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A DENSE SET OF OPERATORS
WITH TINY COMMUTANTS

DOMINGO A. HERRERO

Abstract. For a (bounded linear) operator T on a complex, separable, infinite-

dimensional Hubert space ß? , let s/{T) and sf"(T) denote the weak closure

of the polynomials in T and, respectively, the weak closure of the rational

functions with poles outside the spectrum of T. Let sf (T) and s/ (T)

denote the commutant and, respectively, the double commutant of T. We

say that T has a tiny commutant if s/'(T) = $fa{T). By constructing a

large family of "models" and by using standard techniques of approximation,

it is shown that {Te £?{ßP): T has a tiny commutant} is norm-dense in

the algebra S?(ßP) of all operators acting on ^f. Other related results: Let

\&\33 denote the invariant subspace lattice of a subalgebra SS of &(M?).

For a Jordan curve y c C, let y denote the union of y and its interior; for

T e 2'{%'), let ps_F(T) = {A e C: I - T is a semi-Fredholm operator}, and

let p+s_F(T)(P;_F(T)) = {Xe ps_F(T): ind(A - T) > 0 « 0, resp.)}. With

this notation in mind, it is shown that {T € &(&): s/(T) = sfa(T)}~ =

{T e 5?(<r): Lat-ar-(r) = Lat^T)}" = {A e 2'(%'): if y (Jordan

curve) C ps_F(A), then y c o(A)}; moreover, {A e S?{2f): if y (Jor-

dan curve) C ps_F(A), then ind(A - A) is constant on y n ps_F(A)} C {T £

&(Sir):st{T) =s/'(T)}~ C (rey(/): Latsf(T) = Uxs/'(T)} C {A e

&{ß?) : if y (Jordan curve) C pf_F(A), then y n PS_F(A) C ^l^i^)} C

{r 6 Se(S?):st(T) = j/"(r)} . (The first and the last inclusions are proper.)

The results also include a partial analysis of Latj/  (T).

1.  INTRODUCTION

To each operator T we can naturally associate four weakly closed subalgebras

with identity; namely,

s/(T) = the weak closure of the polynomials in T and 1,
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séa(T) - the weak closure of the rational functions in T with poles outside the

spectrum, o(T), of T,

sZ'(T) = {A e &(&)'. TA = AT} = the commutant of T, and

jjr*"(r) -{fie -S*(¿F): AB = BA for all A e sé'(T)} = the double commutant

of T.

(Here ¿¿?(ß?) denotes the algebra of all bounded linear operators acting on

the complex, separable, infinite-dimensional Hubert space %?.)

Clearly, sf(T) c séa(T) c sé"(T) c sé'(T), and the corresponding invari-

ant subspace lattices satisfy the reverse inclusions,

Latsé(T) D Latséa(T) d Latsé" (T) d Latsé'(T).

(Latsé (T) = LatT is just the invariant subspace lattice of T ; Latsé'(T) is

the lattice of hyperinvariant subspaces of T, also denoted by Hyperlat T.)

The main result of this article says that operators with "tiny" commutants,

in the sense that sé'(T) - séa(T), form a norm-dense subset of ¿¿?(ß?). Ob-

viously, the same result is true if the condition "sé' (T) = séa(T) " is replaced

by Us/"(T) = séa(T)," or "Latséa(T) = HyperlatT," or any other weaker

condition. (Indeed, the density of {T e S?(%f): sé"(T) = s/'(T)} follows

immediately from [10, Class (D), p. 109].)

On the other hand, an invariant subspace JÍ of T is invariant under s/a(T)

if and only if a(T\Jf) c o(T) [17]. (By subspace we always mean a closed

linear manifold of 2? ; T\^£ denotes the restriction of T to J?.)

By using this observation, it is possible to show that {Te Sf'ß?) : sé (T) =

séa(T)} and {Te^f(^): Lat T = Latséa(T)} have exactly the same (norm)

closure, and this closure admits a very simple spectral description and it is

nowhere dense in &(%?) (see Theorem 4.1 below).

This article sprouted out of a question of John B. Conway (personal commu-

nication):

What is the closure of the set {Te &(#) : Lat T = Hyperlat T} ?

Although unable to answer this question, the author shows that the closure

of the set of operators T with Lat T = Hyperlat T can be "sandwiched" be-

tween two nowhere dense closed subsets of Sfffl) (both having simple spec-

tral descriptions). In particular, the closure of this set is strictly included in

{TeS?(%f): Latr = LatJ/a(7:)}".

All the subsets of SCffl) considered here are similarity-invariant, and there-

fore we can apply the approximation machinery developed in the monographs

[2] and [11] (see also [14], [15]).

This article was written during an Informal Seminar on Operator Theory at

the University of California at San Diego (Summer, 1989). The author wishes
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to thank Professors J. Agler, L. C. Chadwick, and J. W. Helton, and the De-

partment of Mathematics of U.C.S.D. for their generous invitation.

2. Construction of models

The core of the article is the following highly technical result on the existence

of a peculiar type of operators with tiny commutants. The applications of these

"models" will be developed in §§3, 4, and 5.

Proposition 2.1. Let D denote the open unit disk and let {D(q , rj)}J=x be a

finite collection of open disks with pairwise disjoint closures, such that D(a. , rj)~

is included in D (k = 1, 2, ... , k; D(a, r) = {X e C: \X-a\ < r}, r+\a\ < 1).

Let Q = D\IJ*=1 B(<*j, rjf.
Given an index m, 1 < m < oo, there exists T in S?(%?) such that

(i)   a(T) = Si~ and o,e(T) = dSi ;

(ii)   ker(A - T) = {0} and dimker(>l - T)' = m for all XeSi;

(iii)  X - T is a semi-Fredholm operator of index -m for all XeSi, and

(iv)  séa(T) = sé'(T)  is isomorphic (but not necessarily isometric) with

H°°(Si).

Here ole(T) and ore(T) denote the left and, respectively, the right essential

spectrum of T ; olre(T) - ole(T) n ore(T) is the complement in C of the

semi-Fredholm domain of T, ps_F(T) - {X e C: X - T is a semi-Fredholm

operator}. The essential spectrum is ae(T) - ole(T) U ore(T).

Proposition 2.2. Let {aj\j=x  be a finite subset of the open unit disk, and let

Si = D\{a]}kj=x.

Given an index m, 1 < m < oo, there exists T in S?(%f) such that

(i) o(T) = D" and o,e(T) = ÔD U {o,}*=1   (= dSi) ;

(ii) kex(X -T) = {0} and dimker(/l - T)* = m for all XeSi;
(iii) X—T is a semi-Fredholm operator of index -m for all X e Si, and

(iv) sé(T) —sé'(T) is isometrically isomorphic with //°°(D).

The reader is referred to [4], [19] for definition and properties of the semi-

Fredholm operators, and to treatise of B. Sz.-Nagy and C. Foias. [23] for the

definition and properties of the H°°(D) functional calculus for contractions.

Our first result improves upon an example due to W. R. Wogen. In [25],

Wogen proved that for each cardinal m, 1 < m < oo, there is an operator

A in 2f(%f) such that sé'(A) has multiplicity m ; A is a particular type of

unilateral operator weighted shift: Let & be a Hubert space of dimension m ,

and let {gk}kx'=x be a denumerable dense subset of the unit sphere of ¿% .

