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ALMOST TANGENT AND COTANGENT STRUCTURES
IN THE LARGE

G. THOMPSON AND U. SCHWARDMANN

Abstract. We examine some global properties of integrable almost tangent

and cotangent manifolds. In particular, we extend several results which essen-

tially characterize tangent and cotangent bundles as, respectively, regular almost

tangent and cotangent structures.

1. Introduction

In this paper we investigate some of the global features of almost tangent and

almost cotangent manifolds. As the name suggests, these manifolds are defined

by abstracting the key differential geometric structure of the tangent and cotan-

gent bundle, respectively, of a differentiable manifold. They were introduced

in 1960 and studied between then and the mid 1970s by several authors mainly

in Western Europe (see for example [3, 4, 5, 6, 10, 11, 12, 16]). However,

an almost cotangent manifold which satisfies certain integrability conditions,

an integrable almost cotangent structure, is synonymous with what is known in

symplectic geometry as a polarization. Polarizations have been studied widely in

their own right, without the intermediate notion of an almost cotangent struc-

ture (see [14, 15, 24, 25]). This paper extends some previous results which

measure to what extent integrable almost tangent and cotangent manifolds can

actually deviate from tangent and cotangent bundles, respectively.

An outline of the paper is as follows. In §2 we study almost tangent and

cotangent manifolds together, in terms of the theory of C7-structures. Indeed

we show (Lemma 2.1) that a manifold admits an almost tangent structure iff

it admits an almost cotangent structure. We then consider some related G-

structures and show that several familiar manifolds cannot carry almost tangent

or cotangent structures.

§3 is concerned with integrable almost tangent structures. We review briefly

a structure theorem (Theorem 3.3) and consider some extensions (Corollaries

3.4, 3.5 and Theorem 3.6). §3 concludes with an alternative characterization of

the tangent bundle as an almost tangent structure in terms of the Liouville or

dilation vector field.
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§4 consists of a parallel discussion for integrable almost cotangent structures.

We also give two examples which illustrate the scope of the theorems and show

finally that in dimensions 2 and 4 the universal cover of the total space of

a regular almost cotangent manifold is covered by a cotangent bundle. With

regard to notation, all manifolds are assumed to be paracompact and smooth,

that is, of class C°° . Finally, we denote the interior product of a p-form a by

a vector field X by i(X)a .

2. Almost tangent and almost cotangent structures

as (/-structures

A smooth 2m-dimensional manifold N is said to carry an almost tangent

structure if it has a type (1,1) tensor field S with the property that at each

point of u in N, the kernel of Su (regarded as defining an endomorphism of

the tangent space TUN) coincides with its image. On the other hand, N is said

to carry an almost cotangent structure if it has a 2-form co of maximal rank (an

almost symplectic structure) and a Lagrangian distribution 5? ; that is to say, Jz?

is w-dimensional and to vanishes when evaluated on a pair of vectors tangent

to £?. As one would suspect from the name, the preeminent examples of almost

tangent and cotangent structures are the tangent and cotangent bundles TM

and T*M, respectively, of a smooth manifold M. These structures on TM

and T* M satisfy in addition certain integrability conditions, and we study such

integrable almost tangent and cotangent structures in §§3 and 4, respectively.

The almost tangent and almost cotangent structures on N both determine

and are determined by (/-structures, that is to say, a reduction of the frame

bundle F(N) to a principal subbundle BQ with structure group G a closed

subgroup of GL(2m, R). (This is discussed in detail in [3, 5, 8, 23].) In

the case of an almost tangent structure, G consists of matrices of the form

ii a] ' w*tn A £ GL(m, R) and B an arbitrary m x m matrix, as we briefly

explain next. At each point u in N, an almost tangent structure S determines

an m-dimensional subspace of Tu N, namely, kerSu. Choose a complement

in TuN to kerSu and a basis (et) for it. Then (e¡,S(e¡)) is a basis for

TUN, that is, a frame adapted to the almost tangent structure. One may easily

verify that if (e\, S(e'j)) is another such frame, the two frames are related by

a matrix of the form [^ °] . Conversely, given a reduction of F(N) to the

group G, then as G is the invariance group of the matrix S = [ 7° ° ] (where

Im is the mxm identity matrix), S may be defined as the type (1,1) tensor

which has at any point the matrix representation S with respect to one of

the frames determined by the G-structure and hence by the definition of G,

with respect to any. Similarly, the existence of an almost cotangent structure

on N is equivalent to the reduction of F(N) to a principal (7-bundle, where

G is the group of matrices of the form  [g {A-<y]  with A £ GL(m, R) and

(A'B)' = A'B. (See [6, 23].)
We recall the following standard facts about (7-structures (see [19, 22]).
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Lemma 2.1. (i) An n-manifold N is orientable iff the structure group of F (N)

is reducible to a subgroup of GL+(n, R) (matrices with positive determinant).

