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A MODIFIED SCHUR ALGORITHM
AND AN EXTENDED HAMBURGER MOMENT PROBLEM

OLAV NJÂSTAD

Abstract. An algorithm for a Pick-Nevanlinna problem where the interpola-

tion points coalesce into a finite set of points on the real line is introduced, its

connection with certain multipoint Padé approximation problems is discussed,

and the results are used to obtain the solutions of an extended Hamburger mo-

ment problem.

1. Introduction

The Pick-Nevanlinna problem is the following: Let {za : a £ A} be a set

of distinct points in the open upper half-plane H+ = {z : Imz > 0}, and let

{wa : a £ A} be a set of points in C. Find a function F(z) which is analytic

in //° such that ImF(z) > 0 for z e //J and F(z) = wa for all a £ A.

(A function F(z) which is analytic for z £ HQ+ with ImF(z) > 0 is called

a Nevanlinna function.) The problem was solved by Pick [27, 28] in the case

that A is finite, by Nevanlinna [15, 16] in the case that A is countable, and by

Krein and Rekhtman [14] in the general case.

A variant of the problem for finite or countable A arises when all points za

coalesce to a single point a , and given values wa at the points are replaced by

the Taylor coefficients at a. A problem closely related to this is Carathéodory's

coefficient problem (see [2, 3, 33]): Given a finite sequence {y0, ... , ym} or

an infinite sequence {yn : n £ N}, find a function F(z) which is analytic in

the open unit disc D° = {z : \z\ < 1} such that Re7(z) > 0 for z £ D° and

F(z) = EZU?*2* + EZm+\ôkm)zk. or F(z) = Er=o^z¿- (For historical
remarks on this problem, see [12].)

By introducing the linear fractional transformation 7 —► j=£ we can refor-

mulate the requirement Re7(z) > 0 to read |7(z)| < 1. (A function F(z)

which is analytic for z £ D is called a Carathéodory function if Re F(z) > 0

for z € D°, or a Schur function if |7(z)| < 1 for z E 7J°.) Schur [31] invented

an algorithm called the Schur algorithm to deal with this problem. The tech-

nique was adapted by Nevanlinna to deal with the Pick-Nevanlinna problem.
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For modern applications of the Schur algorithm and variants, see the collection

[5]. For an operator theoretic approach, see, e.g., [29, 30].

A modification of the Pick-Nevanlinna problem with coinciding points zn =

a, n £ N, arises when the point a is moved to the boundary of the region

of definition of F(z), i.e., to the real axis. The Taylor series expansion then

has to be replaced by the asymptotic series expansions Ejtto y^z ~ a)k at a >

valid in arbitrary angular regions Ra s - {z : S < Arg(z - a) < n - ô} , ô > 0.

If moreover the point a is moved to the point at infinity, then we obtain the

following modified Pick-Nevanlinna problem: Given a sequence of numbers

{yn : n £ N} , find a Nevanlinna function F(z) with the asymptotic expansion

Fiz)K EfcLo "fkz~ at °° ' vanc* in every angular region R& = {z : S < Argz <

Ti-S} , ô > 0. This problem is equivalent to the classical Hamburger moment

problem (see, e.g., [1,6, 32]).

If the points zn, n £ N, coalesce into the two points 0 and oo according

to the rule z2m = 0, m - 1,2, ... , z2m+x =oo, m = 0,l,2,..., then the

corresponding modification of the Pick-Nevanlinna problem can be formulated

as follows: Let {yn: n -0, ±1, ±2, ...} be a bi-infinite sequence of numbers.

Find a Nevanlinna function F(z) with the asymptotic expansions F(z) «

E^o^z_ at °°> F(zî a 2ZT=i y~kz at °> in every angular region Rs =

{z : ô < Argz < n - ô) . This problem is equivalent to the strong Hamburger

moment problem. For definition and general treatment of this problem, see,

e.g., [10, 11, 25]. The connection between the strong moment problem and the

asymptotic expansions problem was treated in [10] for the case that the moment

problem is nonsingular, and in [20-23] for the general case.

Again consider the sequence {zn : n £ N}, and now let zn , n - I, 2, ... ,

coalesce into p points ax, ... , ap on the real axis as follows: zpq+x = ax, zpq+2

= a,, ... , z„„.„ — an, q = 0, 1,2, ... .  A corresponding Pick-Nevanlinna
L Ph'P P

problem can be formulated as follows: Let {y : j — 0,1,2,...}, i =

1, ... , p , be p sequences of given numbers. Find a Nevanlinna function F(z)

which has the asymptotic expansions F(z) « E%o y^i2-61^ at a¡ in tne an"

guiar regions R¡ s = {z : ö < Arg(z - a¡) < n - 3} , ô > 0, i = I, ... , p . This

problem will later be shown to be related to the extended Hamburger moment

problem.

