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AN EQUIVARIANT TORUS THEOREM FOR INVOLUTIONS

W. H. HOLZMANN

Abstract. A complete classification is given for equivariant surgery on incom-

pressible tori with respect to involutions with possible 1- or 2-dimensional fixed

sets.

1. Introduction

In [8] an equivariant torus theorem was proved for involutions which have at

most isolated fixed points. The main result of this paper is an equivariant torus

theorem (Theorem 4.5) for involutions with possible 1- or 2-dimensional fixed

sets. If additional restrictions are imposed, various equivariant surgery theo-

rems have been proved. If the manifold is closed, orientable, and irreducible

with infinite first homology, a theorem was given in [12].

The proof of the equivariant torus theorem proceeds by isotoping a given

incompressible torus to a new torus such that the new torus, its image under

the involution, and the fixed point set of the involution are "almost pairwise

transversal." The weaker "almost pairwise transversality" condition is used

since, in general, pairwise transversality cannot be ensured (see Remark 3.3).

The curves of intersection between the new torus and its image under the in-

volution are of certain types. The curves are changed or removed by various

surgeries, thus obtaining an equivariant torus or one of the exceptional cases as

listed in the theorem.

An application of this theorem is the classification of involutions with 1- or

2-dimensional fixed sets on orientable torus bundles or unions of twisted 7-

bundles on Klein bottles. Surgery on an equivariant torus reduces these spaces

to spaces on which the involutions are known. Details of this application are

given in [4].

2. Preliminaries

Throughout we use the piecewise linear category. A piecewise linear homeo-

morphism will be called an isomorphism.
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Let M be a connected compact 3-manifold. An involution i is an isomor-

phism with / t¿ id and /  = id.

Let Fix denote the fixed set Fix = Fix(i) = {x : i(x) = x}. Let i be an

involution on a manifold M and /' an involution on a manifold M'. i and

i are conjugate if there is an isomorphism h:M -* M' with i — h o i o h~x.

Call h a conjugation between i and t .

Lemma 2.1. Given a Simplicia! subdivision K of M and an involution i of M

there is a subdivision L of K with i simplicial with respect to L.

Proposition 2.2. Let i be an involution on a manifold M. Let L be a sub-

division of M with v.L —► L simplicial, and let L' be the first barycentric

subdivision of L. Then Fix = Fix(i) is a subcomplex of l! . Fix is the union

of disjoint 0-, I-and 2-dimensional proper submanifolds. Write Fix , Fix1,

and Fix2 respectively for the unions of the 0-, I-and 2-dimensional components

of Fix.
0 1 1

If v e Fix u Fix   then i is locally orientation reversing at v . If v e Fix

then i is locally orientation preserving at v . In particular, if M is orientable
O 7

then i is orientation reversing if Fix U Fix ^ 0 and i is orientation preserving

if Fix1 ¿ 0.

Proof. Use the following:

(1) Let A be a standard m-simplex (with standard subdivision) invariant

under i. Then Fix n A is a subcomplex of the first barycentric subdivision of

A.
(2) If Fix contains a 3-simplex then i = id.

If v e Fix is a vertex of int(L) consider the link Lk of v .

(3) If LknFix contains a 1-cellthen LknFix is one 1-sphere. So v e Fix .

(4) If Lk n Fix consists of m > 0 vertices then

X(Lkli)-m = \(x(Lk)-m).

Since Lk/i is a surface and Lk is a 2-sphere, it follows that m = 2 and hence

v e Fix1, or m = 0 and hence v e Fix .   D

3. Equivariant transversality

In order to be able to perform surgeries on a surface FQ in a 3-manifold

M we would like to perform an ambient isotopy on 7*^ such that the isotopic

surface F has the property that F , iF , and Fix are pairwise transversal. This

can be done if the manifold is orientable. If Fix ^ 0 and M is nonorientable,

however, pairwise transversality is not possible in general. This necessitates

using a somewhat weaker form of transversality.

Lemma 3.1. Let F be a proper surface in a 3-manifold with F, iF, and Fix

pairwise transversal. Then the components of F n t F are I-spheres and proper•y -y
I-cells. If C is a component of F ni F with C n Fix  ^ 0 then C ç Fix .
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(1,1,1)

(-1,-1.1)

(1.-1,-1)

Figure 1

Proof. The first statement follows by transversality of F and iF . The second•y
statement follows by considering the star of a point in C n Fix .   D

For the 3-cell ß3 = {(x, y, z) : |jc| < 1, \y\ < I, \z\ < 1}  in R3  let
3 3

i:B —> B be the map i{x, y, z) = (-x, y, z). Then Fix(i) is the inter-

section of B with the yz plane. Let 5 be the 1-sphere obtained as the join of

{(1,1,1), (-1, -1, 1)} with {(-1, 1, -1), (1,-1, -1)} and let D be the
cone from (0,0,0) on S.  D is a saddle shaped region (see Figure 1). (We

could alternately take D defined by {z = xy/yx2 + y2} U {(0, 0, 0)}.) Notice

that D n iD is the part of the x and y axis in B3 while D n Fix(z') is part of

the y axis. D and Fix(z') are transversal and iD and Fix(z') are transversal,

but D and iD axe not transversal at (0,0,0). There is a subdivision making

these spaces simplicial with all the vertices on dB U (0, 0, 0).

Definition 3.2. Let F be a proper surface in a 3-manifold M and i an invo-

lution on M with fixed set Fix. Call a point v a saddle point if v e F n Fix

and if (T7, ¡T7, Fix) n star(ü) is isomorphic to (D, iD, Fix(z')).

Remark 3.3. Saddle points exist since i is an involution with fixed set Fix(z').

Although 3D, diD, öFix(z) are pairwise transversal there is no 2-cell E with

dE = dD and E, iE, Fix(z') pairwise transversal. Otherwise, since dE n

diE - Fix(z') = (±1,0,0) there is a 1 -cell 7 of E n z£ with (1, 0, 0) e 97

and this 1 -cell must meet Fix, contradicting the previous lemma.

Let d denote the identification (x, 1, z) ~ (x, -1, -z) for all x and z.

Then D / d is an annulus in a solid Klein bottle B3/d and no isotopy of D/d

moves it to an annulus with F , iF , and Fix(i)/d pairwise transversal.