(ii) If the structure group of F(N) is reducible to H, where H is a closed

subgroup of GL(n , R), and G is a closed subgroup of GL(n, R), containing

H, then the H-structure on N corresponding to 77 is uniquely extendible to a

G-structure on N.   D

We see immediately from Lemma 2.1(i) that almost tangent and cotangent

manifolds are orientable; for the determinants of matrices of the form [gQA]

and [ß(j4-')<] are respectively (del A) and 1 and in particular are both posi-

tive. Using part (ii) of Lemma 2.1 we also obtain the following result.

Theorem 2.2. A 2m-manifold N admits an almost tangent structure iff it admits

an almost cotangent structure.

Proof. Suppose N has an almost tangent structure with corresponding (1,1)

tensor S. If we choose a Riemannian metric on N, we may consider at each

point u of N the unique orthogonal complement to kerS. This results in

a reduction of the structure group to a subgroup H of SO(2m) of the form

[j"]. Evidently A £ O(m) and H is isomorphic to O(m) x O(m).

Similarly, starting from an almost cotangent structure by choosing a Rieman-

nian metric we can reduce the structure group to a matrix subgroup of SO(2m)

of the form [^ ,A-\,t ] . It follows that A £ O(m), and thus this latter subgroup

coincides with H defined above.   D

We can make explicit the correspondence between the tensorial objects, im-

plied by Theorem 2.2, as follows. Given an almost tangent structure S and

a Riemannian metric g on N define the endomorphism field T as follows,

where (ker(S')) denotes the distribution consisting of vectors orthogonal to

the distribution ker(S) :

(2.1a) JX = SX       (X £(ker(S))±),

(2.1b) JX= ~(S~xX)n(kerSf       (X£ker(S)).

Then co defined by

(2.2) co(X,Y) = g(X,JY)-g(Y,JX)

is seen to be an almost symplectic 2-form with kerS as Lagrangian distribution.

Conversely, it is easy to see that starting from an almost symplectic 2-form co

with Lagrangian distribution J¿? we may define an almost tangent structure 5"

with kernel J?.

Notice that the endomorphism field J is an almost complex structure, that

is, J = -I (the identity tensor on N). Furthermore, N carries an almost

Hermitian structure h, which is to say a Riemannian metric such that for all

X, Y £TN,

(2.3) h(JX,JY) = h(X,Y).
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In fact, h may be defined by

(2.4) h(X,Y) = g(X,Y) + g(JX,JY).

The reduction of the frame bundle F(N) of the 2m-dimensional manifold

A to a [^ °]-bundle, with A £ O(m), is equivalent to TN splitting as a Whit-

ney sum of two isomorphic subbundles, a condition which is quite stringent.

For example, we can assert that no even-dimensional sphere S2m can support

an almost tangent structure (since TS2m admits no proper subbundles [2, 21])

nor can RP m (in fact we already know this because RP2m is nonorientable).

It is also natural to ask whether CPm can support an almost tangent structure.

This certainly cannot be the case for m odd, because since CPm is orientable,

the splitting of T£Pm as a Whitney sum of two oduf-dimensional subbundles

would entail the vanishing of the Euler class, which is false [2, p. 126; 21, p.

280]. On the other hand, suppose that m is even and that TCPm splits as a

Whitney sum £ © £ for some real rank m vector bundle £ over M. Let w¡

denote the ith Stiefel-Whitney cohomology class of <* . Then the total Stiefel-

Whitney class of £ ©¿; is easily seen to be 1 + wx + w2 h-h w2m . However, the

total Stiefel-Whitney class of TCPm is the mod 2 reduction of the total Chern

class. Now the latter is well known to be (1 +x)m+x, where x is the first Chern

class and of course xm+ but no smaller power of x is zero [2, 21]. Since m

is even, on equating the total Stiefel-Whitney classes of £ © Ç and TCPm , we

find that

(2.5) x = wx mod 2.

However, since CPm is simply connected, any vector bundle over it must be

orientable and hence wx(£) must be zero. This contradicts (2.5), and we reach

the conclusion that TCP™ cannot split as a Whitney sum Ç © £ .