Define Rk = (1 -Pk) + (l/k)Pk , where Pk denotes the orthogonal projection

of ¿% onto the one-dimensional space spanned by gk , k = 1, 2.
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Wogen proved that if

T =

f°

r,  o

o

31,

•y

where T0 = RX, Tk = (l/k)Rk+xR¡
-i

(k > 1), then every operator A com-

muting with T has a lower triangular operator matrix (with respect to the above

decomposition) with diagonal terms A00 - Axx — A22 — ■ ■ ■ = X0l^ for some

X0 e C. (From this we can immediately deduce that sé'(T) has multiplicity

equal to m.)

A lot more can be said. (Beware, the calculations that follow are not for the

feeble hearted reader!)

Lemma 2.3. Let {Tn}™=Q be a bounded sequence of invertible operators in 31

such that for some subsequence {nkY¡j=x and positive constants {S^^ satisfies

T. T. T,TJo-KRk■i2J,,0 - <,k^k   (k - 1,2, ... ; Rk is defined as above). Assume,

moreover, that \\Tjx\\< M for all n = 0,1,2, ... .
Let T e S?(M?) be the unilateral operator weighted shift with weight sequence

{7X=o (definedby

/0 \

T =

0

0

0
r,    0

0

V

31

■J

with respect to the orthogonal direct sum decomposition %? = J2 ©^lo ^n >

3?n~3? for all n = 0, 1,2,...).

Then sé'(T)= sé(T).

Proof. Let A = (^,,)^°,=0 be the matrix of A e sé'(T) with respect to the

given decomposition; then

O = TA - AT

( ^01^0

•MI^OO ~~ ̂ ll-'o

^02^1

TA     —AT

~A01T2

''0^02 ^13^2

^1^10

T2A20

^20^0

^30^0
Vll A22TX

T2A2X    A32TX

TXAX2 - A23T2

T2A22 - A33T2

\

\

Since the Tn 's are invertible, the first row indicates that A0n = 0 for all

n > 1.  Now the second row indicates that AXn = 0 for all n > 2, etc., so
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that A has a lower triangular operator matrix. (This can also be deduced by

observing that

3êQ = kexT*,    3?0®3?x =kerT*2,    á?0 ®3êx @3¿2 = ker T*3, ... ,

axe hyperinvariant subspaces of T*, and therefore their orthogonal comple-

ments, £ ©~ j 32n , ZZ2 ®^n > £ ©r=3 ^n > • • • must be invariant under

every J in sé'(T).)

From the entries (2, 1), (3, 2),...,(« + 1,«),..., we inductively obtain

^^(^^•••ToMoo^-i^"-^)"1   (»=1,2,...).

Thus (as in Wogen's article [25]),

TnkTnk-l---To)A00XW __ \\Bk(A00x)
\\A\\ > \\A ,|| = sup        *    *-=-tj— = sup

x*o   ii7;^r^_1...r0x||      x¥0   \\Rkx\\

If A00 is not a multiple of the identity, then there is a unit vector x0 such that

v0 = ^00^0 is linearly independent of x0. By taking a subsequence {nk,¡A°lx

so that ||x - gn   || -» 0 (z -» 00), we deduce that

m au ^       m a n ll-^ic(i)^oll
Mil > supp       , ,x0|| = sup ;       =00,

i *<"       m 1   W-^k^XoW

a contradiction.

Hence, A00 = X0l^, and therefore Ann = X0l^ for all « > 0 (for some

X0 e C).

Now consider the (k + i, zc)-entries Tk+i_xAk+i_x k - Ak+i k+xTk = 0 (i >

2,k>0); equivalent^, Tk+tAk+¡¡k = Ak+MMlTk  (i > 1, *'> 0).
Fix z. By induction over k, we obtain

An+i,n = (Tn+i-lTn+i-2 ' " ' Tr>Aio(Tn-lTn-2 " ' T0>

- (Tn+i-lTn+i-2 ' " ' To)Sio(Tn-lTn-2 ' ' ' Tj)       '

where s« = (r,_,r,._2...r0r1^.0.
Thus,

x^O ll^„_i^_2---70-Xll

„iin \\(Tn+l_xTn+l_2■ • ■ Tn)(Tn_xTn_2• ■ • rQ)5,0x|
P HT       T T vll

^0 Hi«-l-'n-2",i0A:ll

>M-sJl(T-'T^-T')S»Xl,—!
x*0       ll7,„_i7,„-2",70'X:ll

whence we deduce (exactly as in the case of Am) that S¡0 = X¡1^ for some

Xj e C; equivalent^, AiQ = XjTt_xTj_2• • • TQ.

Afortiori, An+i>n= XjT^T^.-T,   (i,n>0).
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Observe that T1 = (Lhk)™k=0, where Ltt+in = Tn+i_xTn+i_2 ••• Tn   (n > 0)

and Lhk = 0 if h - k ¿ i. Hence, we can formally write A = ¿~^jl0 X¡ T'.

Now it follows exactly as in the case of a unilateral scalar weighted shift that

A = (strong) lim Vil-l— ) XT'
v "m-oo^l m+lj    '

i=0

(see [6], [22]).
Therefore, Aesé(T).   G

Remarks 2.4. (i) As mentioned before, W. R. Wogen considered the sequence

TQ = Rx, Tn = (l/n)Rn+xR~ (n > 1). Since Rk is a positive invertible

operator, for each mk > 1, we can write Rk = (Lk)mk, where Lk = (1 - Pk) +

(l/k)x/r"kPk (k > 1). Clearly, if mfc is large, then la - Lk is an operator of

very small norm and rank equal to mk .

Given a normed ideal J2- of compact operators, strictly larger than the trace

class (see [19], [21]), we define

T — \       T - T — • • • - T    — ï     T        — T        — ... — T      — T~X
J0 _ XJ^' M ~ 12 -        - 1ml - ^1 ' 1m, + l ~ 1 m,+2 ~        ~ 1 3m, - ^1    '

T — T = ••• = T      = T
J3ml + l _ I3ml+2 ~ I 4m, _ ^l '

*!

T = ... = T = A
4(m,+—+mt)+l 4(ml+---+mlí)+mk+¡ fc+l '

T = ••• = T = L~X
x 4{mt+---+mk)+mk+] + l x 4{ml+---+mk)+3mk+t k+l '

T =... = T = L
A4{ml+---+mk)+imk+i + l 4(mt+---+mk+l) k+l '

Let T be defined as in Lemma 2.3 and let S be the similarly defined operator

with weights equal to la for all n = 0, 1,2,.... S is the unilateral shift

of multiplicity equal to dixn3¿ . Given e > 0, if mk —* oo fast enough, then

S-T eS and \S - T\s < e . In particular, a(T) = D" , a,e(T) = 3D, and

for each X in D, X-T is a semi-Fredholm operator with index -dim 31 and

trivial kernel. Moreover, both {Tn}^=0 and {T~'}^10 have the property of the

lemma. (This solves Proposition 2.1 for the case of a "nonperforated disk.")

(ii) If we define Tn as above whenever Tn = Lk (for some k) and Tn =

(l/\\Lk \\)Lk whenever Tn = Lk    (for some k), then ||!T|| = 1. It is easy to
*k

see that T —► 0 (strongly, k —> oo) and a simple calculation (by using the

facts that l!jk = Rk and {g/,-}^ is dense in the unit sphere of 31) shows

that Tk -> 0 (strongly, zc -> oo).

