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THE CONSTRUCTION OF ANALYTIC DIFFEOMORPHISMS
FOR EXACT ROBOT NAVIGATION

ON STAR WORLDS

ELON RIMON AND DANIEL E. KODITSCHEK

Abstract. A Euclidean Sphere World is a compact connected submanifold of

Euclidean «-space whose boundary is the disjoint union of a finite number of

(n - 1 ) dimensional Euclidean spheres. A Star World is a homeomorph of a Eu-

clidean Sphere World, each of whose boundary components forms the boundary

of a star shaped set. We construct a family of analytic diffeomorphisms from

any analytic Star World to an appropriate Euclidean Sphere World "model."

Since our construction is expressed in closed form using elementary algebraic

operations, the family is effectively computable. The need for such a family

of diffeomorphisms arises in the setting of robot navigation and control. We

conclude by mentioning a topological classification problem whose resolution is

critical to the eventual practicability of these results.

1. Introduction

Consider the following problem in robotics. A kinematic chain—a sequence

of mutually constrained actuated rigid bodies—is allowed to move in a cluttered

workplace. Contained within the joint space—an analytic manifold which forms

the configuration space of the kinematic chain—is the free space, y—the set of

all configurations which do not involve intersection with any of the "obstacles"

cluttering the workspace. Given a "destination point" in the interior of y to

which it is desired to move the robot, and an arbitrary initial point, find a curve

in y joining the initial point with the desired destination.

Supposing that ¿>y is a C manifold, the negative gradient vector field of

a scalar valued function which is transverse (exterior directed) on the boundary

of the free space, and which has a single minimum at the destination point

gives rise to a flow which moves almost all initial conditions toward that de-

sired point. Thus, a suitably chosen scalar valued "cost" function solves the

geometric problem of finding paths to the destination in free space. Moreover,

interpreting the cost function as an artificial potential energy, it can be shown

that a gradient vector field on y "lifts naturally" to a Lagrangian vector field
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on the phase space of y, THF, describing the robot's Newtonian dynamics

when subjected to a suitable feedback compensating control law [10]. Under

certain additional regularity conditions, the Lagrangian system "inherits" the

limit properties of the gradient system, and a portion of TSF, including the

zero section, is positive invariant with respect to the lifted flow [9]. Thus, a

further constrained cost function solves the robot navigation problem and the

attendant control problems simultaneously.

The purely geometric problem of constructing a curve between two points in

a space obstructed by sets with arbitrary polynomial boundary (given perfect

information) has already been completely solved by Schwartz and Sharir [20].

Canny [3] has recently offered a much more efficient algorithm for this class of

problems as well. The motivation for the present direction of inquiry (beyond

its apparent academic interest) is the desire to incorporate explicitly aspects

of the control problem—the construction of feedback compensators for a well

characterized class of dynamical systems in the presence of well characterized

constraints—in the planning phase of robot navigation problems. That is, the

geometrical "find path" problem is generalized to the search for a family of

paths in Sf (the one-parameter group of the gradient flow), which provides a

feedback control law for the physical robot as well. The idea of using scalar

valued functions for the specification of robot tasks with a view of the control

problems in mind was pioneered by Khatib [8] in the context of obstacle avoid-

ance. Fundamental work of Hogan [5] in the context of force control further

advanced the interest in this approach. The methodology has been developed

independently by Arimoto in Japan [1], and by Soviet investigators as well [18].

To the best of our knowledge, no attempt at exact global navigation using scalar

valued functions has been offered heretofore.

Can it be guaranteed that such "navigation functions" exist? If they exist,

can one find a computationally effective procedure for constructing them? The

answer to the first question is an unequivocal "yes." In a recent paper [12], we

have proposed a formal definition of a navigation function, and, using Smale's

"nice" functions [22], we have shown that smooth navigation functions exist on

any smooth manifold with boundary. Moreover, we have noted that the navi-

gation properties are invariant under Öq) diffeomorphisms for q > 1 : that is

to say, a navigation function on a given space induces a navigation function on

every other space in its diffeomorphism equivalence class via composition (pull

back). Finally, we have constructed a family of navigation functions on Eu-

clidean sphere worlds: these are compact connected submanifolds of Euclidean

zz-sapce whose boundary is formed by the disjoint union of a finite number of

Euclidean (n - l)-spheres.

The answer to the second question obviously depends upon the nature of

freespace, y, and the desired model of computation. In their pioneering solu-

tion to the geometric navigation problem, Schwartz and Sharir [20] have argued

persuasively that the class of real algebraic functions on real semialgebraic vari-
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eties adequately models freespace and provides a practicable notion of "effective

computation." We will adopt this point of view and insist that our constructions

remain within the class of real algebraic functions: that is to say, the level set of

a navigation function must be real semialgebraic. But since our application—

the specification of a control law for a mechanical system—depends upon the

gradient, we will further demand that navigation functions be smooth as well.

Now the standard appeal to functions "patched" together through a smooth par-

tition of unity will not avail: for this would involve transcendental expressions

that depart form the desired model of computation via a finite number of ele-

mentary operations. We are confronted instead with the harder task of building

analytic algebraic functions.

This paper presents a particular mathematical construction that we feel offers

strong hope for the success of the general program. We consider the navigation

problem on a specific subclass of analytic sphere worlds—the star worlds—each

of whose members is a compact connected subset of En obtained by remov-

ing from a compact star shaped set with analytic boundary a finite number of

smaller disjoint open star shaped sets with analytic boundaries. Our previous

Euclidean sphere world construction [12] yields an analytic algebraic navigation

function—a scalar valued map formed by quotients of polynomials and a Ath

root—whose complexity grows with the square of both the dimension of the

embedding space, n, and the number of "obstacles," M. According to the

results reported in that paper, the Star World navigation problem is immedi-

ately solved by the construction of an effectively computable diffeomorphism

to a suitable Euclidean sphere world "model." Here, we present such a class

of diffeomorphisms formed by the composition of a one-parameter family of

analytic algebraic functions—rational functions and a square root—with "user

supplied" boundary functions whose zero level sets describe the boundary com-

ponents. The parameter is explicitly computed in closed form from geometric

information about the relative locations of the star shaped sets. Thus, the com-

plete construction is analytic and algebraic as long as the boundary functions

are, themselves, analytic and algebraic.

This advances our program of research toward the goal of developing "geo-

metric expressiveness" rich enough for navigation amidst real world obstacles.

It is manifestly clear, however, that arbitrarily shaped and jointed robots op-

erating amidst real world clutter will give rise to free spaces which are neither

smooth nor deformed sphere worlds. A paper presently in preparation concerns

the extension of these results to spaces in the topological equivalence class of the

sphere worlds whose obstacles are comprised of finite unions of star shaped sets.

We suspect that this class forms a dense subset of the topologically deformed

sphere worlds. The more challenging question, by far, to the eventual practica-

bility of our approach, is the general determination of a topological model for

free space given a topological classification of the cluttered environment and a

complete characterization of the robot.
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The paper is organized as follows. This introductory section continues with a

formal statement of the problem at hand, and a specification of the assumptions

concerning the available information. In the next section, we define the class of

star worlds, and present an explicit one-parameter family of analytic functions

defined on an arbitrary star world. In §3 we prove Theorem 1 : for any star world,

a lower bound on the parameter is specified in terms of the boundary locations,

guaranteeing that each member of this family, whose parameter value complies

with this bound, is an analytic diffeomorphism onto a suitably constructed sphere

world. Finally, in the concluding section we sketch our understanding of the

general problem and pose a number of mathematical questions whose answer

would greatly advance the field of robotics. Appendix A discusses the computa-

tional complexity of the present procedure, and details of some proofs are given

in Appendix B.

1.1 Problem statement. We start by defining the workspace and the obstacles.

Definition 1. Let ß-, j e {0, ... , M}, be real valued analytic functions on

E" , for which zero is a regular value.

The robot workspace, W, is a connected and compact «-dimensional sub-

manifold of En satisfying

W-c{qeE":ß0(q)>0}   and   dW c {q e En:ßQ(q) = 0}.

An obstacle, cf-, is the interior of a connected and compact «-dimensional
_ o

submanifold of E" such that cf . c W , and

W-£fJc{qeE":ßj(q)>0}   and   dcfjc{qeEn:ßj(q) = Q},

je{l,...,M},

satisfying

(1) &ir\0j = 0,       l<i<j<M.

The free space is
M

F tw -\Jcfj.
;=i

It will prove convenient to refer to the complement of W in En as the zeroth

obstacle. Using the terminology of Thorpe [23], the free space, y (resulting

from the removal of the obstacles from the workspace), is an analytic «-surface

with boundary in E" . In particular, the boundary of the ;'th obstacle, dcfj, is

an (« - l)-dimensional analytic manifold, according to the Implicit Function

Theorem.

Definition 2. In the special case in which the obstacles are (« - l)-spheres in

F\

wo=< qeE : p0-\\q-q0\\   <0
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and

Cfj = \qe E": \\q - q.tf - p) < 0 1 ,        j=l,...,M,

the resulting free space,

JT â{q £E":ß0(q)>0,..., ßM(q)>0},

is an «-dimensional Euclidean sphere world with M obstacles.

The restriction in Definition 1 to analytic submanifolds keeps our ultimate

construction in this paper within the category of analytic functions on analytic

manifolds. Unfortunately, even in the simplest cases—for instance, a disk robot

moving amidst disk obstacles—the resulting forbidden regions possess bound-

aries which are not even smooth. We are adapting the results reported here to

such situations where y is a topological, but not even a differentiable (C ')

sphere world in a paper presently under preparation.

Given a pair (S? ,J()n M of connected and compact «-dimensional analytic

manifolds with M + 1 boundary components, both considered as subsets of

E" , where J( is an «-dimensional sphere world with M obstacles and Sf is

a general «-dimensional free space with M obstacles, let Jt and Sf denote

some open neighborhoods about Jf and y, respectively, in F" . We seek a

transformation « from y c E" into /c£" satisfying,

1. «|y is an analytic diffeomorphism from Sf onto J? ;

2. in each space there is a distinguished interior point—the destination
o 0

point— qd e y and pd e J£, such that h(qj) — Pd-

The motivation for this problem is most simply provided by reference to our

earlier paper [12].   First, some terminology.   Given a map  qr.Jf —► [0, 1],

adapting the terminology of M. Morse [17], we say that <p is polar if it has a

unique minimum on Jf. Adapting the terminology of M. Hirsch [4], we say

that <p is admissible if it attains its maximal value (uniformly) exactly on all
-i °        -i

the boundary components—in our case, dJ£ - (p    ( 1 ) and J? = <p    [0,1).

Definition 3 [12, Definition 1]. Let Jf c F" be a compact connected «-

dimensional analytic manifold with boundary. A map (p:JS —► [0, 1], is a

navigation function if it is

1. Analytic on JÍ ;
o

2. polar on ^# , with minimum at pdeJS;

3. Morse on J? ;

4. admissible on J(.

It is shown in [9, 11] that control laws resulting from navigation functions

define closed loop robotic systems whose trajectories approach the destination

without intersecting obstacles, starting in an open dense set of initial states. In
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general, this is the "strongest" convergence behavior that the topology of the

underlying free space allows, as we have shown in [12]. Moreover, we have

shown as well that smooth navigation functions exist on any smooth manifold

with boundary—hence it makes sense to attempt analytic constructions in spe-

cific cases. In particular, we have shown how to do so on any sphere world.

Finally, navigation functions can be "pulled back" via diffeomorphisms, as is

made precise in the following proposition.