3. Integrable almost tangent structures in the large

In this section we review some well-known global features of integrable almost

tangent structures and present several new results. It is convenient at this stage

to consider tangent and cotangent structures separately, and §4 is devoted to the

latter.

A (/-structure BG on a manifold N is said to he flat or integrable if, about

every point u of N, there exists a coordinate system (xl) such that the corre-

sponding moving frame (d/dxl) defines a local section of BG over N. In the

case of an almost tangent structure, it is known that integrability is equivalent

to the vanishing of the Nijennuis tensor of the associated tensor fields [3, 8,

11]. If the almost tangent structure S is integrable, then so is the distribution

ker(S) = im(S) (in the sense of Frobenius' theorem). We call an integrable

almost tangent structure (N, S) for which N is the total space of a smooth

fibre bundle with base M, submersion n: N -» M and whose fibres coincide

with the leaves of S, regular. We shall say that (N, n, M, S) is a regular

almost tangent manifold.
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We consider next some of the key geometric properties of the tangent bundle

TM and show in particular that it is a regular almost tangent manifold. First,

TM (as well as T*M), by virtue of being a vector bundle, possesses a canonical

vertical vector field A0 known as the Liouville field [12, 16, 18]. The group of

nonzero real numbers acts on the fibres of TM by way of scalar multiplication,

and A0 is just the infinitesimal generator corresponding to this action.

Next, let A' be a vector field on M. If 4>t is its local flow on M, then T((j>t)

is the local flow of a vector field Xe on TM, known as the complete lift of X.

There is also a construction known as the vertical lift of vector fields. We denote

the canonical submersion map from TM to M by n and suppose we are given

a point x £ M and an element X £ TXM. Then note that Tu(n~x(x)) (the

tangent space to the fibre at u £ TM) is canonically isomorphic with the vector

space n~x(x), which is just TXM. Thus to each X in TXM there corresponds

a unique vertical tangent vector denoted by Xv at u and called the vertical lift

of X. Repeating this construction at each point u in n~ (x) gives a vector

field Xo on iCx(x) and if X is a vector field on M, we obtain a vertical vector

field Xo on the whole of TM. (The various interpretations of the symbol Xv

causes little difficulty in practice.)

The vertical lift construction enables us to define easily the almost tangent

structure iS0 on TM. In fact, if u £ TM, then S0 at u, as an endomor-

phism of TUTM, is simply the composition of the linear map nt: TUTM -+

TxM(n(u) = x) with the vertical lift map from TXM to TuTM. It is not

difficult to see that a diffeomorphism T4> of TM induced from a diffeomor-

phism </> of M preserves S0, as does a diffeomorphism of TM which consists

of a translation in each fibre [8]. Conversely, a diffeomorphism of TM which

preserves S0 can be written uniquely as the composition of a diffeomorphism

T<p, for some diffeomorphism <p of M, followed by a diffeomorphism of TM

consisting of translations in each fibre.

Suppose now that (N, n, M, S) is a regular almost tangent manifold. Then

we may use S? to define a vertical lift construction. To be specific, if u £ N

with n(u) — x and X £ TXM, Xv is the unique element of TUN defined by

(3.1) XV = SU(X),

where X is an element of TUN which projects via n^ onto u ; since the kernel

of nt coincides with kerS, the choice of such X is immaterial. We collect

together several facts about vertical lifts which are proved in [8], X and Y

being arbitrary vector fields on M.

Lemma 3.1. (i) Vertical lifts are indeed vertical, that is, nitXv = 0. Moreover, the

vertical lift construction establishes, for each point u £ N such that n(u) = x,

an isomorphism between TXM and Tu(n~ (x)) (the tangent space to the fibre

at u);
(ii) [Xv,Yv] = 0;

(iii) LrS = 0;
(iv) On TM itself LxcS0 = 0.   O
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We shall also need the following elementary lemma from Riemannian geom-

etry.

Lemma 3.2. Let (M, g) be a Riemannian manifold and K be a Killing vector

field whose length is constant. Then K is a geodesic field.

Proof. Let V be the Levi-Civita connection of g . The fact that K is, respec-

tively, Killing and of constant length implies that

(3.2) g(VxK,Y) + g(X,VYK) = 0,

(3.3) g(VxK,K) = 0,

for arbitrary vector fields X and Y on M. Taking Y = K in (3.2) gives

(3.4) g(X,VKK) = 0,

and the result follows since X is arbitrary.   G

We now present a structure theorem for regular almost tangent manifolds.