Thus, in this case T is a C00-contraction in the sense of B. Sz.-Nagy and

C. Foias. [23]; moreover, T is very close to the shift 5 of multiplicity dixn3¿

(if 31 is finite-dimensional, |5 - T\s < s), a(T) = D, ale(T) = D, and for
each X € D, X-T is a semi-Fredholm operator with index equal to - dim 31

and trivial kernel.  For suitable subsequences,  Tn Tn _, • • • Tx TQ = Sk3êk and

(TpTpk_x---TxToyx = nkRk   (ôk,nk > 0).   Furthermore, if <p e H°°(D),
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<PW = £^=0 an^n 'tnen the mapping

oo

<p -* cp(T) := (strong) lim cp(rT) = (strong) lim "S^arnTn
m—»oo m—»oo t—*    "

n=0

(these limits are well-defined) defines an isometric isomorphism from H°°(D)

onto sé(T).

(iii) A close look of the proof of Lemma 2.3 shows that the condition " || Tn \\ <

M for all « > 0" is superabundant. The only thing we must guarantee is

that \\(Tn+i_xTn+j_2 ■ ■ ■ Tn)~x|| does not grow too fast. For instance, if we take

T0 = Rx, Tx = R2R~l, and Tn = (l/nlogn)Rn+xR~l for n > 2, then the

proof of Lemma 2.3 yields a quasinilpotent unilateral operator weighted shift

T such that dimkerT* = dim32 and sé'(T) = sé(T); moreover, if 32 is

finite-dimensional, then T is a compact operator.

As a second step toward the proof of Proposition 2.1, we shall settle the case

of a single hole.

Lemma 2.5. Let D denote the open unit disk, let a e D, and let 0 < r < l-\a\

(so that D(q, r)"cD).

Define {Tn}™=0 as in Remark 2.4(H), and let re^t/jf/^]]®^^,

32n~32) be the operator defined by

(•

a

T .

(0)

T,   0

32

■■-3

-1

32,

32x
32,

(the remaining entries of the matrix are 0 's), where T n = rTn '.

Then o(T) = D~\D(a, rl   T\Y,®Zo^n  and r(T ~ al)"'l E8m^
are C^-contractions with H°°(D) functional calculus,

sé'(T) =sé(T) = {cp(T) + y/(r(T - al)~X): cp, y, e H°°(D), W(0) = 0}

is isomorphic (although not necessarily isometric) with 7/°°(D\D(a, r)~) ; more-

over, ole(T) — da(T) and, for each X in a(T)\da(T), X-T is a semi-

Fredholm operator of index equal to - dim 32 and trivial kernel.
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Proof. Let A - (A¡j)^ be the matrix of A e sé'(T) with respect to the given

decomposition; then

0 = TA-AT

(Ti-lAi-l,j ~ Ai,j+lTji,j<0

{Ti-i*i-ij - Aij+iTj - aAiji>oj<o

Ti.lAi-i,rA i,j+iTj + aAijh<oj>o

(Ti-lAi-l,j ~ Ai,j+lTj\,j>0

with respect to the decomposition ¿F = (E®„<0^„) © (£©„>o^,) (^T =

£©n<o^n ' ^o ~ £©n>o^) • By repeating four times the same arguments

as in the proof of Lemma 2.3, from the ( 1, l)-entry and the (0, 0)-entry of the

above 2x2 operator matrix, we deduce that

(1) Ajj = a0l^ for all z>0,

(2) if i, j > 0, i?j, then either AtJ = a^jT^jT^ ■•Tj (for i > j),

or Ajj = c_0._I.)(r,._ir;_2 ■ ■ ■ T,)"1 (for i < j),

(3) Aii = \\3t for all z<0,

(4) if i, j < 0, i # ;', then either Ai} = bj_jTj_xTj_2 •••Tj (for i > j), or

Ajj = b_u_j)(Tj_xTj_2-.-Tj)~x  (for i < j), where an,bneC   (ne

Z), fl_, = b_x, and limsup^^ \an\x/" < 1, limsup#l_t00|/3_#I|1/B < r

(because the entries of A axe uniformly bounded by ||^||) ; moreover,

we also have Ai0 = bj(T_xT_2 ■ ■ ■ T_;)_1 for all i < 0.

On the other hand, the analysis of the (0, l)-entryof TA-AT = 0 indicates

that

(5) if z > 0 > ;', then AtJ = a"1 (Ti_lAi_l } - Aij+xTj is uniquely de-

termined by Aj_x j (=the entry exactly above Ai} in the matrix) and

Aj J+x (=the entry to the right of A¡j in the matrix), and a straightfor-

ward computation shows that A¡j = CjjTj_xTj_2 •■•Tj.

Similarly, the analysis of the (1, 0)-entry of TA- AT = 0 indicates that

(6) if i < 0 < j, then Aij+X = (T¡_xAj_XJ + o.AjjTjx ; equivalently,

if / < 0 < j, then Atj = (Tj_xAj_Xj_x +aAiJ_x)Tjjx is uniquely

determined by A¡_x _, (=the entry above and to the left of Ai} in the

matrix), and A¡  _, (=the entry to the left of Ai} in the matrix), and

a straightforward computation shows that A¡¡ = Cjj(Tj_xTj_2 ■ ■ ■ Tj)"  .

In both (5) and (6), c¡, e C is defined by certain linear combinations of

finitely many an 's and bn 's.

Since T - ( £í¿' ¡j r(0° 0) ), where T(0, 0) has the form of Lemma 2.3 and

T(l, 1)-q is the adjoint of an operator of the form of Lemma 2.3, a(T(0, 0))

= D~ and a(T(l, 1) -a) = zTT , it is easy to see that a(T) c D~ and T-X

is a semi-Fredholm operator with index equal to -dim32 and trivial kernel

for all XeD\D(a,r)~ .
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On the other hand, by solving the equation A(T ■

can check that T - a is invertible, with inverse

(T-a)~l =

0   T~

0     T

(0)     T.
-i
o

0

V

(the remaining entries of the matrix are 0's), where

Bij = ai-i-X(Tj_]Tj_2...Tjrl

A straightforward computation shows that

a) = 1   (A as above) we

Bn-,    B,'02

o

03

B13

[2

0

(;-i>/>0).

[T-a) < max r'\Y.^ + n)H)n
n=0

= max[r ', (1 - (1 + n)\a\)  X] = r X

where n = max/!>0(||rn || - 1) satisfies 1 - (1 + n)\a\ > r, provided all the

mk 's of Remark 2.4 are sufficiently large.

Since we obviously have dD(a, r) ca(T), it follows that ||(T-q)-1||_1 =

r = dist[a, <9D(a, r)]. Therefore, T - X is invertible for all X e D(a, r)

(\\(T-X)-X\\ = (dist[A, ÖD(a, r)])-1 = (1 - \X-a\)~l), and |k(r-a)-'|| = 1 ;

that is, r(T - a)     is a contraction.

Thus, a'T) = D"\D(a, r) and ole(T) = 3DudD(a, r).  By using their

matricial representations, it is not difficult to check that both T and r(T —

a)~   are C00-contractions, and therefore they admit H°°(D) functional calculi;

moreover, sé(T) and sé(r(T-a)~x) are isometrically isomorphic with H°°(D)

(via their functional calculi; see [23]).

Define cp(X) = E~oû»A" and vW = ^7=i(b-nr~")^ ■ BV (4)> 9 and V
are analytic on the open unit disk.

Claim.  tp,y/e H°°(D) and A = cp(T) + y/(r(T- a)~x).

Observe that, if this claim is true, then an analysis of the matrix of <p(T) +

y/(r(T- a)~x) indicates that ô  = (l/n\)<p{n](a) for all n = 0, 1, 2, ... .
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Write bn = (lln\)cp{n)(a.) + vn  (vn is "the error term"; n > 0). By induction,

we obtain (use (5))

4>,-i = a~XMa) - aQ + v0)T_x,

Ax _i = oT2[(p(a) -a0- axa + uQ]TQT_x,

An,-l=a
- ^,-("+1)

<P(a) - Z"=0aia' + "o\ Tn-lTn-2 ' ' ' T0T-l >

The coefficient is the sum of

-(n+l)
Q <P(a)-J2aia'

(=0

= Ea.+«+ia'
i=0

(and the absolute values of these numbers are obviously uniformly bounded by

some constant C > 0) and z/0a~("+1).

