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COEFFICIENT IDEALS

KISHOR SHAH

Abstract. Let R be a ¿-dimensional Noetherian quasi-unmixed local ring

with maximal ideal M and an A/-primary ideal / with integral closure 7 . We

prove that there exist unique largest ideals Ik for 1 < k < d lying between /

and 7 such that the first k+\ Hilbert coefficients of / and Ik coincide. These

coefficient ideals clarify some classical results related to 7. We determine their

structure and immediately apply the structure theorem to study the associated

primes of the associated graded ring of / .

Let F be a commutative, associative, Noetherian local ring containing an

identity. Let M be the maximal ideal of R and d be the Krull dimension

of R. Let I be an M -primary ideal of R. Let 7 be the integral closure of

I (see [Lil] for an exposition). If I contains a regular element then we let

I* be the Ratliff-Rush ideal of I (see [RR, Theorem 2.1]). Thus F is the

unique largest ideal containing I with the property that F" = F for all large

n. In this way, with an ideal I two fairly well-known ideals 7 and I* are

associated. Let us first describe them in terms of the Hilbert coefficients of I.

Recall the classical result of Samuel [Sa, Theorem 9] that the length of R/In is

a polynomial in n for all large values of n of degree d. Call this polynomial

the Hilbert polynomial of I and write it in the form:

.„m.("+^-1)+-(-i)',,.(/)-("+^:;-1)-+(-i)V)

where et(I) are the Hilbert coefficients of F Also, e0(I) is called the multi-

plicity of /. Now we describe 7 and I* in terms of the Hilbert coefficients.

If R is quasi-unmixed then the integral closure 1 of I may be characterized

as the unique largest ideal /' containing / for which e0(I) = e0(l') by [NR,

Theorem 1 and RI, Theorem 2]. On the other hand, the Ratliff-Rush ideal I*

of I may be characterized as the unique largest ideal L containing I for which

e¡(I) = e¡(L) for all i by [RR, Theorem 2.1].

We prove the existence of a unique chain of ideals, dubbed the coefficient

ideals of I, between I and 7. These ideals provide a concrete link between

the different looking results of Northcott-Rees, Rees, and Ratliff-Rush referred

to above. We find their structure and apply the structure theorem to describe
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various aspects of I and the associated primes of gr7 R. We spell out all the

main results now.

Theorem 1 (Coefficient ideals Ik). Let R be a quasi-unmixed local ring with

maximal ideal M. Assume that R/M is infinite and dim R — d > 1. Let I be

an M-primary ideal. Then there exist unique largest ideals Ik for 1 < k < d,

containing I such that

(a) el(I) = ei(Ik)forOßi<k.

(b) I c Id c • • • c Ix c I = integral closure of I.

We shall call Ik the kth coefficient ideal of I.

Indeed Id is the Ratliff-Rush ideal I* if I contains a regular element. We

determine the structure of each of the coefficient ideals. The integral closure of

I is well known to be an intersection of certain valuation ideals; whereas I* is

a union of certain residual quotients of powers of I. The dice fall in favor of

unions in the following structure theorem for the coefficient ideals of /.

Theorem 2 (Structure theorem for the coefficient ideals Ik). In the setup of

Theorem 1,

Ik = {JVN+l:xi>-~>xk)   forl<k<d,

for all N > 1, and all x = xx, ... , xk extendable to some minimal reduction

ofIN.

It is not at all obvious that the right-hand side in the above equality is even

an ideal. Furthermore, one would certainly want to replace the arbitrary union

by a single residual quotient. As a matter of fact, a finer structure theorem may

be given as follows:

Theorem 3 (Finer structure theorem for the coefficient ideals Ik). In the setup

of Theorem I,

Ik = (IN+1 : xx, ... ,xk)   for 1 <k<d,

for some fixed integer N > I and some fixed minimal reduction xx, ... , xd of

IN.