Definition 3.4. Let F be a proper surface in a 3-manifold and z an involution

on M with fixed set Fix. Then F , iF , and Fix axe almost pairwise transversal
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if:
(1) F, i F, and Fix are pairwise transversal except at a finite number of

saddle points, and

(2) the only components of F n Fix containing saddle points are 1-spheres

and each such 1-sphere contains at most one saddle point.

Let ¿? be the closure of (7rnz7r)-Fix . f consists of disjoint 1-spheresand'y
proper 1-cells: in a neighborhood of a saddle point, F niF - Fix   corresponds

to [-1, 0) x 0 x 0 U (0, 1] x 0 x 0 in the B3 model for saddle points.

Let E be a component of f that contains a saddle point v . Then E has

a fixed point and is invariant under i. Therefore, either Tí is a 1-cell with no

fixed points other than v or Tí is a 1-sphere with exactly two fixed points v

and w. By transversality w is in Fix1 or Fix2. In the latter case w is a

saddle point. Together with Lemma 3.1 this shows:

Proposition 3.5. Let F, iF, and Fix be almost pairwise transversal. Then the

components of F (MF are of one of the following forms:

(1) Components with no saddle points (standard components):■y
(a) proper I-cell I with I n Fix = 0 or I ç Fix ,

(b) proper l-cell I with I n Fix = 7 n Fix1 =v,va point,

(c) l-sphere S with S n Fix = 0 or S ç Fix2,

(d) l-sphere S with S n Fix = S n Fix1 = vxU v2, where vx and v2 are

points.

(2) Components with saddle points:

Type I component: Sx U 7 with Sx n 7 = Fix n 7 = w, Sx ç Fix , û/îé/ tu is

the only saddle point on Sx U 7.

Type II component: SXUS with Sx n 5 = w , Sx ç Fix , 5 n Fix = t> u w,

v e Fix, a/id w is the only saddle point on Sxi)S.

Type III component: SxuS2öS with SxnS2 = 0 , 5,.nS = w(. , 5¿ ç

Fix , S n Fix = wx U w2, and wx and w2 are the only saddle points on

SxuS2uS.
Here S, Sx, and S2 are l-spheres, the I are l-cells and w¡ are points,

where i = 1, 2.

Note that case (2) does not arise if the manifold is orientable because a

regular neighborhood N of Sx is always a solid Klein bottle. For if N is

instead a solid torus instead, then Fix n N, F n N, and iF C\N axe all annuli

or all Möbius bands. Consider annulus A , a component of d N - Fix. An F

and A n iF axe two l-spheres intersecting transversally in A . One sees these

l-spheres have nonzero intersection number, a contradiction.

Corollary 3.6. If F, iF, and Fix are almost pairwise transversal, then they are

pairwise transversal if one of the following holds:

(a) M is orientable.

(b) 7" is a 2-cell.

(c) F is an annulus with dF n id F = 0.



AN EQUIVARIANT TORUS THEOREM FOR INVOLUTIONS 891

Proof. In case (a) regular neighborhoods of l-spheres are solid tori.

In cases (b) and (c) Type II or III components are excluded since the l-sphere

S is nonseparating. In case (c) Type I components are excluded a priori, while

in case (b) the l-sphere Sx separates so a proper 1 -cell C cannot intersect Sx

transversally at one point.   D

In a surface F a proper 1 -cell 7 bounds a disc D if I = dD - dF.

Corollary 3.7. Let F, iF, and Fix be almost pairwise transversal and C a

proper l-cell or l-sphere component of F n iF, that is, let C be a standard

component. Then any disc in F or iF bounded by C contains only standard

components.

Proof. The proof is similar to the proof of case (b) in the previous corollary.   D

Equivariant Transversality Theorem 3.8. Let i be an involution on a 3-manifold

M with Fix = Fix(z) and let F0 be a proper surface in M. Then there is an

ambient e-isotopy on M taking F0 to a proper surface F such that F, iF,

and Fix are almost pairwise transversal. In dM, if dF, id F, and Fix are

pairwise transversal then the isotopy may be taken to be the identity on dM-N,

where N is a given neighborhood of dFix n dF.

Proof. Let F - FQ be a proper surface. By Proposition 2.2 and Lemma 2.1

subdivide M so that z is simplicial with respect to the subdivision, Fix is

a subcomplex of the subdivision, and Fix is a disjoint union of 0-, 1- and 2-
0 1 2

dimensional components Fix , Fix , and Fix . All isotopies performed in the

construction will be done in the star neighborhoods of certain simplexes. By

taking a sufficiently fine subdivision e-isotopies are obtained.

Step 1. Adjust F near Fix . By isotopies similar to those in the third step

below we can assume F and Fix are transversal, the isotopy not moving dF

unless dF and dFix are nontransversal. In particular, F n Fix = 0. Then

F n Fix   consists of disjoint l-spheres and l-cell components proper in M.

Let S be a l-sphere component of F nFix . Let A' be a regular neighbor-

hood of 5 with N'nF and A'nFix transversal and each an annulus or Möbius

band. S has a regular neighborhood A contained in int(A') invariant under

z with no vertices on int( A) - 5 such that A n Fix is a regular neighborhood

of S and FixndA has a regular neighborhood Q in dN which is invariant

under t and has no vertices except on Fix UdQ.

Case 1. FnN and FixflA are annuli. Then A is a solid torus, dQ has four

components, and A - Fix consists of two components Nx and A2 which are

interchanged by z. Let 7, and J2 be components of dQ with J. ç TV. and

iJx t¿ J2. Let Aj be the annulus with dAt, = J¡-US having no vertices except on

dA¡. F is isotopic to a surface F1 by an ambient isotopy which is the identity

on M - A' and such that f'nJV'd Fix ÇA and F' n A = Ax U A2. Since

iJx ¿ J2 it follows F'nJVn i(F' n A) = S and F' n A, i(F' n A), Fix n A
are pairwise transversal.



892 W. H. HOLZMANN

Case 2. F n A and Fix n A are Möbius bands. Then A is a solid torus, and

dQ has two components that are interchanged by z. If J is one of these, then

J and S1 determine a Möbius band A with dA = J . Proceed as in Case 1.

If M is orientable then Cases (3) and (4) do not arise. Only in these cases

do saddle points arise.