Thus, if i/Q / 0, then we arrive at the contradiction

MII>supMI,_ill>sup|i/0a-("+1)|.||rll_17;_2..-r0r_1||-c
n n

> sup|i/0[(l + \a\)/2f{n+X)\ - C = oo.

Therefore uQ = 0.

Another inductive argument shows that un = 0   (n > 0) ; that is,  ¿>n is,

indeed, equal to (I/n\)cp(n)(a) for all n > 0.

It follows that (use (4))
OO

^\bJmax\[Tj+n_xTj+n_2---Tj\\
n=1

OO

< £(l/rz!)|/'V)l max III^l^., • • • I}|| < oo
«=i

because |a| + r < 1, maxj<_J|r;.+„_ir/.+n_2 • • • 7\|| = 0([r(l + e)]n)  for all

e > 0, and çz has radius of convergence at least 1.

This means that the operator

A(l, 1) := (Ajj)iJ<Q: ¿2®32n - £©■!*,,
n<0 n<0

can be written as the sum of two operators, A(l, 1)+ and A(l, 1)~ , where

A(\, l)+ (A(\, 1)~) has the same entries as (At..). <0 for i < j (for i > j,

resp.) and the other entries equal to 0.

Another cumbersome calculation shows that a_n = (l/nl)^"\r(l - a)~x),

so that
oo

-1

£ \a_n\ max \\(Ti+n_xTi+n_2 • • • Tjf
n=\

oo

<^(l/zz!)|^)(z-(l-a)-1)|max||(r;+„_ir;+„_2-..r()-1||<oo
;>0
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v — 1 , x — 1 I = 0((l +e)") forbecause \r( 1 - a)    | < 1, max,.>0 \\(Ti+n_xTi+n_2 ■ ■ ■ T¡)'

all e > 0, and y/ has radius of convergence at least 1.

Thus, ¿(0, 0) := (Ajjj  >0 can also be "split" along the main diagonal as

A(0, 0) = ¿(0, 0)++¿(0, 0)~ , where ¿(0, 0)+(A(0, 0)~) has the same entries

as ¿(0, 0) for i > j (for i < j, resp.) and the other entries equal to 0.

Let ¿(1,0) = (¿l7),>o>;<o and A(0, 1) = (¿l7)l<0J>0 . We deduce from the

above results that

'¿(1,1)   ¿(1,0)\      (A(l, l)+ + A(l, I)- ¿(1,0)

¿(0,1)   ¿(0,0) J     \ ¿(0,1) ¿(0,0)+ + ¿(0,0)~
¿ =

= A   +A~

where

¿+ =
¿(1,1)+ 0
¿(0,1)    ¿(0,0)+

and   A   =
¿(1,1)

0
¿(1,0)

¿(0,0)-

It is obvious that both ¿+ and A" commute with T. Since an element in

the commutant of T is uniquely determined by its 0th column, a comparison of

the corresponding matrices shows that ¿+ = <p(T) and A" = y(r(T - a)~x),

whence we deduce that <p, y e H°°(D) and A = cp(T) + y/(r(T - a)~x) e
séa(T).

Hence, sé'(T) = séa(T). (It is a straightforward exercise that every function

co in H°°(D) admits a unique decomposition of the form co(X) = <p(X) +

\l/(r(X-a)~x), where cp, \p e Hx'(D) and ^(0) = 0.)

The proof of Lemma 2.5 is now complete.   D

Now we are in a position to prove Proposition 2.1. The case k = 1 is

the contents of Lemma 2.5:   T = (rL¿a ^) with respect to the decomposition

* = (£©„<o^«) © (E©„>9-#„). where R is Siven °y Lemma 2.3 and

Remark 2.4(h), L is the adjoint of the similarly defined operator with the

weight Tn replaced by T~    (n > 2) and

0   rT

C 0

Assume that zc > 2 ; then we define

fhL + ak

T =

\     C,

rk_xL + ak_x

C,

r2L + a2

C,
z-jL-l-a,

C, RJ-k '-/c-1 ^2 wl

with respect to the decomposition %? = {(E©„<o^«) © • ■ • © (E©„<o«^„)

(k copies)} e (E©„>ot^,n) and C¿ is defined exactly as C,with r replaced



170 D. A. HERRERO

by rj, j = 1, 2,..., k. (Compare with the generalized Rota's model defined

in [8].)

For each h , 1 < h < k,

°{{'hLc+fh ÏÙ-rs»*R

which includes \Jj¥h a(rjL + aj = 1J;¥/, D(ay , rj   .

Since the latter set does not disconnect the plane, it is not difficult to prove

that o(T) = D~\(J¡Li D(q7-, rj) ; furthermore, ale(T) = do(T) and X - T is

a semi-Fredholm operator with index equal to - dim 32 and trivial kernel for

all Xea(T)\ole(T).

Let A = (Bmn)m n=Q be the operator matrix of an element of sé'(T) (for

each pair (m, n), B     can be written as an infinite operator matrix in the

obvious way). We have 0 = TA- AT = (Mmn'm,n=0
, where

(1)

(2)

(3)

(4)

(5)

Mjj = [riL,Bii]-Bj0Cl, j = k, k - 1, ... , 2, 1
n     L j

M00 = [R B,oo] + £•: 1 CjBjO

IJ
(q,. + rjL)Bjj - Bjj(oLj + rjL) - Bi0Cj, k > i, j > 1, i¿ j,

Mío = K + riL)Bio - Bíor > k>i> I, and

M,0j = lZUCjBjj + RB0j-B0jaj + rjL) RC:, k > J > 1

Exactly as in the proof of Lemma 2.3 and the first part of the proof of Lemma

2.5, it can be shown that

(

5oo =

a0^3l

axT0

a2TxT0

a3T2TxT0

a T

a0^3t

axTx

a2T2Tx

a_2(TT o'
-i

(T T T \

*-lTl

a0^3l

axT2

a.2(T2Tx)
-l

2MJ

■Jf
a0^3l

and

BjJ =

V

hJ\

b!J-4

b!{T_{T_,

b{T_2T_,T_A

b1   T~l

bJo^

bJ2T_2T_3

67_2(r_37-_4)

bijZi

biAT.2T_}T_,y

bJ-2(T_ 2^-3)

h'\

b{T ,

W   T~x

bJo^

(j = k,k-l,...,2, 1 ; use (1) and (2))

Some simple estimates on the sizes of a

that, if we define

n > 0) and bJ_n  (n > 0) indicate

oo

<p(X) = Y2an*n     and     Vj(X) = Yi(b-nritt»n>
n=0 n=l
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then cp and y/j  (j = 1, 2, ... , k) axe analytic on the open unit disk.

Furthermore, if in addition to (1) and (2) we consider also (3), (4), and

(5), then we infer (as in the proof of Lemma 2.5) that the structure of A is

uniquely determined by the constants {a,,}!^ and {¿¿}*~ (j = 1, 2,... , k);

then, a double inductive argument shows that, indeed, this structure is uniquely

determined only by {an}™=0 and {bJ_n}™=x   (j = 1, 2, ... , k).

Thus (formally at least), we have A - cp(T) + E,=1 í¿/,(a-,(7" — aj)~x).