If R is a normal domain and / is a normal ideal, then the associated graded

ring gr,F has only minimal associated primes. It is natural to ask how the

associated primes of gr;F behave when Is = (Is)kVs. Fulton expresses a

need to obtain a criterion to identify the irreducible components of gr; R with

their multiplicities in [Fu, p. 13]. We obtain a result which spells out how the

coefficient ideals control the associated primes of gr, R .

Theorem 4 (Coefficient ideals Ik and associated primes of gr, R). Fix the setup

of Theorem 1. Fix a k with 1 < k < d. Then, Is = (Is )k for every s if and

only if ht.P <k for every associated prime P of gr, R.

Our final theorem of this paper relates the statement Is = (Is)kVs to the

presence of regular sequences in gr. R.
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Theorem 5 (Grade of gr7F and Is = (Is)k). Fix the setup of Theorem 1. Let

Nx = irrelevant maximal ideal of gr7 R. Fix a k with 1 < k < d. Then,

grade Nx > k implies that Is = (Is)j for d+l-k <j <d, and for all s > 1.

Our general references for this paper are [Ma, Mc]. We shall presuppose

elementary knowledge of reductions [Lil, NR], of system of parameters [Ho],

and of Rees valuations [Me, R2]. For the convenience of the quick-browse

reader the statements of all the main theorems have already been recorded in the

Introduction. To keep the paper short the easier proofs will be left as exercises

to the reader. Nevertheless we note that [S] contains a detailed account of this

paper.

1. Existence and uniqueness of coefficient ideals

In this section we prove Theorem 1 stated in the Introduction. We begin

by stating and proving two remarks in a general setting. These remarks are

essentially used in the proof of Theorem 1. While we use standard notation,

note that

(a) A polynomial of degree -1 is the zero polynomial.

(b) If A is an F-module then /(A) denotes the length of A.

Remark 1(A). Let R be a Noetherian local ring with maximal ideal M and

dim R = d > 1. Suppose I c J are AFprimary. Fix k with 1 < k < d. Then

for all large n, we have e¡(I) = e,(J) with 0 < i < k iff /(/"//") < P(n),

where P(n) is some polynomial in n of degree at most d - (k + 1).

Proof. We need only observe that, for large n ,

i=d

l(Jn/In) = l(R/In) - 1(R/J") = £(-l)'[e,(F) - e,.(F)] •
¡=o

Remark 1(B). Let F be a Noetherian local ring with maximal ideal M and

dim F = d > 1. Suppose that I c i' C J are AFprimary ideals. Fix k with

1 < k < d. Then <?.(/) = e¡(J) with 0 < i < k iff *.(/) = e¡(l') = et(J) with
0<i<k.

Proof. We need only observe that l(l'n//") < /(/"//") and that we may simply

apply Remark 1(A) to obtain the conclusion of Remark 1(B).

Proof of Theorem 1. Fix k with 1 < k < d . Consider the set V of all ideals

L with the property that I c L and e¡(I) = e¡(L) for 0 < i < k. Now

V is nonempty as I belongs to V. So V contains a maximal element J,

say. We shall prove that J is the unique maximal element in V . Suppose L

belongs to V. We prove L c J. Pick any x £ L. Now I c (I, x) c F. So

e.(I) = et(I, x) - et(L) for 0 < i < k follows from Remark 1(B). In particular,

e0(I) = <?„(/, x). By [Rl, Theorem 3.2], (/, x)t+x = (I, x)'l holds for some

t > 0. In particular, x'+x £ (I, x)'l. Hence x/+   6 (J, x)'j. This implies

n + d

d
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that (/, x)'+x =(J, x)'j also holds. Hence (/, x)n = (J,x)'j"~l holds for

a fixed t and all n > t. We obtain

l[(J, x)n/Jn] = l[(J, xff-'/j"] < £ /[/""V + Jn/Jn]
!=1

< £; nf-'x* + f/in\ < J2(i[jn-'x¡+/"//"]+/[/"//"])
¡=i ¡=i
i=t

^ Wir rn — '     i    .    Tn ITn — Í     i    .    rli    .    irr"-'     I    .     r« /r"i    .    ir t" /r«i\
< 2_Jl[J     X +1 /I     X +1 ] + l[I     X +1 /I ] + l[J /I ])

