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BROWNIAN MOTION IN A WEDGE

WITH VARIABLE SKEW REFLECTION

L. C. G ROGERS

Abstract. Does planar Brownian motion confined to a wedge by skew reflec-

tion on the sides approach the vertex of the wedge? This question has been

answered by Varadhan and Williams in the case where the direction of reflec-

tion is constant on each of the sides, but here we address the question when the

direction reflected is allowed to vary. A necessary condition, and a sufficient

condition, are obtained for the vertex to be reached. The conditions are of a

geometric nature, and the gap between them is quite small.

1. Introduction

There has been a lot of recent interest in the behaviour of Brownian motion

in some domain D c C with skew-reflection on the boundary—see [DeB, HLS,

LeG, TW, VW, W85a, W85b] and, for multi-dimensional generalizations, [LS,

SV, W87, ReW].

In [VW], the domain D is taken to be a wedge D = {re'e ;0<6 <a,r>0}

and the direction of reflection is assumed to be constant on each of the edges

of the wedge. A number of very natural questions arise about this process, one

of which is "Will the process approach 0?" This question, and the much more

difficult one, 'Is it possible to extend the process beyond its first hit on 0?" are

completely answered in [VW] (see also [R] for a proof by excursion-theoretic

methods).

The aim of this paper is to examine the question, "Will the process approach

0?" when the direction of reflection on the edges of D are not assumed constant.

This turns out to make the question considerably more difficult, so we shall

confine ourselves here only to this problem and defer treatment of other related

interesting questions until a subsequent paper.

To begin with, it is helpful to transform the problem via probabilistic and

complex-analytical methods. Clearly, whether or not Brownian motion in D

can approach 0 is decided by the directions of reflection in a neighbourhood

of 0, so we lose no generality in assuming the direction of reflection is nor-

mal outside {z: \z\ < 1}.  As is well known, the sample paths of Brownian
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motion map under an analytic function to the sample paths of a time-changed

Brownian motion, and this remains true if the Brownian motion is reflected

off the boundary of some domain. Thus, by applying the analytic function

z -> -\/zn,a, the region D gets mapped into the upper half-plane H, the

point 0 gets mapped to oc , and the point oc gets mapped to 0. We shall hence-

forth take the problem in this form: one considers a Brownian motion in H

reflected off R = ÔH in a variable direction 6(x), x e R, and asks whether

the process is transient. The angle 0(x) is measured in a clockwise direction

from the inward-pointing normal, so that -7t/2 < d(x) < n/2 for all x .

We make the following assumptions about the function 6 :

(l.i) 6 is C1 with bounded derivative;

(l.ii) for some A, |tan(9(x)| < ^(1 + |x|) for all x.

These conditions can probably be relaxed slightly, but let us make a few remarks

on them now. The obvious way to construct a Brownian motion in H with the

specified skew reflection is to take independent real Brownian motions B, ti ,

to fix the starting point x0 + iy0 e H, and define

(2.i) L, = sup(-y0 - B's)+,        Yt=y0 + B't+Lt,
s<t

(2.Ü) Xt=x0 + Bt+      tan d(X) dLs.
Jo

The stochastic differential equation (2.ii) for X will have a solution provided

(see, for example, [RW, §V.ll]) the conditions (l.i) and (l.ii) hold. Thus some-

thing similar to ( 1 ) is needed to ensure the existence of such a skew-reflecting

Brownian motion. Now observe that if f: H -* R is C , then, by Itô's for-

mula,

9ffV     VWV    ,   ô/,v     VwV   ,    1
df(Xt, Yt) = ^(X,, Y()dXt + -^(X,, Yt)dYt + ^Af(X,, Yt)dt

= {§£(*„ Yt)dBt + y-{Xt, Y,)dB^ + ^Af(Xt, Y,)dt

+ Xmd{Xt)^{Xt,Yt) + yj{Xt,Yt) dLr

The term in the curly brackets is a continuous local martingale, so f(Xt ,Yt) is

a local martingale if and only if Af = 0, and / satisfies the boundary condition

tan0(x)|Ax,O) + ^(x,O) = O,        Vx e R.
ox ay

If now / were the imaginary part of analytic F = g + if, this boundary

condition says that, on R, the real part of e F is zero. This suggests that we

consider an analytic function whose derivative has argument 0 on R. Thus

we define the analytic function y/ : H —> C by

Z00 6(x)dx Í    1 x
[3) ^(z) = exp

/: x-z     i+x2
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The assumptions ( 1 ) guarantee that i// extends continuously to H = H U R,

Re y/{z) > 0 for all z e H, and for x e R, arg y/(x) = 0(x). Define next the

analytic function

(4) ¥(*)= f  w(co)dco,        zeïï.
Jo

This technique has proven useful in computations when 6 is assumed to have

some tractable form, such as piecewise constant; see, for example, [N, or TW].