The operator T is contractive and the analysis of the matrix of (T - a j)~x

indicates that r}(T - aj)~ is also contractive; (j = 1, 2,..., k); further-

more, T and rAT - aj)~ are actually C00-contractions with (isometrically

isomorphic) H°°(D) functional calculi [23].

We conclude that A is equal to the strong limit of

k

Ar = (p(rT) + J2^j(rrjT-aj'X)eséa(T),    asrîl.

;=i

Hence, sé'(T) = séa(T).

The actual computations are a lot more cumbersome than the corresponding

ones in Lemma 2.5, but the basic structure is the same: In <p(T) there is a

"main part" <p(R), and

oo oo

cp(a j + r}L) = £ an(aj + r}LJ = Jj(l ¡ n^ (a j)(r}L)n
n=0 n=0

is the "irrelevant part" (the series converges in the norm-topology, j = 1, 2,

... ,k). For each h , 1 < h < k, in y/h(rh(T - ah)~ ) the "main part" is

y,h(rh«[(rhL + ah)-ah]-X") = V'hCL-Xn

(the quotation marks mean that, although L is not invertible, we can define

y/h("L~Xn), where " L~x " is the unilateral operator weighted shift defined by

('   ' \     '

o   r4 32_4
0    T3 32_3

0 T2    32_2

V 0 J 32_x
which "looks like the inverse" of the backward operator weighted shift L).

In this case the "irrelevant part" is the sum of i//h(rh"(R - aA)_1") and

y/h(rh(rjL-aj)~x); these series also converge in the norm-topology and, more-

over, y/h(rh(rjL - a )_ ) is actually a uniform limit of polynomials in L for

all j ^ h . Thus, the entries of the matrix of B,, above the main diagonal can
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only come from y/h("L~ ") (h — 1,2, ... ,k). Similarly, the entries of the

matrix B00 on and below the main diagonal can only come from <p(R).

The details of the constructions are left to the really dedicated reader.

The proof of Proposition 2.1 is now complete.   D

Remark 2.6. In Proposition 2.1, the operator T is defined so that T and

rj(T - aj)~ (j - 1,2, ... ,k) are C00-contractions with H°°(D) functional

calculi in order to simplify the construction. But this is not strictly necessary.

Instead of choosing {Tn}^=0 as in Remark 2.4(ii), we can choose the sequence

defined in Remark 2.4(i), and then justify that
oo

<p(T) = (strong) lim J^ a (zT)"
rîl '-^   "

n=0

m     , -.

= (strong) lim Y ( 1-?— ) ajn e sé(T)
n=0

and
oo

¥j(rj(T-aj-X) = (strong) lim £V „(7-a,)""
n=l

m     / \

= (strong) lim y ( 1-^— ) bj  (T - af)~"

«=o

(j = 1, 2, ... , k) by using the same kinds of arguments as in [6] or [22].

In this case, sé(T) is isometrically isomorphic with a certain Banach algebra

H°°(D;T) continuously embedded in H°°(D) (norm-decreasing embedding).

Since the family {Ti+X Tj+2 • • • Ti+n}°°n=Q is not uniformly bounded, the embed-

ding of H°°(D; T) is strictly included in H°°(D).

Proof of Proposition 2.2. Define T as in the proof of Proposition 2.1, except

that {T_n}™=2 is chosen as {Tn}°j=2 in Remark 2.4(iii). The entries of an

operator A commuting with T are computed in exactly the same way as in the

previous case, and these computations indicate that b1_n = 0 for all « > 1 and

all j = 1,2, ... ,k, because all the sequences {Tfx}™=2, {T_nT_[n+x)}™=2,

{T_nT_{n+X)T_{n+2)}Z2 > ■ • •  are unbounded.

A fortiori, a_n = 0 for all n > 1, etc. Now it is easily seen that A = cp(A) e

sé(T), where ç»(A) = E~0V"-

Hence, sé'(T) =sé(T).   D

Of course, the arguments of the proof of Propositions 2.1 and 2.2 can also

be applied to the following "mixed" situation, as well:

Proposition 2.7. Let D denote the open unit disk, let {D(a., >",)},=1 be a finite

collection of open disks with pairwise disjoint closures such that D(a;, rj" c

D for all j =  1,2, ... ,k, and let {px, p2, ... , pn}  be a finite subset of

D\UÎ=ID(a7.,r,)-.
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Let Si = D\[(U7=1 D(a., zv)-) ö {px, p2, ... , pn}].   Given an index m,

1 < m < oo, there exists T in J?(^) such that

(i)   o(T) = Si~ and ole(T) = 3Si;

(ii)   ker(A - T) = {0} and dimker(A - T)* = m for all XeSi;

(Hi)  X-T is a semi-Fredholm operator of index -m for all XeSi, and

(iv)  séa(T) =sé'(T) is isomorphic (but not necessarily isometric) with Hœ

(interior [Si"]).

3. Density of operators with tiny commutants

Theorem 3.1. The class {T e £?(<%*) : sé'(T) = séa(T)} is uniformly dense in

&{X).

Proof. Recall that an analytic Cauchy domain is a nonempty, bounded, open

subset of C whose boundary consists of finitely many pairwise disjoint regu-

lar analytic Jordan curves. An analytic Cauchy region is a connected analytic

Cauchy domain.

Given A in ¿zf(J?) and e > 0, we can find Ax e ^(ßff) such that

||¿ - ¿J < e , ohe(Aj) is the closure of an analytic Cauchy domain Si, and

o(Ax) has only finitely many isolated points Xx, X2, ... , X (see [2], [11], or

[15]). Let Sl¡ , Si2 , ... , Sï^ (Si~ ,Si2 , ... , Si~) be an enumeration of all

those components of the semi-Fredholm domain PS_F(AX) of ¿, such that

ind(A - Ax) is positive (negative, resp.), and let ih(-ik) be the index of X - Ax

for X in Si^ (in Sik , resp.).

Since ps_F(Ax) = C\o!re(Ax) = C\Si~ , and Si is an analytic Cauchy domain,

it readily follows that Q|, Si2 , ... , Q* and Si^ , Si2 , ... , Si~ are analytic

Cauchy regions. According to [7, Theorem 2, p. 237] there exist "perforated

disks" (as in Proposition 2.1) D|, D2 , ... , D^ and D~ ,D2 , ... ,D~ and

analytic functions (p\, q>2 , ... , cp^ and <p\~ , cp2 , ... , cp~ such that (p\ maps

(a neighborhood of) the closure of(D^)_:={>leC:Ä€D^} conformally onto

(a neighborhood of) the closure of (Sïj)~ (h = 1,2, ... , m) and cpk maps

(a neighborhood of) (D^")_ conformally onto (a neighborhood of) the closure

of Sik   (k=l,2,...,n).

Let Rl~ be the operator constructed in Proposition 2.1 such that cr(Rk) —

(D")_, ale(R~k) = dD~, and ind(X - R~) = -ik for all X e D~ (k =

1,2, ... , m). Similarly, let R+h = (Rj)*, where Rj is the operator given by

Proposition 2.1 such that a(R^) = (D¿)_ , ^ie(Rk) = d®l, and ind(X-R^) =

-ih for all XeD¡  (h = 1, 2,..., m).