i=\

< Y^dif-'/f-']+na, x)n/in]+/[/"//"]).
1=1

But <?.(/) = e¡(I,x) and e¡(I) = e¡(J) holds for 0 < / < k . We apply Remark

1 (A) to every term on the right-hand side of the last inequality to obtain that

l[(J, x)n/Jn] is bounded by a polynomial in n for all large n of degree at

most d - (k + 1). This shows, again by Remark 1(A), that efJ) = e¡(J, x)

holds for 0 < i < k. As J was maximal in V, we deduce that x £ J. So

L c J. Thus / is the unique maximal element in V. Finally set J — Ik .

This proves (a).

Since e0(I) = e0(Ik) and I c Ik it follows that Ik c 7. Since 7^. is the

unique largest ideal containing I and satisfying (a) it follows that It c Ik if

1 < fc < t < d . This proves (b). This also completes the proof of Theorem 1.

Corollary 1(C). Fix the setup of Theorem 1.

/ C J C Ik C 7 iff I c J   and   e¡(I) = e¡(J)   VO < / < k.

Remark 1 (D). The above corollary clarifies further the classical result [NR, The-

orem 1 and Rl, Theorem 3.2] that I is a reduction of / iff e0(I) = e0(J).

Corollary 1(E). Fix the setup of Theorem 1 with I containing a regular element.

Consider the dth coefficient ideal Id and the Ratliff-Rush ideal I* of I. We

have Id — I*.

Remark 1(F). Fix the setup of Theorem 1. Assume that I is integrally closed.

Then I = Id = • • • = Ix = 7.

2. Algebraic structure of the coefficient ideals

In this section we prove Theorem 2 stated in the Introduction. This theorem

uncovers the algebraic structure of the coefficient ideals. We require six lemmas

to put together a proof.

Lemma 2(A) allows us to view minimal reductions of I as systems of pa-

rameters in gr7 R instead of in gr7 R <g> R/M. Lemma 2(B) essentially says

that a certain Rees valuation remains constant over reduction elements. To

understand the arguments in the proof, elementary knowledge of Rees valua-

tions is required: we give a very brief summary of it later. Lemma 2(C) is a
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necessary technical statement. The next three lemmas (2(D), 2(E), 2(F)) are

essentially prime avoidance results whose proofs are left as easy exercises to the

pencil-reader. However, armchair-readers will find the proofs in [S, Chapter 1],

Lemma 2(A) (Reductions of ideals and gr7 R (also see [GHO])). Let R be

a local ring with maximal ideal M. Let I be an M-primary ideal. Let

xx, ... , xs £ IN for some fixed N > 1, and some s > 1 with x[, ... , x's

denoting their images in IN/IN+X. Then

/(gr7 R/(x[, ... , x's) gr7 R) < oo iff xx, ... , xs form a reduction of I .

Proof. Suppose /(gr7 /(x'x, ... , x's) gr7 R) < oo . Then for some large n ,

,   i i,/TNn,TNn+l,        TN+Nn , TN+Nn+l
(xx, ... ,xs)(I    /I        ) = / //

Hence
/ K TNn       TN+Nn+l       TN+Nn

xx, ... , X)I      +1 =1

Nakayama's lemma gives (xx, ... , xs)INn = IN+Nn . This means that xx, ... ,

xs form a reduction of I . Suppose next that xx,..., xs form a reduction of

I   . Then for some n > 1, we have (xx, ... , xs)I " — I + " . Thus

,   ' /w TNn ,TNn+\s       TN+Nn ,TN+Nn+\
(xx,...,xs)(I    /I       ) = /        //

This implies that /(gr7 R/(x'x, ... , x's) gTj R) < oo.

