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SOLVING ORDINARY DIFFERENTIAL EQUATIONS
IN TERMS OF SERIES WITH REAL EXPONENTS

D. YU. GRIGOR'EV AND M. F. SINGER

Abstract. We generalize the Newton polygon procedure for algebraic equa-

tions to generate solutions of polynomial differential equations of the form

23in aix wriere the a¡ are complex numbers and the /?( are real numbers

with ß0 > ßx > ■■• . Using the differential version of the Newton polygon

process, we show that any such a series solution is finitely determined and show

how one can enumerate all such solutions of a given polynomial differential

equation. We also show that the question of deciding if a system of polynomial

differential equations has such a power series solution is undecidable.

When one looks for solutions of differential equations, one is forced to deal

with the question: what form can these solutions have? The first natural class of

solutions is the set of formal power series. An algorithm to determine whether a

system of differential polynomial equations with coefficients in C(x) has such a

solution is given in [DL84]. Even if we only consider algebraic equations, such

solutions are not enough; one must consider fractional power series solutions

(Puiseux series). In this paper we consider solutions of differential equations

of the form ¿ZZoaixß' where ai G c and ßi e R with ßo > ß\ > '" • In S1»

we show (Theorem 1.1) that if such a series satisfies a polynomial differential

equation, then the ßi can have no finite limit point. In particular Y^LQx ''

satisfies no polynomial differential equation. This motivates us to introduce the

set
r oo

Q = \])2aixß'\ai £C, ßj£R, ß0> ßx> ■■■ and limjS(. = -oo

We will show that Q is a field that we call the field of generalized power se-

ries. In §2, we generalize the Newton polygon procedure for algebraic equations

to generate solutions of differential equations. In §3, we show that after a fi-

nite number of steps the differential version of the Newton polygon process

stabilizes; that is, after generating a finite number of terms of a generalized

power series we will reach a point where the remaining terms are uniquely de-

termined. In §4, we use this to enumerate, for a given differential polynomial
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P(x, y, y', ... , y^n'), all generalized power series solutions of P = 0. We

must be careful when we make such a claim since the equation y (xy ¡y)' — 0

has solutions y — cxa for arbitrary c and a, showing that such an equa-

tion can have an uncountable number of solutions (y = 0 also gives such

an example). Our enumeration produces a list {cpk} of formulas in the first

order language of real closed fields, with each <pk having free real variables

";* > ̂ ¡k > ßik ' 0 < i < nk. Given aik, oiik , ßik satisfying the formula cpk ,

we show that J2"i0(etik + V^luik)xßik is the initial segment of a uniquely de-

termined generalized power series y = Y^o^ik + ^~^ik>x k > Provided that

lim.^^ ßik = -oo. If the latter holds, then this generalized power series is a

solution of P = 0. The next terms of the series are determined by a simple

recursion formula (cf. Theorem 4.1 of §4). In §5, we show that the question

of deciding if a system of polynomial differential equations has a generalized

power series solution is undecidable and discuss some related matters.

1. THE FIELD OF GENERALIZED POWER SERIES

Before we turn to generalized power series, we will consider series of the form

T°loaixß' - where a¡ £ C, /?, e K, and ß0 > ßx > ••• but with no further

restriction made on the ßt. Let C((x-1)) be the field of formal Laurent series

in x~x. A differential polynomial equation [RI66] with coefficients in C((x~x))

is an equation of the form 0 = F(y ,y',..., y(n)) = £; c¡y( o) • • -y( m), where

I = (kQ, ... , km), n > kQ> ■■■ >km, c¡ £ C((x~x )), and distinct / may have

different lengths m + 1. We shall prove the following.

Theorem 1.1. If y = Ea,^' with ai £ C, ßi £ R, ß0 > ßx> ■■■ and limj3;. >
-oo, then y satisfies no differential polynomial equation with coefficients in

C((x-1)).

We will show, in the corollary to Lemma 1.2, that substituting y = Y,a¡x

into such an equation makes sense (because only a finite number of terms in y

contribute to any term of the form ex    in the expansion of F(y, ... , y(n') in

powers of x ). Our proof of the above theorem relies on the following lemmas

and proposition.

Lemma 1.2. Let ßt £R, i = 0, I, ... , where ß0> ßx > and lim^^ ßi =

0. Then for any integer m > 0 and y £R, y ^ 0, there exists an e > 0

such that if

y- E ßt,
0<j<m

then there exists an L, 0 < L < m , such that y — IZo<j<l ßi ■

Proof. We proceed by induction on m . If m — 0, we can find an e = e 0 > 0

such that in the e-neighorhood of y there are no elements /?. except possibly

< £
y,m ■ 0 < 'o < h < < i.
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y itself. Assume the result is true for m. Let e' = 2(m+i) . There exists a j0

such that ßj < e' for j > j0 . We now distinguish between two cases.

Case 1. y ^ ßj for j = 0, ... , j0. In this case we apply the induction hypoth-

esis to y-ßr.,...,y-ßj   and produce en, ... , e, , satisfying the conclusion
u JO V Jq

of the lemma with respect to m . Let

ey>w+1=min{e',e0,...,e;o}.

If   I7 - £o<;<m+lA-|   <   £y,m+l>  then   ßi0   *  £' ■    Indeed if   ßi0   <  £''  then

£o<;<w+i^, < l^l/2' so ly-Eo<,<m+1Ayl > lyl/2 > «' > e- Therefore

i'o ̂  io • Since \y - ßi - Ei</<m+i ßt\ < e < e, , we have that there exists an

L, l<L<m+l, such that y-ß.^ = Ei<;<¿ ßi ■ Therefore, y = ¿Z0<j<l ßi ■

Case 2. Assume that y = ßk for some 0 < k < j0. For all j' ^ k, 0 < j <

j0, apply the induction hypothesis to y - ßj and produce e¡ satisfying the

conclusion of the lemma with respect to m . Let

er,m+i=min{e'>e0'--->efc+i>--->e7o}-

Assume that \y - £0<J<m+1 ß, \ < e7>m+i ■ If i0 = k , then we let L = 0 and

the conclusion of the lemma is satisfied. If /0 < j0 and /0 ^ k, then we have

\y - /?, - >~)i<-«rmJ.t ßi I < 6,- and we can argue as before. As in the first case,

we show that i0 > j0 cannot happen.

In our application later of Lemma 1.2 we will assume w.l.o.g. that for any

y ■£ 0, the sequence e   m decreases as m increases.

Corollary. Let ßi be a decreasing sequence of real numbers. For any y and m,

there exist only a finite number of solutions /?,,...,/?,    to y = ß- -\-(- ß.  .
'0 'm 'o 'm

Proof. If lim/?( = -oo, the result is obvious. Assume that lim^ = ß > -oo.

Replace each ßi with ß-ß and y with y-(m+l)ß . Note, if y-(m+l)ß = 0,

we never have y - /?, +■•■ + /?,• . We therefore can assume lim /?, = 0 and

y ^ 0. Let A be an integer such that ßi < ey m/(m + 1) for i > N and e m

as in Lemma 1.2. If y = ß,■ -\-1- ß,  , L < ■ ■ ■ < i   , and supposing im> N,
'0 'm u m m

we shall rewrite this as y = £, </v ßi + E, >jv ßi • Therefore \y - E, </v ßi\ <

e , so Lemma 1.2 implies y = E ßi for some initial subsum of E, <# ßi •

This contradiction shows that im < N and finishes the proof of the corollary.