Case 3. F n A is an annulus and Fix DA is a Möbius band. Then A is a

solid Klein bottle. Let A be one of the two (open) Möbius band components

of dN -Fix. There are two l-spheres Jx and J2 which represent generators

of 77j (A) - Z with Jx and J2 intersecting transversally and at only one point

x . Ji and 5" bound an annulus Ai with Ax n A2 — S U 7, where 7 is a l-cell

with dl = xl)y , y e S. Proceed as in Case 1 using F' n A = Ax U iA2. Then

y is a saddle point and F' n N, ¡(F'nJV), and Fix n A intersect pairwise

transversally elsewhere in A.

Case 4. FnN is a Möbius band and FixnA is an annulus. This case is similar

to Case 3. Here A — dN-Q is an invariant annulus under i. Find a curve J

that bounds a Möbius band B with B mB = S by lifting (from annulus A/i)

a curve f which represents twice a generator and which is embedded in A/i

except for one transversal self-intersection. Now proceed as before.

When S is a l-cell component of F nFix , use an isotopy similar to the one

of Case 1 above. This isotopy may change dF in N ndM.

Step 2. Adjust F near Fix . By Step 1, F n Fix consists of a number of

vertices in int(Af). If v e F n Fix , let N' be a regular neighborhood of v

and let A be the star neighborhood of v . Take the subdivision so that A is

in the interior of A', FnN is a proper 2-cell in A, and Fix n A is a proper

l-cell. Since F is transversal, FndN is a generator of 77,(A-Fix). Let /'

be a curve in the annulus (dN - Fix)/z representing twice a generator of this

annulus. Take J' embedded except for one transversal self-intersection, j'

lifts to two l-spheres J and iJ, which on coning to v give 2-cells D and iD.

D, iD, and Fix are pairwise transversal in int A. Proceed as in Case 1 of

Step 1.
We obtain a surface F and a neighborhood A of Fix such that F has the

required transversality properties in A. The following construction adjusts F

only on star neighborhoods of simplexes of F - A where F and iF are not

already pairwise transversal. By subdividing sufficiently we may assume without

loss that Fix = 0. For convenience assume also dF = 0.

Let K be a subdivision of M with z simplicial and F a subcomplex of K.

Let A be an w-simplex of F in K with m = 0, 1, or 2. Define St(A), the

reduced star of A in K, to be all 3-simplexes a of K with A ç o together

with their faces. Let Stf(A), the reduced star of A in F, be all 2-simplexes

a of K with A ç a ç F together with their faces. Let p:M —► M/i be the

projection.
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Step 3. There is a subdivision of M and a proper surface F' e-isotopic to F

such that for every simplex A of F' either p~ p(A) n F' = A or A is a 0- or

1-simplex with int(Stf#(A)) and int(St(/./(A)) transversal.

Call a simplex exceptional if it fails to satisfy these conditions and is of the

highest possible dimension m - 0, 1, or 2. Induct on the number of such

Simplexes. If there are no exceptional Simplexes the theorem is established.

Suppose there is an exceptional simplex A. Adjoin all the vertices (and their

translates under i) of form ^¡b + -^v, where b is the barycenter of A

and v is a vertex of St(A) - A. This determines a refinement K' of K with

the same number of exceptional simplexes; no w-simplexes are subdivided for

m = 1,2, while for m = 0 transversality already holds away from vertices of

K. Consider the reduced stars in K'. d St^.(A) is a l-sphere that decomposes

d St'(A) into two components D+ and D_ . There is an ambient isotopy taking

F to Fx = (F - St^.(A)) U D+ which is the identity except on St^.(A). Fx has

fewer exceptional simplexes. When m ¿2 this follows since D+uD_ intersects

the interior of any 2-simplex of St(A) transversally.   O

Regular neighborhoods of the standard components of F n iF can be taken

in a special form.

Proposition 3.9. Let F, iF, and Fix be almost pairwise transversal and S

be a l-sphere component of F n iF. Suppose, in addition, that the regular

neighborhood of S in F and iF is an annulus. Then there exists a regular

neighborhood V ç int(M) of S, called a standard neighborhood of S, with the

following properties:

(1) VnF and VniF are annuli. Since these intersect transversally, V is

a solid torus.

(2) Fix and d V intersect transversally, Fix n F n V ç S, and the closure of

each component of (Fixn V)-S meets S and dV. In particular, Fix n V = 0.

(3) Fixn F is an annulus, two proper l-cells, or empty.

(4)IfiS = S then iV = V.
(5) If iS ^ S then i V n V = 0 and the above properties hold simultaneously

for iV.

Property (3) can be arranged since if Fix n S ^ 0 then iS = S. i is an

involution on a l-sphere so either z = id or z has exactly two fixed points.

The four l-spheres (FUiF)ndV decompose dV into four (closed) annuli

a, , a2, ßx , and ß2 with a, n a2 = 0 and ßx n ß2 — 0. Call these annuli the

standard annuli corresponding to the standard neighborhood of V. Suppose

iS = S. Relabeling, if necessary, we may assume i(ax n ßx) = (ax n ß2). It

follows that iax = a, . Then ißx = ß2 and ia2 - a2. When Fix n V ^ 0

we obtain Fix Ha, ^ 0, Fix n a2 ^ 0, Fix n ßx = 0 = Fix n ß2 , and each

component of Fix n V meets both ax and a2.

Proposition 3.10. Let S be a l-cell component of F n iF, where F, iF, Fix

are pairwise transversal (near S). Then there exists a regular neighborhood V of
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S with V n d M a regular neighborhood of dS, called a standard neighborhood

of S, with the following properties:

(1) VnF and VmF are 2-cells with dMnVnF and dMnVmF each
two l-cells. Necessarily V is a 3-cell.

(2), (4) and (5) as for l-sphere standard neighborhoods.

(3) Fixn V is a disc, one proper l-cell, or empty.

The four l-cells (F u iF) n dV-dM subdivide dV -dM into four discs

a, , a2, ßx, and ß2 with ax n a2 = 0, ßxnß2 = 0, and the properties as in

the previous situation. Call these discs the standard discs corresponding to V.

Remark 3.11. In the following theorem certain l-sphere components 5 of Fn

iF have standard neighborhoods because S bounds discs in F and iF. In

the disc theorem F is orientable so again there are standard neighborhoods. In

the torus theorem the construction will be made so as to keep S in this form

always.