Summary of Rees valuations. Suppose that R is an analytically unramified local

domain with dim F > 1. Let I be any nonzero ideal in R. Let t be an

indeterminate. Set F = 0FY , where s ranges over the integers but Is = R

if s < 0. Set T = @Ists, where 5 ranges over the integers but Is = R if

s < 0. Let A and A' be the unique maximal irrelevant ideals of F and

F respectively. Then the following well-known statements constitute a brief

summary of the theory of Rees valuations. Some general references are [Mc,

R2].
(V.l) F is integrally closed in R[t, u] where u = t~  .

(V.2) T[t] = R[t,u].
(V.3) F is a Noetherian domain.

(V.4) dim F = dim F = d+l>2.
(V.5) uT is an integrally closed ideal in F.

(V.6) If F,, ... , Pr are all the associated primes of uT in F, then (T)p ,

..., (T)p are all discrete valuation rings.

(V.7)  Px, ... , Pr naturally induce discrete valuations  Vx, ... ,Vr on the

fraction field of F.

(V.8) Set  Vj(x) = n if x £ /" - In+X.   Set  F7(0) = oo.   Set  Vj(x) =

limit V¡(xn)/n as n -> oo. Then V¡(x) > k if and only if x £ Ik .

(V.9) V±(x) = min{Vj(x)/Vj(I)\j = 1, ... , r} .

(V.10) V,(x) = nVjn(x)Vn> 1.
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Lemma 2(B) (Rees valuations and minimal reductions). Let R be an analyti-

cally unramified, universally catenary local domain with maximal ideal M. Let

dim R = d > 1. Let I be an M-primary ideal. Let xx, ... , xs form a mini-

mal reduction of I. Then V(x¡) - V(I) for every Rees valuation V of I with

i = 1,..., d.

Proof. We shall freely use the notations and facts recorded earlier in the sum-

mary of Rees valuations. Since gr7 R ~ T/uT, the hypothesis on xx, ... , xd

implies that A is primary to (xxt, ... , xdt, u)T. It follows that

ht.(xxt, ... , xdt, u)T = d + 1.

We claim that ht.(xxt, ... , xdt, u)T = d + 1. To see this, let ß be a

prime minimal over (xxt, ... , xdt, u)T. Since F is finitely generated over a

universally catenary domain F, we can apply the dimension formula: ht. ß =

ht. QnT+a-b, where a = tr. deg. of F over F, and b = tr. deg. of T/Q over

T/Q n F. However a = 0 because F, F have the same quotient field. Next

b = 0 because T/Q is integral over T/QnT. So ht. ß = ht. ßnF. As_ßnF =
A, it follows that ht. ß = dim. TN = d+1. Thus ht.(xxt, ... ,xdt, u)T = d+l
as claimed.

We next claim that ht.(x;i, u) = 2. To see this, we observe that xxt, ... ,

xdt,u form a system of parameters of the catenary local domain (T)N. It

follows that ht.^i, u)(T)N - 2 . Because (xf, u)T is a graded ideal, we get

that ht.(x(i, u)T = 2 as claimed.

We now claim that V(x¡) = V(u). It is enough to show that x¡t <£ any

height 1 prime P in F which also contains u. This is true because we have

shown ht.(x(i, u)T = 2. Thus V(x¡t) = 0 giving V(x¡) = V(u) as claimed.

We finally claim that V(I) = V(u). To see this, suppose F is a height 1

prime in F which also contains u and (It)T. So P D (xxt, ... , xdt, u)T. It

follows that F = A', giving dim. F = dim.(T)p = 1. This is a contradiction,

as dim. F = d + I > 2. It follows that V(It) = 0, giving V(I) = V(u) as

claimed.

Our punch line is:   V(xt) = V(u) = V(I). This proves the lemma.

Lemma 2(C) (Killing of a reduction element). Let R be a quasi-unmixed local

ring with maximal ideal M. Let dim. R = d > 1. Let I be an M-primary

ideal. Let xx, ... , xd form a minimal reduction of I for some fixed A > 1.

Suppose yxi £ I +  for some y £ R. Then y £ 7.