Proposition 1.1 [12, Proposition 2.6]. Let (p:J? -> [0, 1] be a navigation func-

tion on Jf, and let h:Sf -> J£ be analytic. If h is an analytic diffeomorphism,

then
.  A ,0 — (p o «,

is a navigation function on y.

Thus, since we already know how to construct navigation functions on any

sphere world, if a suitable sphere world model, Jf, and an analytic diffeomor-

phism, « , can be found, we obtain a navigation function on y as well.

1.2 The available information. We assume perfect information. That is, for a

given star world (Definition 5 below), y, all the "obstacle functions," ß ,

j e {0, ... , M}, as well as the obstacle center points, q-, j e {0, ... , M} ,

axe known.

Let y(e) denote an " e-neighborhood"—a thickened neighborhood in y

about the jth obstacle, ¿f.—defined by

(2) ^(e) = {<?£ y 0 </?.(<?)<£},       je{0,...,M},

where e is a positive constant.

For each obstacle, we assume the knowledge of an upper bound, F , on the

image of the obstacle function, ß., and an upper bound, Ed , on the distance

from the destination point, yd , which guarantees that

(3) y/(F,.)ny.(F.) = 0   and   yjx[0, EJn^Ej = 0,

i,je{0,...,M}, i^j.

That is, the "F -thickened" boundary components still do not intersect, nor

do they overlap the destination. In consequence of the assumption that the

obstacles are nonintersecting, such {EJ)q   and Ed exist.

Further, we will unhesitatingly make use of upper and lower bounds attained

by various continuous functions on various compact sets without ever comput-

ing them explicitly. Finally, we define the notion of a "strictly star shaped obsta-

cle" (Definition 5), and require the knowledge of a lower bound on the defining

inequality (for example, y¡(e) in Lemma 3.6, equation (19)) for each obstacle.

In general, the extraction of these geometrical features from the knowledge of

the obstacle functions, /?., j e {0, ... , M}, may prove to be computation-

ally intensive. However, in [19] we presented a family of star shaped obstacle
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functions—homogeneous polynomials—for which explicit formulas for the var-

ious bounds were given.

The model sphere world, Jf, is explicitly constructed from this data. That

is, we determine (p., pj), the center and radius of the 7th sphere, according

to the center and minimum "radius" (the minimal distance from 0 to the jth.

boundary) of the 7'th star shaped obstacle. This in turn determines the model

space "obstacle functions," ß}-, j € {0,..., M), as well as the navigation

function on J(, tp , as constructed in our previous paper [12]. The transfor-

mation is then constructed in terms of the given star world and the derived

model sphere world geometrical parameters.

In both spaces we explicitly assume that each obstacle contributes a distinct

part of the boundary—the obstacles do not intersect each other. This assump-

tion implies in turn that the resulting spaces are connected. Also, we require

that the destination point be specified as an interior point. Once the location

of the boundary components is given, the verification of the latter assumption

is straightforward.

In the robotics setting, the connectedness of the free space is not a realistic

assumption. Certainly, the robot initial configuration in joint space determines

a specific connected component of its free space, yet this might not include the

destination point. At the present, we exclude this possibility: our only test of

connectedness is the application of the construction to the initial configuration.

If the resulting trajectory does not arrive at the destination point, we may con-

clude with probability one that the destination is not in the same connected

component as the initial configuration.

2. Construction of the transformation

In this section we define the star worlds, and present an explicit one-parameter

family of analytic functions, each of whose members is a candidate diffeomor-

phism of a star world onto a particular model sphere world.

2.1 Star worlds and their models.

Definition 4. A set y c E" with nonempty interior is star shaped (at x0) if

there exists a point x0 e y such that for all x e y, the line segment joining

x0 and x is contained in y.

Any star shaped set is path-connected, and it can be shown [2] that any open

star shaped set is homeomorphic to the open «-disk. According to the definition

of an obstacle, if q e cfj, the 7'fh obstacle, then Vßj(q), j e {I, ... , M} , is

directed inward with respect to the free space y.

Definition 5. An obstacle, cf] (Definition 1), is strictly star shaped if there is a

point 0 e cf: such that for all q e cf¡ the inward directed gradient, VßAq),

satisfies

(4) VßJ(q)-(q-qJ)>0.
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If all the obstacles in the free space, y, are strictly star shaped, then y is

called a star world.

The connection between the classes of strictly star shaped obstacles and star

shaped sets is drawn in the following lemma.

Lemma 2.1. If ¿f. is a strictly star shaped obstacle, then cf. is a star shaped

set (at qj). Moreover, for each q e dcfj, the line segment joining q. and q

intersects dcfj only at q.

The proof is given in Appendix B. According to this lemma, the collection of

strictly star shaped obstacles, each of whose members being compact, constitutes

"almost all" possible bounded star shaped sets.

In the class of star worlds, a distinguished member is the Euclidean sphere

world (Definition 2), each of whose boundary components is a scaled and trans-

lated version of the unit sphere, S"~x .

2.2 The transformation. In this section we present a one-parameter family, each

of whose members is a map induced by a specified pair (y, J!)M „ .

Denote the omitted product, fl^o «y/ ßi > ̂  ßj > and by Vd tne (Euclidean)

distance from the destination point,

(5) yd{Q) = \\Q-Qd\t

Definition 6. The analytic switches, a-, j e {0, ... , M}, are the real valued

functions defined on y by

1 X + X ßj ydß.+Xß.

where X is a positive constant.

Assuming that the obstacles are disjoint, the jtn "switch," er , attains a

uniform value of 1 on the jth obstacle, vanishes on any other obstacle, and

maps the interior of the free space to the open interval (0,1). In the defor-

mation scheme, sufficiently close to the jth obstacle, these "switches" provide

a means by which the deformation problem is reduced to the simpler problem

of mapping one star shaped obstacle onto one sphere.

Recall that p   denotes the radius of the ;'th sphere in Jf .

Definition 7. The star set deforming factors, v., j e {0, ... , M) , axe the real

valued functions defined on y by

(7)    Vj(q) = Pj ||g_;g|| ,        je{l,...,M}   and   v0(q) = p0 ||g _°g ^ .

Each v- scales the ray starting at the center point of the jth obstacle, ^.,

through its unique intersection with the point q e dcf-, in such a way that q

is mapped to the corresponding point on the ;'th sphere. The overall effect is



construction of analytic diffeomorphisms 79

that dcfj is deformed "along the rays" originating at its center point onto the

corresponding sphere in model space.

Let y denote some open set in En containing y, the free space.

Definition 8. The star world transformation, hk , is a member of the one-param-

eter family of analytic maps form y c E" into E" , defined by

M

(8)     K(q) = ¿2(Tj(q,^j(q) ■ (<7 ~ qj) +PJ\ + od(q,X)[(q - qj) +pd],
7=0

where o   is the y'th analytic switch, ad is defined by

M

(9) <^ = i-Ev
7=0

and v - is the jth star set deforming factor.

The "destination switch," ad, assures that hx(qd) = pd, that is, the star

world destination point is contained in the inverse image of the sphere world

destination point, a necessary condition for our method to work, since the cost

function on the sphere world has a unique minimum at pd .

Remark. This definition assumes no relation whatsoever between the location

and diameter of the model space and workspace obstacles: it is only the number

of boundary components in each space, M + 1, that counts. Nevertheless,

in the proof we impose two additional constraints on the model space, JÜ.

The first assumes that the center of an obstacle in model space is identical to

the corresponding center in workspace, the second ensures that the deforming

factors, v., j e {0, ..., M} , axe bounded. We do not know whether these

conditions are actually necessary for the desired result.

Definition 9. Given any star world, y, the corresponding sphere world, Jf,

satisfies the placement condition if

(10) Pj = 4j>        j e{0,...,M},    and   pd = qd.

Intuitively, if pd = qd, away from the obstacles the transformation "looks

like" the identity map,

hx(q)^ad(q)id(q)^q,

provided that the parameter X is sufficiently large, as will be made precise later.

Recall that y.(e) denotes the " e-neighborhood" in y about ¿f.,

y,(e) 4 {q e y 0 < ßjq) < e},        je{0,...,M},

where e is a positive constant.
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Definition 10. Given any star world, y, the corresponding sphere world, Jf,

satisfies the containment condition for e if

(11) Vj(q)<I   for all q e y,(e),       je{l,...,M),

and

v0(q) > 1    for all q e <9>0(e),

where e > 0 is small enough to guarantee that

y.(e)cyu¿f.,       je{0,...,M}.

Remark. Evaluating hx at a boundary point, qedcf-, yields

hx(q) = vj(q)(q-qj)+p}.

If the placement condition is satisfied, then the containment condition implies

that

\\h¿(q) - q0\\ > \\q - q0\\    and    \\hx(q) - qjl <\\q - qj\,        je{l,...,M}.

Geometrically this means that the jth «-disk, cf-, is "contained" in the jth

obstacle. The zeroth disk satisfies the opposite "containment" relation. Finally,

given a star world, y, we derive a model sphere world, JH, which will serve

as the image space of y under hx.

Definition 11. Given an «-dimensional star world, y, a suitable sphere world,

J!, is an «-dimensional sphere world (Definition 2) such that Ji

1. has the same number of boundary components as y ;

2. satisfies the placement condition;

3. satisfies the containment condition.

3. Proof that the construction is a diffeomorphism

In §3.1 we first characterize an analytic diffeomorphism, « , in terms of its

Jacobian and its behavior on the boundary components, then we show that the

construction of the previous section, «A , satisfies these conditions provided it

has a nonsingular Jacobian on its domain. Finally, in §3.2, we prove that the

Jacobian of hx is indeed nonsingular in y.

3.1 h- is an analytic diffeomorphism if its Jacobian is nonsingular. In the sequel,

unless otherwise stated, the spaces Sf and y denote «-dimensional compact

connected manifolds of class C(?) for q > 0, with M + 1 disjoint boundary

components, which are also subsets of En. Denote the jth boundary compo-

nent of y and J^ by AT and d y respectively: each boundary component

is a compact (« - 1 )-dimensional connected manifold with no boundary. Let

y denote some open neighborhood in En about 2f ; consider the function

h e C \2f, En] for q > 1, we denote the set of its critical points in d.%? by

ff:—a closed set in d^Sf. Finally, a subset of a topological space is said to be

nowhere dense in the space when its closure has empty interior [7].

The following two lemmas will be used in the proposition below.



construction of analytic diffeomorphisms 81

Lemma 3.1. Let Se bean (n - l)-dimensional submanifold of Sf above. Then

no subset ff C S§ which is nowhere dense in 3§ can disconnect Sf.

Proof. A necessary and sufficient condition that a subset ff c 3§ is (« - 1)-

dimensional is that ff contains a nonempty open subset of 3§ [6, Theorem

4.3]. Since ff is nowhere dense in 3§ , this is not the case, and therefore

dim(^) < « - 2.

The result immediately follows, for no «-dimensional manifold can be discon-

nected by a subset of dimension less than « - 1 [6, Theorem 4.4].   D

o

Lemma 3.2. Let h:Sf -> En be a continuous map such that h(Sf) is open in

En. If h "preserves" the boundary components,

h(djSf)cdjy   forje{0,...,M},

and satisfies the condition

h(k)ndy = 0,
then h(Sf)cy.