This theorem is essentially the same as the main results in [3, 8] and hence we

are content simply to outline the proof.

Theorem 3.3. Let (N, n, M, S) be a regular almost tangent manifold. Then the

model fibre of the bundle is a generalized cylinder, that is, of the form Tp x Rm~p

(T being a p-torus with 0 < p < m). Suppose further that the fibres of n are

complete (as locally affine spaces) and simply connected. Then N is naturally

diffeomorphic to the affine tangent bundle of M ; that is, N is an affine bundle

modeled on the vector bundle TM.

(Sketch of proof.) By Lemma 3.1(i), a choice of positive definite scalar product

on TxM induces a Riemannian metric, denoted by gx , on n~ (x). Also, if

X ,Y £ TXM it is evident that gx(Xv, Yv) is constant on n~x(x) and, in

particular, that Xv has constant length on n~ (x). Furthermore, every such

Xv on n~x(x) is a Killing vector field of gx . For let Yv and Zv be two other

vertical lifts. Then

(3.5) Lr(gx(Yv , Zv)) = (Lrgx)(Yv , Zv)

by Lemma 3.1 (ii) and the fact that the Lie derivative operator L acts as a

derivation. However, gx(Yv , Zv) is constant as we explained above, and so

(3.6) Lrgx = 0;

that is, Xv is a Killing field of gx .

It follows now by Lemma 3.2 that each vertical lift Xv is geodesic for gx .

Thus a basis in TXM determines a complete parallelism on n~ (x), since

vertical lifts commute. The Riemannian manifold n~x(x) is therefore flat and,

if geodesically complete, diffeomorphic to a quotient space of Rm by a discrete
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subgroup acting properly discontinuously. Since we are assuming that iT (x)

is simply connected, however, n~ (x) must be diffeomorphic to Rm .

It is now not difficult to see that n~x(x) may be identified with TxM. In-

deed, as a consequence of what has been established so far, it follows that the

geodesic exponential map based at any point u in n~x(x) is a diffeomorphism.

Applying this correspondence on each fibre of n shows that N is an affine space

bundle modeled on TM.   G

Our immediate objective now is to obtain some generalizations of Theorem

3.3. Before we can do that, however, we must consider a class of regular almost

tangent manifolds whose almost tangent structures are derived from the cor-

responding structures on tangent manifolds TM. Suppose that M admits p

vector fields Xx, X2, ... , X , which are everywhere linearly independent over

the ring of smooth functions on M. By choosing a Riemannian metric g on

M, we may write TM as the Whitney sum £ © Ç± , where £ is the trivial rank

p subbundle of TM determined by the Xi 's and £ is its orthogonal com-

plement. For each x £ M, Xx(x), X2(x), ... , X(x) can be used to generate

a /^-dimensional lattice in TxM and hence there is a discrete subgroup F of

GL(m, R) isomorphic to if which acts fibrewise on TM by translation. We

denote the resulting quotient space TM/F and it is clear that TM is a cov-

ering space of TM/F. Furthermore, since the group F consists of fibrewise

translations, S0 passes to the quotient to define an almost tangent structure S

on TM/F. Indeed TM/F has the structure of a fibre bundle over M with

model fibre diffeomorphic to the generalized cylinder Tp x Rm~p and TM/F

with S satisfies all the requisite properties of a regular almost tangent structure.

By reexamining the proof of Theorem 3.3, we can derive the following corol-

laries.

Corollary 3.4. Let (N, it, M, S) be a regular almost tangent structure with

model fibre Tp x Rm~p. Suppose further that N admits a smooth section s over

M. Then TM is a covering space of N. Indeed (N, n, M, S) is equivalent

as an almost tangent manifold to TM/F, where F is a group isomorphic to Z

in the manner described above,   a

Corollary 3.5. Let (N, n, M, S) be a regular almost tangent structure.

(i) If the model fibre is compact and a smooth section of N over M exists,

then M is parallelizable.

(ii) // N is compact and a smooth section of N over M exists, then M is

parallelizable.

Proof. Part (ii) is a special case of (i), since if N is compact, each fibre, being a

closed subset of N, is also compact. To prove part (i) we note that by Corollary

3.4 the fibre must be Tm and F must be Z" . But then by definition, TM/F

is constructed by quotienting in each fibre of TM by a lattice determined by

m linearly independent vector fields on M.   a
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Suppose again that (N, n, M, S) is a regular almost tangent structure but

that we do not assume the existence of a section of N over M. Consider

the universal cover M of M and the corresponding covering map x: M —*

M. Then it is not difficult to see that the induced bundle x~ (N), which is

a covering space of A, is a regular almost tangent manifold with base M.