Theorem 3.12. Let M be an irreducible 3-manifold with involution i and F0

be an incompressible proper surface. Then there is an ambient isotopy of M

which is an s-isotopy on dM taking F0 to a proper surface F such that F,

iF, and Fix are almost pairwise transversal and no l-spheres in FmF bound

2-cells in F. On dM, if dF, id F, and dFix are pairwise transversal then

the isotopy may be taken to be the identity on dM - N, where A is a given

neighborhood of dFix n dF .

Proof. By the preceding transversality theorem there is an F with all the above

properties except possibly l-spheres in F n iF bound 2-cells in F . By Propo-

sition 3.5 those 2-cells contain no saddle components. Let S be a l-sphere of

F n iF bounding an innermost 2-cell in iF, that is, there is a 2-cell D ç iF

with DnF - dD = S. Since F is compressible, S bounds a 2-cell B in F.

If iS = S then we may assume iB — D.

Let F be a standard neighborhood of S. Such a neighborhood exists since

S bounds a disc in F and iF . Let a be the standard annulus in d V meeting

D but not B . Then la n a = 0 . There is a bicollar 7>x[-l, 1] of 7> = Z> x 0

with

9Dx[-l,l] = flx[-l,l]nF = Sx[-l,l]

and with D x 1 n a / 0. Since D is innermost it follows that for a sufficiently

thin collar (flxl)n z(7J» x 1) = 0 and Fn¡(Dxl)=0. Consider F' =

(F -(BuSx[-l, l]))UDx 1. Then F' n iF' ç (F n iF) - S and F', iF',

and Fix are almost pairwise transversal. Since M is irreducible and D u B is

a 2-sphere, F' and 7" are ambient isotopic by an isotopy being the identity on

dM. By induction, all l-spheres bounding 2-cells can be removed.   D

A 2-cell B in a 3-manifold is essential if it is proper and dB does not bound

a 2-cell in dM. In an irreducible 3-manifold a nonseparating proper 2-cell is

essential. The following theorem is well known (see [1, 2, 6, or 10] for instance).
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Disc Theorem 3.13. Let M be an irreducible 3-manifold with involution i.

Suppose M has an essential 2-cell B0. Then there is an essential 2-cell B ç M

such that B and Fix are transversal and either B niB — 0 or iB — B. In the

former case 7inFix = 0 and in the latter case BnFix is a proper l-cell of B or

one point in the interior of B. If dB0 n idB0 = 0 then one can take dB = dB0

and B and B0 are ambient isotopic by an isotopy that is the identity on dM.

Proof. By Theorem 3.12 and Corollary 3.6 there is an essential 2-cell B with

B, iB, and Fix pairwise transversal, B and BQ ambient isotopic, and B n iB

is either empty or consists of proper l-cells only. Assume B n iB ^ 0 (in

particular, then dB0 n idB0 ^ 0). By induction it suffices to show how to

obtain a new 2-cell B¡ with fewer l-cells in B¡ mB¡.

Let D be an outermost disc of B : D ç B with DmB = dDmB = I

a proper l-cell of B and dD -1 ç dB. If z7 = 7 define D' = iB-iD. If
¡7^7 define D' to be the closure of the component of iB - I that does not

contain z7 (see Figure 2). Let V be a standard neighborhood of 7 and let ax,

a2, and ß be standard discs of V with a, n a2 = 0, a, n ß n 7) ^ 0, and

ß n D V 0 • Consider

Bx = (DüßöD')-int(V)   and   B2 = T>U (iB - D').

Then Bx n iBx ç (B n iB) - I. If Bx is essential we are done by induction or

we arrive at the case Bx n iBx - 0 . If Bx is not essential then dBx bounds a

2-cell E of dM. Since M is irreducible, the 2-sphere Bxl)E bounds a 3-cell.

This 3-cell does not meet 7, otherwise iB would not be essential. Using the

3-cell construct an ambient isotopy taking B2 to iB .

So we may assume B2 is essential. If I - il we have iB2 — B2 and note

that Fix n B2 ç Fix n 7, which is necessarily a point of 7 or all of 7. If

7 n z7 = 0 consider a sufficiently thin bicollar 7)x[-l, 1] ofT) = T>xO such

that D x [-1, 1] n 7 is a bicollar of 7 in iB and D x 1 meets c^ . Then

B2 = (D x 1 u z5) - (7 x [-1, 1) u D1) is essential since it is isotopic to B2 and

B2niB2çBniB-I.   D

Figure 2
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4. Equivariant torus theorem

A proper annulus A in a 3-manifold M is trivial if A decomposes M into

a solid torus V = D2 x Sx and a submanifold M0 such that:

m = m0uv,       M0nv = dM0ndV = A,

and there exists a nonseparating proper 2-cell B ç V with BnA-dBnA a

nonseparating l-cell in ,4 .

Otherwise call A nontrivial. Call F a solid torus that trivializes A .

Note that if A does not separate M or if d A is in different boundary

components of M then A is nontrivial.

Call a nontrivial incompressible proper annulus an essential annulus. Call an

incompressible proper Möbius band an essential Möbius band.

Let F be a surface and S a component of F n iF. In some surgeries

performed later we will wish to replace 7" by F1 = F x 1, where F x [-1, 1]

is a bicollar of 7". To insure that F', iF1, and Fix are transversal at least in

standard neighborhoods (see Propositions 3.9 and 3.10), the following lemma

is used.

Lemma 4.1. Let V be a solid torus and i: V —> V an involution. Let A0 and

Ax be annuli in dV with dA0 = SQöSx, dAx = Sx U S2, AQnAx = Sx,

iS0 = SQ, (A0 U Ax) n i(A0 U Ax) = S0, and Fix n (AQ U Ax) ç S0. Then there is

a proper annulus AÇ.V such that A, lA, and Fix intersect transversally with

AniA-S a l-sphere and d A having one component in int(z^0) and the other

component is S2.

A similar statement holds if V is a 3-cell, A0, Ax are 2-cells, and the S¡

are l-cells (see Figure 3).

Proof. By transversality of Fix, by taking a sufficiently small regular neighbor-

hood A of A0 U Ax U iA0 UiAx we may assume one of the following holds:

(1) FixnA = 0,

Figure 3



AN EQUIVARIANT TORUS THEOREM FOR INVOLUTIONS 897

(2) Fix n A consists of two disjoint l-cells 7( with exactly one point of dl¡

in SQ and the other in int(K) n dN, or (3) Fix n A is an annulus such that

one boundary component is S0 and the other is in int(F) n d A.