Proof. We may assume that R is complete. To see this let ~ denote the natural

map from R to its completion R. We note that xx, ... , xd form a minimal

reduction of (I)N . Suppose the conclusion of the lemma holds for R. Then

y £ (Î)N n R = 7, by [Li2, p. 792]. Thus we may assume that R is complete.

We may further assume that F is a domain.   To see this, let Px, ... , Pt

be all the minimal primes of R. Since R is quasi-unmixed, dim. R/P¡ = d

for i = 1,...t.  So the images of xx, ... , xd form a minimal reduction of
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(I + Pj)/Pj • Suppose the conclusion of the lemma holds for R/Pi for i -

I... ,t. Then the image of y in R/Pi will belong to (I + Pi)/Pi for /' =

I, ... , d. This will imply that y £ 1. Thus we may assume that F is a

complete domain. Observe that R is an analytically unramified, universally

catenary domain. Hence V(I ) = V(x¡) for every Rees valuation V of I

by Lemma 2(B). So yxt £ IN+X gives V(y) + V(x¡) > V(IN) + V(I). Hence

V(y) > V'l). So V(y) > jfV(IN). Thus VjN(y) > ^ follows from (V.9). So

Vj(u) > 1 follows from (V.10). Finally y £ I follows from (V.8). This proves

the lemma.

Lemma 2(D) (Obviously a folklore prime avoidance). Let R be a nonnegatively

graded Noetherian ring. Set R = 0~ Rn. Suppose that R0 is an Artinian

local ring. Let N be the unique homogeneous maximal ideal of R. Suppose

that dim. R = ht. N = d > 1. Then we may choose homogeneous elements

ax, ... ,ad of positive degree such that

(1) ax, ... , ad are homogeneous elements of equal degree,

(2) l(R/(ax,...,ad))<<x>,

(3) dim. R/(ax,..., a,) = dim. R- j for 1 < j < d.

Lemma 2(E) (An obvious generalization of folklore prime avoidance [S, p.

23]). Let R be a nonnegatively graded ring. Set R = 0^° Rn. Suppose that

R0 is an Artinian local ring. Let N be the unique homogeneous maximal ideal

of R. Suppose that dim. R = ht. A = d > 1. Let A be a homogeneous ideal

of R such that dim. R/A <d-k. Then we may choose homogeneous elements

ax, ...ad of R such that

(1) ax, ... , ad are homogeneous elements of equal degree,

(2) l(R/(ax,...,ad))<œ,
(3) dim. R/(ax,... , a ) = dim. R - j for 1 < j < d,

(4) If k > 1 then ax, ...ak lie in A.

Lemma 2(F) (Refined generalized prime avoidance lemma [S, p. 27]). Let R be

a nonnegatively graded Noetherian ring. Set R = 0^° Rn . Suppose that R0 is

an Artinian local ring. Let A be the unique homogeneous maximal ideal of R.

Suppose that dim. R - ht. A = d > 1. Let Ak be homogeneous ideals of R such

that dim. R/Ak < d - k for 1 < k < d. Furthermore suppose Ax c • • ■ C Ad.

Then we may always pick homogeneous elements ax, ... ,ad of R enjoying all

the following properties:

(1) ax, ... ,ad are homogeneous elements of equal degree,

(2) l(R/(ax,...,ad))<™,
(3) dim.F/tö!, ... ,ak) = dim.R-k for l<k<d,
(4) ax, ... , ak all lie in Ak for 1 < k < d.

Proof of Theorem 2. First we show that Ik c right-hand side for a fixed k .

