show here that the Lie

group structure is "explicitly" defined from the abstract group structure, in a

strong sense which we will explain in this introduction. (Note that a "simple"

proof of Cartan's theorem is given in [Pi 2].)

We really deal here with Nash groups, namely Lie groups which are definable

in (!,+,-) (see §1). On the other hand it is known (Chevalley [C]) that any

compact Lie group is Lie isomorphic to a real algebraic group which is of course

definable in (R, +, •). When we speak of a compact Lie group, we always

assume it lives as a definable object in (R, +, •). Given such a group G, let

G* denote G equipped with all its structure induced from (R, +, •). So the

definable sets in G* are the traces in G of the definable set in (R, +, •). We

prove

Theorem 0.1. (i) Let G be a compact Lie group which is simple (and centerless).

We assume G is a Nash group (so definable in (R, +, •)). Then there is an

isomorphic copy (Rx, +, ■) of the real field interpretable in (G, ■), there is a

Nash group Gx over Rx and a definable (in (G, ■)) isomorphism of G with Gy

Moreover, if u is the unique isomorphism of R, with R, then u(Gx) and G

are Nash isomorphic.

Received by the editors September 12, 1988 and, in revised form, June 26, 1989.

1980 Mathematics Subject Classification (1985 Revision). Primary 03C60; Secondary 22E15.
The second author was supported by NSF grant DMS 8601289 and a fellowship from the Alexan-

der von Humboldt Foundation.

©1991 American Mathematical Society
0002-9947/91   $1.00+ $.25 per page

453



454 ALI NESIN AND ANAND PILI.AY

(ii) Under the assumptions of (i), (G, •) — G*, i.e., every definable set in G*

is definable in (G, •).

Our proof follows the proof of the analogous result by Poizat [Po, 4g] for al-

gebraic groups over algebraically closed fields (stemming from a paper of Zilber

[Z]). The main problem is just to see that various parts of the proof also hold

in the real case.

In § 1 we show that a copy of R is interpretable in the pure group structure

of compact non-Abelian Lie group in a special way. We depend on general

properties of compact Lie groups (mainly facts about tori), semialgebraic di-

mension theory and the first author's observation [N] that a field can be found

in a group resembling S03(R). We are somewhat arbitrary in our choice of

what general facts about compact Lie groups we assume. Of course, the more

of the structure theory of compact Lie groups we assume, the more our proof

tends towards a proof by inspection. However we assume nothing about roots

and weights. (A separate issue would be to derive all the structural properties of

(Nash) Lie groups by real algebraic-geometric (model-theoretic) methods. Some

elementary things of this kind were done in [Pi 2] but this is not the purpose of

the present paper.)

In §2 we prove that a " 1-dimensional" field interpretable in (R, +, •) is defin-

ably isomorphic to (R, +, •). (This amounts to showing that a 1-dimensional

Nash field is Nash isomorphic to R.)

In §3 we show that if G is simple and centerless and K is the field found

in §1, then G is definably interpretable in K (with its induced structure from

(G, •)), in other words G is contained in the definable closure of K, computed

in the structure (G, •). Theorem 0.1 follows from the above, together with a

result from [Pi 1]: a group interpretable in (R, +, ■) is definably isomorphic to

a Nash group.

1. Finding the field in the group

To clarify matters we first recall various categories of groups with "real"

structure:

A Lie group is an analytic manifold equipped with analytic group structure.

A Nash manifold [S] is an analytic manifold together with a covering by

finitely many open sets and analytic isomorphisms from these open sets onto

open semialgebraic subsets of R" , with semialgebraic transition maps. A Nash

group is a Nash manifold with Nash (analytic semialgebraic) group structure.

A (linear) real algebraic group G is a Zariski closed subgroup of some

GLn(R). Such a group is also a Nash group, as is any open subgroup of G.

These are not full subcategories; for example, two Nash groups may be Lie

(analytically) isomorphic without being Nash isomorphic.

Now a Nash group G is a real algebraic-geometric object (in particular it is

definable in (R, +, •), together with the Nash group structure). We thus have

(see [Pi 1])
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Fact 1.1. Let G be a Nash group. Then

(i) any semialgebraic (i.e., definable in (R, +, •)) subgroup of G is closed.

(ii)   G has the DCC on semialgebraic subgroups.

Now any semialgebraic set lei" has a dimension, dimX which can be

defined in a number of ways (see, e.g. [S]); we have

Fact 1.2.