Further, there is a regular neighborhood A' of SQ ç A such that iN' - N',

A'0 = A' n AQ is an annulus, A'0 U iA'q = N' n dV , and properties (l)-(3) hold

with respect to A'.

Let B be the annulus which is the closure of d N' - A0 U iA0 . Then there is

a l-sphere S in int(7?) with iS = S and Fixnß ç S. There is an annulus A"

in V-N' such that dA" = A" n F - A' = S2 U 5 and A" n i¿" = 5. Let Ä

be the component of B - S that meets iA0 . Then ^ = A1 U .d" is the desired

annulus.   D

A solid Klein bottle is a twisted 7-bundle over an annulus. The annulus is

essential but it does not separate the boundary.

Lemma 4.2. Let U be a solid torus or a solid Klein bottle. If U is a solid torus

then U has no essential annuli. If U is a solid Klein bottle then U has no

essential annuli that separate d U.

Moreover, suppose A1 is an annulus contained in d U such that a nonsepa-

rating proper disc D of U intersects Â in exactly one nonseparating l-cell of

A'. If A is an incompressible proper annulus disjoint from A1 then the solid

torus which trivializes A may be taken to be disjoint from Â .

Proof. Suppose A is an essential annulus. Then let D be any proper nonsep-

arating 2-cell of U. (When Ä is given, take D as in the statement.) Make A

and D transversal. Since A is incompressible, adjust D so that AnD consists

of l-cells only.
If A n D — 0 then A is contained in a 3-cell obtained by removing a

sufficiently small regular neighborhood of D from U. This contradicts incom-

pressibility.

If AnD ^ 0 let B be an outermost 2-cell of D (and disjoint from A' if

A' is given): so BnA = dBnA = I is a l-cell and B n dU = dB-I. If

7 bounds a 2-cell in A , then by an isotopy moving B , obtain a disc D' with

fewer l-cells in AnD'. Assume now that 7 does not bound a 2-cell in A.

Then 7 does not separate A. Let V be the closure of the component of U - A

that meets int(B). dA decomposes dU into two annuli or possibly, in the

case where U is a solid Klein bottle, into an annulus and two Möbius bands.

However, in the latter case dB n dU must meet the annulus. It follows that

dV ndU is an annulus and F is a solid torus with the properties making A

trivial.   D

In order to prove the torus theorem we will need to know the involutions up

to conjugacy on a solid torus.

Let Sx — {z e C : \z\ = 1}. Define maps on S by k(z) = z and a(z) =

-z.   Let D   - {z e C : \z\ < 1}.   Define maps on D   by k(z) = z and
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â(z) = -z . Also define p on D x Sx by p(z, w) = (zw , w). For later use,

define x on 7 = [-1, 1] by t(í) = -t.

Define the following involutions on the solid torus V = D2 x Sx = {(z, w) :

\z\ < I, \w\ — I, z, w e C} :
jA = k x id having as fixed set the annulus Re xS"1.

jM = p o (k x id) having as fixed set the Möbius band {(s ■ enU, e2mt) : 0 <

s <l,-l <t <l}. ■y
j2D - id x k having as fixed set two 2-cells D  x ± 1.

i dp = P°(ià.xK) having as fixed set a 2-cell and a point 7>2 x luOx-1.

js = à x id having as fixed set one l-sphere 0 x Sx.

he = k x k having as fixed set two l-cells Re x ±1.

j2P = à x k having as fixed set two points 0 x ± 1.

jN = k x a, fixed point free and orientation reversing.

j0 = id xa, fixed point free and orientation preserving.

The next theorem follows easily by applying the Disc Theorem 3.13 and

using the fact (see [13]) that there are only three involutions up to conjugacy

on a 3-cell (for details see [4]).

Theorem 4.3. If i and i are involutions on V — D x S with nonempty

isomorphic fixed point sets or if i and i are fixed point free and of the same

orientation type, then i and i are conjugate. An involution on V is conjugate

to one of the nine involutions listed above.
■y

Lemma 4.4. Let M be an irreducible, P -irreducible 3-manifold containing an

incompressible torus. Let F be a l-sided Klein bottle in the interior of M and

W a regular neighborhood of F in M with dW a torus. Then dW is an

incompressible torus.

Proof. Otherwise M = W u U, where M-W = U, dU = Un (U - W), and

U is a solid torus. Necessarily W is an orientable twisted 7-bundle over T and

M is orientable. The inclusion of U in M determines an index two subgroup

of %x (M). Consider p: M —* M, the 2-sheeted covering corresponding to that

subgroup. Then p~ (W) = Tx[-l, 1], where T isa torus with p(TxO) - F ,

and p~ (U) = Vx U V2, where Vx and V2 are two disjoint solid tori. M is a

lens space. But M and hence M contains a 2-sided incompressible torus.   D

Equivariant Torus Theorem 4.5. Let M be an irreducible, P -irreducible 3-

manifold with involution i. Suppose M contains an incompressible torus. Then

one of the following holds:
(I) There is a 2-sided incompressible torus or Klein bottle T in int(M)

transversal to Fix with T niT = 0 or iT = T.

(II) M = V_x U Vx U U_x U Ux, where V¡ and U¡ are solid tori and iVi = Vi

and iU_x = Ux. There are annuli A¡t i = ±1, with

Ax nA_x =AimAi = dAi = diAi = vx nv_x = Uxnu_x



AN EQUIVARIANT TORUS THEOREM FOR INVOLUTIONS 899

Figure 4

and Vt n 77. = A¡, Vi n U_, = iA¡, dV¡ = ¿f. U zd¿, dUi = 4. u z^_,-, (see
Figure 4). AxliA_x is a 2-sided incompressible torus transversal to Fix. i\Vi

is orientation preserving.

(III) M = Vx U V2 u V, where Vx, V2, and V are solid tori each invariant

under i such that i is orientation preserving when restricted to any of Vx, V2,

and V. There is a l-sided Klein bottle T with TmT - S çint(V) a generator

of nx(V). Vx n V2 = (T n iT) - int(F) are two annuli. T, iT, and Fix are

pairwise transversal and Fix n d V2 = 0 and Fix n S / 0. V is a standard

neighborhood of S, (see Figure 4).
(IV) M = WuV, where W is a twisted I-bundle over a torus T ç_w and V

is a solid torus with dW = dV = WnV and iW = W, iT = T, and iV = V.