This corollary shows that only a finite number of terms of y = ¿~2a¡xa'

contribute to any term of the form cr in the expansion of F'y, ... , y(n)) in

powers of x.
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Lemma 1.3. Let ßi be as in Lemma 1.2 and assume that 1 > ß0. The following

is true:  VjQ3sxVjx > sx3s2 > sxVj2 >s2---3sm> sm_¡ijm > sm (if ßJo + --- +

ßjm = ßj> + •■• + ßfi +q, where q £ 1, j0 < jx < ■■■ < jm, j'0 < ■■■ < j',,

l < m, then l = m, j¡= ft for 0 < i < m, and q = 0).

Proof. Note that since ßi < 1 for all i, we must have \q\ < 2m + 1. For any

such q apply the previous lemma in ß. - q and produce e(,9'   . (Note that

/?, - q ^ 0.) Let 5,  be chosen so that /?  < e^L/(m +1) for s > s, . We
JQ ¡- -J JQ ) "* 1

now proceed by induction on m. If m - 0, then / = 0 so /?,  = ß., + q .
Jo Jo

Since /?,; < 1,  q — 0.   Assume m > 0.   By the induction hypothesis, for

any ;*, > sx the following is true: 3s2 > sxyj2 > s2---3sm > sm_xVjm > sm

(if ßjt +■■■ + ßjm = ßf, + ■■■ + ßj,, + q  for q £ Z,  ;, < j2 <        < jm,

j" <•■•<//, l < tn, then l = m and ji = j" for 1 < i < m and q = 0).

Letting y = ßk-q, we have |y - (ßj, + ■■■ + ß},)\ = \ßh + •■ ■ + ßj < efm .
Therefore Lemma 1.2 implies that y = /?,/ H-+ ß,<  for 0 < k < I. Note

J0 Jk

that we are using the remark made after Lemma 1.2 concerning monotonicity

of the e . We therefore have ß, -\-h /?,■   = ß?   H-h ß? ; so by induction
Jl Jm Jk+l Jl

I -k = m (so k = 0) and ;', = j'x, ... , jm = j'm . Furthermore ß^ = ß^ + q ,

so q = 0.

In the next proposition we need the following definitions. By the degree of the

term c/y( o).y( m , where k0 > ■ ■ ■ > km in F we mean the number m+l.

The degree of F is the maximum of the degrees of its terms. Given two terms

tx = Cj/^ ■ ■ ■ yikJ ,k0>--->km,andt2 = c,/^ ■ ■ ■ y{k'>}, k'0 > ■ ■ ■ > k], we

say tx is higher than t2 if m > j or m - j and (k0, ... , km) > (k'0, ... , k'm)

in the lexicographical ordering.

Proposition 1.4. // y = E^-*^' witn ^ € R, b¡ £C, 1 > ß0 > ßx > ■ ■ ■ and

lim/?,- = 0, then y satisfies no differential polynomial equation over C((x~ )).

Proof. Assume not and let F(y, ... , y ) = 0. Let m be the degree of

F . Lemma 1.3 implies that there are in fact functions sx(j0), s2(j0, jx), ... ,

SmUo> ••■ ' Jm-\)   SUCn that if   h   ̂   SiUo> ■■■ ' Ji-l)   f0r   '  =   l> ••• ' m   and

ßjo + --- + ßjm = ßjo + --- + ßJ: + <i for i€Z' JoZ-<jm, h<■■■</,,

I < m, then I = m and j¡ = )\ for i = 0, ... , m. Denote by S? the set of

(m + l)-tuples (j0, ... , jm) such that jQ < • • • < jm and ;,. > sfj0,... ,j¡_x)

for i = I, ... , m . Let c/ty( o) • • • "( m> be the highest term occurring in F

where / = (k0,..., km) and let c1 = ¿Zt<, c^x' with cr(/) ̂ 0.

Consider (;0, ... , jm) £ 5? and let us determine the coefficients of powers

of x in F(y, ... , y ). Any power of x in this expansion is of the form

x ;ó+ + 'Í ° ' with j'0 < ■ ■ ■ < j¡, I < m and some i'eZ (this comes

from a term c^y^ ■ • -p(/C/)). Lemma 1.3 implies that if

ß, +-+ß,   -k„-k+t ßj+'-'+ßi-k^-k¡+t'
X   JO Im        ° m z= X     ° 'l
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then I = m, /?.=/?.,, i - 0, ... , m, and kQ + • • • + km - t = k'0-\-+

k'm-t'. Therefore the coefficient of xß'o+"'+ßj»-~ko      km+t' in the expansion of

F(y,...,y{n)) is

<v-y s «y e (£)*••■(£■)«:'

where the first sum is over all (k'0, ... , k'm) such that k'0 + ■ ■ ■ + k'm - t' -

ko+- ■ ■+km-ti and the second sum is over all (h0,...,hm) = (ja{0),... , ja{m))

where a is a permutation of (0, ... , m) and

p(z0,...,zm)= £ cp e *b,-*i.,(5,)-(5-)

where the first sum is as before and the second is over all permutations of

(0, ... , m). Here

ZA _ Z;.(Z,-l).-.(Z;-fc.+ l)

Note P(Z0, ... , Zm) e C[Z0, ... , Zm]. Order the monomials in ZQ, ... , Zm

first by degree and then, for fixed degree, lexicographically. If (i0, ... , im) is

a permutation of (0, ... , m), then Zn° • • • Z m is not less than Z• ° • • • Z•m .
um l0 lm

Also, for any term c, y ° •••y( m) (where Äq > ••• > fe^,) occurring in F

such that (k'0, ... , k'm) ̂  (k0, ... , km) ,we have that Z0° • • • Zmm is larger than
Ir' Í-'

Z0° • • • Zmm , since (fc0, ... , km) was chosen so that (k0, ... , km)>(k'0, ... , k' )

in the lexicographic ordering. These two facts imply that the highest term in

P(Z0, ... , Zm) is lc) 'Z0° ■ ■ ■ Zmm , where / is the number of permutations of

(0, ... , m), leaving (k0, ... , km) fixed. Therefore, P does not vanish identi-

cally. For some j0, P(ßj , Zx, ... , Zm) does not vanish identically. Therefore

for some J, > sx(j0), P(ßj , ßj ,Z2, ... , Zm) does not vanish identically.

Continuing in this way, we have for some j0, J, > sx(jQ), ... , jm >

smGo> ••■ > 7m-i)> mat P(ßj , ... , ßj ) ¿ 0. This means that the coefficient

of xß~'o+'"+ß!m~ °~ "~ m+i/ is not zero in the expansion of F'y, ... , y^). This

contradiction completes the proof of the proposition.

Proof of Theorem 1.1. We assume the theorem is false and derive a contradic-

tion.  Let lima   = a > -oo and let jQ be an integer such that a   < a + 1

for j > j0 . Let z — (y - E,<, a-xa,)x~a . The term z satisfies a differential

polynomial equation with coefficients in the differential field [RI50]

F = C((x~x))(xa°, ... ,xa*,xa)

= C((x-x))(xa°,...,xa>o,xa).
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Therefore, F(z, z , z", ...) = F(z) has finite transcendence degree over F.

Since F has finite transcendence degree over C((x~ )), F(z) has finite tran-

scendence degree over C((x~ )). This implies that for some A > 0, z, z , ... ,

z^' are algebraically dependent over C((x-1)). Therefore z satisfies a polyno-

mial differential equation over C((x~ )). If z = E btx ', we have I > ß0> ■■■

and limy?, = 0. Now apply Proposition 1.4 to reach a contradiction and prove

the theorem.