(i) Let X be semialgebraic. Then dim X - algebraic-geometrical dimen-

sion of the Zariski closure of X.

(ii) If G is a Nash group, then dim G = dimension of G as a manifold.

(iii) Let G be a Nash group (or manifold) and X a semialgebraic subset of

G. Then dim X = dim G => X contains a nonempty open subset of G.

If a G R" and A C R, then dim(ä~/A) is defined to be the maximum of

{dim X : X ç R" is semialgebraic, defined with parameters in A and a e X} .

Fact 1.3.

(i) If â G R" , b G Rn , A C R and q_e ac\(bA) (where acl is computed in

(R, +, •) then dim(ä/^) < dim(b/A).
(ii) If X ç R" is semialgebraic and defined over ^ÇE, then there is an

ä £ X with dim(ä/^) = dimX.

We should also mention a fact which can be easily deduced from results in

[Pi 1].

Fact 1.4. Let G be a Nash group and 77 a semialgebraic normal subgroup of

G. Then there is a Nash group K and a semialgebraic isomorphism of G/77

with K, such that the manifold topology on K corresponds to the quotient

topology on G/77.

We now recall some general facts about compact Lie groups.

Fact 1.5 (Chevalley [C]). Any compact Lie group is isomorphic as a Lie group

to a real algebraic group.

From now on, G denotes a compact connected Lie group.   T   denotes the

torus R/Z and Tk = T1 x • • ■ x T1  (k times).

Fact 1.6 [Bou]. If G is Abelian then G is isomorphic (as a Lie group) to some

Definition 1.7. A maximal torus of G is a maximal closed connected Abelian

subgroup of G.

Fact 1.8 [Bou].

(i) Any maximal torus of G is a maximal Abelian subgroup of G.

(ii)   G is covered by its maximal tori, which are, moreover, all conjugate

in G.



456 ALI NESIN AND ANAND PILLAY

Fact 1.9 [Bou]. The derived group G' of G has a finite center. Moreover, G

is the almost direct product Z(G) • G' (i.e., G = Z(G) • G' and Z(G) n G' is

finite).

Before stating and proving the main result of this section we first observe that

many of the data mentioned above are definable in the pure group language. We

assume G is connected unless otherwise stated. Any other groups mentioned

are also Lie groups.

Lemma 1.10. Any maximal torus of G is definable in (G, •).

Proof. Note first that, by Fact 1.1 (ii), for any A c G there is finite A0c G such

that CG(A) — CG(A0). Thus, if T is a maximal torus of G then Z(CG(T)) is

definable in (G, •) and is equal to T by Fact 1.8(i).

Lemma 1.11. Let A be compact Abelian (not necessarily connected). Then A°,

the connected component of A, is definable in (A, •).

Proof. By Fact 1.6, A0 is divisible and clearly \A/A° \ < co. Thus, for some

n , A° = n ■ A , and so A° is definable in (A, •).

Lemma 1.12. Let 77 be compact, not necessarily connected. Then 77°, the

connected component of 77, is definable in (77, •).

Proof. Clearly 77° has finite index in 77. For each maximal torus T of 77°,

Z(CH(T)) is an Abelian definable subgroup of 77 in which T has finite index.

As in Lemma 1.11, T is definable in (77, •) By 1.8(ii), 77° = \JheH T which
is thus definable in (77, •).

Lemma 1.13. The derived group G' of G is definable in (G, ■).

Proof. By [Pi 2] and Fact 1.5, G' is semialgebraic (so closed), and, moreover,

there are ax, ... , an G G such that (af • ax~x) ■ ■ ■ (a^ ■ a~l) contains an open

subset of G'.   Since G' is also compact, finitely many translates of this set

cover G', whereby G' is definable in (G, •).

We now state the main result of this section.

Proposition 1.14. Let G be a compact connected non-Abelian Lie group. Then

there are, definable just in the group language, X c G, an equivalence relation

E on X with finite classes, and a field structure on X/E. Moreover, X (and

so X/E ) is l-dimensional (as a semialgebraic set).