Again, we may consider the covering space Ñ of x~x(N) and it is easy to see

that N is the total space of a regular almost tangent manifold with base M

and we denote the corresponding 1-1 tensor by S and bundle submersion by ñ .

Moreover, the model fibre of x~ (N) over M is diffeomorphic with the model

fibre of N over M, and the model fibre of N over M must be a covering

space of the model fibre of x~ (N) over M. These remarks show that, at least

in a preliminary classification of regular almost tangent manifolds, one may as

well assume that the total space and base space are simply connected; the others

are obtained from these as quotients.

We now turn to the regular almost tangent manifold (N, n, M, S) and

denote the model fibre by F and consider the fibre homotopy sequence (see,

for example, [2])

(3.7) • • • nk(F) - nk(N) -+ nk(M) -, nk_x(F) - n • • • n0(N) - n0(M).

Now since F is of the form Tp x Rm~p , (3.7) implies that nk(N) is isomor-

phic to nk(M) for k > 3 and also, if nx(N) = 0, that nx(F) is isomorphic

to 7t2(M)/n2(N). By applying Theorem 3.3 to (N, n, M, S), we obtain the

following theorem.

Theorem 3.6. Let (N ,n, M, S) be a regular integrable almost tangent structure

with fibre F. Then nk(N) and nk(M) are isomorphic for k>3 and n2(N) is

a subgroup of n2(M). Moreover, if nx(N) is trivial, nx(F) is isomorphic with

n2(M)/n2(N). In that case, if either n2(M) is trivial or n2(N) and n2(M) are

isomorphic, then (N, n, M, S) is equivalent as an almost tangent manifold to

TM.   G

We shall give an alternative characterization of the almost tangent structure

on TM in terms of the Liouville field A0 introduced towards the beginning of

this section. This result strengthens a result of Brickell and Clark [3, Theorem

3]. We shall need two lemmas and the following identity relating S0 and A0 :

(3.8) Vo = -V
Lemma 3.7. Let (N, n, M, S) be a regular almost tangent structure. Suppose

that A is a vector field on N such that LAS = -S. Then there exists a vertical

vector field A on N which satisfies L^S — -S.

Proof. Choose a good cover [2] {[/J of M and a partition of unity {/lQ} sub-

ordinate to {Ua} . Then since {Ua} is a good cover, each Ua is diffeomorphic

to Rm and hence n~x(Ua) admits a smooth section over Ua. Now n~ (Ua)

is a regular almost tangent structure and so by Corollary 3.4, TUa is a covering

space of iT (Ua).
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Now consider the vector field A on A and let V be an arbitrary vertical

field on N so that

(3.9) SV = 0.

Differentiating (3.9) along A and using the fact that LAS = -S gives

(3.10) S[A,V] = 0.

Thus [A, V] is vertical and since V was an arbitrary vertical field, A must be

projectable to, say, X on M.

Let Xa denote the complete lift of Xa to TUa and let the projection from

TUa to n~x(Ua) be denoted by p. Then nt(ptXa-A) = 0 and so, in particu-

lar, Xa is />projectable to n~x(Ua). Now since Xa is a complete lift on TUa ,

the Lie derivative along ptXca of S is zero and moreover ptX^ is n-related

to X. Thus setting AQ = A - piXa gives

LAas = las - Lp.xiS

= -S-0

= -S.

Thus Aa is the required vertical vector field on Ua . To obtain such a vector

field defined on all of M, define A to be J2a XaAa , where {AQ} is the partition

of unity subordinate to {Ua} . Then the following identity holds:

(3.11) LAS = J2(K\S - \ ® S W + S(Aa) ® dka).
a

From (3.11) we easily conclude that L^S = -S because S(dXa) — 0 and

S(Aa) = 0, since dka are basic 1-forms on N and AQ are vertical, respec-

tively.   G

Lemma 3.8. Let (M, g) be a complete Riemannian manifold. Suppose that

(M, g) possesses a homothetic vector field (or indeed simply a finite homothetic

motion). Then (M, g) is isometric to Euclidean space with its standard inner

product.   G

For the proof of Lemma 3.8 we refer to [1, 20].

Theorem 3.9. The regular almost tangent structure (N, n, M, S) is equivalent

to the almost tangent structure on TM iff there exists a vector field A on N

such that LAS = -S.