Theorem 1.1 implies that if we are looking for series solutions E a¡x °f

polynomial differential equations, we can assume that lim/?, = -oo . We there-

fore make the following definition. A generalized power series is a formal series

of the following form: y - E^o aixß' wnere a,- e C, /?,- e R, ß0> ßx> ■•■ ,

and lim/?,. = -oo . (Note that y may consist of a finite number of terms, in

which case, there is an A such that a, = 0 for / > A.) We denote by Q the

set of generalized power series. To prove that Q is a field we need the following

obvious

Lemma 1.5. If ß0 > ßx > ■■■ , ß'0 > ß\ > ■ ■ ■ and lim/?, = lim/?,' = -oo,

then for any M £ R there are at most affinité number of pairs (i, j) such that

ßx + ß\>M.

Proof. Assume that /?, + ß'- > M for some i, j . We then have ß0 + /?' > M

and so /?' > Af - /?0. This can only be satisfied for a finite number of j.

Similarly, there are only a finite number of possibilities for /. This proves the

lemma.

Corollary 1. // /#> > ß[X) >■■■, ß{2) > ß{2) >■■■, ß(Qm)> ß[m) >--,and

lim,^^ /?,. = -oo for each 1 < j < m, then for any M £ R there are at most

a finite number of m-tuples ix, ... , i    such that ßx -\-h /?     > M.
1 m

Proof. Proceed by induction of m , taking into account that it is equivalent to

the following statement:

lim        (/f + .-. + ̂ -V-oo,
'l—*00,..., lm—»OO 1 m

and for m - 2 this was proved in Lemma 1.5.

Corollary 2.  Q is a differential field.

Proof. Lemma 1.5 implies that the product of two elements of Q belongs to

Q. Moreover,

,>o \/>iQo /
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As mentioned above, each (E,->i*       Y aes m Œ.   Furthermore, for any

M, (Ej>i x ~ Y can contribute to the coefficient of any power x ', where

Mx> M only if j < (M - ß0)/(ßx - ßQ). Thus the exponents in the expansion

of y~x have no finite limit points, proving the corollary.

We shall see that generalized power series appear naturally when one tries

to apply a process similar to the classical (i.e. dealing with algebraic functions)

Newton polygon process to generating a formal solution of a system of ordinary

differential equations. Generalized power series have occurred in other contexts

as well. The field 3 of series of the form E^o aixi > wnere ai, vi £ R,

uQ < vx < • ■ • , and lim vi = oo, was studied by Levi-Civita [LC54] in the

nineteenth century, by Ostrowski [OS35] and Mac Lane [MA39] in the 1930's,

and more recently by Laugwitz [LA68], Robinson [R073], and Lightstone and

Robinson [LR75]. Ostrowski studied this field as part of a general investigation

of valuation theory. Mac Lane showed that when we let the a, be in C, this

field is algebraically closed. The other authors studied S? as a nonarchimedian

field (ordered with x as an infinitesimal) with the idea of doing analysis over

this field. Clearly 3* (when ai £ C) and Q are isomorphic. We have chosen

to work with Q because of its relation to asymptotic expansions of a function

at oo.

In our generalization of the Newton polygon process, we will need the fol-

lowing technical lemma.

Lemma 1.6. If y = E,>iQ,;c^ e ^ and pix» Y, ... , y(m)) is a differential

polynomial such that 0 ^ P(y) = ax + terms with exponents smaller than ß,

a ^ 0, then for suitable N, P('52x<¡<Na¡x ') = ax + terms with exponents

smaller than ß.

Proof. Consider any term akx °T( ■' • • • Y^s' of the polynomial P, where ak £

C. If some term from the expansion of x "y  l ■ ■ ■ y s   makes a contribution

to axß , then /? = kQ + /?,. - kx H-h /?,. - ks for some /,,..., is. Corollary

1 of Lemma 1.5 implies that there are only a finite number of such ix, ... , is.

The lemma is proved.

2. Differential version of the Newton polygon process

Let the differential polynomial P £<Q[x, Y, Y{X), ... , Y{n)] be given. Write

p = p0 + ■ ■ ■ + PN , where P] = J2K "a:^1' " ' ' ^^ is tne homogeneous part

of P of degree ;' with respect to the indeterminants Y, T(1), ... , y(m), K -

(kx, ... , kj) is a multi-index with kx > k2 > ■ ■ ■ > kj and aK £ Q[x]. The

Newton polygon process that we will now describe produces a generalized power

series y. If y £ Cl, then this series will furthermore be a solution of P - 0.

Assume that some initial segment
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YK

of y has already been produced where a,, a,, /?, e R (we do not exclude the

possibility that y0 = 0). Using Taylor's formula, we define P^°\Y) as

K Y=y0

where K = (kx, ... , kß is a multi-index, YK = Y(k¿ ■ ■ ■ Y(k¡], dKP/dYK =

QJp/QY^ .. .dY(k'], and |A"|! = ix\ ■ ■ ■ i¡\, where i, is the largest t such that

kx = k2 = ■ ■ ■ = kt, i2 is the largest t such that k¡ +x = k¡ +2 = ■ ■ ■ — k¡  t, etc.

We also define P$o) as

K     ' dYK ,
Y=y0

£ Q[äx,..., äs, 5,,..., cfs, ßx,..., ßs, V=ï][x ,xßi,..., xßs].

We define the weight wK of the term pWyW as deg^P^-ik,-k¿. Let

w"' = maxA:=(A. k)wK ■ ̂ e now denne the Newton polygon. For every K

we mark the point (wK, j) on (x, y) plane. The convex hull of these points

and (-oo, 0) is denoted by & and is called the Newton polygon of the

equation P = 0 corresponding to the initial segment y0 . If n = degy y(m) P

is the degree of P, then &    is situated between the two lines y — 0 and
"o

y = n . Furthermore, note that we obtain the same convex hull if we take the

points (w(l', j). For any edge e of the Newton polygon, we call its slope the

number -(/, - i2)/(jx - j2) for any pair of distinct points (/',,;',), (i2, j2) £ e

(note that this is the negative inverse of the usual geometric slope).

We now show how, using the Newton polygon, we can choose the next term

(57 + Üv7-!)-*    in the expansion of y = y0 + (a + ifv/-T)x   -I-. Let v„ be a

vertex of & such that the line L„ with slope ß passing through v„ touches

¿P either just at v» or contains an edge e of 9° descending from v„. We

call Vg available for the exponent ß . We now fix a certain available vertex v

of ^,   (and refer to it as the active vertex) such that /?(1) < ß   where /?(1) is
"o J

the slope of the edge descending from v . Denote by / the ordinate of v .

For any 0 < j < n , we define the leading polynomial

fj £ Q[5,,... ,äs,azx,...,azs, ßx,... , ßs, y/-ï, ß]

as

f, = Y.mk

where the sum ranges over all K = (kx, ... , k,) such that the weight wK =

d^x^\Y=yo-kx-kj = wu) and (ß)^ß(ß-l)...(ß-ki + l)/ki\. We
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also define the characteristic polynomial

hß £ Q[äx , ... , äs , I, , ... , Es, ßx , ... , ßs , V^T, a, ß]

as

*, = 5>%
where the sum ranges over all j such that (u;, j) belongs to L».

The Newton polygon procedure then has to select the next term axß in such

a way that A »(a) = 0. For the same reason as in the classical Newton poly-

gon procedure for expanding an algebraic function as a Puiseux series, A «(a)

equals the coefficient of the highest term in the expansion of P(yQ + ax ) with

indeterminate a and ß < ßs. We now show how to select a and /?.