Proof. Let 77 be a minimal connected non-Abelian subgroup of G definable

(in (G, •)) (where connected means topologically). By Fact 1.9 77 = 77' has

finite center. Moreover, 77/Z(77) is centerless (H/Z(H))' = H/Z(H) and

thus, by Fact 1.9, H/Z(H) has finite center, the preimage of which in 77 is

finite, normal and thus central). Clearly, every proper connected definable (in

(G, •)) subgroup of H/Z(H) is Abelian (the same being true of 77). Let us

put 77, = H/Z(H). So 77, is a compact connected non-Abelian centerless

Lie group, every definable (in 77,, •)) proper connected subgroup of which is

Abelian. We now work in 77. .
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Claim 1. Every nontrivial element a G 77, is in a unique maximal torus T

which equals C°(a), the connected component of the centralizer of a in 77.

Proof. Let a ± 1 » a G 77,. Let T be a maximal torus containing a (by

(1.8(h)). So r c C(a). As C°(a) has finite index in C(a) and T is connected,

T c C°(a), and as a is not central, C°(a) § 77,. So C°(a) is Abelian, thus

equals T.

For a ^ 1, a G 77,, we let T(a) denote the unique maximal torus containing

a. T is an arbitrary maximal torus (of 77,). Notice that, by Claim 1, tori are

disjoint.

Claim 2.  C(T) = T and T has finite index in N(T).

Proof. By 1.8(h), T is not normal in 77,, so N(T) < 77,, (N(T))° contains T

and is Abelian. Thus N(T)° = T, hence [N(T) : T] is finite. If T ± C(T), let

a G C(T) - T. Then, as T is connected, T c C°(a) — T(a). Thus T = T(a).

So a G T, a contradiction.

Claim 3. N(T) - T contains an involution. Moreover, any involution of

N(T) - T acts on T as x -» x~  .

Proof. By Facts 1.6 and 1.8, 77, contains involutions i, j such that T(i) ^

T(j). Now (ij)' = (ij)j = ji = (ij)~l, so, by Claim 1, both / and j normalize

T(ij). If i G T(ij) then also j G T(ij), whereby r(z') = T(ij) = T(j), which

is impossible. So i G N(T(ij)) - T(ij). Without loss T(ij) - T (by Fact

1.8(h)).
Now let ae N(T)-T be an involution. Let A = C(a) n T and B = {x G

r: xa = x~ }. ^ and B are subgroups of T. Moreover, as T is divisible,

T = T and every element of T can be written in the form ttat(f)~l. But

tf G /I and t(f)~x G 5. Thus T = AB . But C(a)n7 is finite, for, otherwise,
clearly T(a) = T, which is impossible. Thus B (which is definable) has finite

index in T. So B = T and Claim 3 is proved.

Claim 4.   T has a unique involution, dim T = 1 and \N(T)/T\ = 2.

Proof. Let i, j be involutions of T. Let a £ N(T) - T be an involution

(by Claim 3). By Claim 3 again, f = i, ja = j. Thus both i and; are in

N(T(a)). By Claim 3 again ij g C(T(a)) = T(a) # T. But ij G T. Thus

ij = 1, i = j. So T has a unique involution. As T is a torus, its dimension

(as a manifold or as semialgebraic set) must be 1. Since the only nontrivial Lie

automorphism of T1 is x —» x~l , it follows that \N(T)/T\ — 2 .

At this point (in fact earlier) it is known that 77, is S03(R). In any case,

as in [N], we easily find a projective plane on the set of involutions 7 of 77, .

The lines are sets of the form N(T) - T for T a maximal torus. If T — T(i)

we call such a line L(i). One easily checks from the above that L(ij) is the

unique line containing i and j and that k is the unique point in L(i)nL(j),
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where k is the unique involution of T(ij). By Bachman [B] this projective

plane is the projective plane of a field K which is thus definable on any line

N(T) - T, minus a point. Thus dimK =1 (as a semialgebraic set). Noting

that 77, arose from G as the quotient of a definable (in (G, •)) subgroup by

its finite center, we see that Proposition 1.14 is proved.

2. Classifying semialgebraic fields

In this section we prove

Theorem 2.1. Let K be a field interpretable in (R, +, •) such that dimK = 1.

Then there is an isomorphism of K with R that is definable in (R, +, •).

Remark.   (R, +, •) has so-called elimination of imaginarles, which amounts to

saying that, for any definable lei" and definable equivalence relation E on

X, there is a definable ici" and a definable bijection /: X/E —> Y. This

enables us to talk about dim X/E, as definable bijections preserve dimension.

We will need the following fact, pointed out to us by L. van den Dries.