Proof. The necessity is clear from (3.8). Suppose conversely that A on A

satisfies LAS = -S. Then by Lemma 3.7, without loss of generality, A may be

assumed to be vertical. Now take any point x £ M, a positive definite scalar

product on TXM, and denote the resulting Riemannian metric on n~x(x) by

gx (compare the proof of Theorem 3.3).

Next, starting from the definition SX = Xo, Lie-differentiating along A and

using the fact that LAS - -S, gives

(3.12) [A,XV] = -XV +S[A,X].
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But X is projectable and so [A, X] is vertical; so (3.12) reduces to

(3.13) [A,XV] = -XV.

Finally, consider the Lie derivative of gx(Xv, Yv) along A on the fibre

7t-1(.x). We obtain

(3.14) A{gx(X\Yv)) = 0,

(3.15) ^(LAgx)(Xv,Yv) + gx([A,Xv],Yv) + gx(Xv,[A,Yv]) = 0.

Now from (3.13) we obtain

(3.16) (LAgx)(Xv,Yv) = 2gx(X\Yv),

or since X, Y are arbitrary in Tx M,

(3.17) LAgx = 2gx.

Equation (3.17) says that A acts as a homothetic vector field on the complete

Riemannian manifold (n~x(x), gx). The theorem now follows from Lemma

3.8 and Theorem 3.3.   G

We conclude this section by noting that Theorem 3.9 answers a question sug-

gested by a recent paper of Crampin and Ibort [9]. They point out that any reg-

ular almost tangent structure has associated to it a natural cohomology defined

on the space of vector-valued forms which preserve the subspace of basic forms

and are "of type it " (see [9]). The almost tangent structure S itself defines

a cohomology class, which in the case of the tangent bundle is the zero class.

Theorem 3.9 in effect provides the converse of this result; namely, if a regular

almost tangent structure (N, n, M, S) is such that S defines a trivial ele-

ment in cohomology, then (N, it, M, S) is equivalent to (TM, n0, M, S0).

The condition for S to define a trivial cohomology class is precisely that there

should exist vector field A such that LAS = -S.

4. Integrable almost cotangent structures in the large

We proceed by considering the global properties of almost cotangent struc-

tures. We emphasized in §2 the similarity of almost tangent and almost cotan-

gent structures and the results of this section run as parallel as is possible to

those of §3. However, that very similarity will enable us to be much briefer in

this section.

Given an almost cotangent structure (co, J?) on a 2m-manifold A, it is well

known that the associated (7-structure on N is integrable iff co is integrable in

the sense that dco is zero and S? is an involutive distribution [6, 13]. In that

case we shall say that (co, Jïf) is regular if N is the total space of a smooth fibre

bundle with base M, submersion n : N —> M, whose fibres coincide with the

leaves of S?. We shall say that (N, FA, M, co) is a regular almost cotangent

manifold. We emphasize that the weaker notion of a symplectic manifold with
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a foliation whose leaves are Lagrangian submanifolds, is known in the literature

as a polarization [14, 24].

Again the preeminent example of a regular almost cotangent manifold is the

cotangent bundle T* M of a smooth manifold M. We briefly review some of

the geometry of T* M. We already noted in §3 that T*M has a Liouville field

A0, by virtue of being a vector bundle. We denote the canonical submersion

from T* M to M by n. The canonical 1-form 60 on T* M is characterized

by the condition that for all X £ TpT*M,

(4.1) {X,d0)p = {Ti,X,p)x

where x £ M, p £ T*M. The canonical 2-form co0 is simply d00. Now

suppose that x £ M and that a £ T*M. Then for p £ Fl~x(x) there is a

unique element a   of T T* M which satisfies

(4.2) i(av)co0 = n*a,

where FT: T*M -* T*T*M. We call a   the vertical lift of a, and we also
X p

obtain a vector field a on n~ (x) and a vector field a on T* M if a isa 1-

form on M. It follows easily from the fact that the fibres of n are Lagrangian

submanifolds of w0 that a (in any of its interpretations) is indeed vertical

and that the Lie bracket of two such vertical lift fields is zero.

Next, suppose that (N,Fl, M, co) is a regular almost cotangent structure.

Then there is also a well defined vertical lift construction whereby a covector

(or 1-form) on M, induces a vertical vector (or vector field) a" , the vertical

lift of a, on N by the condition

(4.3) i(a)co = Fl*a.