The use of the Schur algorithm and its variants has two steps. The first step is

to successively construct rational functions fn(z) solving the truncated (finite)

interpolation problem. (In the classical Hamburger moment case, e.g., this

consists of finding for each n a rational function with power series expansion

In oo

/.<*>«£%*-*+ E ^z~k-
k=0 k=2n+\

This is the Padé approximation problem for the series E^lo Vkz~ > or ^or tne

solutions of the original problem, if they exist.) The second step is to obtain

from the sequence {fn(z)} one or more of the original functions F(z) which

solve the nontruncated problem, if they exist.
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In this paper we treat the above-mentioned version of the Pick-Nevanlinna

problem related to the extended Hamburger moment problem. We describe

an algorithm which generalizes the above-mentioned adaptions of the Schur

algorithm. The algorithm produces certain (weak) multipoint Padé approxi-

mants fn(z) = An(z)/Bn(z) to the given power series. For reasons that will

become clear later, we include a condition F(z) = y^xz~x + o(z~x) at oo,

z £ Rs - {z : ô < Argz < 7t - <5} , <5 > 0. (For convenience we shall also call

an expansion of this form on asymptotic expansion.) We shall in this paper call

this problem the modified Pick-Nevanlinna problem, and the algorithm the mod-

ified Schur algorithm (associated with the series y_xz~x, E%i yi-!)(z ~ a¿)J,

i = 1, ... , p).

(For treatments of multipoint Padé approximants to the series y_^ z~x,

E°!, yf{2 - a,)', see also [7, 8, 19, 24, 34].)
The rational functions An(z)jBn(z) are Nevanlinna functions. We show that

{An(z)/Bn(z)} , together with a related sequence {Cn(z)/Dn(z)}, give rise to

solutions of the modified Pick-Nevanlinna problem (when solutions exist).

For each z e 7/° there exists a sequence {An(z)} of nested disks such that

fn(z, t) £ dAn(z) for every x g R, where

/(z   x)=AH(z) + rC„(z)

J"K   '   ]     Bn(z) + xDn(z)-

Let A(z) denote the intersection f]^=xAn(z) (which may be a closed disk or

a single point). Then every Nevanlinna function F(z) which satisfies F(z) =

y^z~x + o(z~x) and F(z) £ A(z) for all z, is a solution of the problem, and

every solution has this property. Every function fn(z, x), x £ R, is a Nevan-

linna function, and there exist sequences {fn (z, xn )} converging to Nevan-

linna functions F(z) which satisfy F(z) = y_x'z~x +o(z~x) and F(z) £ A(z)

for all z. Thus there exist Nevanlinna functions with the required property.

These results answer in the affirmative the question of solvability of the inter-

polation problem (under the required conditions on the given series), and give

a characterization of all the solutions. The solution is unique in the situation

that A(z) reduces to a single point for all z (the limit point case).

The extended Hamburger moment problem associated with the points

ax, ... , a and sequences of real numbers c0, {cj1 : j = 1,2,...}, i =

I, ... , p , is the following. Find distribution functions y/(t) (i.e.: bounded,

nondecreasing functions) such that

r dip(t)=cQ,   rjiML^=cf, ;=i,2.i=i.p.
J-oo J-oo (t - a()J      J

This problem was introduced and treated in [17, 18] in the context of the theory

of positive linear functionals and of orthogonal rational functions. (In [17, 18]

we considered the case where the distribution functions y/(t) are required to

have infinitely many points of increase.) In this paper we discuss the problem
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on the basis of our results on the modified Pick-Nevanlinna problem. We point

out that a sufficient condition for the existence of a solution y/(t) is that in

the power series -c0z~ , E%o cj+i(z ~ai)} > those conditions are satisfied that

lead to solutions of the modified Pick-Nevanlinna problem. The solutions are

exactly those distribution functions ip(t) whose Stieltjes transform \j/(z) =

f^dy/^Kt - z) (which are Nevanlinna functions) satisfies ip(z) = -c0z~x +

o(z~x) and ip(z) £ A(z) for all z.

2. The modified Schur algorithm

Let F(z) be a Nevanlinna function. We recall that this means that F(z) is

analytic for Imz > 0, and that Im7(z) > 0 for Imz > 0. For brevity we

shall write JV-function for Nevanlinna function.

Let ax, ... , a be given distinct points on the real axis, p > 3. For con-

venience we assume that they are ordered by size: ax < a2 < ■■■ < a . We

assume that F(z) has the asymptotic expansions (with real coefficients)

oo

(2.1a) 7(z)«£yj/)(z-a;y,        i=l,...,p,

;=0

(2.1b) F(z) = y(^z-X+o(z-X).

(By asymptotic expansions we shall always mean expansions in the angular re-

gions Rs , R¿ s, i = I, ... , p, defined in the introduction. For the basic

definitions and results on asymptotic expansions, see, e.g., [9].)

We note that every integer «eN can be written in a unique way in the form

(2.2) n = p • qn + rn,

where qn , rn £ N, 1 < rn < p . When there is no danger of confusion, we write

q for qn and r for rn.

By ar_x we mean a when r - 1, by ar+x we mean ax when r = p, and

so on. Statements relating to ar_x when r = 1 ¡ to ar+x when r = p, etc. will

be understood from the context.

We shall make repeated use of the following important result.

Lemma 2.1. Let H(z) be an N-function. Then the following statements are

true:

The limit d^ - limz_too Rez=0(-l/z//(z)) exists and is nonnegative, and

lm(-l/H(z)~d00z) >0 wÀé>«Imz>0.

The limits d¡ = limz_(û Re(z_a )=0(-(^ - ai)/H(z)) exist and are nonpositive

for i = 1, ... , p, and Im(-l///(z) - dj(z - at)) > 0 when Imz > 0.