Two different cases can occur. In the first case f¡ = 0 as a polynomial in ß .

Corresponding to this case are two possibilities. For the first possibility we can

take any /? such that ßs, ß > ß > ß , where /?( is the slope of the edge

of the polygon &   whose lower endpoint is v , and an arbitrary a ^ 0 for this

choice of /?. The second possibility for this case is to take /? = ß and a ^ 0

such that hß(a) = 0, provided that A„ has nonzero roots and /?(1) ̂  -oo.

In the second case, f¡^0 and either we take ß to be a root of f(ß) = 0

such that ßs, /?(2) > ß > ßw , provided that such a /? exists, and an arbitrary

a ^ 0, or we take /? = /?(1) and a ¿ 0 being a root of A „(a) = 0, provided

such an a exists. If the Newton process generates a sequence of /?,'s such that

limy?, = -oo the formula 1 shows that the corresponding series is a solution of

P(y) = 0. Note that different choices (at any stage) of an active vertex v for

ß or a will lead to all possible generalized series solutions. We illustrate this

Newton polygon process with the following

Example. Let P = xY"Y + Y'Y - xY" - Y' - x(Y')2 = 0. Figure 1 shows the

Newton polygon for this equation. We start by letting y0 = 0. This puts no

restrictions on /? and there are two available vertices: (-1,2) and (-1, 1).

If we let (-1,2) be the active vertex, then f2 = 0, /, = -/? , and f0 — 0.

Since f2 = 0, we can take ß such that oo > /? > 0 and a arbitrary or we

can let ß = ßy ' = 0 and any a satisfying A «(a) = -aß = -a(0) — 0, i.e.

a arbitrary. If we let (-1,1) be the active vertex, then fx = -ß ^0 and

f0 = 0. Since ß must satisfy 0 > ß and a must satisfy hß(a)--ß a = 0,

we see that letting (-1, 1) be an active vertex yields no possible ß . Therefore,

we have determined that y0 — aQx °, with ß0> 0 and a0 arbitrary or y0 = a0

with q0 arbitrary (note that y = 0 is a solution of P(y) = 0). We shall now

attempt to extend each of these initial segments by adding a term axß .

Let y0 = a0 and replace y by q0 + Y in P(Y). We obtain P(aQ + Y) =

(a0-l)xY" + (a0-l)Y' + xY"Y + Y'Y-x(Y')2. The Newton polygon for this

is shown in Figure 1 (if a0 ^ 1) and in Figure 2 (if a0 = 1). Let us assume
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Figure 1

■*    4-2

Figure 2

that q0 ,¿ 1. Since ßQ - 0, we must have ß < 0. This implies that the only

available vertex is (-1, 1). We have fx = (aQ- l)ß and f0 = 0. Therefore

hß(a) = (q0 - l)ß2a. Since a0 ^ 0 and ß < 0, this has no nonzero root a.

Now assume q0 = 1. Referring to Figure 2, we see that (-1,2) is an available

vertex. We have f2 = 0, so we can select any ß < 0 and any a. Therefore,

for y0 = a0 we can extend y0 to yx = a0 + axß with ß < 0 only if aQ = 1

in which case yx = I + axß where a and /? are arbitrary with ß < 0. Note

that y0 = a0 is a solution of P(y) = 0.

We now let y0 = a0xßo, ß0> 0, and try to extend this to yx = a0xßo+axß ,

ßa > ß . We have

P(y0 + Y) = P(aQxß° + Y)
02    ßn-\   ,   , ßn+\

-a0ßQxPo     + (a0xPo x)Y"

+ (a^0 - 1

+ Y"Y + YY' -x(

2a0ß0xf'°)Y +(a0ß,x

'-,2

2   Ä,-L

Figure 3 shows the Newton polygon for this differential polynomial. Note that

the coefficient of Y" is nonzero since /?0 + 1 > 1, the coefficient of Y1 is

nonzero since /?0 > 1, and the coefficient of Y is nonzero since ß0 > 0 and

aQß2 ¿ 0. The only available vertices are (/?„ - 1, 1) and (ß0 - 1, 0). Note

that if we let (ß0 - 1, 0) be the active vertex, then fQ = -a0ß2 ¿ 0 and

A „(a) = -q0^o ' which has no roots (in general, letting a vertex of the form

(wK, 0) be an active vertex leads nowhere). Therefore we let (ß0-l, 1) be the
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Figure 3

active vertex. We have fx = a0[ß^-2ß0ß + ß2] = a0(ß-ß0)2 and fQ = -aQß2Q .

We have /, ^ 0 and we cannot take /? as a root of /, = 0. Therefore, we

must let /? = 0. We then have A»(a) = a0)302a - a0/?Q , so a = 1. Therefore,

if we try to extend y0 - a0xßa, ß0 > 0, to yx = aQxß° + axß , we must have

ß = 0 and a = 1.

In summary, we see that after applying the Newton procedure twice, we have

generated the following possible initial segments: 1 + axß, with ß < 0 and

a arbitrary; a, with a arbitrary; and axß + 1, with ß > 0 and a arbitrary.

The reader should show that each of these is actually a solution of P(Y) = 0

and that none of these can be further extended.

The Newton polygon procedure described above allows us to obtain an ex-

tension yx = y0 + ax of the given initial segment y0 . We now construct the

new Newton polygon 9s   corresponding to yx . By Taylor's formula, we have

>(>-,

(2)
K

j_     _i

V l*l! èrf l*(

dKp

dY*
Y=y¡

K+Km

"l!   oyk+kW

ß,K'
(ax")

Y=y0

Hence, the degree in x of the coefficient of YK in P^1

kj)) is at most

(where K = (kx

max
Kw=(k[{), ,kw

n

degx
d

K+K (I!

dYK+K
+J,/>-C--*i"

Y=y0

The following lemma compares 9°   to 9°  .

Lemma 2.1. Let (vß\ I) be the active vertex for ß in ¿P   and let ¿P   be the

new Newton polygon corresponding to yx = y0 + axß .

(i) Any point (p, j) such that p + jß>wl-) + lß does not belong to 9°  .
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(ii) If (p, j) £ 9s    lies on the boundary of 9s    and j > I, then (p, j) £

9°   and the leading polynomial J"• is the same for 9s   as for 9s  .

(iii) (*u>( ' + Iß, 0) does not belong to 9By . Therefore 9y contains at least

one edge with a slope less than ß and so, at the next step, we can pick

out an active vertex with ordinate less than or equal to I.

Proof, (i) First note that

deg,
d

K+K'

dYK+K (l) + J\ß-k\l] k™ < wU+Ji

r=y0

.(')+ (kx + ■ ■ ■ + kß + jxß< wv> + Iß + (fcj + • • • + kj) - fß.

This last inequality is because w^J+J] + (j + /",)/? <w{' + lß by the choice of

Lß . If (p, j) £ 9s   then p = n\ay.K={k      k)wK> where wK is the weight of

the term PKYK in P(yx + Y). Therefore

,K+K

P < degx
dYK+K

+ Jiß-k\ (i) ,(D

Y=y0

-w (!)
for an appropriate KK '  and so, by the above, p < wy' + lß-jß.   This

contradicts the assumption that p + jß > it/ ' + lß and proves (i).