The operators cp^(RJ) and <pk(R~k) are well-defined via Riesz-Dunford

functional calculus, and it is straightforward to check that

°(<P+h(R+h)) = (0¡¡ )" ,        ore(cp+h(R+h)) = dSi¡,
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ind(X-<p¡(R+h)) = ih   and   kex(X - cp¡(R¡)j = {0}   for all X eSi+h,

sé'(<p+h(R+h)) = sé'(R\) = séa(R+h) = séa(cp+h(R+h))    (h = l,2,...,m),

and

o(cpj(R~k)) = (Si~k)- ,        ole(cp-k(R-k)) = dSik ,

ind(X-<pj(Rk)) = -ik   and    kex(X-(p¡(Rk)) = {0}   foralUEß",

sé'(cp-k(R-k))^sé'(R-k) = séa(R-)=séa(cpj(R-))    (k=l,2,...,n).

Clearly, the Riesz spectral invariant subspace %'(AX ; X¡) (associated with the

clopen subset {X¡} of o(Ax)) is finite-dimensional: 1 < d¡ := din\%'(Ax ; X¡) <

oo (I - 1,2, ... , p). For each of the (finitely many) components Six, Si2, ... ,

Sit of Q, let T>(ßs, rs) be a disk whose closure is contained in Sis (s -

1,2,...,/).
Define

© |e©(ai+*<,)} ® {e©(^+^)}.
where qd denotes the nilpotent Jordan cell of order d and S is the unilateral

shift of multiplicity one. Since the sets a(cpl(Kl)) = (Si^)~ , cr(tpk(Rk)) =

(Sik)~ , ct(X¡ + q¡) = {X¡} , and a(ßs + rsS) = D(ßs, rs)~ axe pairwise disjoint,

it is not difficult to infer that

•*'m= {E0^'(<)}©{E0^K)}

©{Eê^'^)}®{Eé^'(5)}'

which coincides with séa(T).

By using the Similarity Orbit Theorem [2, Theorems 9.1 and 9.2], we see that

Ax can be uniformly approximated by operators similar to T.

Hence, there exists ¿2 similar to T such that ||¿ - ¿2|| < ||¿ - Ax \\ + \\AX -

¿21| < 2e.

Clearly, sé'(A2) - séa(A2). Since e can be chosen arbitrarily small, we

conclude that A belongs to the closure of the set of operators with tiny corn-

mutants.
Hence, {T e &(&): sé'(T) = séu(T)} is dense in ^f(^).   D

Remarks 3.2. (i) D. A. Herrero [8] and D. Voiculescu [24] have independently

constructed extensions of the classical Rota's model for a linear operator [20]:

given an analytic Cauchy Si, there exists an operator M on a Hubert space S?

such that for each T e f?'??) with a(T) c Si there is an invariant subspace Jf
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of M so that
M_(M(T)    *\J?

where M(T) = M\Jf is similar to M and T1 is similar to T.

The proofs given in [8], [24] (see also [11, Chapter 3]) indicate that M can

be chosen to be <p(R), where R is the operator given by Proposition 2.1 for

a suitable perforated disk, with 32 an infinite-dimensional space, and 0 is a

conformai mapping from the closure of this perforated disk onto Si" . This

construction produces a model M with the additional property that sé'(M) =
séa(M).

(ii) For 1 < dim.32 < oo, the above construction shows that for each Cauchy

region Si and each index m (1 < m < oo), there exists an operator M =

M(Si, -m) such that o(M) = Si", ole(M) = OSi, ind(A - At) = -m and

ker(A - At) = {0} for all XeSi, and sé'(M) = séa(M) is isomorphic with

H°°(Si). In particular, sé'(M) does not contain any nontrivial idempotent. (By

taking adjoints, we can construct analogous examples with ind(X-M) - m and

kex(X - M)* - {0} for all X e Si. If m is finite, then M is essentially normal,

that is, M*M - MM* is a compact operator.)

These kinds of operators play a very important role in the proof of the "ap-

proximate inverse of the Riesz decomposition theorem" given in [16]. Indeed,

the constructions of [ 16] also include operators T such that T does not com-

mute with any nontrivial idempotent, a(T) = Si~ , ale(T) = ore(T) - dSi,

ind(A - T) = 0 and dimker(A -T) = dimker(A - T)* = 1 for all X e SI.
However (as we shall see later, in Corollary 5.4), given a Cauchy region Si,

it is impossible to construct an operator T such that a(T) — Si~ , ale(T) =

ore(T) = dSi, ind(A - T) = 0 and dimker(A - T) = dimker(A - T)* = 1 for

all X e Si, and sé'(T) = séa(T) because such an operator commutes with "too

many" rank-one operators.

4. Operators satisfying Lat T = Latséa(T)

Theorem 4.1. Let pf_F(T) = {X e PS_F(T): ind(A -T)¿0}. Then

{T e&(%f):sé(T)=séa(T)Y

= {TeS?(ßT): Latr = Lat^a(r)}"

= {A e &(%*)•. if y (Jordan curve) c ps_F(A), then y c a (A)}.

(Here y denotes the polynomial hull of y, that is, the complement of the un-

bounded component of C\y.)

Proof. Let WX,W2, and W3 denote the first, the second, and, respectively, the

third subset of Sf'tf') in the statement of the theorem. Since sé(T)= séa(T)

obviously imply Lat T = Latséa(T), the inclusion Wx c W2 is trivial.

The inclusion W2 c W3 is an observation of J. B. Conway (personal com-

munication): Suppose Lat T = Lat sé "(T) and y is a Jordan curve included in
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Ps-f(T). Obviously, ind(X-T) is independent of the particular X in the curve

y . Assume this index is negative.

Let J( = \/{T y}£l0 be the cyclic invariant subspace of T generated by a

nonzero vector y e ker(<¡; - T)* (for some £ e y) ; then X - T\Jf is a Fredholm

operator of index -1 for all X in y . Since Jf isa cyclic subspace, it follows

from [9], [12] (or [2, Chapter 11]) that X - T\Jf is a Fredholm operator of

index -1 for all X e y.

Therefore, y c o'T\£). But Jt e Lat T = Latséa(T), so that o{T\£) c

o(T) [17].

Hence, y c o(T).

By taking adjoints, we deduce that y c o(T) for every Jordan curve y c

PS_F(T) such that ind(A - T) > 0 for X e y .

It only remains to show that W3 c Wx. Assume that A e W3 and let

e > 0 be given. First of all, we approximate A by an operator ¿, e W3

^¿-¿J|<e) such that olre(Ax) is the closure of an analytic Cauchy domain

Si, including olre(A), o(Ax) = a (A) U Si~ , ind(A - ¿,) = ind(X - A) and

dimker(A - ¿,) = dimker(A -A) for all nonisolated points X of ps_F(Ax) n

a(Aj), and the restriction of Ax to %*(AX;X) is similar to aX+ nilpotent

Jordan cell of order dixn^(Ax ; X) " for each of the (finitely many) isolated

points X of a(Ax) (see [11]).

Thus ¿j is similar to the direct sum of a cyclic operator F acting on a finite-

dimensional space and an operator B eW3 such that o(B) has no isolated

points; moreover, o(F) is disjoint from [ps_F(B)]~ .

Let Six, Si2,..., Sim be an enumeration of the components of Si, and let

O,, 02, ... , Op be an enumeration of the components of pf_F(B). For each
i = 1, 2, ... , m, let N. be any operator such that a,AN.) = a(N.) = o(N-)

J *" J **■ J J

is a closed disk included in Q . For each zc = 1, 2, ... , p, let Mk be any

operator such that a(Mk) = (<Dfc)~ , CT/re(^t) = 9% > ind(A-Affc) = ind(X-B)

and min{dimker(A - Mk), dimker(A - Mk)*} - 0 for all X e <3>k . (These

operators can be constructed, e.g., as in the proof of Theorem 3.1, or by using

the results of [11, Chapter 3].)