Proof. It follows from Julia-Carathéodory-Landau-Valiron's theorem (see, e.g.,

[4, p. 236]) that when G(z) is an JV-function, the limits

d =       lim       z    G(z)   and   d =      lim      zG(z)
z—oo, Rez=0 z—0, Rez=0
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exist and are nonnegative, respectively nonpositive, and lm[G(z) - dz] > 0,

lm[G(z) - d'z~ ] > 0 when Imz > 0. For any real number a, the function

z - a —► -l/H(z) is an /V-function. The lemma follows by application of the

above-mentioned consequence of Julia-Carathéodory-Landau-Valiron's theorem

to the functions z -> -l/H(z), z - ai -> l/H(z).   D

We shall describe an algorithm which successively determines rational func-

tions fn(z) with Taylor series expansions that progressively coincide for more

and more terms with the given expansions (2.1) of the TV-function F(z). We

shall assume that F(z) itself is not a rational function.

Since F(z) - y^ is an A^-function, it follows from (2.1a) that yf > 0

for i = I, ... , p . This is because yx (z - a¡) is the dominating term in the

asymptotic expansion. Similarly it follows from (2.1b) that y{™] < 0.

We define linear fractional transformations sx(z, w), Sx(z, w) by

,~ ~, , s — ( 1 — <5, ) — CK,    Ô.W

(13) S^W)=-ax+(l-Sx)ßxz + w'        Sx(z,w) = sx(z,w),

where

(2.4a)
(D_

3      I 1   iftf' = 0
I 0   otherwise,

(2.4b) ß^-i/y^,

n., i ß^ + i/y^ ifySVo,
(2.4c) a, = i

{ an arbitrary positive constant   if y^' = 0.

We define a new function 7j(z) by

(2.5) Fx(z) = ax-(l-Sx)ßxz-       _{\
Sxax   +F(z)

Then

(2.6) F(z) = sx(z,Fx(z)) = Sx(z,Fx(z)).

By (2.1), (2.4), and (2.5) we obtain expansions of the following forms:

/I   -7     \ T-   I      \ (OC,l)     , (OO.I)      —1 ,      —1,
(2.7a)    Fx(z) = fQ     ' + f_x   'z    +o(z    ),

(2.7b)    Fx(z) « y{!'xx\z - a,.)-1 + yi¡'x) + y{x''X\z - at) + ■ ■ ■    for i*\,

(2.7c)    Fx(z)*y[X'X)(z-ax) + --.

Here y^00'l' ,y_[, etc. are new real constants. In the same way new constants

will be introduced later.

From (2.1b) and (2.4b) it follows that

(2-8) öL =   um   í^-rl = --7^ = ß< ■
y oo      irz%yzF(z)J y(_00)      ^
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Since F(z) is an TV-function, it then follows by (2.5) and Lemma 2.1 that

1
(2.9) Im7j(z) = Im

Ôxa-Xx+F(z)
(l-ox)ßxz\ >0

when lm(z)>0. (Note that -l/(a[" +F(z)) is an N-function.) Thus Fx(z)

is an /V-function. Therefore, as in the argument preceding the introduction

of the transformations sx(z, w) and Sx(z, w), we conclude that y_7     < 0,

y\x'x)>0,and y(i[x) <0 or y{!¡x) = 0, y[i,l)>0 for i#l.

Now let n £ N, n > 2. We assume that N-functions Fx(z), ... , Fn_x(z)

and linear fractional transformations sx(z, w), ... , sn_x(z, w), Sx(z, w),

■ ■ • . Sn_x (z, w) have been defined such that

(2.10) St(z, w) =St_x(z, st(z, w)),        F(z) = St(z,Ft(z))

for t = 1, ... , n - 1 . As before, we write r for rn and q for qn. (For

r = 1, 2 the following argument must be modified slightly.) We further assume

that expansions for Fn_x(z) of the following forms are valid:

(2.11a)

(2.11b)

f-iW = y{r'n~1)z + ylT'n~l) + y-7n'l) + o(*_1),

7„_1(z)«y^1     '(z-a(.)    +••

(r-2,«-l)        (r-l,n-\)
(2.11c)       7„_,(z)«)£ + 7

for i ^ r - 1, r - 2,

-ar_2) + --- ,

(r-l.n-l),
Z-V.) +(2.1 Id)       7„_1(z)«7i

We note that all the assumptions are satisfied for n = 2.

Since Fn_x(z) is assumed to be an /V-function, it follows that y
oo ,n— 1)

>0

or yj00'"-1» = 0,  yi7"-1)

é"-"<0 or y{!{"-x)

< 0, and y|r-2'"-" > 0, .(r-l.n-l)
> 0, and

0, y[''"_1)>0 for i¿r-2,r-l.

We define linear fractional transformations sn(z, w), Sn(z, w) by

-i

(2.12)

where

(2.13a)

(2.13b)

(2.13c)

sn(z,w) =
(Sn-l) + an   ônW

an + (Sn-l)ßJ(z-ar_x) + w>

Sn(z,w) = Sn_x(z,sn(z, w)),

i if both y{:¡n-x)

0   otherwise,

andjVj
(r,n-\) o,

k = m
r-\,n-\)

ßj(ar - ar- ify (r,n-\)
■1 ¿0,

(r,«-l)
ßj(ar-ar_x)- l/y¿

{ an arbitrary positive constant   if y_

ify{:rl) = 0, y{r'n-1)#0,

(r,n-l) = 7,r,n-l) = 0.
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We define a new function Fn(z) by

(2.14) F(z) = -a+ ^~0")ß"-.-!-.