Fix is transversal to dW and T except for a possible l-sphere component S

of Fix1 contained in T.

Proof. Let T0 be an incompressible torus in int(A7). By Theorem 3.12 assume

T0, iT0, and Fix are almost pairwise transversal and that no l-spheres in

T0 n iT0 bound 2-cells in T0 .

As a first step we handle the cases where saddle components arise. Only Type

III and Type II components are possible. In both cases since 5 and Sj intersect

transversally at one point, there can be only one component in T0 n i T0.

Suppose TQ n iT0 is a Type III component S U Sx U S2. Then Sx and S2

bound an annulus A in TQ since Sx nS2 = 0 and both intersect S transversally

once. Then T = A Hi A is a torus with iT —T and T and Fix are transversal.

T is 1-sided since a regular neighborhood of Sx is a solid Klein bottle. Let A

be a regular neighborhood of T invariant under A. If d A is incompressible

then it is a 2-sided torus satisfying (I). If dN is compressible we arrive at (IV).

Suppose T0 n iT0 is a Type II component S U Sx. First we construct a

torus T' isotopic to T = T0 with iT1 = T'. Let N(S) and N(SX) be regular

neighborhoods of S and Sx respectively, both invariant under z such that

A = N(S) U N(SX ) is a regular neighborhood of SllSx and such that TnN(S)
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and T n N(SX) are annuli, N(SX) n Fix is a Möbius band, N(S) n Fix2 is

a proper 2-cell, and N(S) n Fix1 is a proper l-cell. Both N(S) and N(SX)

are solid Klein bottles. By transversality there are two disjoint open 2-cell

components Kx and K2 of N(S) - (T U iT) that meet Fix1 and there are

two disjoint open 2-cell components Lx and L2 of N(SX) - (T U iT) that

do not meet Fix . By considering the effect of z near saddle points we see

A = (Kx U K2 U Lx U L2) n dN is an annulus with dA = C U zC, where C =

dNnT. The closure of ^ U (T - A) U z(r - A) is a 2-sphere which by the

irreducibility of M bounds a 3-cell E. E cannot contain the proper punctured

torus m A so £nint(A) = 0. Since Fix1 is transversal to dE and idE — dE

it follows lE — E . In particular, i\E is conjugate to jx, the standard involution

of a 3-cell with fixed set one l-cell. A is invariant and contains Fix1 n dE.

Hence one shows there is a proper 2-cell D with dD a generator of 771 (A)

such that Fix1 n Tí is a proper l-cell of D and iD = D. Since idD - dD,

by taking A sufficiently small we can construct a proper punctured torus P

in A with dP = dD and iP - P (namely isotope T n N). Consider the

torus T' = P U D. Fix intersects T' transversally at Sx. The component

of Fix meeting A is contained in T1. T1 is 1-sided. Let W be a regular

neighborhood of T1 invariant under i. If d W is incompressible then it is a

2-sided torus satisfying (I). If d W is compressible we arrive at (IV).

We may now assume T0 nzT0 has no saddle components. TQ , iT0, and Fix

are pairwise transversal and T0 n iTQ consists of disjoint l-spheres bounding

annuli in T0 and iT0. We successively construct incompressible tori or Klein

bottles T with fewer l-spheres in Tn iT, but always keep TmT consisting

of l-spheres bounding annuli in T and iT and always retain the property that

each component of TniT has a standard neighborhood, (see Propositions 3.9

and 3.10). It also follows then that any 1-sided Klein bottle arising from such a

construction has a regular neighborhood W with dW a torus. So Lemma 4.4

is applicable.

Note: Suppose T satisfies all the conditions of (I) except that T is 1-sided

instead of 2-sided. Let W be a regular neighborhood of T. We can take W

so that dW and Fix are transversal and tW =W or W mW = 0. dW is

2-sided. If dW is incompressible, dW satisfies (I). Assume now that dW is

compressible. T cannot be a Klein bottle since the previous paragraph shows

that dW is a torus and thus Lemma 4.4 would show dW to be incompressible.

So T is a torus. Now V — M -W is a solid torus. If iT = T we have (IV).

If iTn T = 0 then the solid torus V contains an embedded 1-sided torus iT,

a contradiction.

We give constructions that reduce the number of components of T n iT,

producing a new torus or Klein bottle. Repeat these constructions with the new

torus or Klein bottle produced until eventually one satisfying condition (I), (II),

(III), or (IV) is constructed. There are four cases depending on the number of

l-spheres of T n iT and the compressibility of certain surfaces.
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Figure 5

Assume T n iT consists of at least two l-spheres. Let A ç iT be an in-

nermost annulus: AnT = dA. dA decomposes T into two annuli A1 and

A" with T = Ä U A" and dA = dA' = dA" = A' n A" . T' = Ä U A and
r" = A" UA axe tori or Klein bottles (see Figure 5).

Case (I).  T' is incompressible.

Case (1.1): id A = dA and lA = Â. Then iT' = T'. One sees Fix

is transversal to T1 by considering the standard neighborhoods of dA. We

arrive at (I) or (IV).

Case (1.2): Either id A = dA and lA = A" or id And A is a single l-sphere

S and i A ç A" . In the latter case iS = S. Let Vx and V2 be distinct standard

neighborhoods of dA and let yx and y2 be the two distinct standard annuli

that meet both A and Â . Let Tx = (Â U A u yx U y2) - int(Fj U F2). Then

TxmTx c(TmT)-dA and r.nzT, ^ rnzT because (yxuy2) nz(y1uy2) = 0.

T' and Tj are ambient isotopic so Tx is incompressible. Fix n (yx U y2) = 0

and A is innermost so 7^, iTx, and Fix are pairwise transversal. Proceed

with r,.
Case (1.3): Either id A n dA is a single l-sphere S and lA ç A' or id A n

dA = 0. Let dA = S U S'. Let F be a standard neighborhood of S and
let y be the standard annulus that meets both A and A'. Let A x [0, e] be a

sufficiently thin collar of A = A x 0 in M such that

S'x[0,e]ca',    Sx[0,e]CT,    (AndV)x[0,e] = (Ax[0,e])ndV.