Suppose y £ Ik.  Then / c (I, y) and e¡(I) = et(Ik) for 0 < / < k, by
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the definition of Ik. So /[(/, y)n/In] < P(n) for all large n, where P(n)

is a polynomial in n of degree d - (k + 1) by Remark 1(A). In particular,

l[(I,y)In-x/In]<P(n). Set

oo

F = ((/,y)//)gr/F = ©(/,y)/"-1//".
i

Now E is nothing but the graded gr7 F-submodule of gr7F generated by

(I, y)/I. Set Ak - annihilator of E in gr7 R. So F has module dimension at

most d -k . Thus gr7R/Ak has Krull dimension at most d-k . Furthermore

Ak is a homogeneous ideal. Pick homogeneous elements x[, ... , x'd in gr7R

as in Lemma 2(E) such that

( 1 ) x[, ... , x'd are homogeneous of degree A > 1,

(2) l(grIR/(x[,.y,x'd))<oo,

(3) dim.(ë,r[R/(x[, ... ,x'k)) = d-k,

(4) x[, ... , x'k all lie in Ak .

Let xx, ... , xd be any preimages of x'x, ... , x'd in /^. Then xx, ... , xd

form a minimal reduction of I by Lemma 2(A) and (2) just above. Since

x'x, ... , x'k lie in Ak we obtain that y £ (IN+X : xx, ... , xk). Thus Ik c

right-hand side as needed to be shown.

Second, we shall show that Ik D right-hand side. Suppose y £ (IN+X : xx,

... , xk). In particular yxx £ I + . Thus y £ 7 follows from Lemma 2(C).

Hence I is a reduction of (I, y). This means that (I, y)s+n = (I, y)sIn for

some fixed s and all n > 1. We now carry out a computation:

l[(I,y)s+n/Is+n) = l[(I,y)sIn/Is+n]

i=s
Elu T \'rn+s-'l/T \I—1 r/!+.S —I+l-i

¿=i

= f^l[(I,yrxIs-i(I,y)In/(I,y)i-lriIn+l]
;=1

<£c,./[(/,y)/7/"+1]
¡=i

for some positive constants ci. The latter inequality can be seen by canonically

mapping for each i

@(I,y)InIIn+x->(I,yrXr\l,y)In/(I,yrxriIn+x^O.

i

We may choose c( to be the minimal number of generators of (I, y)'~ Is~'.

Set c = J2 c¡. Thus

l[(I,y)s+n/Is+n]<c-l[(I,y)In/In+x].
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But /[(/, y)In/In+x] is a polynomial in n, for large n , whose degree equals

dim. M - 1 where M — ((I, y)/1) gr7 F. In fact, M is nothing but the graded

gr7F-submodule of gr7F generated by (I,y)/I. But dim.M — Krull dimen-

sion of gr7 R/A where A is the annihilator of M. Since y £ (In+ : xx, ... , xk)

it follows that x[, ... , x'k belong to A. Thus Krull dimension of gr7 R/A <

Krull dimension of gr7 R/(x'x, ... , x'k) = d - k. The latter equality is true

because gr7F is equidimensional; whence we may localize at the irrelevant

maximal ideal, go modulo a minimal prime, and reduce to the catenary local

domain case. Thus /[(/, y)s+n/Is+n] is bounded by a polynomial in n for all

large n of degree d-(k +1). Hence we obtain e((I) = e¡(I, y) with 0 < i < k

by Remark 1(A). Therefore I c (I, y) c Ik follows from the definition of Ik .

In particular y £ Ik. Hence Ik D (IN+X : xx, ... , xd). This completes the

proof of the theorem.

Corollary 2(G). The right-hand side of the equality in the statement of Theorem

2 is in fact an ideal (this is not a priori obvious).

3. Another structure theorem for the coefficient ideals

In this section we prove Theorem 3 stated in the Introduction. A natural

question pertaining to the infinite union in Theorem 2 is whether the union

may be replaced by a finite union. By selecting parameters in a refined manner

(Lemma 2(F) in §2) we show that Ik is a single residual quotient.

Proof of Theorem 3. First we shall show that there is an integer A > 1 and

there is a minimal reduction xx, ... , xd such that Ik c (I +x : xx, ... , xk) for

1 < k < d. Fix Ik . We know that I c Ik and e¡(I) = et(Ik) with 0<i<k

by the definition of Ik. We also know that l[(Ik)"/In] < P(n) for all large

n, where P(n) is a polynomial in n of degree d - (k + 1). In particular

l[Ik • I"~x/In) < P(n). Set E{k) = (Ik/I)grjR. Set Ak = annihilator of E(k)

in gr7 R. Thus E{k) has module dimension of at most d - k . So gr7 R/Ak has

Krull dimension of at most d - k. This holds for all k such that 1 < k < d.