Then

(2.15) *■„_,(*) = s„(z,7„(z)),        F(z) =SB(z, 7„(z)).

By using (2.11), (2.13), and (2.14), we obtain expansions of the following forms:

/T  i r   \ r- /   \ t00.") (oo.")   ,      (oo,il)    -1   ,       /    —K
(2.16a) FB(z) = y{      'z + 7¿     '+ f_x    z    + o(z   ),

(2.16b) Fn(z)*y{!'xn)(z-al)-x + ---    for i^r.r- 1,

(2.16c) Fn(z)~yl +y\       \z-ar_x) + --- ,

(2.16d) Fn(z)^y[r'n)(z-ar) + -.-.

From (2.1 Id) and (2.13b) it follows that

(2.17)       d{rX)=       lim       (     ~\z-a'-¿     ) = -ZL- = -ßH.
z—*ar- .

Re(z-af_,)=0 .-V¿„ + ̂ -iW    y|

Since 7B_,(z) is an V-function, it then follows by (2.14) and Lemma 2.1 that

(2.18) Im7„(z) = Im (-   _.      * + ^"T^ I * °

when Imz > 0.  (Note that -l/(a~xSn +Fn_x(z)) is an /V-function.) Thus

7n(z) is an V-function.

We may sum up the results of the foregoing discussion as follows:

Theorem 2.2. Let F(z) be an N-function with expansions (2.1). Then the algo-

rithm described above is well defined and determines inductively linear fractional

transformations sx(z, w), ... , sn(z, w), ... , Sx(z,w), ... , Sn(z, w), ... ,

and N-functions Fx(z), ... , Fn(z), ... . These are connected by the relations

Fn_x(z) = sn(z, Fn(z)), F(z) = Sn(z,Fn(z)). For each n, either y(i\n) < 0 or

y(![n) = 0, y{Í'n)>0 for i¿r-\,r-2, y[r~l'n)>0, y[r'n) > 0, and either

y^°'H)>0 or yf°'n) = 0, ¿^"'<0.

Now let

oo

(2.19a) £>}0(*-«,y,        i=l,...,P,

(2.19b) y^z'1

be given formal power series (with real coefficients). We shall denote this col-

lection by (p(z). It is readily verified under suitable conditions the algorithm
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we have constructed (with the function F(z) replaced by the series (2.19)) pro-

duces linear fractional transformations sn(z, w), Sn(z, w) of the form (2.3),

(2.12), and collections <t>n(z) of formal power series such that

(2.20)        0o(z) = 0(z),        <¡>n.x(z) = sn(z,(j>n{z))   for « = 1,2,....

We note that then also <p(z) = Sn(z, <frn(z)). The collections 4>n(z) are of the

form
oo

(2.21a) ^?j'H\z-at)i   for i ¿r, r-l,

j=-i
X

(2.2ib) Zyr,tt)(z-«r-i)J>
7=0

oo

(2.21c) Ei'^-^.
;=i

(2.21d) ¿yf'^z^ + ̂ z-1).
j=0

We shall call the collection <t>(z) positive if the following conditions hold:

(P0) yf>0   for i = l,. ..,p,       yi7'<0,

and for n = 1, 2, ... ,

(PJ

f_\    <0oryK_x    =0, y¡ '    > 0,  i = l, ... , p..

and

(oo,n)       ,-. (oo,n)       «       (oo,«)       „

[y\     ' > 0 or y\       =0, y{_x   ' < 0.

We observe that if (P0), ... , (P„_i) are satisfied, then sn(z, w), Sn(z, w) can

be defined.

It follows from the expressions (2.4b), (2.13b) that for a positive collection

<f>, the following inequalities hold:

(2.22) ßn > 0   for n = 1, 2,... .

We shall call the index n singular if ôn — 1 and regular if ¿n = 0. Thus by

(2.4a),  1 is singular iff y{0X) = 0, and by (2.13a), n is singular iff y^'"-1' =

y^-'^O for « = 2,3,... .
We have shown above that if the collection <f>(z) consists of asymptotic ex-

pansions for a Nevanlinna function F(z), then (P0), ... , (Fn), ... are auto-

matically satisfied.

We shall in this paper call the algorithm described here the modified Schur

algorithm.

3. Recurrence relations

Let 4>(z) be a positive collection of formal power series, with associated

transformations sn(z, w), Sn(z, w).
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Since the Sn(z, w) are linear fractional transformations, there exist func-

tions An(z), Bn(z), Cn(z), Dn(z), «=1,2,...,  suchthat

(3 1) S(z   w)-An^ + wCn(z)

(3'} S*{Z>W)-Bn(z) + wDn(z)-

For each « , An, Bn, Cn, Dn are defined up to a common factor <p(z).

We call the functions

(3-2) /.(*)-<$,(*, 0)«jjjjj

the approximants for the algorithm. We shall also make use of the functions

(3-3) gn(z)=Sn(z,œ) = ^.

Since

(34) S(z   w)       -(i-^-arV
(3-4) ^{Z'W)     -ax + (l-ox)ßxz + w'

we may set

(3.5)  Ax = -(l-ôx),     Bx = -ax + (l-ox)ßxz,     Cx=-a¡Xox,    Dx = I.