Lemma 2.2. Let G be a Nash group, with dim G = n . Then the adjoint repre-

sentation Ad:G->GLn(R) is semialgebraic.

Outline of proof. Identify semialgebraically an open neighborhood of 1 in G

with an open subset of R" . For x G G, Int x is the map g —► gx and Ad x

is the Jacobian matrix of Intx at 1. As G is covered by a finite number of

open semialgebraic sets, Ad x is uniformly semialgebraic in x , which proves

the lemma.

Corollary 2.3. Let G be a centerless group, interpretable in (R, +, ■). Then

there is a semialgebraic isomorphism of G with a subgroup of some GL^R).

Proof. By [Pi 2], G can be semialgebraically equipped with Nash group struc-

ture, i.e., G has a semialgebraic covering by a finite number of open semialge-

braic subsets of R" (where n = dim G) such that the transition maps are Nash

and group multiplication is Nash. Namely, we can identify G semialgebraically

with a Nash group. Now the kernel of Ad is Z(G). As G is centerless, by

Lemma 2.2, we see G is semialgebraically isomorphic to a (semialgebraic) sub-

group of GLn(R).

We are now set for the proof of Theorem 2.1. The main point is to show that

(K, +) is semialgebraically isomorphic to (R, +). (Note that by [Pi 1], K is

real closed and in fact by [Pon], is abstractly isomorphic to R.) Let K+ be

the additive group of K and 7C* the "positive" elements of the multiplicative

group of K. Both K+ and 7T* have no proper subgroups of finite index. Thus

also the centerless group K+ x K^ (where K*+ acts on K+ by multiplication),

which is also interpretable in (R, +, •), has no proper subgroups of finite index.

By Corollary 2.3, K+ x K^ is semialgebraically isomorphic to a semialgebraic

linear group G.   G is clearly connected as a Lie group. Let 77 be the image
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of K+ in G. By [Pi 2], G has finite index in a real algebraic (linear) group

G, which is connected as an algebraic group. Let 77, be the Zariski closure of

77 in G,. Then, by Fact 1.2, the algebraic-geometrical dimension of 77, is 1.

77, is also connected as an algebraic group (because 77 has no subgroups of

finite index). Let now (G,)c be the complexification of G,, i.e., the smallest

complex algebraic group containing G,, and similarly for (77, )c , with (77, )c <

(G,)c. Both (77, )c , (G,)c are by [Bl] connected algebraic groups, defined over

R, and, moreover, the real points of (77,)c , (G,)c are 77,, G,, respectively.

Furthermore, (77, )c is 1-dimensional as an algebraic (and also the dimension

of (G,)c is 2). It is easy to see that (77,)c is normal in (G,)c (if g G G then

g normalizes 77, so (77,)^ n (77, )c is infinite and equals (77, )c as the latter

is connected. The normalizer of (77, )c in (G,)c is algebraic and contains G,

so must be all of (G,)c). As 77 is not central in G, (77,)c is not central in

(G,)c. Thus

(*) An infinite algebraic group acts faithfully on (77,)c .

Now, as (77, )c is a 1-dimensional connected complex algebraic group, it is

[B2, 10.9] isomorphic as an algebraic group to C+ or to C*. As C* does not

have an infinite group of automorphisms, by (*), it must be C+ . By [B2, 10.9],

as (77, )c is defined over R, the isomorphism of (77, )c with C+ (which is a

polynomial map /, say) can be taken to be defined over R. But then / takes

the real points of (77, )c to the real points of C+ . Namely, 77, and R+ are

isomorphic by a polynomial map in R. As R+ has no subgroup of finite index,

the same is true for 77, . Then 77 = 77, and we see that K+ is semialgebraically

isomorphic to R+.

Let us now identify K+ with R+ . First note that any definable (in (R, +, •))

endomorphism of R+ is linear: for if / is such, then R = {a G R: f(a • x) -

a ■ f(x)  Vx G R} is a definable infinite subgroup of R+ , so equals R.

Now let a G R be the 1 of K (so a ^ 0), and let o be the multiplication

of K. By the above note, axy - ax o ay , and so the map x —► ax is a 1-1

onto map R —► K , which is an isomorphism of (R, +, •) with the field K . We

have shown that K is definably isomorphic to (R, +, •).