(ii) Fix some K - (kx, ... , k¡). If wK = vr', we obtain, from formula (2)

(taking ^(1) = 0), that the term

ß\      fß'
<k.

i   dKp

\K\\ dYK
Y=y0

k)kx\--kf

W\gives a contribution to /,. If K    = (k) ', ... , k) ') ^ 0, then the term
J l J\

,K+K

dY
K+K'

ß,K
(ax")

(i)

Y=y0

does not contribute to /,. To see this note first that
j

,K+K

degr
dY"

+ h k{X) <wu+h) + ßl +kx+--- + k.
j\ J\       ' j

Y =y0

Since any edge of 9s    above the line Y = I has slope > ß, then we have

w U+h)
y„
JJ)+ ßU + j{)< co    + ßj ■ We therefore have

i K+K'

deg
X dYK+K

+ h .0)k)" <wu, + kx+--- + ki;

=>'o
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and so if K{X) 5¿ 0, the term

,k+k in

dY
K+K'

(ax*)

y=y0

does not contribute to f . Thus f , and by the same token, (p, j), do not

change in 9°

(iii) Consider the point (w^ + lß, 0). To this point corresponds the coeffi-

cient (put K = 0 in (2))

(3)
•(i)=(fc¡",..

i
(

,km
|tf(1)|!

Ic
dK p

dY"
M)

where the summation ranges over all KK    such that

A

y0=YJ

(i)

ß

k[l)

(

deg

Vby'

\

yo=YJ

+ ßh-k ■■■■-k(x) = w(,) + lß.
J\

In particular, for k, we have wU[) + /?, =w() + lß, and this proves that the
1 J\

coefficient (3) equals A »(a), which is 0. This shows that the point (tir '+lß, 0)

does not belong to 9°  . The second part of (iii) follows from this.

The case when at the next step we can take the same v as an active vertex can

only happen if the edge descending from the endpoint v in the polygon 9°

has a slope less than ß . The following lemma tells us when this can continue

to happen.

Lemma 2.2. Let y - E°!0 a¡x ' be generated by the Newton polygon process as

above and assume y £ Q,. If, in this process, a vertex v with ordinate I becomes

available and stays available at each step thereafter, then dKP/dYK\Y=y = 0 for

all K = (kx, ... , kj) for which j < I.

Proof. Assume that after the tth step the vertex v = (w^',1) becomes ac-

tive and stays active. For any s and vertex (p, j) of the s + tth Newton

polygon with j < I we have p + ßl+sj < ur + ßt+J, so this point lies

to the left of X + ß(+sY = w{l) + ßt+sl and between  Y = 0 and Y = I.
K K ft

If d P/dY \Y — axp+ terms with smaller exponent, a ^ 0, then by

Lemma 1.6, d P/dY L = ax + terms with smaller exponents for suf-

ficiently large 5. Since we are assuming that limJ_>oo ßt+s = -co, formula (1)

shows that this would produce a point in the Newton polygon to the right of

X + ßt+sY = co{l) + ßtJ. Therefore, dKP/dYK\Y=y = 0.

We end this section by noting that a Newton polygon type process has been

previously used by several authors (e.g. [RA78 and DE82]) to find solutions of
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linear differential equations and to find solutions of some nonlinear first order

differential equations (e.g. [HI76]).

3. Stabilization of the Newton polygon process

We begin with the following definition. A solution y = E("T + V-lol^x ' £

fí of P(Y) = 0 is called stabilizable for P if after some steps of the Newton

polygon process we come to a Newton polygon 9s   corresponding to an initial

segment y0 — J2x<i<s(ä~ + \f^Yüi)xßi with active vertex v having ordinate

1 and only the edge descending from the vertex v has a slope less than ß .

Furthermore, we require that ßs is not greater than any real root of the poly-

nomial /,(/?). We also describe this situation as y is stable for P after y0.

We make the following two remarks. The first is that /, ^ 0 as a polynomial

in /?. Indeed,

A(ß) = T,hy9ß(ß-l)---(ß-g + l)>

where y = lc(dP/dYw\  =Y) and the summation ranges over all q such thatr(9)
- IL\U 1   I U I

the weight

deg
dP

x \ dY{q)
(1)- q = w

which is the abscissa of the point v . Obviously, /. ^ 0.

The second remark is that after stabilizing there is a unique possibility for

choosing the next term ax    in the expansion y = y0 + ax   H-; namely ß

is the slope of the edge e of the Newton polygon descending from v and a

satisfies the equation hß(a.) = fx(ß)a + lc(P(y0)) = 0. Therefore the Newton

polygon process, after stabilizing, can be continued uniquely and correctly and

leads to the unique solution y £ Q of P(Y) = 0 with initial segment y0,

provided that the slopes tend to -oo. If the latter does not hold, we get no

solution with initial segment y0 (by Theorem 1.1). The next lemma states that

although a solution y (with an infinite number of terms) of P = 0 may not be

stabilizable for P, y is stabilizable for some partial derivative of P.

Lemma 3.1. For any solution y = E(â7+v/-ï^,)x ' € Q of P(Y) — 0 (provided

that the series has an infinite number of terms so lim /?, = -co by Theorem 1.1)

consider an index I for which

d'P

dY1

d P id P
= 0,     —7^0,    and   degy y(n     y(m)    —T

dY' Y'Y   '-'Y    \dY'\Y=y

is the least possible. Then y is a stabilizable solution for |-£ .

Proof. First we show that in the Newton polygon process for expanding y as a

solution of d P/d Y = 0, we eventually come to an active point with ordinate

1 . Assume the contrary, then starting from some step, a certain vertex v with

ordinate / > 1 would become and stay an active point. By virtue of Lemma 2.2,
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dI+KP/dYI+K\y=Y = 0 for all K = (kx,..., kj) such that j < I. For some

K = (kx,..., kj) we have dI+KP/dYI+K ¿ 0, hence the multi-index I + K

satisfies the conditions of the lemma, contradicting the choice of /. Thus, we

have proved that a certain vertex v with ordinate 1 eventually would become

and stay an active point.

Continuing the Newton polygon process we would eventually have that /?0

would be less than any real root of the polynomial /,(/?) by Theorem 1.1. This

means that y is is a stabilizable solution for $-£ and completes the proof of
oY

the lemma.

Corollary. For any solution

y = E(^ + v/rÎSl)x/?i

of P(Y), the exponents ß0, ßx, ... generate a finite Z module.

Proof. Any solution y of P(y) - 0 is stabilizable for d'lP/dY1 for some /.

If y is stable for d'P/dY1 after y0 = zZ0<i<s(a¡+ V^ÏÏf,-)**'' » then all the
exponents /?, lie in the Z-module generated by 1, ßQ, ... , ß .

.fin
Note that the set Œ = {E(ö~+ V-lE¡)xP( £ Q|{/?,} generate a finite Z-

module} forms a differential field.

4. Enumerating the generalized series solutions

of an ordinary differential equation

The Newton polygon process described above can be used to enumerate (in

a sense made precise below) the generalized series solutions of a differential

equation P = 0, where P is the same as the beginning of §2. If we consider

an initial segment y0 - ^Kj<J(äJ + \f^£azi)xßi of P — 0 where we are think-

ing of the ai, tf,, and /?, as real parameters, then the next iteration of the

Newton polygon procedure used to extend y0 to y0 + (â~ + \f^Ya)x will place

restrictions on these parameters. These restrictions can be expressed as a cer-

tain quantifier-free formula cp(a~x, ... , as, azx, ... , cfs,/?,,..., ßs, ä, W, ß)

in the first-order language of ordered fields. We consider the validity of such

formulas in the first-order theory of real closed fields (sometimes called the

Tarski algebra) and we shall refer to these as Tarski algebra formulas. It is well

known that the Tarski algebra is decidable [TA51, C075, GR88]. The rest of

this section is devoted to the proof of the following:

Theorem 4.1. Let an ordinary differential equation P = 0 be given. There is a

procedure that enumerates all the generalized series solutions of P = 0 in the

following sense. It enumerates a succession of consistent Tarski algebra formulas

¥(07, ... , öC,äx, ... ,ES , ßx, ... , ßs )

with parameters and ordinary differential polynomials Pj £ Q[x]{Y} such that

for each j and any ä(,0), ... ,cx[', ß\0), ... , ß[0] £ R satisfying this formula,
1 ¡j      1 ij
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^°) M ./ZT^°h^^o = Ekkj (q, + V-lcü,- )x ' is an initial segment of an expansion of so-

lution y = y0 + ■ ■ ■ £ Q of the equation P. = 0, provided that the slopes in

the expansion tend to -co. If the latter holds this solution y is stable for P

after producing the initial segment y0 via the Newton polygon procedure (so y

is uniquely defined from y0 on) and P(y) = 0. Any generalized series solution

of P(y) = 0 appears in this way.