From the relation Sn(z, w) = Sn_x(z, sn(z, w)), (2.12), and (3.1) we obtain

for « = 2,3,...

4, + mÇ.
Bn + wDn

(16) = [(-", + fegfo-l + Vn - Qg-ll + K-l + *n%Cn-&

[(-«„ + ë^)*-i + (*„ - DA,-,] + [äb-i + ««" V„-il™ '
Thus An , Bn , Cn , Dn satisfy the following recurrence relations for n = 2,

3,...:

(3-7a) An = [an + ^'^ A„_x + (S„ - 1)C„_,,

(3.7b) Cn = An_x+ôna-XCn_x,

(3.7c) Bn = (aH + iÔ;:^ Bn_x + (Sn - l)Dn_x,

(3.7d) Dn=Bn_x+ôna-XDn_x.

When « is a regular index, these relations can be written as

(3-»a) A„ = (a„ - JZ^A A^ - C»-"

(3.8b) Cn=An_x,

(3-8c) Bn=Ln-jl^Bn_x -/>„_,,

(3.8d) Ö, = V,
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while when « is a singular index, the relations may be written as

(3.9a) An = anAn_x,        Cn = An_x+«nx Cn_x,

(3.9b) Bn = anBn_x,        Dn=Bn_x+a-XDn_x.

We note that when all « are regular, the algorithm is a continued fraction

algorithm. It can be shown that the continued fractions obtained in this way

are equivalent to MP-fractions, treated in [7, 8, 24]. (For basic concepts of

continued fractions, including the concept of equivalence, see [13].)

For further use we introduce polynomials Nn(z) defined as follows:

N0(z) = l,

Nn(z) = (z-ax)     ■■■(z-ar)    (z - ar+x) ■■■{z-ap)H

for n- 1,2, ... .

Proposition 3.1. The function An,Bn,Cn, Dn can be written as

A-{Z)-Nn_x(z)'    B»{z)-Nn_x(z)'        "-1'2'-'

C(Z)=   X^z)        D (z) =    F"(Z) « = 2   3
n{)     Nn_2(z)'    V»[Z)     Nn_2(z)' ¿> ">■■■>

where Un, Vn, Xn, Yn are polynomials, deg Un < « - 1, deg Vn<n, deg Xn <

n-2, and degYn<n-\ (except degXx = 0).

Proof. It follows by (3.4) that the result holds for « = 1, resp. « = 2, and by

use of (3.6)-(3.7) the result is obtained for general « by induction.   D

For further use it will also be natural to introduce the functions Pn , Qn by

on)        P{Z) = ̂ 1 = HM      Q,Z) = ËM=W
{iA¿) W     z-ar     Nn(z)>        Q"[Z)     z-ar     Nn(z)'

We note for further reference that the recurrence relations (3.7) can be written

in terms of U„, V„, X„, F„ as follows (for « = 2,3,...):

f313, Un = [an(z-ar_x) + (on-l)ßn]Un_x

+ (ôn-l)(z-ar_2)(z-ar_x)Xn_x,

(3.13b) Xn = Un_x+ôna-nX(z-ar_2)Xn_x,

í313, K = [an(z-ar_x) + (Sn-l)ßn]Vn_x

+ (ön-l)(z-ar_2)(z-ar_x)Yn_x,

(3.13d) Yn = Vn_x+öna-nX(z-ar_2)Yn_x.

Proposition 3.2. Assume that Vn(ar ) ^ 0 for all « . Then for every n, Vn and

Yn do not both have a zero at a¡ for any fixed i £ {I, ... , p} . For every « ,

either deg Vn — « or deg Yn = n — 1.

Proof Let Vn(a¡) = F>;.) = 0. It follows by (3.13) that Vn+X(a¡) = Yn+X(a¡) =

0. By continuing this argument a finite number of steps, we reach the equality

F     (a;) = 0 for some q . This contradicts the assumption Vp+i(aj) ̂  0.



A MODIFIED SCHUR ALGORITHM 293

A similar argument shows that if deg Vn < n , deg Yn < n - 1, then we must

have F, = 0, which contradicts (3.4).   D

We present some basic formulas that will be needed later.

Proposition 3.3. The following formulas hold:

(3.14a) (i)   AnDn-BnCn = -l,

(3.14b) (ii)   AnBn_x-An_xBn = (ôn-l),

(3.14c) (iii)   C„Dn_x-Cn_xDn = -l,

(3.14d) (iv)   AnDn_x-BnCn_x = - L+ (¿;_~^") ,

(3.14e) (v)   An_xDn-Bn_xCn = -ôna-nX.

Proof By using (3.7) we obtain AnDn - BnCn = An_xDn_x - Bn_xCn_x =

• • • = AXDX - BXCX = -1. Again by using (3.7) and the result of (i) we get

ABn . - A„ .B„ = (ô„ - l)[An ,D„ ,-B„ ,C„ ,] = 1 - ô„. The formulasn    n—\ n-~\    n        v  n /L   n—\    n—\ n—\    n—\3 n

(iii), (iv), and (v) are proved analogously.   D

We next deduce some formulas analogous to the classical Christoffel-Darboux

formula and related formulas. (See also [ 18] for similar formulas, proved within

the framework of orthogonal rational functions.)