We investigate properties of *F in §2; for example it is shown there that

¥ is 1-1, and if a + ib e ¥(H) then a + ib' e ¥(H) for all b' > b. The

function *F, and, more especially, the shape of the domain ^(H) are the key

to understanding the problem. This is because *F twists around the directions

of reflection on the boundary so that the reflection on the boundary of *F(H)

is always in the (upward) imaginary direction. Thus the problem can be seen

as one of deciding the transience of Brownian motion in *F(H) with upward

reflection on the boundary. We show in §3 the main result that

(5.i) the process is recurrent if *F(H) contains a wedge of angle > n ;

(5.ii) the process is transient if (¿/(H) is contained in a wedge of angle < n.

In terms of the function 6 , if we write i + *F(r) = p(t) exp{iß(t)} , t e R, the

polar representation, where -n/2 < ß(t) < 3n/2 for all t, then

(6.i) limsup/_>oojff(i) + n < liminf/_>_oo ß(t) =í> the process is recurrent;

(6.ii) liminf^^ ß(t) > limsupí^_oo ß(t) - n => the process is transient.

The dependence of these criteria on 6 , via (3) and (4), is somewhat unwieldly,

but the cases where 9 has limiting directions are easily handled by this. In

particular, it is easy to deduce from (5.i)-(5.ii) the following result.

Corollary,  (i) The process is recurrent if limsup^^ 6(t) < liminf   _oo 6(t).

(ii) The process is transient if lim inf^^ 6{t) > limsup/_>_oo 6(t).

We should remark here that similar methods are used by Dynkin [D], and

Malyutov [M] in their work on Brownian motion with skew reflection. The

problem considered in these papers can be viewed as the problem of Brownian

motion in the unit disc with a direction of reflection on the boundary given

by a Cl'a vector field which is tangential only at a finite set of points. The

vector field may sometimes point outward, but the boundary condition of a

zero derivative in the direction of the vector field remains well-defined; all that

happens (in our language) is that at a finite set of points 6 can jump from tt/2

to -7t/2, or vice versa. The situation which we are dealing with differs from

that of Dynkin and Malyutov in that we are allowing only one singularity in the

vector field on the boundary, but that singularity may be far worse.
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2. Properties of the function *F

We establish here a number of basic properties of *F and of *F(H).

Lemma 1. The function ¥ : H -» ¥(77) is 1-1.

Proo/. Suppose zx, z2 are distinct points of H such that ^(z^ = *F(z2). If

y is the curve y(t) = (1 - r)zi + iz2   (0 < í < 1), then

0 = V(z2)-V(zx) = [ ¥(oj) dco = (z2 - zx) [  y/(y(t))dt.
Jy JO

Since Re y/ > 0 throughout H, the real part of the integral is positive, so,

in particular, the integral is a nonzero complex number, yielding a contradic-

tion.   D

To understand more fully the shape of *F(H), let us first make the simplifying

assumption

(8) inf{Re*F(i):?€R} = -oo,        sup{Re^(0 : t e R} = +oo.

The real part of the curve *F : R —► C is always increasing, since Re*F'(f) =

Re y/(t) > 0 everywhere. Using properties of Brownian motion, we shall deduce

that

(9) "¥(}!) = {xV(t) + iv:teR,v>0} = D+.

The argument runs as follows. Since *? is one-one and an analytic function,

*F(H) is an open, arcwise-connected, simply-connected subset of C. Now, since

Im^x + iy) - ¥(x)} > 0, for any x 6 R, y > 0 (recall that Re y/ > 0), and

d'V/dy is orthogonal to dV/dx on R, it must be that ¥(H) ç D+ , for, if not,

there would be some x + iy e H such that ^(x + iy) f D+; this would imply

that the image under *P of the curve {x + it : 0 < t < y} met the boundary

4*(R) at some point other than *F(x), which would contradict the injectivity

of 4/.

Thus ¥(H) ç D+ , and now we can argue that ^(H) = D+ . Suppose on the

contrary that D+\4,(H) contained some point £0. Because 4*(H) is simply-

connected, there is a curve T from £0 to oc not meeting l'(H). Since T is

nonpolar for Brownian motion, if one started a Brownian motion at some point

coQ e *F(H), there is a positive probability that the process will reach Y before

it reaches *P(R). Thus there is a positive probability that the process will exit

^(H) at some point not in 4*(R) before ever reaching 1*(R). But recall that

a skew-reflected Brownian motion started at ¥" (<u0) maps to (a time change

of) skew-reflected Brownian motion in *F(H). Thus there would be a positive

probability that this Brownian motion in H would never reach R, which is

impossible. Hence we would have established (9) under assumption (8).