The collar exists since F is a solid torus. In the first case, iS = S and ty = y.

By Lemma 4.1 if (Axe)ny ^ 0 we may assume (Axe)nV and z((dxe)nF)

intersect transversally in a l-sphere Sx and that both are transversal to Fix. In

all other cases set Sx = S. Define

Tx = (A x e) U Â - ((S' U S) x [0, e]) U ((S x [0, e]) - Á).

Then TxniTx ç ((TmT)-dA)uSx.  Tx is incompressible since it is ambient

isotopic to r'.  T,, z Tx, and Fix are pairwise transversal. Proceed with Tx.

By Case ( 1 ) we may now assume T  and T   are compressible.
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Figure 6

Case (2). For every annulus A ç iT with A n T = dA, both corresponding

surfaces T1 and T" are compressible and TmT contains more than two 1-

spheres. Then let Ax and A2 in iT be annuli with A¡; n T = dAi and with

dAi = S0 U 5;, where 50, 5, , and S2 axe l-spheres with Sx ¿ S2. Let A,

A'x , and A2 be the three annuli of T that these l-spheres decompose T into:

dA = SxU S2 and dA\ = S0 u S, for í = 1, 2 (see Figure 6).

Define Tx = AUAXUA2. Tx is incompressible. Otherwise Tx bounds a solid

torus or a Klein bottle U. Say Âx Ç U. A'x is trivial in U by Lemma 4.2. If

A'XUAX bounds the trivializing torus then the incompressible T = A\ U A'2 U A

is ambient isotopic to Ax U A'2 u A which was compressible by hypothesis. If

A'x U A2u A bounds the trivializing torus then, since A'x and A2 meet on 50 ,

A2 must also be trivial in A'XUA2UA. So T is ambient isotopic to A2 U A2

which was assumed compressible.

We have five cases:

Case (2.1):  i(Sx \JS2) = Sx US2 and iS0 ç A . Then i(Ax U A2) = A .

Case (2.2): i(Sx U S2) = Sx U S2 and iS0 ç A'. Then i(Ax U A2) = A\ U A'2
and iS0 = S0 .

Case (2.3): iSx = Sx and iS0 = S0 . Then z^4t = A'x and z52 ç /42.

Case (2.4): z(5t u S2) n (51 U S2) = 0.
Case (2.5):  z(5, U52) n (5, U52) is one l-sphere.

These cases cover all possibilities. In each case we find a Tf with fewer

l-spheres.

Case (2.5) follows from the other cases. After relabeling assume Sx is the

l-sphere in the intersection. Then iSx = Sx . By Case (2.3) we assume iS0 ^

S0. Let A3 be the innermost annulus adjacent to Ax: A3 C iTx with A3 n

Tx = dAy = 5, U 53, where S3 ^ S0. By Case (2.3) again we may assume

iS3 ¿ 53. By Cases (2.1) and (2.2) we may assume iS0 ¿ S3. So we have

i(S0 U S3) n (50 U S3) = 0 and Case (2.4) gives the reduction.

In Case (2.1) use Tx = iTx. Fix is transversal to Tx since the standard

annulus meeting Ax and A is invariant.

In Case (2.2) and Case (2.3): For z = 1,2 let K be the standard neighbor-

hoods of Sj with y. the standard annuli that meet both A and A¡. In all cases

(yx U y2) n i(yx U y2) — 0 . Define T2 to be the incompressible surface ambient
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isotopic to Tx given by

r2 = T, U y, U y2 - int(F, U K2):

Then T2 , iT2, and Fix are pairwise transversal and

T2mT2 ç TxmTx -(Sxus2).

In Case (2.4): First assume iS0 ^ S0. By symmetry assume iS0 ^ Sx. Let

(Ax U A2) x [0, e] be a sufficiently thin collar of Ax U A2 = (Ax U A2) x 0 in M

such that (5, U S2) x [0, e] ç T and S0 x [0, e] ç Ä . Define

T2 = (AXUA2) xel)A-((SxliS2) x [0, e])l)((Sx US2) x [0,e]-A).

Then T2niT2 ç i(TmT)-S0. Also T2 is ambient isotopic to incompressible

Tx.  T2, iT2, and Fix are pairwise transversal.

If iSQ = S0, proceed as above but replace the condition S0 x [0, e] ç A' by

Sx x [0, e] ç A. Use Lemma 4.1 on a standard neighborhood of S0 to adjust

the collar so that (Ax UA2) x e and i(Ax Ud2) x e intersect transversally in one

l-sphere S3. Then T2 n iT2 C (i(T n iT) - (SQ USx))l)S3.

Case (3). For each annulus A ç iT with A n T = dA, both corresponding

surfaces T1 and T" are not incompressible and TmT is exactly two l-spheres.

Set iT = A_x U Ax with A_x nAx= dAx = dA_x = TmT = SXUS2. Then
T — iA_x UiAx. There are solid tori or Klein bottles U¡ and Vi'.,, for i = ±1,

pairwise disjoint on their interiors with dV¿ = A¡ U zd( and dU¡ - A¡ U zd_;.

None of U¡ ox Vi are solid Klein bottles. Otherwise, if, say, Vx is a solid

Klein bottle, then since Sx U S2 decomposes d Vx into two annuli it follows

that Sx bounds a disc in Vx. This contradicts the incompressibility of T.

By considering the standard annuli of a standard neighborhood of Sx we see

iV; = Vi and iUi - U_¡. That Ax U A_x is a torus and not a Klein bottle

follows from the fact that Vx and U_x axe solid tori.

If both i\Vx and i\V_x axe orientation preserving then we arrive at (II). So

assume that i\Vx, say, is orientation reversing. We will show i\Vx is conjugate

to jM and arrive at (I). By Theorem 4.3, i\Vx is conjugate to jA, j2D, jN,

jM , or jDP, the standard involutions on a solid torus. j2D and jDP axe not

possible since Sx or S2 would bound a disc contradicting the incompressibility

of T.

If i\Vx is conjugate to jM then, say, S, ç Fix and 52 nFix = 0. Then

z|K_, has a 2-dimensional fixed set component that has only one boundary

component. It follows that z|K_1 is also conjugate to jM . So Fix contains a

Klein bottle K. There is a regular neighborhood W of K with idW = dW

and W n Fix = 0. Since Vi are solid tori and KnVi is a Möbius band, ô W

is a torus. By Lemma 4.4, dW is incompressible. We arrive at (I).