Again, the Lie bracket [a , ßv] of two such vertical lift fields is zero, just as in

the case of a cotangent bundle. (For further details on the vertical lift see [15,

23].)
The following theorem is the cotangent analogue of Theorem 3.3. (For more

details see [15, 23, 25].)

Theorem 4.1. Let (N ,F1, M, co) be a regular integrable almost cotangent struc-

ture. Then the model fibre of the bundle is a generalized cylinder, that is, of

the form Tp x Rm~p (0 < p < m). Suppose further that the fibres of Fl are

complete (as locally affine spaces) and simply connected. Then N is naturally

diffeomorphic to the affine cotangent bundle of M. Furthermore, there exists a

symplectic diffeomorphism <P: A —> T*M such that co - $>*co0 + Fl*<p, where

<j) is closed and the class [tp] in H (M, R) characterizes (N, Fl, M, co) up to

equivalence. In particular, (N ,Fl, M, co) is equivalent to (T*M ,Fl0, M, co0)

iff[<f>] = 0.   U

We wish next to consider the almost cotangent analogue of the quotient al-

most tangent structures TM/F presented in §3. We begin by reminding the
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reader first, however, of the well-known results which states that a diffeomor-

phism of T* M consisting of translation in the fibres of n by a closed 1-form

a on M, that is, the map p i-> p + a, is a symplectomorphism, though it of

course does not preserve 9Q.

Suppose next that M admits p closed 1-forms which are everywhere linearly

independent (over the ring of smooth functions on M). Then as in the case

of the almost tangent structure on TM, there exists a discrete subgroup F of

GL(m,R) isomorphic to if which acts fibrewise by translation on T* M. The

symplectic form co0 passes to the resulting quotient space T*M/F, since co0

is invariant under translation by a closed 1-form on M and endows T* M/F

with the structure of a regular almost cotangent structure.

The following results are the cotangent versions of Corollaries 3.4 and 3.5,

and of Theorem 3.6, respectively.

Corollary 4.2. Let (N,Fl, M, co) be a regular almost cotangent structure with

model fibre Tp x Rm~p . Suppose further that N admits a global section s of N

over M. Then N is diffeomorphic with T*M/F, where F is a group isomorphic

to if arising from a collection of p linearly independent closed 1-forms on M

in the manner described above. Moreover, under such an isomorphism co is

carried to co0 + (f>, where co0 is the 2-form on T*M/F induced from co0 on

T*M and <p is the pullback from M of a closed 2-form to T*M/F.   G

Corollary 4.3. Let (N ,Fl, M, co) be a regular almost cotangent structure.

(i) If the model fibre is compact and a smooth section of N over M exists,

then M is parallelizable.

(ii) If N is compact and a smooth section of N over M exists, then M is

parallelizable.   G

Theorem 4.4. Let (N ,Fl, M, co) be a regular integrable almost cotangent struc-

ture with fibre F. Then nk(N) and nk(M) are isomorphic for k > 3, and

n2(N) is a subgroup of it2(M). Moreover, if nx(N) is trivial, nx(F) is isomor-

phic with nx(M)/n2(N). In that case, if either n2(M) is trivial or n2(N) and

n2(M) are isomorphic, then (N, Fl, M, co) is equivalent as an almost cotan-

gent manifold to T*M and under such an equivalence </>: N —► T*M, (<p~ )*co

differs from the canonical 2-form on T* M by the pullback of a closed 2-form on

M.    G

Having noted that there are cotangent analogues of Theorem 3.3 and 3.6,

it is natural to ask whether there is also an analogue of Theorem 3.9. Before

discussing this, we prove the following theorem and consider two examples.

Theorem 4.5. Suppose that (N, Fl, M, co) is a regular almost cotangent struc-

ture. Then (N, Fl, M, co) is equivalent to the almost cotangent structure on

T*M iff co is exact, co = dd, say, with 6 semibasic.

Proof. The necessity is obvious, so we consider the sufficiency aspect of the
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theorem. Consider then the unique vector field A which satisfies

(4.4) /(A) dO = e.

Then if a is any 1-form on M we have,

(A, Fl*a) = d9(a , A) = -d9(A, a) =-(a , 6) = 0,

the last equality following from the fact that 9 is semibasic.   Thus A is a

vertical vector field.

Next, choose a Riemannian metric ^ on ¥. Then in the obvious way,

g engenders a Riemannian metric gx on the fibre FTx(x). Furthermore, the

inner product gx(a , ßv) is constant on Fl~x(x). Also, starting from (4.3) and

computing the Lie derivative of each side along A, we obtain for each 1-form

a on M

(4.5) [a" , A] = a  .