Further, Ax c •■• C Ad. Further, each Ak is a homogeneous ideal. By our

refined prime avoidance lemma we pick homogeneous elements x'x, ... , x'd

in gr7R of some fixed degree A > 1 such that /(gr7R/(x[, ... , x'd)) < oo

and that x'x, ... , x'k lying in Ak for 1 < k < d. Let xx, ... , xd be any

preimages of x'x, ... , x'd in /" . Then xx, ... , xd form a minimal reduction

of /" by Lemma 2(A). Of course as x[, ... , x'k lie in Ak, we obtain that

Ik c(IN+x:xx,...,xk) for 1 <k<d.

Second, we need only observe that Ik D (IN+X : xx, ... , xk) for 1 < k < d,

by a direct appeal to Theorem 2. This completes the proof of our Theorem 3.

Corollary 3(A). Consider the ideal Id . Fix the notation as in the theorem. Then

Id = (IN+X : xx, ..., xd) for some fixed integer A > 1 and some minimal

reduction xx, ... , xd of I   .
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Remark 3(B). We point out that in spite of Theorem 3 and Corollary 3(A), it

is unreasonable to claim in general that Ik = (I + : xx, ... , xk) for all large

A > 1 and any minimal reduction xx, ... , xd of IN : For suppose this claim

holds. Let y £ Ik. Let zx, ... , zd be a minimal reduction of IN. The

arbitrary nature of zx, ... , zd implies that if y £ Ik, then yzi £ IN+X for

1 < i < d. So y £ Id follows from Theorem 2. This implies Ik c Id, which

will not be the case in general if k < d.

Corollary 3(C). Fix the setup of Theorem 3. Assume that In/In+X is R/I-free

for all large n . Then I — Id .

4. Applications of the coefficient ideals

In this section we prove Theorem 4 and Theorem 5 stated in the Introduc-

tion. These results are applications of the coefficient ideals to understand some

aspects of gr7 R. Theorem 4 explains the nature of associated primes of gr7 R

in terms of the coefficient ideals. The proof depends on the fact that associated

primes may be expressed as residual quotients and ideals of high height must

contain regular elements if all the associated primes have a relatively low height.

On the other hand, Theorem 5, which is technical, states the effect of grade in

gr7 R on the coefficient ideals.

Proof of Theorem 4. First, assume that F = (Is)k for every s. Pick any

associated prime F of gr7 R. Suppose that ht. P > k. Since F is graded

there exists b £ Is~x - Is with 5 > 1 such that P - (0': b'), where b' is the

order image of b in gr7F. We can choose xx, ... , xk in R extendable to

a minimal reduction of (Is) for some A such that their canonical images

x'x,...,x'k in gr7F lie in P. So b(xx, ... , xk) c [s~l+sN+l ( giving b £

((IS)N+X :xx, ... ,xk). This implies b £ (Is)k by Theorem 2. So b £ Is which

is a contradiction. Hence ht. F < k as required.

Second, assume that ht. F < k for every associated prime F of gr7 R. Let

xx, ... ,xd be any minimal reduction of (Is) for any A. Let x'x, ... , x'd

be their canonical images in gr7F. Then ht.(x'x, ... , x'd) — d. Since gr7F

is equidimensional by (a well-known Ratliff result [Ra, p. 121] it follows that

ht.(x'x, ... , x'k) = k . So (x[, ... , x'k) contains a nonzero divisor. This implies

that ((IS)N+X : xx, ... , xk) = Is. So (Is)k = Is follows from Theorem 2 as

required. This completes the proof of Theorem 4.