In the procedure that we now describe, the Tarski algebra formulas are gener-

ated when we attempt to extend an initial segment y0 = Ei<¡<s(5¡+v,-^i)^ •

We will proceed by induction on 5 , the number of terms in the initial segment

y0 . So, we are given a set of parameters ä~\~, ... ,<$s, ay,... ,as, ßx, ... , ßs

and a certain Tarski algebra formula ç»(ôj\ ... ,a~s, ñx, ... ,ES, ßx, ... , ßs).

At the base of the induction s = 0 and the formula cp is (0 = 0). In addi-

tion to cp we will also be given an equation Q = 0, an inequality Q0 ^ 0,

a Newton polygon 9s;, for the equation Q = 0 corresponding to the initial

segment y0, and lastly an active vertex at the previous step of the Newton

polygon process. Here Q(Y), Q0(Y) are differential polynomials such that

ôo ""< Ô where the latter relations mean that either the order of Q0 is less

than the order of Q or that they both have the same order m and the de-

gree of Q0 in Y{m) is less than the degree of Q in Y{m). When s = 0,

Q = P and Q0 — 1. The polygon 9°y is represented by specifying the inte-

gers 0 < i, < • • • < tu < n and a subset of them 0 < t\ < • • • < t'u> < n such

that the ordinates of the vertices belonging to the boundary of 9B^) are exactly
yo

t,, ... , t„ and the endpoints of the edges of 9sj,Q) have exactly the ordinates
1 M yo

t'x, ... , t'u,. For each tj we are given the abscissa Pj of the corresponding

vertex, where p. = pfßx +■■■+ pfßs + pf], where pf ,..., pf , pf £ Z,

and p^x), ... , p{p > 0. The algorithm also produces the leading polynomial

/, £ Q[a¡, ... ,ä~s,Ex, ... ,cïs, ßx, ... , ßs, v73!] corresponding to the ver-

tex (pj, tj) of 9°y    .  The active vertex at the previous step is specified by

indicating some /' .

We now describe the next step of the enumeration algorithm, during which

the next term axß of y — y0 + axß + ■■■ will be produced. Firstly, we se-

lect an active vertex v with ordinate / = t'y less than or equal to t'j. We then

choose the exponent /? according to the following possibilities (cf. §2). Let f¡ =

Eo<j<;0 fiJ)ßJ be a leading polynomial, where jjj) £ Qlä^, ... ,äs,Ex, ... ,

cxs, ßx, ... , ßs, V^-ï] ■ The first case is when the line with the next slope ß

passing through the node v lies strictly outside Py and strictly between two

edges of the Newton polygon, with slopes ôx > S2 respectively, adjacent to v .

We then add to the formula cp the following conditions: Sx> ß > S2, ßs > ß ,

f(ß) = 0 (and in this case 5 and 5 are arbitrary). In the second case, when
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/? = S2, the algorithm adds to cp this latter equality as well as the condition

ßs> ß and does the following. The algorithm produces the characteristic poly-

nomial h^ £Q[srx,... ,5^,5,,... ,S=, ßx,..., ßm, V=l,a], (seeabove)

corresponding to the edge with slope S2 and with endpoint v . Note that h5

involves t¡, p and f,. The expression a~ + \J-Fn is then substituted for a

in hs , and we write

hs (5 + \/-Ï5) = hs (a, a) + V-Î~hs (ö;, Ü ).

Finally, we add to the formula cp the equations h¿ (ä~, cf) = hs (a, =) = 0.

The resulting Tarski formula is denoted by cp . We can check whether such ß ,

ôx > ß > ö2 exists. If not, we do not consider v as an available node. We

wish to continue this process and our initial segment stabilizes. Since an initial

segment may not stabilize for Q = 0 but only for some derivative dKQ/dYK

we are forced to consider various branchings in our procedure. Consider all

the differential polynomials dKQ/dYK for all K = (kx, ... , k¿) with j < I.

Observe that d  Q/d Y   -<Q. Now the process branches in two ways.

(A) First, assume / > 1 and continue the Newton polygon process applying

it to Q. At this point we have an initial segment

%=   £ (5J + V-iaj)xßi + (ä + ̂ y/-l)xß ,
i<j<s

the same equation Q = 0, and the same inequality Q0 ^ 0. And we yield a

new Newton polygon 9°^ in the following way. Recall (see (1)) that
yo

\Kd^Q
U      4-  IÄ-I! fíYK

YK = Y,~PzXk°YK,

~o=Y K

where K = (k0, K) = (k0, kx, ... , kj), pj? £ Q[ax, ... , as, ax, ... , as, ßx,

... , ßs, v^T, 5, =, ß], k0 = ¿ZKjßj + «o » where 0 < kx, ... , ks £ 1, k0 £

Z, 0 < kx, ... , kj £ Z.  Now we consider all the finite number of possible

shapes of 9°^'. A shape means two lists of integers 0 <T¡ < ■■■ <Tu < I,

0 < l\ < ■■ ■ < 7'u> < I such that ~t\, ... , l'u, are the ordinates of the extremal

vertices, with ordinates less than /, of 93-ß' (recall that the vertices of the

Newton polygon with ordinates not less than / do not change), and tx, ... , tu

are all the vertices, with ordinates less than /, of 9>$ß).   Observe that the
yo

shapes can be expressed in terms of a quantifier-free Tarski algebra formula in

the parameters öt[,..., âs, S j,..., 5,, ßx,..., ßs, ö;, S, ß (actually, it is a

formula of linear programming, i.e. all the inequalities are linear).

(B) Second, provided again that / > 1, we consider a system of differential

equations 5? = {Q = 0} U {dKQ/dYK = 0| for all K = (kx, ... , k.), j < 1} .
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We apply the reduction process from [SE56] to the system S? U {Q0 ¿ 0}

and obtain as a result that the latter system is equivalent (over a differential

closure) to a disjunction of the following form:  V,(ô, = 0> Q¡  ¥" 0), where

ß, -< dKQ/dYK < Q, for K = (kx, ... , kj), j < I, and Q.^ -< Q.. For any

i we consider the system Q¡ = 0,  Q,   / 0 asa new starting point for the
' 'o

Newton polygon process. We consider (ä~x -f-r3,-\/-T)x ' as the first term, then

substituting it in Q, gives the next Newton polygon and Tarski algebra formula;

if it is consistent, we substitute the next term (ä2 + y/^Vn2)xßl, etc., up to the

term (ä~s + \f-la~s)xßs. After this we start to apply the recursive process, under

description, to the system Q. = 0, Q, ^ 0, the constructed Newton polygon

and the Tarski algebra formula.