Proof. The boundary of y , dy—a compact (« - 1)-dimensional surface in

E" consisting of M + 1 connected components—decomposes F" into M + 2

disjoint connected components whose boundary is dy [13] '. This, with the
o 0

connectedness of h(Sf) and the fact h(Sf) n dy = 0, imply that

h(k)<zy or h(k)cEn -y,
o

otherwise a path in h(Sf) passing through dy could be found. We will show

that only the first alternative is possible.  Consider two cases.  If Sf and y
o o

have only one boundary component and h(Sf) c E" - y, then, since h(Sf)
o o

is bounded, we have that h(Sf) ^ E" - y. Therefore h(Sf) has a boundary

point inside En - y , contradicting the fact that

dh(Sf)ch(dSf)cdy,
o

where we have used the hypotheses that h(Sf) is open in E" , and h(dSf) c
0

dy. If Sf and y have more than one boundary component and h(Sf) c

F" -y, then since « maps djSf into djy and E" ~y consists of at least
o

two disjoint connected components, it must be that h(Sf) is not connected,

which is also impossible. Thus h(Sf) c y .   D

We are ready to prove a sufficient condition for a map h:Sf —» E" of class

C q > 1, to be a homeomorphism onto a given space y c En . The notation

h e C{jjj\Sf, y\ means that Sf and y Jiavejjpen neighborhoods in En , Sf

and y respectively, such that h e C(q)[Sf ,y\.

The reference given applies only for C     manifolds for q > 1 . According to the Alexander

Duality Theorem [15], this fact is still true if d'y is a topological submanifold of En .
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Proposition 3.3. A map « e Ö [Sf, En], q > 1, is a homeomorphism onto y

if
1. h has a nonsingular Jacobian on the set Sf - \J"=Q ff., such that ff¡ is

closed and nowhere dense in d.Sf for j e {0, ... , M} ;

2. h\djSf is a bijection into dß/ for j e {0, ... , M}.

3. «  maps some neighborhood about d-Sf in Sf onto a neighborhood

about d¡y in y, for j = 0,...,M.

Remark. The possibility of critical points in dSf admitted by condition 1 an-

ticipates the future construction of navigation functions on topological sphere

worlds mentioned in the introduction. For example, a paper currently in prepa-

ration treats "composite star worlds" whose obstacles arise from finite unions

of star shaped sets. The resulting boundary components have "kinks"—non-

differentiable codimension 2 pieces of the smooth codimension 1 surface—

on which the Jacobian of our transformation, «, will become singular. For

the present, our manifolds are completely smooth (actually, analytic) and our

transformation, hx , has no critical points in dSf.

Proof. A continuous bijection on a compact space is a homeomorphism onto its

image [21, Theorem 2.4], thus, in consequence of the second condition, h\d:Sf

maps d Sf homeomorphically onto d y :  in particular,  h(ffj) is nowhere

dense in djy . Let Sf be the pre-image of the regular values of « . According

to the first condition,
M

Sf = Sf-\j\h~x(h(ffj)),
7=0

which is open in Sf. Each of the sets h~ (h(ff:)) can be written as

h~x(h(ffj) = (h~x(h(ffj)) nSf)uffr

Suppose that h    (h(ffj) n Sf is nonempty.   According to the Inverse Func-
o

tion Theorem, « is a local homeomorphism on Sf ; therefore, since h(ffj is

nowhere dense in djy , we have that «    (h(ffj) nSf is nowhere dense in the

(« - 1)-dimensional submanifold (h\Sf)    (djy). Thus, according to Lemma

3.1, Sf is connected, and, being locally path connected, is path connected [14,

Exercise 2.1].

The set h(Sf)—the image of a path connected set under a continuous map—

is path connected, and consists of regular values of h . It further follows from
o 0

the Inverse Function Theorem that « is an open map on Sf (open sets in Sf
o

are mapped to open sets in En). In particular, h(Sf) is open in En, and it
o

follows that dh(Sf) n h(Sf) = 0 . Moreover, h(Sf)—the image of a compact
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space under a continuous map—is compact, therefore closed in En, and it

follows that dh(Sf) c h(Sf) = h(Sf) u h(dSf). From the last two statements

we conclude that

(12) h'x(p)cdSf   for any point p e dh(Sf).

By hypothesis, « is injective on dSf, therefore,

(13) #h~x(p) = 1    for all p e dh(Sf).

We show now that

h(Sf) n dh(Sf) / 0.

Supposing the contrary, it must be that

_       M
dh(Sf) c h(Sf) - h(Sf) = [J h(ffj).

7=0

Let y be an open connected neighborhood in F" about p e dh(Sf), and let

y¡ and ¿f2 be defined by

y, = Tp n (h(Sf))   and   y2 4 Tp n (F* - /z(JT)).

yj and J?^ are disjoint open subsets of F". In fact,

^ = y1uy2u(^nö«(y)),

so it must be that the set 2^ n dh(Sf) disconnects 'V . But, by assumption,

( m \
Tpndh(Sf)cTpn\[]h(ffJ)   ,

\j=o        J
which is nowhere dense in the (« - 1)-manifold ^ n dy.   Using Lemma

3.1 again, it must be that the set S^uS^ is connected—a contradiction. We

conclude that h(Sf) n dh(Sf) ¿ 0 .

We shall now see that h(Sf)ndy = 0. Denote the ;'th "hole" in y—the

portion of En ~y bounded by djy—by cfj. Suppose to the contrary, that

h(Sf)ndy ¿ 0. It follows that tff\h(k) ¿ 0 for some j e {0, ... , M} . De-

note by £%j the neighborhood about djSf that is mapped onto a neighborhood

about djy in y . It must be that the set

W = h(3§j)nh(k -@j)±<Z>,

since h(3§j) c y and h(3§j) separates ¿f. from the other boundary compo-

nents of y . It follows from the definition of 'V that

#h'x(p)>l   for aliped.

The fact that h(3§j) C y also implies that there exists a nonempty open set

W e\T ny . Let y, be a point in 3T n h(Sf). Such a point exists, since
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W ch(Sf) and h(Sf) - h(Sf) is closed and nowhere dense in h(Sf). Let y2

be a point in h(S7) ndh(Sf). Such a point exists since h(S7) n dh(Sf) ¿ 0.

let a:I -> «(y) be a path such that a(0) = yx and a(l) = y2. Such a

path exists since h(Sf)  is path-connected.   Moreover, we may assume that

a(0, 1) C h(Sf) - dy, since a(0) e y and a(l) e dy. But this leads to

a contradiction: #h~x(yx) > 1 and #h~l(y2) = 1, so there must be a point

y along a at which #h~ (y) is «o/ locally constant. Clearly, y ^ y2, for

«-1(y2) € c*y, and this would imply that h~x(y2) is a boundary point of

disjoint neighborhoods in Sf.  Thus, y e h(Sf) - dy and it must be that

« (y) C Sf. It can be shown however that this, together with the compactness

of Sf and the fact that y is a regular value of « , imply that #h~x(p) is locally

constant about y [16, pp. 8-9]—a contradiction.

We conclude that h(Sf) n dy = 0, and that

#h~l(p) = l   fox all p e h(Sf).

Since, in addition, « is injective on c*y and h(dSf) c c^ , we conclude that

« is globally injective on Sf. Moreover, according to Lemma 3.2, h(Sf) c y .

Suppose now that h(Sf) is properly contained in y . Since h(Sf) is closed

in E , the set y = y - h(Sf) is nonempty and open in y.   Let yx be
o o

a point in y n y, and let a:I —> y be a path joining y¡  to some point
o o

y2 e h(Sf) ny . Such a path exists because ^ is path connected. There must

be a point along this path, y3 say, such that y3 e dh(Sf), an impossibility,

since we have shown in (12) that dh(Sf) c h(dSf) = dy .

Thus « is a continuous bijection from Sf onto y. Since Sf is compact,

we conclude that « is a homeomorphism between Sf and y .   D

The following corollary, whose proof essentially relates the conditions of

Proposition 3.3 to the structure of this section, constitutes the central contribu-

tion of the paper.

Theorem 1. For any star world possessing a valid arrangement (Definition 5),

y, there exists a suitable model sphere world (Definition 11), Jf, and a positive

constant A, such that if X> A, then h^.S*' -+ J? ,isan analytic diffeomorphism.

Proof. We must show that hx is an analytic bijection with analytic inverse.

Clearly, if y has a valid arrangement then hx—constructed from quotients of

analytic functions none of whose denominators vanishes on some open neigh-

borhood about y—is analytic.

In §3.2 below it is shown that for any star world, y, with a valid arrange-

ment, there exists a suitable model sphere world, J(, and a positive constant

A, such that whenever X > A, the Jacobian of hx.SF —> E" is nonsingular

on y (as a consequence it is nonsingular on some open neighborhood in F"

about S* ,Sf).
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We show now that hx maps the jth boundary components of y, ô y,

into the jth boundary component of Jf, d-J!. According to Definition 1 we

identify

o\y = dcfj   and   dy£ = dcf]   for ; 6 {0, ... , M}.

If q e dcfj then, for a valid arrangement of the star world,

ßj(q) = 0   and   ßk(q)>0,        k € {0,... , M}, k ¿ j.

Substituting in the definition of hx yields,

h^J = íq^qJ\{q-qJ)+PJ'

which implies that (ßj°hj)(q), the jth sphere function (Definition 2), vanishes

as well. Thus,

(14) h^dcfjcdcfj,      je{0,...,M}.

We show now that hx\dcfj is injective. Suppose to the contrary, that there exist

two points q, q e dcfj, such that

pj      < ^ pi      , '        x
ii„   „ m g - qj+Pj = „ i     „(g - qj +p, >
II? -4,11 ' ' ||i    -?y|| ; ^

or

\\q -qj\\{q-qj) = \\q-qj\\(q -qj)-

It follows that the ray starting at o. through ^ contains q as well, an impossi-

bility since, by hypothesis, ¿f. is strictly star shaped and, according to Lemma

2.1, any such ray crosses dcf, exactly once.

We show now that hx\d(fj is surjective.   If X > A, there exists an open

neighborhood in E" about y, y, in which hx has a nonsingular Jacobian.

According to the Inverse Function Theorem, hx is a local homeomorphism on

y. This, together with (14) imply that hx\dcfj is a local homeomorphism into

dcfj with their respective subspace topologies. A local homeomorphism from

a compact space into a connected one is surjective. Since dcf. is compact and

dcf, is connected, hx maps dcf- onto dcfj, for ;' 6 {0, ... , Af} .

Finally, «A maps a neighborhood about d(?¡ in y onto a neighborhood

about dcfj in J! .To see this, consider the ray starting at the center of <f¡, q¡

through a point qedcfj, defined by

r9(s) = s(q - qj) + qt   for s > 0.

It is shown during the proof of Proposition 3.6 that

(A o hx o rj(s) = Vßj(hx(q))T[Dhx(q)](q - q¡)
ds

= (i-i,)r[i)/z,(í?)](í7-í?/)>0.
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Since ßj(hx(q)) - 0, the last inequality implies that

(/J/o«/l)(r?(l,l+e))>0,

for sufficiently small e > 0. Since dcfl is compact, there exists a lower bound,

e0 > 0, such that

(ßj o hx)(rq(l, 1 + ej)) > 0   for all q e dtfv

o

This, together with the fact that hx is a local homeomorphism on y, imply

that hx maps the neighborhood dtfx x r [1, 1 +e0) onto a neighborhood about

dcfj in Jt.

We are now in a position to invoke Proposition 3.3, which guarantees that hx

is a homeomorphism from y onto JÍ. Since hx is analytic and possesses a

nonsingular Jacobian in y, according to the Inverse Function Theorem [24], hx

is locally an analytic diffeomorphism . The last two statements imply that hx is

an analytic diffeomorphism from y onto JK, and the proof is completed.   D

3.2 The Jacobian of hx is nonsingular. In this section we compute a lower

bound for the parameter X, to guarantee that the Jacobian of hx is nonsingular

on y. Since the technical material of this section consists of rather tedious

calculations, it seems worth pausing for the intuitive motivation.