Finally, if x¥x, 4*2, ... , *P( is an enumeration of the bounded components

of C\[U£=1 Ofc]~ , then for each h = 1,2, ... , t we choose an operator Lh

such that a(Lh) = C¥h)~ , ale(Lh) = ore(Lh) = dx¥h , and ind(A - Lh) = 0 and

dimker(A - Lh) = dimker(A - Lh)* = 1 for all X e xVh .

Let

^=^©JEê^WEé^}®{Eé^}-

By construction, o(R) = a(F) U {(lj7m=1 cr(Nj) U (\Jpk=l 4>J U (ULi **)}" does

not disconnect the plane; therefore (by using Runge's theorem [5]), séa(R) =

sé(R).
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Moreover, o(R) is a subset of <x(¿,), PS_F(R) 3 PS_F(AX), and

ind(/l - R) = ind(A - Aj) and min{dimker(/l - R)k , dimker[(¿ - R)*f} <

min{dimker(A-¿,) , dimker[(A-¿1)*] } for all X e ps_F(Ax) and all k > 1

(to see this, use that Ax e W3\), every component of ole(Ax) n are(Ax) meets

the perfect set ole(R)ncrre(R), o(Ax) and o(R) have exactly the same isolated

points, and dixn%?(Ax ; X) = dim^(R ; A) for each such point.

By the Similarity Orbit Theorem [2, Theorems 9.1 and 9.2], there exists ¿2

similar to R such that ||¿ - ¿2|| < ||¿ - ¿, || + ||¿, - ¿2|| <2e .

Since séa(R) = sé(R) and e can be chosen arbitrarily small, we conclude

that A e Wx.
The proof of Theorem 4.1 is now complete.   D

Remarks 4.2. (i) An easy corollary of the results of [3] (see also [1 and 11,

Chapter 4]) is that for each R in S?(%?) there is a compact operator K such

that a(R - K) does not disconnect the plane, and therefore séa(R - K) =

sé(R - K). Thus, if 3£(%?) denotes the ideal of all compact operators, then

{T e &'&) : séa(T) = sé(T)}+3f(^) = &(&).

(That is, {T e &(%*): séa(T) = sé(T)} "essentially" coincides with

2?'X).)
(ii) Given R in &<&), we have

dist[/x, {T:séa(T)=sé(T)}]

= inf{||5|| : B e £?(T) and o(R - B) does not disconnect the plane}

< inf{||A:|| : K e 3t(&) and for each Jordan curve y c ps_F(R)

such that ind(/l - R) ¿ 0 for X in y, y c a(R - K)}.

Both the equality and the inequality can be justified by using the proof of

Theorem 4.1. (The details are left to the reader.)

The author conjectures that the inequality is actually an equality. An upper

estimate for the second infimum can be easily derived from the results of [13].

(iii) By using the theorem on density of operators with "bad properties" [11,

Theorem 3.51], it is not difficult to see that all the classes {T e f?(%?) :sé(T)±

séa(T)} and {T e &(JT): Lat 7/ ¿ Latséa(T)} (and the classes similarly

defined with sé(T) and séa(T) replaced by any other pair of algebras) are

dense in 5f(^).

Furthermore, if B is any operator such that a(B) = {X e C: 1 < \X\ < 2}

and X - B is a Fredholm operator of index 1 for all X with 1 < \X\ < 2, then

sé(B') ^¿ séa(B') for all B' close enough to B. By using this observation

and the proof of [11, Theorem 3.51], we deduce that {T e S?(St): sé(T) =

séa(T)}~ is nowhere dense in ¿¿'(W).

A fortiori, so is {Te S?(%?) : Lat T = Hyperlat T}~ (and the closure of any

other class between these two).
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5. The case Lat T = Hyperlat T

Proposition 5.1. {A e &(%?) : if y (Jordan curve) c pf_F(A), then ind(A-¿)

is constant for X ey f) ps_F(A)}

c{Te^f(^):sé(T)=sé'(T)}~

c{Te &(&) : Lat T = Hyperlat T}'

c{Ae &(&) : if y (Jordan curve) C pf_F(A),

then y n ps_F(A) c pf_F(A)}

c {T e &(%'): sé(T)= séa(T)}~.

Furthermore, the first and the last inclusions are proper.

We shall need an auxiliary result which has some interest in itself. Recall that

M € PS-F(T) is a singular point of the semi-Fredholm domain (in the sense of C.

Apóstol [1]) if the mapping X -> Pkttu-T) (= orthogonal projection of %? onto

ker(A- T)) is discontinuous at X- p. In this case, T = W[(p + Q)®B]W~x,

where W is invertible, Q is a Jordan nilpotent (acting on a finite-dimensional

space 32), and p is not singular for B (see [1], [18], or [11, Chapter 3]).

Proposition 5.2. (i) If T e &(&) and Latsé"(T) = Hyperlat T, then X ->

Pkern-T) is continuous at X - p for all interior points p of a(T)f\ ps_F(T) ;

that is, the only singularities of the semi-Fredholm domain of T are the isolated

points of o(T)\ae(T).

Furthermore, if X e a(T)\oe(T) is isolated, then T\%f(T;X) is a cyclic

operator (on the finite-dimensional space %?(T; X)).

(ii) IfLatséa(T) = Hyperlat T, then min{dimker(/t-r), dimker(A-T)*} =

0 for each interior point X of o(T)i)ps_F(T). In particular, p-T is invertible

for each interior point p of a(T) n {X e ps_F(T) : ind(A - T) - 0} .

Proof, (i) If p is a singular point of ps_F(T) and p belongs to the interior

of a(T), then T has the above described form and X - B is a semi-Fredholm

operator with nontrivial kernel (or nontrivial cokernel) for all X in some neigh-

borhood of p. To simplify the notation, we can directly assume that W = 1

and p = 0, that is, T = Q®B .
It is obvious that T commutes with the orthogonal projection Pm (of %?

onto 32), and therefore 32 , %? e 32 e Lat sé "(T). If f is a unit vector in

ker Q* and g is a unit vector in ker B, and we define the rank-one operator

g®f€ &(X) by g ® f(x) = (x, f)g , then

T(g®f*) = (Bg)®f = 0   and   (g ® f)T = g ®(Q* fj = 0,

so that g ® /* commutes with T. But g ® f* does not commute with P^ ,

and therefore g <g> /* $ sé"(T).

Observe that g = g ® f(f) e g ® f(32), but g 1 32 .
Therefore, 32 e Lai sé "(T), but 32 <fc Hyperlat T.
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(If ker B = {0} , then we apply the same argument to T*, instead of T.)

An operator Q acting on a finite-dimensional space satisfies sé"(Q) = sé'(Q)

if and only if Q is cyclic, whence we obtain the second statement (see, e.g., [11,

Chapter 2]).

(ii) Now assume that T is semi-Fredholm and 0 is an interior point of a(T).

If 0 is singular, then Latséa(T) ¿ Hyperlat T, by (i).

If 0 is not singular and kex(X - T) ^ {0} ^ kex(X - T)* for all X in the

component Si of ps_F(T) containing the origin; then we pick unit vectors g e

ker T and / e ker T*. We can directly assume that ker T is finite-dimensional.

(If not, replace T by T*.) This guarantees that for each invariant subspace

JA, (T\ÂA)\^kex(T\JA) ] is bounded below.

Let JA = {Af: A e séa(T)}~ e Latséa(T). Since JA is a rationally cyclic

invariant subspace, T is semi-Fredholm with ind T > oo, and / € ker T* =

(ran T)1, it follows from [9], [12], or [2, Chapter 11] that X - T\JA is a Fred-

holm operator with trivial kernel and index equal to -1 for all X e Si. This

means, in particular, that g £ JA.