If i\Vx is conjugate to jA , then [Sx] represents a generator of 77¡(Vx) and

hence there is an ambient isotopy taking iT to «97/_j (move Ax to zd,). This

contradicts that iT is incompressible.
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Finally suppose i\Vx is conjugate to the involution jN = k x a on D2 x Sx.

If iSx - Sx then S[ = 1 x Sx and S2 = -1 x Sx determine annuli A1 and lA1

of dD x Sx. It is possible to construct a conjugation dVx —► dD xSx taking

Ax to A'. This conjugation extends to a conjugation Vx —► D2 x Sx. But [S[]
1 1

is a generator of HX(D  x S ) and we get a contradiction as for the jA case

above. If iSx = 52 then use S[ = dD x 1 and S2 = 57) x -1 and proceed as

above but this time obtaining a contradiction as for j2D above.

Case (4).  T n iT is a single l-sphere S. Then iS = S. Let F be a standard

neighborhood of S and let ax, a2, ßx and ß2 be the standard annuli with

ax n a2 - 0 , ßx n ß2 = 0 , ZQ, = a, , ia2 = a2, and ißx — ß2 . Define

Tx = (TUiTUax\Ja2)-int(V)

and

T2 = (T\jiTußluß2)-int(V).

If T is 2-sided then Tx is 2-sided. Also iTx = Tx. Since T is 2-sided it
follows that a sufficiently thin collar Tx[0, e] of T = TxO can intersect only

one of int(a,) and int(a2). Hence Tx cannot separate and therefore Tx is

incompressible. We arrive at (I).

From now on assume T is 1-sided. Tx and T2 axe tori. This follows since

F is a solid torus and either both of the annuli T - int( V) and z T - int( V) are

"twisted" relative to V (if T is a Klein bottle) or neither is (if T is a torus).

If either of Tx or T2 is incompressible we arrive at (I). Assume then that Tx

and T2 are compressible. Then Ti bounds a solid torus Vi■. If 5 ç V¡ then Vi

contains a 1-sided torus or Klein bottle, a contradiction. So M - V u Vx U V2

with int(F), int(F,),and int(K2) pairwise disjoint.

By the choice of ax and q2 , z interchanges the components of dai. There-

fore i\a¡ is conjugate to one of id xt , k x x , or a x x, the standard involutions

of 51 x 7, where 7 = [-1, 1] and x(t) = -t. Let S¡ be a l-sphere of a¡ that

is the image of S1 x 0 under some conjugation. Note that S¡ does not bound

a disc D in Vx, otherwise T would be compressible.

If there is an annulus A ç Vx with dA = Sx U S2 and lA = A then we

arrive at (IV) as follows. Torus Vx is separated by A . Since i interchanges the

components of dax, i interchanges the components of A - Vx . A is trivial

in Vx so it follows that Vx can be given a trivial 7-bundle structure over A .

There is an annulus B ç V with dB - Sx US2 and iB = B . F is an 7-bundle

over B . Consider T3 = A u B . It follows that V U Vx is an 7-bundle over

T3 with d(Vu Vx) = T2 a torus. Moreover T3 does not separate T so T3 is

1-sided. Since T2 is compressible, T3 is not a Klein bottle in view of Lemma

4.4. Thus T3 is a torus and we arrive at (IV).

Assume now that such an annulus A does not exist. Since F is a standard

neighborhood, Fix n a, = 0 if and only if Fix n a2 — 0. Therefore i\ax and

z|a2 are conjugate.
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Case (4.1): i\ax is conjugate to idxz. Then i\Vx has a 2-dimensional fixed

set that meets dVx in two fixed l-spheres. It follows that Sx bounds a disc or

Sx liS2 bounds an annulus A fixed by i\Vx. By the above comments, we arrive

at (IV).

Case (4.2): i\ax is conjugate to axx. Then i\Vx is orientation reversing.

i\d Vx is conjugate to a x k on Sx x S by a conjugation taking S¡ to Sxx(-l)'.

Then i\Vx is conjugate to à x k or a x k by a conjugation extending the one

given on the boundaries. In the first case Sx bounds a disc and in the second

case Sx U S2 bounds an annulus with lA = A . Again by the above comments

we arrive at (IV).

Case (4.3): i\ax is conjugate to kxx. Then i\Vx and i\V are orientation

preserving. Now z|F2 is orientation reversing if and only if T is a torus. To

see this let Sx - ax n ßx and without loss say Sx ç T. Orient Sx. Sx and

iSx bound two annuli Ax and A2 of dV2 with iAx =A2. Consider the ways

of inducing an orientation on iSx. The orientation induced by Ax and the

orientation induced by a, are the same if and only if T is a torus. Since

i\ax is orientation reversing the orientation induced by ax and the orientation

induced by i axe opposite. So i and Ax induce opposite orientations on iSx

if and only if T is a torus. Since iAx = A2 the claim follows.

If T is a torus then i\V2 is orientation reversing, so i\dV2 is conjugate to

the involution a x k on Sx x Sx by a conjugation taking Sx to i x Sx. As in

Case (4.2) we arrive at (I) or (IV).

If T is a Klein bottle then we arrive at (III). i\dV2 is fixed point free so i\ V2

is conjugate to js or j0 while i\Vx is conjugate to j2C .   D

■y
Corollary 4.6. Let M be an irreducible, P -irreducible 3-manifold with involu-

tion i. Suppose M contains an incompressible torus. Suppose M is neither

an orientable Seifert fiber space over the 2-sphere with four exceptional fibers

nor a nonorientable Seifert fiber space over the projective plane with at most one

exceptional fiber. Then there is a 2-sided incompressible torus or Klein bottle T

in int(Af) transversal to Fix with TniT = 0 or iT = T.

Proof. Case (II) in the Equivariant Torus Theorem can only occur if M is an

orientable Seifert fiber space over the 2-sphere with four exceptional fibers, while

Cases (III) and (IV) can only occur if AT is a nonorientable Seifert fiber space

over the projective plane with at most one exceptional fiber. Since these pos-

sibilities have been excluded, only Case (I) of the Equivariant Torus Theorem

remains.   D
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