The effect of X becomes clear if one inspects the role of the analytic switches,

aj (Definition 6). By construction, at any point qeS*~,

0<ajq,X)<l   foxje{0,...,M}.

We shall see that at a point q "e away" from the jth obstacle boundary i.e.,

a point q e y at which the corresponding obstacle function ßAq) > e, for

some fixed e > 0; o¡(q,X) can be made arbitrarily small by increasing X.

Thus, if the value of X is sufficiently large, away from the boundary of y the

destination switch, od = 1 - J2 =0 <r., is approximately unity, and hx essentially

looks like a perturbed vector translation,

K = [(q-qd) + pd] + e/(<70,... ,oM),

where / 6 ÖM\Sf, En] depends linearly on the switches ct.. We shall see

as well that at any such point, q, oAq, X) can be made arbitrarily "flat"—

i.e., ||Vct.|| can be made arbitrarily small by increasing X. Since Df depends

linearly on a, and Vct. for j e {0, ... , M) , it follows that away from ¿>y, «;

is essentially a translation of E" , and its Jacobian is dominated by the identity

matrix.

Thus the real difficulty is the "sharpening" of the analytic switches in an ever

shrinking neighborhood of dS* as X increases. Recall that the z'th switch was

constructed to be unity on dcfj and to vanish at any other obstacle boundary

It is tacitly assumed that E" possesses a Banach space structure.
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dcf- for j ■£ i. By further decreasing e if necessary, consider a neighborhood

about dcf- only, disjoint from y¿(e) for all i ^ j, on which we presume to

ignore the effect of the other obstacles. On dcfj itself, hx becomes a simple

scaling along rays of the jth star onto the corresponding sphere. Since both are

analytic surfaces, it is plausible (and we will prove) that hjdcfj is an analytic

diffeomorphism. The containment condition (Definition 10) suggests that the

Jacobian of hx\dcfj is actually nonsingular as a map in the ambient space, that

is, as a linear map from TqEn to Th ,q)En . We shall see that this is the case,

and as a consequence it must be that the Jacobian of hx is nonsingular on some

open neighborhood in E" about dcfj. Indeed, we will compute an upper bound

for e , guaranteeing that hx has a nonsingular Jacobian on the neighborhoods

y (e) fox j e {0, ... , M}. This bound will be used in turn to compute the

lower bound A on the parameter X, guaranteeing the nonsingularity of the

Jacobian in the rest of y. We may now proceed with the formal proof.

In the sequel, it is understood that any derivative of aAq, X) is with respect

to the position vector q , the parameter X being held constant.

Consider the set y(e)—the "thickened" jth boundary component—defined

in equation (2) as

<Sr*j(e) = {qeP:0<ßj(q)<e}>

with the constraint e < F;. That is, e is small enough to guarantee that the sets

S^j(e),j e {0, ... , M), are disjoint and do not overlap the destination point.

We distinguish in the star world the set "away from the obstacles,"

s/(e) = {qeSf:ßQ(q)>e,... , ßM(q)>e},

and denote its complement in y by

M

yc(e)^y-y(e) = LJy.(e),
7=0

a disjoint union.

We are ready to prove the nonsingularity of the Jacobian on the set "away"

from the obstacles, y (e).

In the Appendix we prove in Lemma B.4 and Lemma B.5 that for any e > 0

and any ó > 0, a¡(q, X) and ||Vct.(?, A)|| can be made to be smaller than S

on the set "away" from the 7'th obstacle, y - S^(e), by choosing

X>N0j(e,ô)   and   X>Nxje,ô),

respectively, where N0j(e, Ô), NXj(s, S) axe positive constants. As a conse-

quence, it is possible to guarantee that the Jacobian of hx is nonsingular on

¿/(e), a statement which is made precise as follows.

Lemma 3.4. Given a valid arrangement of the star world, y, for any e > 0 there

exists a positive constant A0(e) such that if X > A0 then Dhx is nonsingular on

j/(e).
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Proof. Under the placement condition (Definition 9), the Jacobian of hx is

shown in Lemma B.2 to be

M

DhÁQ) = £{*;"/ + aj(a - Vj^vJ + {vj -I)(q- qjVOj7} + adI.
7=0

Let x be any vector based at q es/(e), that is, x e T srf (z). Evaluating the

Jacobian along x yields,

[Dh(q)]x = \y^ojvj + ad \x

W(0:   ,V(Tj)

+

M

5>;(<7 - qjFv] + (vj -I)(q- qj)*o]}
7=0

X,

where w(a¡, Vct.) is a shorthand notation for w(Oj , Vct.) , j e {0, ... , M} .

We will use the positive magnitude of ad to dominate w . First, note that the

latter may be bounded from above in magnitude by

\\w(Oj,VOj)\\<\.

For, choosing

X>     max    {NQj(e,ô), NXj(e,ô)},
j€{0.M}        J J

it follows from Lemma B.4 and Lemma B.5 that a,(q, X) and ||Vct-(<j , A)|| are

bounded from above by S > 0 ; hence,

M

\\w(Oj, V<7,)|| < £> -<7;.||(ct;||Vza|| + \vj - 1| ||VCTy||)

7=0

M

<¿£ll<?-<7,ll(l|Vz/,|| + |z--l|).
7=0

A sufficient condition on ö for the desired inequality is thus

" 2max^ {E^o II« - Qj\\(\\^j(Q)\\ + Wjq) - 1|)} "

Note that v¡ is analytic on the compact set y, and in consequence both v¡

and ||Vz/,|| are bounded, thus, there is no problem with the definition of a'0 .

On the other hand, note that ad may be bounded from below by \ , for, again

according to Lemma B.4 and Lemma B.5, by choosing X sufficiently large, we

may impose on the switches the condition

(16) aj(q,X)<~¡TM    for all ? e y (e), je{0,...,M},
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which implies that
M

= 1-E',4
'd    -    ¿^-j'-r

7=0

Finally, choosing

^^K'^TTm}'
the desired A0 is

(17) A0(e) =     max    {N0.(e,ô0),NXJ(e,â0)},
7€{0.M)        ' J

and the result follows.   D

We turn now to the set yc(e).

First we have to establish that for a given star world, y, a suitable model

sphere world, J£, can be found. In particular, Jt must satisfy the contain-

ment condition (Definition 10). The following Lemma specifies upper bounds

on the radii of the spheres (a lower bound for the 0th sphere) in Jf, guaran-

teeing that the containment condition is satisfied in the "thickened obstacles"

neighborhoods S^jE).

Recall that p   denotes the radius of the jth sphere in Jf.

Lemma 3.5. For each j e {0, ... , M}, there exists a positive real number

Rj(Ej) such that if Pj < Rj, then

Vj(q)<I forallqeSfjEj,

and if p0> R0, then

v0(q) > 1 for all q e <9>0(E0).

Proof. According to its definition in equation (7),

if
llg-gjll

PJ-l+ßj(q)'

which is implied by the condition

min   m{\\q-qj\\}
(18) Pj<-\'+E =Rj(Ej),        je{l,...,M),

since 0 < ßj < Ej, and
j

qedtfj J qeS*j(Ej) J

In the case of v0 , using a similar argument, the condition

max      {||g-go||}

Pu Z -i-p- - -^O^o) »

is sufficient to guarantee that v0 > 1.   D
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Dhx(q) maps T y into Th ¡Jn.^), both of which are «-dimensional vec-

tor spaces, and therefore isomorphic to E" . Since the domains of hx—the star

world, y, is an «-dimensional submanifold of En, we will not distinguish

points in the tangent space from points in the original base spaces.

Let (q - q¡) be a vector based at q e En . Consider the tangent space to y

at q, 7' y, as the orthogonal direct sum

TqP = (9 - <?/> ®(Q- i,)X .

where (•) denotes the "span of," and (•)    denotes the "orthogonal complement

of." Each vector x e T' y can be uniquely written as

x = xx+x2   such that xx e (q - qt) and x2 e (q - q¡)  .

Given a nonzero vector v , denote its associated unit vector, v/\\v\\, by v .

We are ready to prove the existence of a neighborhood in y about dS*,

y c(e), in which Dhx is nonsingular.

Proposition 3.6. Given a valid arrangement of the star world, y, and a suitable

sphere world, Jf, for each j e {0, ... , M} there exist positive constants, e

and A , such that for all e < e, and X > A,, the Jacobian of hx is nonsingular

on the set

y,(e) = {<? e y 0 </?.(<?)<£}.

Proof. In a valid arrangement of the star world, each obstacle is strictly star

shaped (Definition 5), that is,

(19) Cj(q) = (q-qj)-^ßj>0   for all q € dcf),

and it follows from the continuity of f.  that this condition holds in some

neighborhood in y about dcf;, for instance,

S*j(ej0) = {q€&':0<ßj(q)<ej0},

where e 0 < F .

We partition the unit sphere in TqSf, denoted by Snq , into two disjoint

"cones,"

(20,        ^{«S;:g>_^-}    and   ^-s;-%.

In the Appendix, before the statement of Lemma B.8, we motivate this partic-

ular decomposition.

First suppose that x e ff . In Lemma B.8 we show the existence of two

constants, e , < e 0 and A-,, such that for all e < ejx and q e S^je), if

X > A j, then

xT[Dhx(q)]x > 0   for all x e

in particular, [Dhx(q)]x ^ 0.
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Consider the complementary case: at each tangent space, the test directions

belong to the "cone" Sq - ffq , in which

\\x2\\>-^[(q^qj)-Vßj]\\xx\\.

In Lemma B.9 we show the existence of two constants, e,2 < e 0 and A 2, such

that for all e < e 2 and q e y(e), if X > A2, then

xl[Dhx(q)]x > 0   for all xeSq-ffq,

where x = xx+ x2 as above. In particular, [Dhx(q)]x ^ 0.

By definition, whenever ex < e2 we have that y:(ex) c y (e2), and it follows

that any bound on e or X in the set y (e2) a fortiori applies to the smaller set

y (ex). Therefore, letting

Ej = min{e;1, e;2}   and   A; = max{A;1, A;2},

completes the proof.   D

Since we have considered the entirety of y, the above results are summa-

rized in the following corollary.

Corollary 3.7. Given a valid arrangement of y, there exist a suitable sphere

world, J[ and a positive constant, A, such that if X > A, then the Jacobian of

«A:y -» ^# is nonsingular on y.

Proof. First we choose a suitable sphere world, Jf. To do so, we fix the centers

of the spheres and the model destination point in accordance with the placement

condition (Definition 9),

Pj = qj,        j e {0, ... , M)   and   Pd = qd,

where g is the center of the y'th star, and qd the destination point. Then,

using Lemma 3.5, we fix the sphere radii such that,

vQ(q)>l    for alU £ y0(F0),

and,

Vj(q) < 1    for ;' € {1, ... , M} and for all q e ^(Ej,

which is the containment condition.