To study the other possibilities, we can, for simplicity and without loss of gen-

erality, assume infíRe^í): t e R} = -co and define o = sup{Re*F(z): z e

H}, n = supjRe^x) : x e R}. Next we consider what can be said if a = n <

oc . In this case, it has to be that sup^Im^í) = +oc . We can prove this as

before using Brownian motion, as follows. If sup/>0 Im^i) < oc , it would be

possible to start a Brownian motion at x + iy e 4*(H), where r\ - e < x < r¡
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and y is very large, and with positive probability this Brownian motion would

reach {Re(z) = n} without hitting *P(R). But Brownian motion Z in H with

skew-reflection 6 keeps on hitting R—there is no last hit on R. Thus 'F(Z)

keeps on hitting *F(R), a contradiction. In summary, then, (9) also holds if

a = n < oo .

The last case to be considered is that in which r\ < a . Take some ¿|0 e *F(H),

with Re(¿;0) > n, and notice that there is a smooth curve in *F(H) joining ¿;0

to 0 (because there is a smooth curve in H joining T- (£0) to 0). This implies

that sup{ImxP(x) : x > 0} must be finite. Next, it must be that ^(H) contains

{z : Re(z) > n), for, if not, there is some £, £ *F(H) such that Re(^) > n,

and so, as before, there is a curve T joining £, to oo not meeting *F(H). But

now we can argue as before: a Brownian motion in *F(H) started at £0 will with

positive probability exit *F(H) before reaching Re(¿;) = n , which would mean

that a Brownian motion in H could escape to infinity without ever reaching

the real axis. This contradiction implies that *F(H) 2 {z : Re(z) > n}, and,

in particular, a = +oo. A similar argument shows that one must also have

inf{Im*F(x): x > 0} = -oo. This gives a very clear picture of what 4*(H)

looks like.

One final point to clear out of the way before proceeding is the assertion

that x¥{Xt + iYt) is Brownian motion in *F(H) with vertical reflection on the

boundary (here, X + iY is defined by (2.i)-(2.ii)). The only small snag is that

¥ is only C1 on <9H = R, so we apply Itô's formula to xV{Xt + iYt + ie) to

see that, with Zt = Xt + iYt,

d(x¥(Zt + ie)) = y/(Zt + ie)dZt

= y/{Zt + ie){dBt + idß't) + isecO{Xt)e~'e(X,)y/(Zt + ie)dL,

so that, in the limit as e | 0,

dV{Zt) = y{Zt){dBt + idB[) + isece(Xl)\y/(X,)\dLr

3. Criteria for recurrence or transience

As was explained in the Introduction, the recurrence or transience of the

skew-reflecting Brownian motion in H is decided by what 4*(H) looks like.

Theorem 2. (i) If 4*(H) contains a wedge of angle > n, then the process is

recurrent.

(ii) If ^(H) is contained in a wedge of angle < n, then the process is tran-

sient.

Proof, (ii) We may without loss of generality assume that the wedge of angle

< n containing ¥(H) has vertex on the negative imaginary axis, since the

wedge has to contain z'R+ . Let the vertex be at -ib , b > 0, and suppose that

D0 = l'(H) + ib is contained in the wedge

{z:|-/?,<arg(z)<^ + £2},

where /?, , ß2 > 0, /?, + ß2 < n .
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Figure 1

_ßlJ-

Figure 2

Let us define g(z) = -in/2 + log(z), where the cut of log is taken along

the negative imaginary axis, so that g maps D0 to a region Dx ç {z : -ßx <

Im(z) < ß2} , and g sends Brownian motion in DQ with upward reflection on

the boundary to a time-change of Brownian motion in D, with the correspond-

ing reflection on dDx . The direction of reflection at the point p + iÔ e dDx is

easily seen to be cos 6 - i sin 6 . The aim now is to prove that Brownian motion

in Dx with this reflection on the boundary is transient. This process solves the

stochastic differential equation

(10) dpt = dB( + cosdtdL(,    ddt = dB\ - sindtdLt,

where B , B1 are independent Brownian motions on R, and L is a continuous

increasing process growing only when pt + idt e dDx .