Proposition 3.4. The following formulas are valid for «=1,2,...:

Bn(z)Dn(C)-Bn(C)Dn(z)

= (z-QJ2(\-om)ßmQm_x(z)Qm_x(Q,
m=\

An(z)Cn(Q-An(QCn(z)

= (z-QJ^(l-6m)ßmPm_x(z)Pm_x(Q,
m=\

Bn(z)Cn(Q-An(QDn(z)

= l + (z-C) ¿(i-aj/uwoe. m-l
w=l

(z).

Proof. By multiplying the difference equation (3.7a) with argument z by the

difference equation (3.7b) with argument Ç, and then subtracting the same

equation with z and Ç interchanged, we get for m -2, 3,...

Bm{z)Dm(Q - BJQDJz) = (z - Q(l - öm)ß„
(3.16) my '  mV"      wVW  mV '    v      '/v       m^m(z-ar_x)(C-ar_x)

+ Bm_x(z)Dm_x(Q-Bm_x(QDm_x(Q.

Furthermore for m — 1 we get from (3.4)

(3.17) Bx(z)Dx(Q-Bx(!:)Dx(z) = ßx(z-C).
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By adding these equations for m = 1, 2, ... , n , taking into account (3.12), we

obtain (3.15a).

The proofs of (3.15b) and (3.15c) are similar.   G

Proposition 3.5. The following formula is valid for n = 1,2,... :

(3.18)

Bn(z)-Bn(Q = (z-QJ^(l-OJßJBn(QPm_x(Q-An(QQm_x(Q]Qm_x(z).
m=l

Proof. Subtraction of (3.15a) multiplied by An(Q from (3.15c) multiplied by

Bn(Q , with (3.14a) being taken into account, gives (3.18).   D

Proposition 3.6. The following formula is valid for «=1,2,...:

(3.19)        V'n(z)Yn(z) = Vn(z)Y'n(z) = Nn_x(zf ¿(1 - Sm)ßmQm_x(z)2.
m=\

Proof. Formula (3.15a) may be written as

Vn(z)Yn(Q-Vn(C)Yn(z)

= (z-QNn_l(z)Nn_x(QJr(l-om)ßmQm_l(z)Qm_l(Q.

The left side of this equation may be written as

[K(z)Vn(0]Yn(0 - [Yn(z) - Yn(C)]Vn(Q .

By dividing (3.20) by (z - Q and letting Ç -> z, we obtain (3.19).   D

Corollary 3.7. Assume that Vn(ar ) ^0 for all n. Then for each a  and each n,
n

Vn(z) has a zero of multiplicity at most one at al. For each «, deg Vn > « - 1.

Proof. It follows from (3.13c) and the assumption Vm(ar ) ^ 0 that for at least

one m £ {n - p + I, ... , n}, 6m = 0. Let m = pq + i. For this m, the

right side of equation (3.19) is different from zero for z = a¡. Consequently

by (3.19), not both Vn(a¡) and Vn(a¡) can be zero.

The result on the degree can be proved analogously.   D

We shall see in §4 that the condition Vn(ar ) ^ 0 for all n is always satisfied

when the transformations sn(z, w), Sn(z, w) and thereby An, Bn, Cn, Dn

are obtained from a positive collection of power series.

4. Multipoint Padé approximants

In this section we show that the functions fn(z) = Sn(z, 0) = An(z)/Bn(z),

or their Taylor series expansions, have certain interpolation properties with

respect to the series expansions (2.19) (in particular, to (2.1), when the series

originate as expansions of a Nevanlinna function). More precisely, we show that

fn(z) is a multipoint Padé approximant for the given series. (For a detailed

discussion of multipoint Padé approximants in this setting, we refer the reader

to [19].)
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We first give an interpolation result for fn(z) at ar by a direct argument

from the construction of the algorithm in §2. (As before, we write r for rn

and q for qn .)

Proposition 4.1. For fn(z) the following expansion is valid at ar:

(4-1) /B(z) = £yf(z-^ + 0((z-tff)2«+1).
;=o

Proof. We define Hn_x(z) = sn(z, 0), Hn_2(z) = sn_x(z, Hn_x(z)), and in-

ductively Hn_m(z) = sn_m+x(z, Hn_m+X(z)) for m < « . Then H0(z) = fn(z).

For Hn_x(z) we have the expression

H     (z) =_^D_

while for Fn_x(z) we have the expression

(4.2) Fn  ,(,)«      ^-0 + ^,[^-^) + ---]      ,

It follows that if y(r_\n~X) = 0, then

(4.3) Hn_x(z) = y{0r'n-x) + O((z-ar)).

On the other hand, if y[[[n~x] ¿ 0, then

g(r,n-\)

(4-4) ff„_1(z) = ^_ + 0(l).

Similarly by repeated comparison of sn_m(z, Hn_m(z)) and sn_m(z, Fn_m(z))

we find that

(4.5) 7/n_p+2(z) = y«r'"-p+2) + 0((z-¿g)

if y{:¡"-p+2) = 0, while

e(r,n-p+2)

(4-6) ^-^) = -(7^r+0(1)
if y(L[n~p+1)*0.

Now we know that y(L[n~p+ ' = 0 (cf. (2.11c) with n replaced by « -/? +

1). By comparison of sn_p+2(z, Fn_p+2(z)) and sn_p+2(z, Hn_p+2(z)) we see

that the constant term in the expansion of H    +x(z) coincides with that for

7„_p+1(z) both if y^-P+V = 0 and if y^¡"-p+2) ¿0. Thus, in any case

(4.7) Hn_p+x(z) = yln-p+X) + 0((z-ar)).