Using Proposition 3.6, we choose a constant,

*  A • r     ,e  =     min    je,},
je{o,...,M}L Jl

designating a neighborhood in y about dS*', sfc(e*), in which Dhx is non-

singular, whenever the parameter X satisfies

X>     max    {A,} = A,.
76{0,...,A/}1    J' '
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According to Lemma 3.4, for any e* > 0, if the parameter X satisfies X >

A0(e*), then Dhx is nonsingular in the set sf(e*). Thus, letting

A = max{A0(e*), A,},

completes the proof.   G

4. Conclusion

We have constructed an algebraic analytic diffeomorphism between two class-

es of analytic submanifolds of En. In Appendix A we show that the com-

putational complexity of this transformation, beyond that introduced by the

boundary functions themselves, is proportional to Mn + M , where M is

the number of obstacles and « the dimension of y. A numerical example

is provided in Figure 1: a planar (« = 2) star world, y, with five internal

obstacles, and its corresponding model sphere world, Jt. We plot the level

lines of a navigation function on y, <p , as well as those of the corresponding

navigation function on JK, (p. The parameter in (p is chosen sufficiently high

to eliminate spurious local minima in JÍ. The destination point in both spaces

is chosen arbitrarily at the origin, and the level lines vary regularly between zero

(at the destination point), and one (on all the boundary components). It can

be seen that the pulled back navigation function, <p = 0 o hx, for an appropri-

ately chosen X, introduces no additional critical points. Thus there is a unique

minimum at the destination point, and one saddle point near each (internal)

star obstacle. As we have shown in [12], one cannot do better than this using

smooth vector fields which are transverse to the boundary of y.

These results should be of interest to mathematicians since we construct an-

alytic diffeomorphisms in closed form using algebraic operations: our functions

do not arise from the one-parameter group of any obvious dynamical system.

From the point of view of engineering applications, our efforts comprise the first

exact robot navigation algorithms using the "artificial potential field" methodol-

ogy [8]. Moreover, as indicated by a number of remarks throughout the body of

this paper, current work in progress gives us reason to hope that extensions of

these ideas will yield exact navigation algorithms on a family of spaces which is

dense in the topological equivalence class of our original model—the Euclidean

sphere world [12]. However, this model is itself unrealistic. Since we do not

possess, at present, a classification theory for the topology of freespace arising

from general navigation problems, a significant gulf still remains between our

present understanding and a practicable methodology for guiding robots reliably

in cluttered environments.
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Figure 1

Planar (n = 2) star world (bottom), !F, and its corresponding model sphere

world (top), for the case M = 5 internal obstacles. The resulting navigation

function on & possesses a unique minimum—zero—at the destination point,

chosen arbitrarily as the origin, a saddle point near each (internal) obstacle, and

is exactly one on d!f .
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A. Counting the floating point operations

The computation involved has two parts. First, when presented with the

data (specified in § 1.2), describing a star world with a valid arrangement, y, we

construct a navigation function on y, tp = q>ohx, by choosing a suitable sphere

world, -#, constructing 0—the navigation function on •#, and choosing the

parameter X in hx . The computational complexity of this part is analyzed in

§A.l. Second, the controller has to compute V<p ,

(21) V<p = V(<pohx) = [Dh/v<p(hx),

and we analyze the computational complexity of this term in §A.2.

A.l The computation of the parameters in q>. The count of the floating point

operations will be given in terms of M—the number of obstacles, and «—the

dimension of the ambient Euclidean space. We defined the obstacle functions,

ßj, as real valued analytic functions describing strictly star shaped obstacles

(Definition 5). In order to speak meaningfully about the number of floating

point operations, we restrict the obstacle functions to the class of positive def-

inite homogeneous polynomials of degree k e N. In [19] we show that each

member of this class—which is essentially all the polynomials which satisfy the

properties of a norm except, possibly, the triangular inequality—describes a

strictly star shaped obstacle. It is important to note that this class serves only

as an example. Although such functions generate a great variety of star shapes,

we currently do not know whether this class is rich enough to represent "almost

all" the star shaped obstacles.

Under this restriction, it turns out that in order to compute the parameters

in hx for a star world, y, the following data suffices,

1. for each obstacle, cfj, its center point, q¡ , the obstacle function, /? , and

its (homogeneous) degree kj ;

2. for each obstacle, cfj, a radius, loosely denoted by

min {||î-a.||},        je{0,...,M},

such that the sphere with this radius, when centered at # , is contained in cfj

(contains cfQ for the zeroth obstacle);
o

3. a destination point, qdeSr ;

4. the upper bounds on the obstacle functions, {F }0 , and on the distance

to qd , Ed, which were specified in §1.2.
In [ 19] we provide practical formulas that render all the relevant terms in the

computation of the parameter of hx in terms of this data. The steps in con-

structing hx from the data were summarized in Corollary 3.7, and are repeated

here,

1. choose a suitable sphere world for {F;}^0 and Ed, and compute its

parameter, k ;

2. compute e* from the data;
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3. find A(e*), a lower bound on the parameter X in hx.

In the first step—choosing a suitable sphere world—we start by fixing the sphere

obstacle centers and the destination point according to the placement condition

(Definition 11), and no computation is involved. Next, we compute an upper

bound on the radius of the z'th sphere (lower bound for the zeroth sphere), p(,

using Lemma 3.5. This involves, roughly, one operation per obstacle. As for

the parameter k of the navigation function on the corresponding sphere world,

0 , we refer the reader to [11], in which we showed that this computation takes

no more than 10M « operations. Therefore this step takes no more than

10M « + 5M operations.

In the second step, e* is derived from e;1 and e(2 for i e {0, ... , M),

specified in Lemma B.8 and Lemma B.9, respectively. The computation of ejX,

defined in equations (38) and (42), is dominated by the terms

(22) max{/?},    max{||V/3.||},    max{\\q - q\\}   for ;' e {0, ... , M}.
If        J !f J if J

We provide in [19] formulas for computing xnaxgr{ß]} and max^-{||VÔ ||} in,

roughly, one operation. The third term satisfies

max{||í7-#.||}<¿>0,
¡f j

by the containment condition, and therefore does not require any computation.

The computation of e(2, defined in equation (50), takes, roughly, one operation.

We conclude that e* can be computed in less than 10M operations.

In the third step—computing A(e*), a lower bound for X—we have to com-

pute A0(e*) and A. for j e {0, ... , M) , specified in Lemma 3.4 and Proposi-

tion 3.6, respectively. A0 is derived from the terms N0j(e*, S) and NXJ(e*, S)

for ;' s {0, ... , M}. First we have to compute ô, which according to its

definition in equation (15), involves a summation of the terms

(23) max{||^-^.|| |^.-1|}   and    max{\\q-qj\\ ||Vi/,.||},        je{0,...,M}.

Expanding Vj (equation (7)) and Vvj (equation (28)) yields

Ik - qj\ \vj -\\ = Pj\I+ ßj - \\q - qj\\ |

<pj(l+ max{ßj} + xnax{\\q - qj

and

I + ßj

Vj*
|4-^III|vza|| = Pj

<Pj\  iax{||V/J,||)

q-qj)

1 + max9-{ßj}

gr J"'        min„

Since the minimal radius of cfj, mind<f{\\q - qj\\} , is part of the data, and all

the other terms were already computed in (22), it takes less than 5M additional
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operations to compute â . We turn now to the computation of NQj and NXj.

According to Lemma B.4 and Lemma B.5, their computation involves the terms

(24) rnax{/3.}   and    max{||V/Jy||}   fox j e {0, ... , M},

which were already computed; and it takes less than 5 M additional operations

to compute N0j and NXj for the jth obstacle. Thus, A0 can be computed in

less than 10M + 10M2 operations.

According to Proposition 3.6, A is derived from A,, and A,2 for ;' e

{0, ... , M} , defined in Lemma B.8 and Lemma B.9, respectively. Using equa-

tions (41) and (43) for A;.,, and equations (49) and (51) for A2, both involve

a composition of the terms listed in equations (23) and (24) above, which were

already computed. Thus it takes less than 10M additional operations to com-

pute A., and Aj2 for the y'th obstacle, and it follows that the computation of

A(e*) takes less than 10M + 15M   operations.

Summing up, the total number of floating point operations required is bound-

ed by

(25) 10M2« + 15vVf\

where M is the number of internal obstacles and « the dimension of y.

Remark. The dimension of the space, « , appears only in the computation of

the sphere world parameter, k . This is a consequence of the assumption we

have made about the allowable obstacle functions—homogeneous polynomials,

which enabled us to give explicit scalar bounds on all the required terms.

A.2 The computation of V<p . Using equation (21), the computation of Vtp(q)

involves the following steps,

1. compute p = hx(q) ;

2. compute V$(p) ;

3. compute Dhx(q) ;

4. multiply the matrix Dhx(q)    by the vector V<p(p).

Denote the number of floating point operations required to compute the z'th

obstacle function, /?., and its gradient, V/?;, by #(/?,-) and #(V/3(). The num-

ber of operations required will be given in terms of #(/?,-), #(V/3.), M and

«.

From its definition (Definition 8), the computation of hx involves the sum-

mation of M + 1 terms, each of the form,

<r,{q)[vt{q) - (q - q¡) + p¡].

According to their definition (equation (6)), the computation of the analytic

switches, {ct } =0 , involves the product of {/?.} =0 and yd . Therefore it takes

less than 5M + ^2j=0^(ßj) operations to compute the analytic switches. Next,

according to its definition (equation (7)), the computation of the z'th star de-

forming factor, vi, involves, roughly, the quotient of ßj with \\q - <y/1|. There-

fore it takes less than 5Mn additional operations to compute {v }'^0.  We
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conclude that it takes no more than lOMn + V.=0 #(/?.) operations to compute

hx(q).
In the second step—computing V0(p)—we refer the reader to [11], in which

we showed that it takes no more than 10(M + Mn) operations to compute

V0(p).
Using equation (27) for Dhx , the computation in the third step involves the

summation of M + 1 terms, each of the form

(26) OjVjI + Oj(q - qj)Vvj + (za - l)(q - q.)VaJ'.

Rewriting Vza from equation (28),

Since Vj and ||<?-#,|| were already computed, it takes #(V/?.) + 10« additional

operations to compute Via . Rewriting Vct; (equation 29),

=íí^(J/^+^-'H'
Since ßj and V/? were already computed, it takes lOMn additional oper-

ations to compute Vct; . Thus, the computation of (26) takes no more than

5« additional operations, and we conclude that the computation of Dhx(q) is

bounded by lO(Mn2+ 1£1j=0#(Vßj)) additional operations.

Summing up (the fourth step takes 5« operations), we conclude that it takes

no more than

10 J Mn2 + M2 + Ç{#(/J,) + #(V/i.)} 1

operations to compute V(p(q).

Remark. If we instantiate the obstacle functions within the class of polynomials

of degree k or less, then, in general, each such polynomial consists of k ho-

mogeneous polynomials, each of which can have no more than (n+kk~x) terms,

therefore,

m) = k(n + kk~1)    and   #(Vßi) = n(k-2)(n+kk_-2y

Thus, if we relate k to the "geometric complexity," and « to the number

of degrees of freedom of the underlying kinematic chain, then, assuming that

k > «, the computation involved is proportional to k" , i.e. exponential in the

number of degrees of freedom and polynomial in the geometric complexity.
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B. Computational details

This section contains various lemmas which are used in §3. We begin with a

lemma of a topological nature, which is used in §3.1. All the other lemmas are

used to prove the nonsingularity of Dhx in §3.2.

Let Sf, y denote «-dimensional manifolds without boundary, and let Sf c

Sf, y c y be «-dimensional compact submanifolds with M + 1 boundary

components. Suppose that « e C [Sf, y], if the Jacobian of « is nonsin-

gular on Sf, then the Inverse Function Theorem guarantees that « is locally a

smooth diffeomorphism: in particular, « is a local homeomorphism.