Now choose some y e {ßx, n - ß2). Because 6t lies always in (-ßx, ß2),
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Figure 3

there is some e > 0 such that sin(y + 8t) >e always. Hence, from (10),

pt sin y - 8t cos y = B( sin y - b\ cos y + /  sin(y + 6S) dLs,
Jo

so, dividing by t and letting t —► oo, we deduce that

i     ^    i-     •  x-.-i

(11) sin y lim inf t   pt>e lim inf t   L .

since 8 is bounded, and B is o(t). To estimate the right-hand side of (11),

we use Itô's formula to give

(12) 82-8¡ = 2 í 6sdB's-2 [ 8ssin8sdLs + t,
Jo Jo

so

(13) lim - ( 20, si
i-oo t J0      s

sin 6 dL = 1    a.s.,

since the stochastic integral in (12) is o(t), 8 being bounded.

Now observe that 9 must lie in (-71,71) so that, for some constant C, we

have 0 < 8 sind < C, and hence, from (13),

:i4) liminff    L, >(2C)    .
í—»00 '

Combined with (11), this implies that /)(->oo a.s.

(i) It is enough to prove that if 4/(H) contains a wedge of angle n (that is

a half-space) then the process is recurrent. So let iR be a point on the positive

imaginary axis such that the half-space bounded below by the line through iR,

making angle ß e (0, n) with the upward imaginary axis in the clockwise sense,

is contained in *P(H). Consider now the domain D'0 = *F(H) n {z: \z - iR\ >

R + 1}.   If the cut of log is taken to be the negative imaginary axis, then
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g(z) = -in/2 + log(z-iR) maps D'0 to a subset D'x of {z : Re z > log(i?+l),

-n < Im z < 71} and D'x contains

D2 = {z:Rez > log(R + 1), -ß < Imz < n - ß).

Let Z be Brownian motion in D'0 with upward reflection on *F(R) absorbed

when it reaches {z : \z — iR\ — R+ 1}. The claim is that Z will eventually

reach this set. To see this, notice that, as before, after a time-change, Z gets

mapped by g to a Brownian motion in D'x with the specified direction of

reflection, and absorption at the line Re z = log(R + 1 ). Thus the aim is to

prove that Brownian motion with skew reflection in D'x eventually gets absorbed

at Re z = log(R + 1 ). However, as before, up until the time of absorption

dpt = dBt + cos 8t dLt,

d8t = dB't-sin8tdLt

(where p + id is the Brownian motion in D'x ) and when L grows, 8 must be

in either (-tí , -ß] or [n - ß, n). Thus

(15)        p.sinß - 8.COSß = B sinß - B'cosß + [ sin(ß+ 8 )dL
Jo

and sin(/? + 8S) < 0 whenever L grows. If p + id did not eventually reach

Re z = log(R + 1 ), then (15) would tend to -oo , since B( sin ß - B\ cos ß is a

Brownian motion, and /0' sin(/? + ds) dLs is decreasing. This would imply that

p was not bounded below, a contradiction.

Remarks, (i) The stochastic calculus analysis of p 4- id by which the theorem

was proved may be replaced by an elegant comparison argument due to K. Bur-

dzy and J.-F. Le Gall. To prove part (ii) of the theorem, the argument runs

as follows. Let C be a wedge of angle < n containing ^(H). The Brownian

log(/V+l) + /(Jt-ß)

log (R+\)

Figure 4
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motion with upward reflection in VF(H) may be realised pathwise from a given

Brownian motion W in C by the recipe

Zt = z0 + Wt + iLt,

where

Lx = inf{y > 0 : ¥(H) - iy D {z0 + Wu : 0 < u < t}}.

One may similarly realise the Brownian motion in the wedge with upward re-

flection on the boundaries as

Z't = z0 + Wt + iL't,

where L' is defined as for L, with C replacing ^(H). Since C D *F(H), one

has always L't< Lt. From the results of [VW] one know that the lm(Z't) —► oo

a.s., and hence Im(Zf) -» oo a.s.

The argument for part (i) of the theorem is similar.

(ii) The problem of Brownian motion with variable directions of reflection in

a cone in dimension > 3 has recently been tackled by Youngmee Kwon. I have

not seen this interesting work yet, but am grateful to R. F. Bass for drawing my

attention to its existence.

(iii) Does Brownian motion in the wedge actually reach the vertex in finite

time? This interesting question will be treated in a forthcoming paper.

(iv) I am grateful to the referee for a number of very helpful remarks and

suggestions.

(v) (Added in proof) Recently, K. Burdzy and D. Marshall (Hitting a bound-

ary point with reflected Brownian motion, preprint) and the author (Brownian

motion in a wedge with variable skew reflection. II, to appear in Proceedings

of 1989 Evanston Conference on Stochastic Analysis, ed. M. Pinsky) have in-

dependently obtained by different methods necessary and sufficient conditions

for the corner of the wedge to be approached. The author has also obtained

necessary and sufficient integral criteria for the corner to be reached in finite

time, and for extension of the process beyond the first hit on zero to be possible;

these results will be the subject of a later paper.
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