3. Finding the group in the field

We begin with some definitions. Let M be an L-structure, and X, Y

subsets of M (or Meq). We will say Y cu acl(X) (Y is uniformly in the

algebraic closure of X) if there is a formula tp(y, x) of the language L such

that, for some n G œ, M \= Vx3~"yç>(y, x), and, for all b e Y, there is

a c X such that M (= tp(b, a). We will say Y cu dcl(X) (Y is uniformly in

the definable closure of X) if tp(y, x) can be chosen as above but with n = 1.

We prove

Theorem 3.1. Let G be a compact simple (centerless) Lie group. Then there is a

1 -dimensional field K interpretable in (G, ■) and some finite c c G such that

G cu dcl(7v U c) in the sense of the structure (G, ■).
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We first observe

Lemma 3.2. Under the assumptions of 3 A, K and c can be found with G cu

acl(K U c).

Proof. Let K be as given by Proposition 1.14 (i.e., K c X/E), where X c G is

definable in (G, •) and E is a definable equivalence relation with finite classes.

Let Y c X be the union of the ^-classes which are members of K. G being

real algebraic and simple, we can apply Remark 3.6 of [Pi 2] which implies that

there is an open neighborhood of 1 in G and finitely many elements c c G

such that U cu dc\(Y Uc). As G is compact, we extend c to c such that

G cu dcl(Y lie1) computed in (G, •)). This proves the lemma.

Proof of Theorem 3.1. We want to use the fact that G has no finite normal

subgroups to see that we can add finitely many additional parameters to the c

from Lemma 3.2 to obtain d with G cu dc\(K U d).

First, by Lemma 3.2, we can choose a finite set c c G, a formula tp(y, x)

of the pure group language and some k < co such that G |= Vx 3- ytp(y, x),

and, for all b e G, there is a a c K Uc with G \= <p(g ,a) and k smallest

possible.

Before continuing the proof we introduce some notation. Remember that G

is a real algebraic group, thus any subset of G defined in the group language

is also a semialgebraic set and therefore has a dimension (Fact 1.2). Suppose

dim G = n, and let y/(y) be a formula in the group language (maybe with

parameters). We will say that, for almost all b G G, G (= y/(b) if {b G G: G\=

-^y/(b)} has dimension < n , and we observe

Remark 3.3. Either, for almost all b G G, G (= ̂ (¿) or {6 G G: G |= ->^(¿)}

contains a nonempty open set.

For A c G and è G G we will say that ¿ is generic over A if dim(è/y4) = n .

We now return to our choice of <p and k. Let y/(y,x) be ç»(y, x) A
Tkyy(y,x).

Claim 3.4. For almost all b e G there is an ä c Kuc with G |= y/(b, a).

Proof. If not, then, by 3.3, there is a nonempty open set U c G such that, for

all b e U, there is an ä c Tí U c with G (= <p(b, a) A 3< }>0>(j>, â). As G is

compact, finitely many translates of U cover G, so, by adding a finite number

of parameters to c, we easily contradict least choice of k .

Claim 3.5. For almost all b G G, if G |= ^(è, ïï, ) A ̂ (è, ä2), where ä,, ä2 c

7:uc,then G |= Vy(^(y, ïï,) ~ ^(y, S2)).

Proof. Again by using 3.3, we see that, if not, there is a nonempty open set

U c G such that, for all ¿> G U, there are â~x,â2 c ÍUc such that G j=

^(¿>, ¡z,) A y/(b, a2) and G (= ->Vy(^(y, a,) «-► ^(.y, <z2)). Note that then G (=

^<ky(v(y, äx) Mf/(y ,ä~2)); so, again by compactness of G, we contradict least

choice of k.
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Let now A c G be a finite set including c and the parameters defining K.

Let Z = {b G G : 3â C K U c, G (= y/(b, a), and, Vïïx,â2 c K Uc, if G \=
y/(b, 5,) A ̂ (¿>, û2) then G |= Vy(i//(y, a~x) <-> y/(y, ïï2)} . Z is ^-definable

(in the group language) and, by the previous two claims, dim(G - Z) < n.

In particular, note that if b is generic over A then b e Z . We can define an

equivalence relation E on Z by y,7:y2 if 3ä c 7v uc G f= ̂ (y,, a)Ay/(y2, a).

Note that E is ,4-definable and, for b G Z , the £-class of ô has exactly k

elements.

C/a/'m 3.6. For all g G G, almost all ô G Z , "#è G Z and for all bx, bxEb

implies gbx eZ and bgxEgb" (*).