Lemma B.l. If h:Sf -» y is a local homeomorphism, such that

h(dSf)cdy   and    h(S?)cy,

then h\Sf:Sf -^>y is a local homeomorphism in the subspace topology.

Proof. It suffices to show that each point q e dSf has an open neighborhood

% in the subspace topology of Sf such that hf2¿) is open in y and « maps

% homeomorphically onto h(%f).

Let % be an open «-disc in Sf about q e dSf, on which « is homeo-

morphic. By assumption, the set 'V = h(&) is an open «-disc in y about

pàh(q)edy.

We first show that h(% n Sf) = T n y.   According to the assumption

h(k)cy,

h(ÏÏ nSf)c h(&) n h(Sf) cTny,
~ o

moreover, ^ n Sf, an open "half «-disc, therefore connected, is mapped by
^w- O

« onto T n y, otherwise,

(h\&)~x (^n y)C(&nSf)u(&n Sfc),

is a disconnected set. To avoid contradiction (with the fact that the image of a

connected set under a continuous map is connected), it must be that

(h\í¿)~\fny)dí¿nk,

and, since « maps ^ onto T, it follows that h$nk) = Tn y.

It is also true that h(ÏÏ n dSf) = T n dy , for,

«(^ n dSf) c A(£) n h(dSf) c Tn dy.

On the other hand,

h(&nSf) = h(& n Sf) u «(^ n dSf) = (fn y) u «(^ n dSf).



CONSTRUCTION OF ANALYTIC DIFFEOMORPHISMS 99

The set h(%f nSf) is closed in T, since í¿ nSf is closed in &, therefore

h(& n dSf) contains the set of boundary points of T ny in "V, which is

exactly fn dy . Thus,

fndy c\h(ÏÏndSf),

and it follows that h(& n Ô#") = fn dy. We conclude that

h$ nSf) = (Tn y) u (Tn dy) = fny,

and the result follows.   D

Remark. Using local homology groups, one can show [15] that if h:Sf —> y

is a local homeomorphism between «-dimensional manifolds with boundary,

then

h(Sf)cy   and   h(dSf)cdy.

B.l Some general computations. First, we give a proof of Lemma 2.1.

Lemma 2.1. // cfj is a strictly star shaped obstacle (Definition 5), then cfj is a

star shaped set (at qj). Moreover, for each q e dcfj, the line segment joining

qj and q intersects dcfj only at q.

Proof. According to Definition 5, q , e cfj. We have to show that for each

point q e cfj, the line segment joining <? and q is contained in cfj. Let

r: [0, 1] -> En be a continuous parametrization of this line segment, defined by

r(X)àq. + X(q-qj).

Suppose to the contrary, that there exists Xx e (0, 1) such that q — r(Xx) 0 cfj.

We lose no generality by assuming that

Xx =inf{X>0:r(X)$cfj},

which implies that q e dcfj, and therefore (ßj o r)(Xx) = 0. According to

equation (4) in the definition of a strictly star shaped obstacle,

Vßjq')-(q'-qj>0,

and it follows by continuity argument that there exists e > 0 such that

(^or)(A1-e,A1-re)>0.

Now suppose that r does not cross dcfj into (cf)c at Xx, in particular, there

exists X* e (Xx, Xx + e) such that

(ßjor)(X*)<0.

According to the Mean Value Theorem,

(ßj o r)(X*) - (ßj o r)(Xx) = (X* - h)jjjßi ° r){s) > °'
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for some s e (Xx, X*), which implies that (/? o r)(X*) > 0, a contradiction.

Therefore, (ß • o r)(Xx, Xx + e) > 0, and it follows that

r(Xx,Xx+e)c(cfjj.

We show now that r cannot cross dcf- again.  Suppose to the contrary, that

there exists X2 > Xx such that q" = r(X2) e dcfj, that is, (ß. o r)(X2) = 0. We

lose no generality by assuming that

X2^inf{X>Xx:r(X)edcfj}.

It follows that

r(Xx,X2)c(cfjj,

which in turn implies that

(/JJor)((A2-ey2))>0,

for some e > 0. By assumption,

Vßj(q")-(q"-qj>0,

and it follows by an argument similar to the one given above that

(ßjor)(X2)>(ßjor)(X2-{e)>0,

a contradiction. Thus the assumption that the line segment crosses dcfj at q

leads to a contradiction with the fact that its endpoint, q, is in cfj. It must

be that this line segment is contained in cfj, and, crosses dcfj only when its

endpoint is in dcf-.   D

The following technical lemma computes the Jacobian of hx .

Lemma B.2. Assuming the placement condition (Definition 9), the Jacobian of

the star world deformation, hx, is

M

(27)       Dh(q) = £>,V + Oj(q - q.)VvJ + (v} - l)(q - qjVaJ} + adI.
7=0

Proof. Using equation (8), the Jacobian of hx is

M

Dh = X^°y/ + *,■(? - QjWvJ + ("jit -Qj)+ PJWo]}
7=0

+ odI + ((q-qd)+pd)Vad.

As ad was defined to be ad= I - ¿~2j=0 ct ., substituting Vct^ obtains,

M

Dh = ^{OjVjI + ajq - qjVvJ

7=0

+ l(Vj(q - qj + Pj) - ((q - qd) + Pd)]VoJ} + adI,
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assuming the placement condition, that is, p, = q¡, j e {0,..., M), and pd =

qd, obtains

M

Dh = £>// + Oj(q - qjVvj + (Vj - l)(q - qj)Va]} + adl.   D

7=0

Denote a unit magnitude vector, v say, by v . The following lemma gives a

formula for the gradient of the star set deforming factors.

Lemma B.3. The gradient of the star set deforming factor (Definition 8), is

(28) v^^^V/^^f^)),

for je {1, ... , M}, and

Wot?) = "0 (-r^vA> - ji^fe^o)).

when 7 = 0.

Proof. The ;'th analytic switch was defined in Definition 7 to be

VJ{Q) = PJJa-^aT'    ^{l,...,lf}   and   „„(*) = />0±-^f
II1! *yll IIS/ <foll

thus,

/>,■       Í l + ßi \

/       1
= IV.

:V^-l&TTir(«-«y)

The case where ; = 0 yields a similar result.   D

We show now that if the parameter X is large enough, the 7th switch, ct ,

and its normed gradient, ||Vct-|| , can be made arbitrarily small on y - S"¡(e).

Lemma B.4. For any e > 0, 6 > 0, and j e {0, ... , M), there exists a positive

real number NQj(e, S) such that if X> N0j then

ojq,X)<8   forall qe^-y;(e).

Proof.

g_      *äßj      ^äßj
j   Vtßj + Xßj-Wj '

for the term on the right to be less than 0 , X must satisfy,
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ISSince ßj > e in y - y (e), a sufficient condition on A i

*>j-emßx{yd~ßj} = Noj(£>oy D

Lemma B.5. For any e > 0, S > 0, and j e {0, ... , M} there exists a positive

real number NXj(e, 3) such that if X> NXJ then

\\VOj(q,X)\\<0   forall qeSf-<9>j(e).

Proof.

(29) Vct, = {7j+Xß/ßjVWj) - VdßjVßj .

which implies that

ll^ll * ^^^(^ll^y^ll + y^liv^ii),

and since Xß^yjjß)+ Xßj < 1,

i _       y Aß ■

<w\\^ydßj\^^ßj\-

The assumption that ß} > e in y -S^(e) yields as a sufficient condition,

X > 1 Qmax{||V(^.)ll} + ^rnax{y^.||V0,||}) = NXj(e,ô).   D

B.2. The set "near" the z'th obstacle. The results of this section are concerned

with S^j(t)—the set "near" the z'th obstacle.

The following lemmas are used in Lemma B.8 that follows. The intuitive

motivation for Lemma B.6 below is best provided by the consideration of the

"symmetric part" of the matrix Vßt(q - q¡)   , defined by

[V/3,(<7 - qf]s = {(Vßj(q - qf + (q - qjVßf).

The quadratic form associated with [Vßt(q - q¡) ]s is positive on the subspace

(q-qjcT^,

(q - qfWßiiq - q,)T]s(q - qj = ll<7 - qf(q - qj • V£. > 0,

at any point q e Sf satisfying (q - qj) • V/?( > 0. Under this assumption, it

follows that there exists an open neighborhood in 7'y about (q-q¡) on which

this quadratic form is positive. In particular, the following lemma designates a

"cone" about (q - qt) contained in this neighborhood.
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Lemma B.6. Let q be a point in y at which (q-q^-Vßj > 0. If x e T -q5*~

satisfies

(30) \\X, || >       _-:=^||xJ| ,
(q-qj-Vß,

where x = xx+ x2 such that xx e (q - q¡) and x2e (q - q¡)   , then

xT[Vßl(q-qi)T]x>0.

Moreover, for any unit vector x e T^ satisfying (30),

||*,||2>§   and   \Vßi-x\>l(q^qi)-Vßi.

Proof. Using the identity xx ■ Vßt = (xx ■ (q^~q¡))((q^~qj) ■ V/J,),

xT[Vßj(q - qf]x = [(xx +x2) ■ Vßt\((q - qj-xx)

= [(xx ■ (q^qjm^i) ■ v^) + x2 ■ VßMq - qj ■ xx)

> \\q - Qi\\{({Q^qt) • V/i^x, • (q^q¡)\2 - \\x2\\ ||V/i;.|| \xx • (q^qt)\}.

Since xx e (q - q¡),

xT[Vßj(q - qj)T]x > \\q - qt\\ ||x, ||{((<7^) • Vßj)\\xx\\ - \\x2\\ ||V/3,.||} > 0,

whenever

ii    n l ii
*1     > —^Z-—  ^2-

(q-qj-vß,

which is implied by (30).

We turn now to the second assertion. First we compute a lower bound on

H-xJI. Using (30),

i = ll*,ll2 + IM2 < Wl2(i + iKfl^fl,)- v?,.]2) < 32\\xx\\2,

thus, \\xx\\2 > j . Using (30) again,

\vßrx\ > \vßj-xx\ - \vßj-x2\ > (Vßj■ (î^))!!*,!! - \\vßj\\ \\x2\\

> \\xx IKV/i, • (q^qj - ^Vßj ■ (q^qt)) > \Vßt ■ (q^~qt),

since 1 — -4— > 3 and ||jc, || > \/§ -   □

Recall that y¿(e) was defined as the set

y,(e) = {«?€ y 0 </?,.(<?) <e},

where e is a positive constant such that e < Fj.. This set is a neighborhood in

y about dcfj.
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In the next lemma we will make use of the following technical definition. Let

Hj be the matrix valued function defined on y by

Hj(q,X)^(l-Oj)I

(31) "
+ £

7=0,7V'

ajV] -1)1 + ajq - qjVvJ + Xß> Xl](q)
(yjj + xßj

(*)
where Xi}. for i, j e {0, ... , M} , axe arbitrary continuous matrix valued

functions defined on y. Recall that at each q e y, S" denotes the unit

«-sphere in 7' y. Consider the subset of 7' y x F y defined by

^ = {(«,«)€5;x5;:«.fi>C},

for some constant 0 < c < 1. This set is a neighborhood of the diagonal in
Snq x Snq , that is,

&qD{(û,û):ûeSnq}.