By comparison of  sn_p+x(z, Fn_p+X(z))   and  sn_p+x(z, Hn_p+X(z)),  using

(2.13b) with « replaced by « - p + 1, we then find

(4.8) H(z) = y[r'"-p)(z - ar) + y[['n~p)(z - af + 0((z - af).
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By comparison of sn_p(z, Fn_p(z)) and sn_p(z, Hn_p(z)), using (2.13c) with

« replaced by « - p, we find

_ „(r,n-p-\)   ,   Jr,n-p-\)

(4.9)

., /   , (r,n-p-l)   ,     [r,n—p-l), ,
Hn_p_x(z) = yl' > + y\ \z-ar)

+ y[r'n-p+x)((z-ar)2) + 0((z-af)

if y{:¡n-p-x) = 0,and

(4.10) Hn_p_x(z) = ¿r^"1^ + ^'"""1) + <K(z - ar))

■c     (r.n— 1)   / /-.if 7-i     70.
By repeating these arguments until we reach 7/0(z) = fn(z), noting that

y^j = 0, we obtain the expansion

(4.11) fn(z) = y^ + y{()(z-ar) + --- + y^(z-ar)2q + 0((z-ar)2q+x).

Since the functions fn(z) are rational, the asymptotic series for fn(z) are

Taylor series.   D

Proposition 4.2. Let <f>(z) be a positive collection. Then for all n, Vn(ar)^0.

Proof It follows directly from (2.4c) and (3.5) that Vx(ax) ¿ 0. Let « > 1.

We recall that fn(z) = Sn(z, 0), while </>(z) = Sn(z, (f>n(z)). (For brevity we

write <p(z) for trie appropriate series.) It follows that

i4.2, W     n)     Bn     Bn + <PnDn      Vn      Vn + (z-ar_x)Yn<t>n

[ "   j (z-flr_,)^[^,y<,-Arl,K,]

By (4.1) the left side of (4.12) has expansion of the form fn(z) - <j)(z) «

^2fl+i (z ~ ar)2<?+1 "^-• The numerator of the right side of (4.12) has expansion

of the form -cj)n(z)Nn_x(z)2 x y[r'n)(z - ar)2q+x + ■■■ . For (4.12) to hold it is

thus necessary that Vn(ar) # 0.   D

We note that in exactly the same way as (4.12) we get

(4 13) ±&-m=    [V»X»-U»Y»]
{       } Yn(z)     **>     Yn[Vn + (z-ar_x)<f>nYny

We now state the interpolation theorem for the approximants fn(z) with

respect to F(z), or to the series expansions (2.19).

Theorem 4.3. The approximant fn(z) = Un(z)/Vn(z) has the following interpo-

lation properties:
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(4.14)
Un(z

K(z

U (z
(4 15)       "K
[       j     Vn(z

U (z(4.16)     ^aL
Vn{z

U (z
(4.17) Viz

2q+\
2q+2,

ifi<r,  Vn(at)¿0,= Y,y)l\z-ai)3 + 0((z-ai

7=0

^yf(z-ûr)7 0((z-arr),
;=0

2q-l

= ¿2 yjl)(z - ai)} + °((z - ai) ) if i > r> W ^ °>
;=0

=-y{_x z~X + o(z~x)   ifdegVn = n.

In general, the approximant has the following (weak) multipoint Padé approx-

imation property:

2q+\

(4.18) Un(z) - Vn(z) J2 yfl* - a,Y = 0((z - af^2)   if i < r,

(4.19) Un(z)-Vn(z)JTyj\z-ar)J = 0((z-ar)29+X),
7=0

2«-l

(4.20) Un(z) - Vn(z) ¿2 Y?(z - at)J = 0((z - af)   if i > r,
j=o

(4.21)

Proof. Formula (4.15) follows immediately from Proposition 4.1.

Let, e.g., i < r. For each of the numbers m £ {pq + i + 1,...,«- 1} let

Zw and Wm denote Xm and Ym, or U and Vm, such that Wm(a¡) ¿ 0 (cf.

Proposition 3.2). According to Proposition 3.3 and (3.11) we may write for

m £ {pq + i + 2, ...,«-!}:

U„(z)-Vn(z)(-y{~]z-x) = o(z-x).

(4.22)
Zm      Zm_x _ ZmWm_x-Zm_xWm _ c(z)Nm_x(z)Nm_2(z)

w     wrrm       Yy m-\ w wyy mvv m-\ Wm(z)Wm_x(z)      '

where c(z) is a constant or a simple rational function without a pole at ai

Thus,

(4.23)
vm m-\ ,2,7+2

w     wrrm        rrm-\
0((z - a¡)      )   for m = pq + i + 2,..., n - I.

Similarly we conclude that

U      Z„  .      c(z)N   .(z)N   Jz)
(4 24"!

V      Wvn       yyn-\ Vn^Wn-X^)        '

where c(z) is as above. From this we conclude that we may write

2a+2

(4.25)
Un(z)     Zn_x(z) _d{z-ai)M" +

Vn(z)      Wn_x(z) - Vn(z)
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From (4.12)—(4.13) together with (3.11) and Proposition 3.3 we obtain

(4 26)   Zpq+>+x(z) - m =_"Www2_

where œ(z) is regular at ai. Thus,

(4-27) wq+Í+{{il\-<t>(z) = 0((z-a¡)2«+2).