Now assume that the ordinate of the active vertex v is 1. Fix some nat-

ural number A and consider the following condition. Recall that fx(Z) £

Q[a~x, ... ,a~s,oîx, ... ,ais, ßx, ... , ßs, \T-1][Z] is the leading polynomial

corresponding to the active node v and suppose that degz fx - I for some

/ and fx(Z) = a¡Z + ■■■ + a0, a¡ ^ 0. The condition we are considering is

that the Newton polygon process applied to Q correctly gives, after A steps,

the successive terms (â~^ + v/rT?ïJ+1)x^+l, ..., (ôç^ + \/-lä~s+N)xßs+N and,

in addition, \ßs+N\ > |a0/Q/l + " ' + \ai/a¡\ ■ This latter inequality just im-

plies that ßs+N is less than any real root of the polynomial /, . The described

condition can be represented by a quantifier-free Tarski algebra formula >pN

in a~, =•, /?,:, 1 < j < s + N (cf. above). Note that for any solution y of

ß(7) = 0 and some initial segment y0 for which the next active vertex v has

ordinate 1, we know by Theorem 1.1 that an A exists such that the next A

terms of this solution satisfy such a Tarski algebra formula.

At this point we have generated, for a fixed A, a Tarski formula that states

that a segment of length s + N is an initial segment of a possible solution y

of P = 0 and is stable for some equation Q = 0 provided that the slopes

after stabilization tend to -co . In the process we have generated an auxiliary

equation ß0 # 0 which must be satisfied to guarantee that y satisfies P = 0.

To see if Q0(y) ^ 0, we carry out the following subprocedure that looks for

an exponent M0 such that Q0(y) i= 0 (modx^0). For the A fixed above, we

fix some A0 and some term of QQ of the form x °y( ' • • -y( s', namely, some

term of its expansion of the form x °x > ~ ' • • • x '~s where 0 < j.,..., j <

N0. The subprocedure looks over all A0, ;',,..., js (and also kx, ... ,kn

introduced below). Denote M = L + ß- -/, H-h /?, -/„. We are at this point

considering M as a candidate for M0 . If some term contributes x in the

expansion of Q0(y), then M = l'0 + ß'y - l[-\-h ß., - l's,, for a certain term

x oy( i'... y( s'> of Q0 . We therefore must consider representations of the form

M+l - ß.m-\-\-ß-[t»  for a finite number (less than 2(deg(Q0) + l)(ord(Q0)))
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of integers / such that |/| < (deg(ß0) + l)(ord(ß0)) and 0 < s(0) < ord(ß0) <

n = ord(ß). Fix some integer / within this range (the subprocedure looks over

all such / ). For simplicity of notation assume that /? .<<», ... , ß .«d < 0. Then

M-(deg(g)+l)(ord(g))

ßif]-n-+~l--Mi-

The subprocedure now considers all kx and for a fixed kx, adds the condi-

tion to the Tarski algebra formula y/N that kx is the largest index satisfy-

ing the inequality ßk > Mx. It then looks over all j\ < kx. Fix some

such ;'|0) and consider the possible representations of M + I - ßf] in the

form ßm H-h ßm = M + I - ßm for 0 < s(0) < n, in the same way as
h Js(0) h

above. After n + I steps we will obtain some Tarski algebra formula (for fixed

kQ, kx, ... , k ). The formula yields all representations of M + I in the form

M + I = /?.(0) + • • • -I- ßm   for 0 < s    < n . Now write down the coefficient
Jt Js(0)

of x in the expansion of Q0(y) and the condition that this coefficient is not

zero. This yields some additional Tarski algebra formula which we combine

with the existing Tarski algebra formula. Test its satisfiability [TA51, C075,

GR88] and if it is satisfiable, we have Q0(y) ± 0 (modxM) so Q0(y) = 0.

Our procedure will then output this formula as one of the *¥ in Theorem 4.1.

If it is not satisfiable, continue the subprocedure described above for the next

(n + 1)-tuple (k0, ... , kn). If ß0(y) ^ 0, then for an appropriate choice of

kQ, ... , kn we will discover that ß0(y) # 0  (modx   ).

To prove Theorem 4.1 we must show that the above procedure enumerates all

the generalized series solutions y of the input equation P = 0. In expanding

y by the Newton polygon process either the active vertex eventually would have

ordinate 1 and then y is a solution of the equation P = 0) (by Lemma 2.2),
K K

or the active vertex eventually would have ordinate / > 1 and d P/d Y =0

for all K = (kx, ... , kj) with j < I (again by Lemma 2.2). In the second case

(see B in the present section) we obtain using [SE56] a new system ß, = 0,

ß,0 t¿ 0 which has y as a solution and for which Q¡ ~< P. After some steps

of this reduction the algorithm comes to a certain system ß = 0, ß0 ^ 0 for

which y is a stabilizable solution. This completes the proof of Theorem 4.1.

Corollary. Let P = 0 be an ordinary differential equation as above. If P = 0

has a generalized series solution, then it has a solution of the form

y = £(", + v/rîa,.)x/

i=0

where ß0 > ßx > ■•■ , lim,^^/?, = -co, and ai, at, /?,. £ Q, where Q is the

real closure of Q.
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Proof. Our assumptions and Theorem 4.1 imply that some Tarski formula *?

(as in Theorem 4.1) is satisfiable in R. It is well known [TA51] that this

implies that *F is satisfiable with 5~, ~,, /?, in Q. Theorem 4.1 now implies

that the initial segment E/=o("¿ + V'-Ts,)* ' can be extended to a solution y

of P(y) = 0.

Note that the above argument also shows that if P = 0 has a solution y =

E(ä,- + \f^lcxi)xßi where ä,-, ~, e R, ß0> ßx > ■■■ , and /?, e Z, then it has

a solution of the same form with q, , If, g Q. This yields a result (for a single

equation) similar to Theorem 2.7 of [DL84].

5. Decision problems

In [DL84] Denef and Lipschitz show that there is an algorithm to decide if

a system of polynomial differential equations with coefficients in Q[x] has a

solution in C[[x]], the ring of formal power series. They also show that, given a

system of differential polynomial equations Pj(yx,y'x,y'x , ... ,ym,y'm, ■■■) =

0, i - 1,2,3,..., with coefficients in C[[x]] such that for every n £

N there exists y¡,..., y¿ in C[[x]] such that P^T^Jx ,...,ym,...) = 0

modx" , i = l,2,3,..., then there exist y,, ... , ym £ C[[x]] such that

P¡(yx, y'x, ...ym,...) — 0. In this section we show that this fact is not true in

Q and also that there is no algorithm to decide if such a system has a solution

in Q. It will be convenient to work with the field

(  oo

Q0 = I Eaixßi\ai £ C, ßl■£ R, ß0 < ßx < ■ ■ ■ , and  lim ßt = oo
I i=o "_>0°

This field is obviously a differential field with derivation ^ . Using the map

that sends x to x~ , we see that £20 with the derivation ^ is isomorphic

to Q with the derivation D = -x £ . This observation allows us to transfer

results concerning solution of differential equations in Q0 to similar results

about Í2 (and vice versa).

We start by considering the system of differential equations

(4) y'x = ßy,    ß'= 0,    z'yx + z"' =y + x.

We first show that if ß = \ for some n £ N, then (4) has a solution in

Q0. If n = 1, we may let y = —x and z = 0, so assume n > 1. We

will show that there exist ax, ... ,an and c in C such that y = cxx,n and

z = axxx/" + ■■■ + <2„_,x(,!- are solutions of (4). If we substitute these

expressions in the last equation of (4) and compare exponents of x, we see
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that

a'c+%(»"i)=0,

a,I(i->)=c.
ln \n      J

These equations determine cn uniquely. Once we select c, then ax, ... , an_x

are uniquely determined.