The motivation for the following lemma becomes clear if one identifies the term

(*) in (31) as

Xß*       2Xij{q) = Vct, -      jfoft     2V/i,,
(y.ßj+XßjY  ,J J    (ydßj+XßjY

i.e., it is the component of Vct which vanishes onô^ . Realizing that all the

terms in (31) share ßt as a common factor, we factor /J; out and observe that

{,-a^Wr    °'^-    {'^W) as"^'

Since in the set ^(e) we have that /? > F for ;'/;', and yd> Ed, it seems

plausible that by making X sufficiently high, the matrix (1 — ojl will dominate

in (31), despite the fact that all the terms in (31) vanish as q —> dcfj, since

dcfj = ß~x(0). Note however that

Vct.--^-V/J,.   as q^ dcfj,

since dcfj is a level set of ct . We consider the contribution of this component

of Vct   for / ^ i in Lemma B.8 below.
7 J   '

Let R+ denote the positive real numbers.

Lemma B.7. There exists a continuous function A*:^(F/) —> R+, such that if

X > A* (a), then the bilinear form associated with H^q, X) is positive semidefi-

nite on 3¡q. That is, for all (u, v) e 3¡q,

ûT[Hj(q,X)]v >0.
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Moreover, equality is attained only when q e dcfj.

Proof. Using the definition of a¡ (6),

■-.,- y .

Substituting for (1 - ct() and expanding a., j ^ i, in (31) yields

Hj(q,X)

' \2ydßi+*ßi   jJh«Veßj+Vj   ' J   J

Ha(q,X)

where /J( . denotes the "omitted product" \~[^=0 k¿¡ ¡ ßk ■ We will show that

ûT[HiX (q, X)]v > 0   and   uT[Hi2(q, X)]v > 0   for all (û, v) e 3¡q.

First consider Hix,

ûT[HiX(q,X)]v

t/t)

since (û, v) e 3¡q . A sufficient condition for the positive definiteness of Hx

is

i_£¿_y    ^ |T|>0

2Veßi+^ßi    jjtj*Vdßj + Wj J

which is implied by the inequality

i_£«_f yLi   ,t,>0

or, equivalently, after multiplication by 2X(ydßt + Xßj ,

(32)       cX2-\2ßl   £   ^|T.|h-2   £   (yjjj,        |r,| > 0.
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Solving for X and using the fact that in ^(F;), /?■ < F; and /?   > F   for

j j¿ z, yields the sufficient condition

x>-c( £'    2^       £     IT;I
7=0, jlii i

+

\

M

7=0,7V ■/' / 7=0 ,&i

>=A'(*),

where we have used the fact that c < 1. We turn now to ///2 . Since

(33)
1 1

<
(ydßj + xß/- (Xßj

and (û, v) e 3¡q , we have that

1    JL    \uTX;:v\
uT[Hi2(q,X)\v>)r^J--4   y

2ydß,+Xß,     X2 }¿^     ß)

Thus, similarly to the previous multiplication, the positive definiteness of Hi2

is implied by the inequality

2     / m    \ùTXuv\\ _     m    \ûTXuv\

7=0, J*i ^7 7=0, M' ^7
2 -

Solving for X and using the fact that in ^(F(), ßj < F( and /J > F., j/í,

yields the sufficient condition

a>¿; *i £
M    ^uTX::v\

7=0,7V'
F

+

\
*,  t   ̂ \ + »J,  t   ̂

Finally, letting

7=0, j*i       ^j 7=0 J*/       ^j

> = a;2(î).

A*(c7) = max{A*1(tj), A*2(í7)}

completes the proof.   D

The following lemmas are used in Proposition 3.6.

Let (q - q¡) be a vector based at q e En. Consider the tangent space to y

at q,  J' y, as the orthogonal direct sum

TqSr = (q-qt)®(q-qtf.
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Each vector x e TqS* can be uniquely written as

x = xx + x2   such that xx e (q - qt)   and   x2e (q - q¡)  .

Recall that the "cone" ff was defined in equation (20) as the subset of 7' y,

9     \ "   11*2 II      Vßr(q-qi)\

First we sketch the motivation for this particular decompositoin of S" into

ff and its complement. Since hx depends linearly on the switches ct , its

Jacobian depends linearly on ct and Vct fox j e {0, ... , M) . Furthermore,

each switch ct is essentially a quotient of products of the various obstacle

functions /3   fox j e {0, ... , M} . Thus each Vct   can be written as

Vct = s-Vß- + ßv -,
7 ¡i     "i       "i   ji '

where sJt and v¡. axe, respectively, scalar and vector valued functions which

depend on all the other obstacle functions. Expanding Vct fox j e {0, ... , M)

and using equation (28) for Vza , the Jacobian of hx given in Lemma B.2 can

be written in the form

Dhx(q) = üjVjI - djVj(q^~q¡)(q^'qj)T + a¡(q - qt)Vßf

(34) M
+   J2   s]l(q-qjVßJ + ßjFi(q,X),

7=0,7V;

where a( and F( are, respectively, scalar and matrix valued functions which

depend on all the other obstacle functions. In order to prove the nonsingularity

of Dhx in the set near the z'th obstacle, y<(e) = ^"'[O, e] ny, the fact that

ker[J - (q^~q¿)(q^~qf] = (q - q,),

necessitates a special consideration of this subspace. In fact, we have proved in

Lemma B.6 that ff—a "cone" neighborhood about (q — q¡), is contained in the

positive cone of [(tf-^OV/?, ]. Thus it seems plausible that by shrinking the set

y<(e) toward dcfj i.e., by decreasing e and making ||Vct||, j± i, sufficiently

small by increasing X, the term aj[(q-qt)Vßt ] can be made dominant in (34).

This is made precise in the following lemma.

Lemma B.8. Let e(0 be a positive constant such that

V/3, • (q - qj > 0  for all q e ^(el0).

Given a valid arrangement of y, and a suitable JK, there exist two constants

6,-i < 6/0 and A,-,, such that for all e < e;1 and q e <5^(e), if X> An , then

xT[Dhx(q)]x > 0   for all x e ffq.
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Proof. Distinguishing the z'th obstacle terms in the formula for the Jacobian

of hx given in Lemma B.2 yields

(35)
Dhx(q) = (i/,-l)(g-g,.)Vgfr

Dhx(q,l)

M

+ (1 - a, + o,vt)I + a,(q - qt)VvJ +   £   {aj{uj - 1)1 + (q - qj){ajVuj + (Vj - l)V<7.)r}

_7=0, M'_

Dk2(q,X)

We will show that

x [Dhx (q, X)]x > 0   and   x [Dh2(q, X)]x > 0   for all x e V

this would imply that xT[Dhx(q)]x > 0. We begin with Dhx. Using equation

(29) to expand Vct¿ ,

(*)

xT[Dhl(q)]x = X-
(36) W, + tf,)2

yJiXTl(q - qi)VßJ]x-ßiXT[(q - <?,)V(yrf/J,)r]i:

= A—i-L(* ■ (q - ?,)){7d/i,(V/J, • x) - ßWyjß,) • x)}.

According to Lemma B.6, the term (*) is nonnegative in the set y^(el0). Fur-

thermore, according to Lemma 3.5 we can assume that J? satisfies the contain-

ment condition in J^(F(.),

Vj(q) < 1   for all q e S*,(E,).

Therefore, it follows from (36) that a sufficient condition for the positive semi-

definiteness of Dhx is

Iv^.yi^A-iiv^oii,

which is implied in turn by

u=oj&   n 7d

^JIÍ
since \\V(ydßi)\\<Y,U,i*ydßi,j\\Vßj\ + ßl\\Vyd\\.Kotethatxeffq implies
that V/J1-x 7^ 0, thus there is no problem with (37). Using the lower bound on

|V/?( • x\ given in Lemma B.6, and the identity ||Vyrf|| = 2^ffd, which follows

from equation (5), we obtain the stricter inequality,

l|V/3;ll |    2

\j=0J¥i     PJ
vrd   '
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or,

ßt*T
1 (q-qj-Vßj

\n     „II .V J1ZM .    2 y
\q-qi\\{Ej=o,m^ + vrd)

Thus, the condition,

(38)   e < min {
1 min^(   jite-^O-Vß}

n«Ky{lk-í/ll}(E;=o,j
{||v/?,ll} ,2V e¿0

=0,7*1 £y
_r± +

i)

f = «n >

guarantees the positive semidefiniteness of T>«, at each q e <9](e) and x e ffq,

We turn now to Dh2. Using Lemma B.3 to expand Via yields

Dh2(q,X)

= aiviI - g^;(g~:-"g,)(g~:-"'?,)r

Dh2i(q,X)

M

+ TTt(<? - ?-)V^ + (1 _ ^ +   X) {ff/«0 - 1)7 + {q- «M*vj + («0 - OV*/}.
+ P'_7=0 .M_(

ZM22(i,A)

We will show that

jcr[Z)«21 (i?, A)]Jc > 0   and   xT[Dh22(q, X)]x > 0   for all xeffq,

this would imply the positive definiteness of Dh2. First,

xT[Dh2x(q, X)]x = OjVjX[I - (q^q^(q^q>f\x

= aivi(l-((q^qi)-xj)>0.

Second, using equation (29), repeated here,

À
Vct, =

;    (yjj+xßj
ißjV^ßj-y.ßjVßj,

expand V(ydßj = ydßt ;V/?( + ßi'V(ydßi j , to emphasize the dependence on

Vßn

(Vj - 1)Vct; - (Vj - 1)     j]7dßlo^ßl

(39)
(raßj+ißj)

+ —=
*ßi

(ydßj+Wj
i(»j-mfijVWu)-Vifii,jWjh

X,M)
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Substituting for Vct   in Dh22 yields

Dh12(q,X)=j^-(q-q,)VßJ+(   £   (Vj - 1)      jj7f>       (q - 9j) | Vßj
1^pí \j=oj¥i        \ydPj + /-Pj) J

Dh22l(q,X)

M        ( ¡o

+ A-°,)I+     £     K(«A-l)/ + «X;(g-g;)Vy+ P> 2Xu(q)
j=oj¥i { (yí¡Pj + ¿Pj)

Z>A222(<M)

We will show that

je [D/z221(ç)]Jc > 0   and   x [£>/z222(tf, A)]x > 0   for all q e ff.

First,

(*)

a Pi   -t.
xl[Dh22x(q,X)]x = Y^-xl[(q-qi)Vßli]x

According to Lemma B.6, the term (*) is positive in ^(e;0), therefore the

positive definiteness of Dh22x is implied by the inequality,

CT.ZA
M

{Vj-V
T-i-Trlx-U-aM + XyJi   y   —J---^x-(q - qA >0,

obtained by factoring out the term (V/?( • x).  Writing x - xx + x2, where

xx e (q - q¡) and x2e (q — q¡)   , the last inequality is implied in turn by

W-lkill II? - 9/11 > hdßi(I + ßi)   ¿2    (v-s\2fí^ - M •
j=o,j¥i(ydPj + ¿Pj)

where we have used the identity \x-(q-q¡)\ = \(xx+x2)-(q-q¡)\ = \\xx\\ ||?-?/||.

According to Lemma B.6, at any point q e ^(e,0) and for any x e ff , we

have that ||x,|| > ||x,||2 > \ ; thus we obtain the stricter inequality

M Iza-II
(40) ^^=A-\\a_q\\>X(l+ßu   y   —J--^\\q-q,\

3ydßi+W     ' '/¿Wi+V/      '
where we have expanded ct; . Since,

T<77yn>
(ydßj+Xßj2- (Xßjj

the inequality (40) is implied by the stricter inequality,

l^Wq-qSX^^+ß^yßj + Xßj   ¿   !^-LÜ||9-9.||,
7=0, M'       ßj
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which is implied in turn by the two inequalities,

M

i, ll/j -n Wi "> It J- R \v.~R\vl\\q-qi\\X>(l+ßi)ydßl   ¿    JXÜ||fl-íy||,
j=0J¥i     ßj

and,
M Iza- Il

L\\q-qi\\>(l+ßi)ßi   y   n\\\q-q.l
j=0J¥i     Pj

It follows from the definition of ^(e) that for all e < F; we have that y^(e) c

S?j(Ej ; this, together with the fact that in ¿"¡(Ej , ßj < E¡ and ßj > Ej, yields

the sufficient condition,

(41)

and,

X>1(

™v     /„   fl   <sTM l7>/(^ + ')-l| )

™Vfo/*,-E;=o,M'   '   >E)i      )
1 + Eo--■-ri-or—- à A

(42)        ßj < min {
min^oK-ll«-?,-!