Finally, by computing the Lie derivative of the constant gx(a , ßv) on the

fibre along A, we obtain

(4-6) LAgx = 2gx,

and the result follows just as Theorem 3.3 did from (3.10).   G

We note that in Theorem 4.4 the implicit hypothesis of completeness in the

fibres of II is essential. Take, for example, A to be T*Rm with its zero section

deleted, M to be Rm , and Fl and co to be the restriction of, respectively, the

cotangent map from T*Rm to Rm and the canonical 2-form on T*Rm . Then

(N, Fl, M, co) satisfies all the hypotheses of Theorem 4.4 except for the affine

completeness of the fibres of Fl, but it is clearly not equivalent to the almost

cotangent structure on a cotangent bundle.

A more significant example of an exact almost symplectic manifold not dif-

feomorphic to a cotangent bundle is obtained as follows. Consider CPX to

consist of the set of complex lines through the origin in C2 and denote the

natural map from C2/{0} to CPX by n. Let (z, w) = (x + iy, u + iv) be

standard coordinates on C so that the almost complex structure J on C ,

realized as a 1-1 tensor field, is

i a *\ 9       ,        d       ,       d       ,        d       ,
(4.7) J = — ®dx- -^- ®dy + — ®dv- — ®du.

dy dx du dv

Next consider the 1-form 9 given by

(4.8) 9 = xdu-ydv

and its derivative co given by

(4.9) co = dx A du- dy /\dv .
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It is easy to check that co restricted to any complex line in a tangent space of

C /{0} is zero. Hence, since the fibres of Fl are, by definition, complex lines,

co vanishes on fibres of n ; in other words, co is Lagrangian with respect to the

fibres of n.
2 1

We have shown above that (C /{0},Fl,CP , co) is an exact integrable al-

most cotangent structure. Clearly the fibres of n, though locally affine, are

not affine-complete. Furthermore, co does not extend to a Lagrangian 2-form
2 1

on the fibrewise-completion of (C /{O}, n, CP , co). For on the one hand,

the fibres of the completed bundle would be diffeomorphic to R2 and so the

completion would, by Theorem 4.1, be T*CP . And on the other hand, the

completion would by construction be the canonical complex line bundle y\ over

CP1, which is known to be inequivalent as a (vector) bundle to T*CPX.

Prior to Theorem 4.5, we asked if there were some cotangent analogue of

Theorem 3.3. Theorem 4.5 is to some extent such an analogue. The analogy

would, however, be even closer if one did not have to make the assumption that

the 1-form 9 is semibasic. Unfortunately, it seems to be necessary to make

this assumption at least in the proof given here. (One could try, for example,

to argue that 9 could always be modified so as to be semibasic; however, it

is not hard to show that the obstruction to making such a modification lies in

77 (M, Z). If the latter group were to vanish, then of course Theorem 4.4 would

be applicable. In the case where nx(M) were trivial, using also the Hurewicz

and universal coefficient theorems, we could conclude that n2(M) was also

trivial and so N would be covered by a cotangent bundle).

Theorems 4.1, 4.4, and 4.5 suggest the following question: do there exist

regular almost cotangent manifolds (N, n, M, co) such that, to use notation

similar to that used prior to Theorem 3.6, N is not covered by T*M ? Without

being able to answer this question in full generality, we shall show that if there

exists such an example then m > 3. First, we can exclude the case m = 1,

for the only possibilities for A are R2, which is T*R, and S , which is

ruled out by the remarks made at the end of §2. Second, for m — 2 we must

have M diffeomorphic to R or S2. In the first case n2(M) is trivial and

we can apply Theorem 4.4. On the other hand, if M is diffeomorphic to S

we have a further three cases to consider, namely, according as the fibre F
2 1 1

of n is diffeomorphic to R , T or R x S . In the first case, A must be

diffeomorphic to T*S by Theorem 4.1 (A admits a section over M since

R2 is contractible). Moreover, F cannot be diffeomorphic to T2, because

we know that nx(F) = n2(M)/n2(N), which is inconsistent with the fact that

7t,(r2) = ZxZ and n2(S2) = Z.

There remains the possibility that F is diffeomorphic to R x Sx. In that

case, for x £ S, Fl~ (x) is a one-dimensional lattice in T*S . The elements

in TXS2 annihilated by each element in this lattice form a one-dimensional

subspace and taking the union over each x £ S gives a rank one subbundle of

TS2, a condition which is well known to be impossible [2, 21].
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