Corollary 4(A). Fix the setup of Theorem 4. If gr7 F is Cohen-Macaulay then

I = /, = •.. = /,. In fact Is = (Is)d = •■• = (F),.

Remark 4(B). Let R - k[\xx, ... , xk\], where k is a field and xx, ... , xd are
2 2

indeterminates. Let I — (xx , ... , xd)R. Then gr7F is Cohen-Macaulay. Thus

/ = Id = ••• = /, ¿ 7. In fact, Is = (Is)d = • • ■ = (F), ï T .
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Remark 4(C). Craig Huneke showed me (using a PC) the following exam-

ple:  Let R - k[\x, y\] with k a field and x,y indeterminates.   Let I -

(x6, xV, xV, y6)R. Then I2±IX.

Lemma 5(A) (Heisuke Hironaka [Hi]). Let R be a Noetherian ring with I an

ideal in R. Let x £ i' - It+X. Let x be the image of x in l'/It+x. Suppose

x is a regular element in gr7F. Set R' = R/(x) and /' = (/, x)/(x). Then

gr7 R/(x) « gr7, R'.

Proof. gr7 R/K « gr;, R' follows from [4, Lemma 5] where K = 0^° Kn,

where K = ((x) n /" + In+X)/In+X. Now if n < t then KH = r+1//"+1. On

the other hand, if n > t then Kn = (xln~' + /"+1 )//"+1. This follows from the

fact that x is a regular element in gr7F, giving (x) ni" = xln~' for n > t.

So K = (x), proving the lemma.

Lemma 5(B). Let R be a local Noetherian ring with maximal ideal M. Let

I be an M-primary ideal. Set Ts = gr7l R for s > 1. Set Ns = maximal

irrelevant homogeneous ideal of Ts. Then grade Nx>k implies grade Ns>k.

Proof. Fix Ts. Assume k = 1. Then no associated prime of Tx can equal

A,. So there is an element x £ Ism - Ism+X such that x (= image of x

in Ism/Ism+ ) is a regular element in Tx. We claim that x" (= image of

x in ismifm+s) is a regular element in Ts. Suppose y £ Is" - Isn+S with

Xy <= /«*+"+*, We may aiso suppose y £ Isn+i - Isn+M for some i with

0 < i < s. Then xy £ ism+sn+i+l. By taking order images of x,y in Tx

we obtain a contradiction. This shows that x" is a regular element in Ts. So

lemma holds for k = 1.

Now set N's = maximal irrelevant homogeneous ideal of gr£/ R1 where R' =

R/(x) and L' — (Is, x)/(x). Assume grade A, > k > 1 . Then grade N[ >

k—l>l follows from Lemma 5(A). We may assume by induction on dimension

that grade N's>k - 1. It follows that grade Ns> k. This completes the proof

of the lemma.

Corollary 5(C) (Grothe-Hermann-Orbanz [GHO, Theorem 4.7]). Let R be a

local ring with maximal ideal M. Let I be an M-primary ideal. Then gr7 R

is Cohen-Macaulay implies gr/S F is Cohen-Macaulay for all s > 1.

Proof of Theorem 5. Fix s. Let x't denote the image of x¡ in (Is) /(1s) +1.

We claim that grade(x¡,..., x'¡)Ts > grade Ns-(d- j), where notation is as in

Lemma 5(B) and Theorem 2. Suppose the contrary. Then grade(x!, ... , x')F,
1 J       S

< [gradeNs - (d - j)] gives grade(x¡, ... , x'j, ... , x'd)Ts < [gradeNs -

(d-j)] + (d-j). So grade(x|, ... , x'd)Ts < grade Ns, which is a contradiction.

This establishes the claim.
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Now gradeNx > k implies gradeNs > k . This gives grade(x¡,..., x')FJ >

k - (d - j) > 1. So (O' : x[, ... , x'j)Ts = 0' in Ts. Consequently

((IS)N+X :(xx,..., Xj)) = F   for every A > 0.

So (Is)j = Is follows from Theorem 2. This completes the proof of Theorem

5.
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