Conversely, assume that (4) has a solution in Q0 . We will show that ß = \

for some n £ N. The first two equations of (4) imply that y = ex for some

c £ C. If c = 0, then the third equation reduces to z"x = x and this latter

equation has no solution in Q0. Therefore c ± 0 and ß £ R. Let /? ^ 0,

y = cx^ , and z = E^o "i*^ e ^o he solutions of (4). We shall assume that

ß ^ j¡ and derive a contradiction. First we shall show ß > 0. If ß < 0,

comparing lowest powers of x in z'yx + z"x — y + x yields ca0ß0x 0+ -

cxß , which is impossible. Next we shall show that x , xx~2ß, xx~3ß, ...

must all occur in z with nonzero coefficients. Comparing coefficients of x1

in z'yx + z"x = y + x , we have ca,. (1 - /?) = 1, where a,   is the coefficient

of xx~ß in z. Therefore a, ^0. Comparing coefficients of xx~nß, we

have ca. (1 - nß) + a-    (I - (n - 1 )/?)(-(« - 1)/?) = 0 where a,    is the

coefficient of xx~nß in z. Induction shows that a, ,¿0 for all «. Since

limn_>00 1 - «/? = -co, we see that z cannot lie in Q0 , a contradiction.

We can now show that the following problem is undecidable: given a system

P¡(yx. y\ > y" » • • • » ym. y« > • • • ) = 0. / = l, 2,... , of differential polynomial
equations with coefficients in Q[x], do there exist solutions y,, ... , y e £20 ?

Given any diophantine equation /(x,, ... ,xn) = 0 with coefficients in N,

consider the system

Avl,...,yn) = o,

y,/?,-1 = 0,    y2ß2-l=0,...,    ynßn-l = 0,

ß[=0,    y'xx = ßxyx,    z\yxx + z"xx = yx+x,

ß'n = °>  y'nx = ßnyn'  znynx + znx = yn+x-

For our discussion above, this system has a solution in Q0 if and only if

f(xx, ... , xn) = 0 has a solution in N - {0}.   Since this latter problem is
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known to be undecidable [MA70], our problem is also undecidable. Note that

equations (4) have a solution in Q0 if and only if they have a solution in Qg

where Qq = {E^oa/x^ € ty)l/*o - ®j • Therefore the above problem is also

undecidable for Qq , that is, even if we restrict solutions to have only nonneg-

ative powers of x.

The system (4) can also be used to show that a Strong Approximation The-

orem (cf. [DL84, p. 224]) does not hold in Q0 . If P(yx, y[, ... , ym , y'm , ... )

is a differential polynomial with coefficients in Q0, y[, ... , y^ £ Q0, and n

is an integer, we say P(y¡, ... , y^,...) — 0 mod x" if the lowest power of x

occurring in PÇy^, ... ,y~, ...) has exponent > n . We say in this case that

yx, ... ,yn is a solution of P = 0 modx" . The Strong Approximation Theo-

rem of Denef and Lipschitz states that if, for each positive integer n , a system

of differential polynomial equations with coefficients in C[[x]] has a solution

modx" in C[[x]], then the system has a solution in C[[x]]. This is not true

for Q0 . The equations xy' - (a + x)y -1 = 0, a = 0 have solutions

a   x   I     —a—\   —x j ax
ya = x e      x       e    dx + cx e ,

where c is an arbitrary constant (cf. [DL84, p. 224]). If a is not in N, then

y £ Q0. If a is in N, then this differential equation does not have a solution

in Q0 (look at the x~ term in x~a~ e~x ; it yields log(x) when integrated).

On the other hand, given n we can find a large integer a such that the first a

terms of ya is a solution modx" . Therefore the system

a = 0,     u x — au,     aß — 1,

z'ux + z x  = u + x,    xy - (/? + x)y -1=0

has no solution in Q0 but does have a solution modx" for all positive n .

Added in proof. In Lemma 4 of Rational approximation to solutions of algebraic

differential equations, Proc. Amer. Math. Soc. 10 (1959), pp. 238-244, the
author, E. R. Kolchin, considers simple zeroes of differential polynomials in

valued differential fields (a zero u of P is simple if dP/dY(,\u) ^ 0 for

some i). He shows that there is an element y0 of the value group such that

1^ - w| > y0 for every v in the field which is a zero of P different from

u. In particular, this implies that generalized series that are simple zeroes of

polynomial differential equations are finitely determined. This latter paper uses

valuation theoretic techniques but no Newton polygon process.

References

[C075] G. E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decompo-

sition, Automata Theory and Formal Languages, 2nd GI Conference, Kaiserslautern (H.

Brakhage, ed.), Lecture Notes in Computer Sei., vol. 33, Springer, 1975, pp. 134-183.

[DE82] J. Delia Dora, C. Dicrescenzo, and E. Tournier, An algorithm to obtain formal solutions of

a linear homogeneous differential equation at an irregular singular point, EUROCAM '82,

Lecture Notes in Computer Sei., vol. 174, Springer-Verlag, 1982, pp. 273-280.



SOLVING ORDINARY DIFFERENTIAL EQUATIONS 351

[DL84] J. Denef and L. Lipshitz, Power series solutions of algebraic differential equations, Math.
Ann. 267(1984), 213-238.

[GR88] D. Yu. Grigor ev, Complexity of deciding Tarski algebra, J. Symbolic Comput. 5 (1988),
65-108.

[HI76]   E. Hille, Ordinary differential equations in the complex domain, Wiley, New York, 1976.

[LA68]  D. Laugwitz, Eine nichtarchimedische Erweiterung angeordneter Körper, Math. Nachr. 37

(1968), 225-236.

[LC54] T. Levi-Civita, Sugli infiniti ed infinitesimali actuali quali elementi analytici, Opere Matem-

atiche, vol. 1, Zanichelli, Bologna, 1954, pp. 1-39.

[LR75] A. H. Lightstone and A. Robinson, Nonarchimedian fields and asymptotic expansions,

North-Holland, Amsterdam, 1975.

[MA39] S. Mac Lane, The universality of formal power series fields, Bull. Amer. Math. Soc. 45

(1939), 888-890.
[MA70] Yu. Matijasevic, Enumerable sets are diophantine, Dokl. Akad. Nauk SSSR 191 (1970),

279-282; Soviet Math. Dokl. 11 (1970), 354-357.

[OS35]  A. Ostrowski, Untersuchungen zur arithmetischen Theorie der Körper, Math. Z. 39 (1935),

269-404.

[RA78] J.-P. Ramis, Dévissage Gevrey, Soc. Math, de France Astérisque 59-60 (1978), 173-204.

[RI66]   J. F. Ritt, Differential algebra, Dover, New York, 1966.

[R073] A. Robinson, Function theory on some nonarchimedian fields, Amer. Math. Monthly 80

(1973), 87-109.

[SE56]   A. Seidenberg, An elimination theory for differential algebra, Univ. of California Press, vol.

3, 1956, pp. 31-66.

[TA51] A. Tarski, A decision method for elementary algebra and geometry, Univ. of California

Press, 1951.

Leningrad Department of V. A. Steklov Mathematical Institute of the Academy of

Sciences of the USSR, Fontanka 27, Leningrad, 191011 USSR

Department of Mathematics, North Carolina State University, Raleigh, North Car-

olina 27695