/•roo/. If not, there is a g G G and an open set 7/ of è G G which fail to

satisfy (*). Choose b G U which is generic over Au{g} . Now, for any bx, if

Z^Tiô then ¿? G acl(6, U A) and thus, by Fact 1.3, bx is generic over A u {#} .

So, by Fact 1.3 again, gbx is generic over ^ and gbx G Z. So, as (*) fails,

there is bx Eb with gè, G Z but ->(gbxE gb). Let â, c Tí U c be such that

G (= ^(¿, ä,), and let â2 c K U c be such that G |= y/(gb, â2). Thus the

formula y/(y, ïï,) A ̂ (gy, â2) is satisfied by b but not by ô, , and hence it is

satisfied by < k elements.

As b is generic over A U {g}, there is, by Fact 1.2, an open set V c G

such that, for all y G V , there are x,, x2 c K U c such that G (= ^(y, x,) A

y/(gy, x2) and G |= 3< y(i//(y, x,) A y/(gy, x2)). Again by compactness of

G, after adding g and finitely many additional parameters to c, we contradict

the least choice of k . This proves Claim 3.6.

Now let L = {g G G: for almost all b e Z ,if b satisfies (*) then bE gb).

It is easy to see that L is a (finite) normal subgroup of G, and thus L - {1} .

We can now conclude the proof of Theorem 3.1. Let g G G be generic

over A.  Let â c K u c be such that G |= (//(#, a), and let #/£ = {g =

For i = 2, ... , k, let h¡ = g~ g¡. As L = {1}, we can, for each i =

2,...,/c, choose û(. generic over ^U-fg,^.} suchthat -<(hiaiEai). Let

ci,di,foT i = 2, ... , k , be such that G |= ^(o^, ct) A ̂ (ga,., ^.), ci, d~l c

Kuc. It is then clear that g G dcl(5, c2, ... ,ck, d2, ... , dk) ; in fact g is the

unique y G G such that G\= y/(y ,a~) and such that, whenever G\= \i/(a,c¡),

then also G |= ^(ya, i/(-). (Note that g satisfies these conditions. If g does

also then g = g¡, some i - 2, ... ,k; but, then glaiEgai so g~ gfi^a^,

contradicting the choice of ai.)

Thus we have a formula ^(y, z,, z2) such that

G|=Vz,, z23-'yx(y, z,, z2)

and
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As g was generic over A, there is an open set U of g such that G |=

3z, c K x(g' ,zx,c). Again by compactness of G, we can add finitely many

parameters to c to get c such that G cu dcl(K u c1), which proves Theorem

3.1.

We now prove Theorem 0.1.

Proof of Theorem 0.1. (i) Let G be our simple centerless compact Lie group

which we assume to live in (R, +, •) as a real algebraic group. Let, by Theorem

3.1, K be a 1-dimensional field (as a semialgebraic set) which is interpretable in

(G, •) such that G cu dcl(K Uc) (some c c G) in the sense of (G, •). Easily,

G is definably isomorphic (in (G, •)) to a group G, ç Kn/E, where Tí is a

definable equivalence relation in (G, •) on Kn . Now K (being interpretable

in (R, +, •) and 1-dimensional) is, by Theorem 2.1, definably (in (R, +, •))

isomorphic to (R, +, •) by an isomorphism u, say. So u(Gx) is interpretable

in (R, +, •)• It follows that G, is interpretable also in (Tí", +, •). By [Pi 1],

G, is definably isomorphic in (K, +, •) to a Nash group G2 over K. As

the operations + and • of K are definable in (G, •) and G, is definably

isomorphic (in (G, •)) to (G, •), we conclude that a Nash group structure can

be found on (G, •) definably in (G, ■). That this Nash group structure is

the same as the original can be deduced from the fact that u(G2) and G are

definably (in (R, +, •)) isomorphic and that any definable isomorphism of Nash

groups is a Nash isomorphism.

(ii) We have an isomorphism f: G ^ G2 definable in (G, •) and an iso-

morphism u: G2 —> u(G2) definable in (R, +, •). Let g = uo f. Let X

be a semialgebraic set in G. Then g(X) is a semialgebraic set in u(G2), so

u~l o g(X) is a semialgebraic set in G2 (when we view G2 as definable in K).

Now X = f~ (u~ o g(X)). But /" is definable in (G, •). Thus, also, X is

definable in (G, •).

This completes the proof of Theorem 0.1.
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