But g®f* e sé'(T) and g = g® f(f) e g® f(JA).
Therefore, JA e Latséa(T), but JA $ Hyperlat T.

Now the result follows by applying the above argument to p-T for each

interior point p of ps_F(T) n o(T).   D

Let / and g be as in the second part of the proof. It is easy to con-

struct examples where JA = {Bf: B esé"(T)}~ (eLatsé"(T)) satisfies that

ind(T\yy) = -m for some m, 2 < m < oo (see, e.g., [10]). Thus, JA is a

proper subspace of JA , in general.

Question 5.3. Let f, g, ^#,and JA be as above. Does g®f* always belong

to sé'(T)\sé"(T)l Does JA e Lat sé" (T)\ Hyperlat T1

Corollary 5.4. Ifkex(X-T) and kex(X-T)* are nontrivial for all X in some open

disk included in ps_F(T), then séa(T) ¿sé'(T) and Latséa(T) ¿ Hyperlat 7\

Now we are in a position to prove Proposition 5.1. The second and the fourth

inclusion are obvious, and Theorem 4.1 indicates that the fourth inclusion is

actually proper (for instance, if a (A) = D~ , ae(A) = {X: \X\ = I or |A| = 1/2} ,

ind(A - ¿) = 0 for \X\ < 1/2, and ind(A - A) = 1 for 1/2 < |A| < 1, then
sé (A) = séa(A), and y = {X e C: \X\ = 3/2} C pf_F(A), but y n PS_F(A) £

PÎ-f(A) ■
The third inclusion follows by Corollary 5.4. If y (Jordan curve) c pf_F(A)

and ind(A - A) = 0 for some X e y n ps_F(A), then every T close enough to

A has the same properties [4], [11, Chapter 1]. If X - T (or X' - T for some

X' close enough to X) is invertible, then Lat T ^ Latséa(T), by Theorem 4.1.

If kex(p - T) ^ {0} t¿ kex(p - T)* for all p on some neighborhood of X, then

Latséa(T) t¿ Hyperlat T, by Corollary 5.4. Thus, A cannot be approximated

by operators satisfying Lat T = Hyperlat T.
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Let W denote the first of the five sets described in the statement of the

proposition. Let AeW and let e > 0 be given. First of all, we find ¿, eW ,

with ||¿1 - ¿|| < e, such that olre(Ax) is the closure of an analytic Cauchy

domain Si, and a(Ax) has only finitely many isolated points (see [11]).

Since ¿, eW,we can find a finite collection 0¡, 02, ... , í>m of simply

connected analytic Cauchy regions, with pairwise disjoint closures, such that

d<t>j C Si and ind(X-Ax) = w; # 0 for X e ^j^ps_F(Ax), and ind(A-¿,) = 0

for all Xeps_F(Ax)\\Sj=x<S>r
Let Six,Si2, ... ,Sin be an enumeration of the components of Si. If Sik c

O (for some j), then we choose a closed disk Ak cSik. If Sik is not included

in the union of the <t> 's, then we choose a closed disk Ak c Slk\([J"=x <ï>.)" .

Without loss of generality, we can assume that the Sik 's are ordered so that

Sik c UjLi ®j if and only if 1 < k < p  (< n).
Let Nk be a normal operator such that a(Nk) = Ak   (k - 1,2, ... , n).

By construction, ¿, is similar to the direct sum of an operator F acting on

a finite-dimensional space (a(F) is the set of isolated points of a (A)), and an

operator B such that o(B) = a(A)\a(F). Without loss of generality, we can

directly assume that F is cyclic, and therefore sé(F) = sé'(F).

Let L e J2?(^) be any operator of the form

n

¿ = ̂{E©^ME©¿,

where a(Lj = (0;.)_ , olre(Lj = 90;, and ind(A - Lj = mj and

min{dimker(A - Lj), dimker(A - Ljj} = 0

for all A e <I> , j = 1, 2, ... , m .

The Similarity Orbit Theorem implies that there exists ¿2 similar to L such

that||¿! -¿21| < e.

For each t > 1 , let {p'r} be a set of pt distinct points such that exactly t

of these points lie in Ak   (k = 1,2, ... , p).

For each j = 1,2, ... , m ,let <¿   be a conformai mapping from D~ onto

(<Dy)-, and let A;>, = ^(«P, n{X».
By Proposition 2.2, for each j we can construct i?   ( such that o(Rj j =

D~> (7/r,(Ä;,i) = ÖDuAi,/'and iad(X - Rj j = m j and

min {dim ker (A - Rj t), dim ker (A - Rj j*} - 0

for all A e D\A • t. (This is obvious for m  < 0 ; if m] > 0, then we construct

Rj t by taking suitable adjoints.)

Let

^ = ̂©(e© ̂ |eJEéw..)
I k=p+\ J I 7=1
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It is immediate that o(Tj = o(F) U (\fk=p+x Ak) U (\Jj=x <&j , does not discon-

nect the plane,

fl/*(r,)-[ Ü A,]u|lJ[o<i>;u(^.n{^})]
\k=p+i   J    [j=i

g(Û^)u(U^)cQ>

and ind(A - Tt) = m and min{dimker(A - Tj, dimker(A - Tj*} — 0 for all

A e ®j\{pr} ; moreover,

sé'(Tt) = sé'(F) © j E © ■*'W J © I Effi^'^J I = ̂W-

The Similarity Orbit Theorem indicates that if Mt is a diagonal normal

operator of uniform infinite multiplicity such that cr(M() = ae(Mt) = {pr},

then

{       k=p+l       J {        j=l

can be uniformly approximated by operators similar to Tt. Furthermore, for

/ large, we can also approximate E©/t=i Nk by operators similar to Mt (see

[11, Chapter 5]).

Thus, if t is sufficiently large, then we can find ¿3 similar to Tt such that

||¿2-¿3||<e.

Since ||¿ - ¿3|| < 3e , sé'(A3) - sé(A3), and e can be chosen arbitrarily

small, we conclude that A is the uniform limit of a sequence of operators

{¿,}~, satisfying the condition sé'(A,) =sé(At) for all t = 1, 2,_

Hence, W c {T e^f(T): sé(T) =sé'(T)}~ .
It only remains to show that the first inclusion is also proper. This follows

immediately from the following.

Be  =P"+1
"      I (l/l"l

Example 5.5. Let B denote the bilateral weighted shift defined by

(»>0),
K+i     (»<o),

with respect to the orthonormal basis {£„}t^ of %f, and let M?+ = V{en}n>0

and^_=VK}„<0-
Define rg^/©/) by

((l/2)B_        0 1/2 0 \
;i/2)Z (l/2)5+ 0 0

0 0 B_ 0
V      0 0 Z B+) ß?+

T' =
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where '-G I
It is immediate that o(T) = D , oe(T) =-- {X e C: \X\ ■■= 0, 1/2, or 1},

ind(A -T) = -2 for 0 < |A| < 1/2, and ind(A - T) = -1 for 1/2 < |A| < 1 .
(So that T i W~ !)

A cumbersome calculation shows that T is a C00-construction with (isomet-

rically isomorphic) H°°(D) functional calculus, and sé'(T) =sé(T).

The proof of Proposition 5.1 is now complete.   D

Example 5.5 is a particular case of a large family of operators satisfying the

condition sé'(T) = sé(T), to be described in a sequel article. Unfortunately,

this family is not large enough to completely characterize {Te &(%?) : sé'(T)

= sé(T)}~.
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