3(1+F,.)
maxv^ \^7=0,M       (yTf       J

A

> = £/l .

where we expanded |i>-1| ||<7-?-|| = \p ■(/?, + l)-l|. Note that by construction

(Definition 7) za is positive on y, and

miní^llí? - (7;||} = min{/,.(l + /J.^))} > p..

We turn now to D«222. Identifying Dh222 with 77 (c?, A) from Lemma B.7,

via

û — v — x   and   c = x • x = 1,

and letting

(43) An=J™*{A*(?)},

where û, v , c and A* are defined in this lemma; constitutes a guarantee that

for all q e S",(Et), if X > A",, then

xT[Dh222(q, X)]x > 0   for all xeffq.

In particular, since ^(e;1) c ^(F(.), we conclude that if the parameter X is

chosen by

A>max{A^, A",},

then for all e < en and q e y^(e),

xT[Dhx(q)]x > 0   for all xeffq.   U
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Consider the complementary case: at each tangent space, the test directions

1

belong to the "cone" Sq - ffq , in which

(44) ||x2|| >2ll>^[(i-^-V/J;.]||x1||.

The "cone" S" - ffq is a neighborhood about the (« - l)-dimensional subspace

(q - qj) . The intuitive motivation for the next lemma becomes clear from

the following argument.   Consider the "symmetric part" of Dhx, defined as

(Dhj)s = \(Dhx + Dhx). Using (34), its restriction to the subspace (q - qt)L

(translated to 7' y ) is of the form

M

(45)        [Dhx(q)]s\(q-q!f = viI+   YJ   Sji[(q - qj)VßJ]s + ß^q, X)s.
7=0,7*1

If [Dhx]s > 0 on (q - qt)L, the [Dhx]x ^ 0 for test directions x €

(q ~ q,)1' ■ Thus, by choosing e sufficiently small, the set y^(e) = ßjx[0, e]

can be shrinked about dcfj so that the matrix vtI, which is positive definite

by construction, becomes dominant in (45). This idea is extended to the cone

Sq -ff in the following lemma.

Lemma B.9. Let e/0 be a positive constant such that

Vßj ■ (q - qj) > 0   for all q e S>(en).

Given a valid arrangement of Sf, and a suitable JÏ, there exist two constants,

ej2 < ei0 and Ai2, such that for all e < e;2 and q e S?¡(e), if X> Aj2, then

x2[Dhx(q)]x > 0   for all xeSq-ffq,

where x = xx + x2 such that xxe (q - q¡) and x2e (q - q¡)   .

Proof. First we establish a lower bound on ||x2||,

1 = IKII2 + II*/ < ( 1 + i—^l    ^ , ) \\x2\\2,
V    Wiq-qo-vßj]2)

which implies that

Evaluating Dhx(q) (Lemma B.2) along x , and grouping together all the terms

in [Dhx(q)]x which lie in (q - qj , yields

[Dhx(q)x = (1 - o¡ + OfVf)xx + {(Vf - l)(Vff, • x) + <t,(V2a • x))(q - q¡)
-„-

M

+ (1 - Of + OfV¡)x2 +    Yl   iaj(vj -1)1+ (9- Qj^OjVvj + (Vj - l)VOj)T}x.

>'2
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Since y, 6 (q - q¡), we have that yx • x2 - 0, and as a consequence,

(»)

x2[Dh(q)]x = x2-y2 = (l- ct,. + OjVJ ||x2||

M

+   y   xT2{a](v]-l)I + (q-qj(aJVvj + (v]-l)VGJT}x.

7=0,7*'

According to the containment condition,

Vj(q)<l   for all qe^(Ej,

thus, the expression (*) can be bounded from below by

(47) CT,.ZA + (1 - ct,.) = CT,.(ZA - 1) + 1 > (Vj - 1) + 1 = Vj,

since, by definition, 0 < ct. < 1. Using (39) to expand the jth switch gradient,

Vct , yields

M v -l
x¡lDh(q)}x > \Vf\\x2\\ + Xydßi(Vßi ■ x)   £ ; 2x2 ■ (q - q})

7=0, jy (VdPj + Wj)

Kx(q ,X)

(48) r ^
i                 M         Í                                                    In

+ 2"zWI+  E *ï  ojlxj - w + °M - «F»] + (v -g jlR M* *•
~_7=0,7V I_ iYdßj+*ßj) J

K2(q,X)

We will show that

Kx(q,X)>0   and   K2(q,X)>0   fox all x e Sq -ffq.

First consider zc,. Since

1 1
<

(ydßj+Wj)2~(Wjf
the positive definiteness of kx is implied by the inequality

1 1    - Ä    k,-l|
2^1^11-X^,|V/i,-x|    2    ifTTT^ - ^W > °-

7=0,7*/    ^*V

Since |V/S;. • x| < | V/J, • xx\ + |V/J,. • x2| and |V/J, • x,| = ||x, ||V/J, • (tf^fl,.), we
obtain the stricter inequality

kii^ii-jíiiXiiiv^ífl^o+ii^iiiiv^ii}^ y h-^-i\q-q.\\>0.
7=0,7*'    Wj>

Using (44) to replace ||x,|| by its upper bound in S" - ff , yields the stricter

inequality

^H^,-||V/J,||(/2+l)y^.   y    l^-^\\q-qj\\>0.
I 7=0,7*'     \PJ> I
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Thus we obtain the following sufficient condition for zc, > 0,■i

—_,, r^M ll/,-
max.r{^íIIV^IIEÍo.MJ^lk-M}A   ,

(49)       X > 2( 1 + V2)-i--£-j-p^-¿ 4 A   ,

where we have used the fact that y(e(0) C ^(F(), since ej0 < E.. Note that

according to its definition, za is positive on y, in fact,

■ r 1 Í   l + ßAq)) 1
min {za} = min < p¡-r-'—¡r- } > o,—-¡^-^ > 0,
-s(Ei2)v !l     ^(E,2)\H! \\q-qj\\ j     Fímin0^{||í7-<7/l|}

since q¡ &d<f¡. We turn now to the term zc2 in (48). Expanding ct   for j'■£ i,

and using (33) yields

1 M (        1

7=0,7*' ^7+^7

+ —=^-2^//(^)U
(Ydfij + Wj)2   ,J      J

which implies that

1

2K2(fl,A) > -"/ll^l

Using (46) to replace ||x2|| by its lower bound from equation (44) obtains the

stricter inequality,

\vj±=[(q—qi).Vßj]

^T  E  4-(^-11 +II«-«/Unveil+ ¿-11x^)11},
"■ 7=0,7*; ^7 1 o j

which is implied in turn by the inequalities,

/S/<^[(^7/)-V£.],

and

E%0,j¥i j" ii-l-7 - »I + *H* - M  11*0« + ¿?H^(«)ü}
>2yl-í-^-—-^-.

"<

Thus, we obtain as a sufficient condition for zc2 > 0,

(50) ^<{^ní(ff^ff,)-v3í}.«»}=«a,
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and,

max? {EtIowv, Tj (h - M + Ik - 9,11 W»j\\ + %\\x~ij(q)\\
A   tll

a-
(51)        A>2^3-l    <    -    j \  <     -     '->_-1-:-¿±tK

mm^(Ei)(vA

Finally, letting

A/2 = max{4, X"2},

completes the proof.   D

References

1. S. Arimoto and F. Miyazaki, Asymptotic stability of feedback controls for robot manipulators,

(Proc. 1st IFAC Sympos. on Robot Control), Barcelona, Spain, 1985.

2. M. Berger, Geometry. I, Springer-Verlag, New York, 1980.

3. J. F. Canny, The complexity of robot motion planning, Ph.D. dissertation, Dept. of Electrical

Engineering and Computer Science, M.I.T., May 1987.

4. M. W. Hirsch, Differential topology, Springer-Verlag, New York, 1976.

5. N. Hogan, Impedance control: An approach to manipulation, ASME J. Dynamics Systems,

Measurement, and Control 107 (1985), 1-7.

6. W. Hurewicz and H. Wallman, Dimension theory, Princeton Univ. Press, Princeton, N.J.,

1962.

7. J. L. Kelley, General topology, Springer-Verlag, New York, 1985.

8. O. Khatib, Real time obstacle avoidance for manipulators and mobile robots, Internat. J.

Robotics Res. 5 (1986), 90-99.

9. D. E. Koditschek, A strict global lyapunov function for mechanical systems, Tech. Rep. 8707,

Center for Systems Science, Yale Univ., November 1987.

10. _, Robot control systems, (Stuart Shapiro, ed.), Encyclopedia of Artificial Intelligence,

Wiley, 1987, pp. 902-923.

11. D. E. Koditschek and E. Rimon, Exact robot navigation using cost functions: The case of

distinct spherical boundaries in En , Tech. Rep. 8803, Center for Systems Science, Yale

Univ., January 1988.

12. _, Robot navigation functions on manifolds with boundary, Adv. in Appl. Math, (to
appear).

13. E. L. Lima, The Jordan-Brouwer separation theorem for smooth hypersurfaces. Amer. Math.

Monthly 71 (2) (1988), 39-42.

14. W. S. Massey, Introduction to algebraic topology, Springer-Verlag, New York, 1972.

15. _, Singular homology theory, Springer-Verlag, New York, 1980.

16. J. W. Milnor, Topology from the differentiate viewpoint, The University Press of Virginia,

Charlottesville, Va., 1965.

17. M. Morse, The existence of polar non-degenerate functions on differentiable manifolds, Ann.

of Math. (2) 71 (1960), 352-383.

18. V. V. Pavlov and A. N. Voronin, The method of potential functions for coding constraints

of the external space in an intelligent mobile robot, Soviet Automat. Control 17 (1984).

19. E. Rimon and D. E. Koditschek, The construction of diffeomorphisms for exact robot navi-

gation on star worlds, Tech. Rep. 8809, Center for Systems Science, Yale Univ., July 1988.

20. J. T. Schwartz and M. Sharir, On the "piano movers" problem. II. general techniques for

computing topological properties of real algebraic manifolds, Adv. in Appl. Math. 4 ( 1983),

298-351.

21. I. M. Singer and J. A. Thorpe, Lecture notes on elementary topology and geometry, Springer-

Verlag, New York, 1976.



116 ELON RIMON AND D. E. KODITSCHEK

22. S. Smale, On gradient dynamical systems, Ann. of Math. (2) 74 (1961), 199-206.

23. John A. Thorpe, Elementary topics in differential geometry, Springer-Verlag, New York,

1979.

24. E. Zeidler, Nonlinear functional analysis and its applications. I, Springer-Verlag, New York,

1984.

Department of Electrical Engineering, Center for Systems Science, Yale University,

New Haven, Connecticut 06520-1968

Current address, Elon Rimon: Robotics Laboratory, Computer-Science Department, Stanford

University, Stanford, California 94305