We may write

(4.28)

f„(z)-cp(z) =

(z)   >(Z)

It follows by (4.23), (4.25), and (4.27) that we may write

(4.29) fn(z) - cp(z) = g(Z~gg+   + 0((z - afq+2),

2«N

Thus if Vn{a¡) /Owe get fn(z) - <t5(z) = 0((z - afq+2), and in all cases

Un(z) - Vn(z) ■ 4>(z) = 0((z - a,.)2?+2). This implies (4.14) and (4.18).

Similarly we prove the formula

(4.30) fn(z) - 4>(z) = ^'^[^  +"' + 0((z - a¡)2q)

in the case that i > r. Thus if Vn(a¡) /Owe get fn(z) - <¡>(z) = 0((z - a¿)

and in all cases Un(z) - Vn(z) ■ 4>(z) = 0((z - a¡)2q). This implies (4.16) and

(4.20).
Finally a completely analogous argument shows that fn(z) - (j>(z) = o(z x)

if deg Vn = n and, in general, Un(z) - Vn(z) • 4>(z) = o(zn~x). (Here it has to

be used that fx(z)-(f>(z) = y^z~l +o(z~x), which follows immediately from

the construction of sx(z, w).) This implies (4.17) and (4.21). This completes

the proof.   D

Remark 4.4. It easily follows that if ^(a.) = 0, and hence Yn(a¡) / 0, then

(4.14)-(4.16) hold with Un(z)/Vn(z) replaced by Xn(z)/Yn(z) and r by r-l.

Similarly (4.17) holds with Un(z)/Vn(z) replaced by Xn(z)/Yn(z) if degFB<

« , and hence deg Yn = « - 1.

Remark 4.5. From Theorem 4.3 and the recurrence relations (3.13) it can be

seen that among the pq first indices there are at least q regular ones (cf. the

proof of Corollary 3.7).
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We define the generalized approximants for the algorithm by

(431) f(z   r) = ^(z) + TC"(z) t€R
1       j J"['>     Bn(z) + xDn(z)'

V/e may clearly also write

U(z) + x(z-ar ,)X(z)
(4.32) fn(z,r)-

Vn(z) + x(z-ar_x)Yn(z)

Proposition 4.6. For every n and every x £ R the following formulas hold (except

possibly for one value for x in each case):

2q+\

(4.33) fn(z, x) = £ yf(z - a¡)j + 0((z - afq+2)   ifi<r-\,
j=o

2q-\

(4.34) fn(z, t) = £ yf(z - at)] + 0((z - af)   ifi>r-l,
/=o

(4.35) fn(z,x) = y{™]z-X+o(z-x)   ifdegVn = n.

Proof. We may write

Un(z) _An(z) + xCn(z)     An(z)
fn(z^)-

(4.36)
Vn(z)      Bn(z) + xDn(z)     Bn(z)

^n_,(z)2

fn(z,x)

(4.37)

Vn(z)[Vn(z) + x(z-ar_x)Yn(z)]

Xn(z) = An(z) + xCn(z)     Cn(z)

Yn(z)      Bn(z) + xDn(z)     Dn(z)

Nn_x(z)Nn_2(z)

Yn(z)[Un(z) + x(z-ar_x)Yn(z)]

We note that since Vn(z) and Yn(z) are not both zero for any at-, then [Vn(z) +

x(z-ar_x)Yn(z)] hasnozero except possibly for one value of x , when i±r-l.

When i = r-\, [Ff¡(z) + T(z-a;._1)F;¡(z)] may, except for one value of x, have

a zero of multiplicity at most one (cf. Corollary 3.7). This together with (4.36)

and Theorem 4.3 or (4.37) and Remark 4.4 gives (4.33)-(4.34). The proof of

(4.35) is analogous.   D

5. Mapping properties

In this section we discuss mapping properties of the linear fractional trans-

formations sn(z ,w),Sn(z, w) (see also [8]). Let z e //° . Each of the linear

fractional transformations w -+ sn(z, w) maps the closed upper half-plane

H+ onto a disk ôn(z) (possibly a half-plane), and each of the linear fractional

transformations w -> Sn(z, w) maps H+ onto a disk (possibly a half-plane)
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Propostiion 5.1. The following inclusions hold for all z £ H+:

(A) A,(z)c//+.

(B) An(z)cAn_x(z)for « = 2,3,....

Proof. Since ßn > 0 for « = 1, 2, ... , it is readily verified that sn(z, w) £

H+ for all « and all w £ H+. This means that Sn(z) c H+ . It follows that

A,(z) = ôx(z) c H+ and A„(z) = Sn'z,H+) = Sn_x(z, ôn(z)) c SB_,(z, //+)

= V,(z).   a

We recall that the mapping it; -► 5B(z, w) is described by the formula

(5 1) S(Z   w)-An^ + WCn(Z)
{5A) S»{Z>W)-Bn(z) + wDn(z)-

Sn(z, x) traces the boundary <9AB(z) when x traces the real axis (plus c»). For

convenience we shall in the following write «m_, for ^/(l -Sm)ßm . (Recall

that/?M>0,<Jm = 0or*m = l.)

Proposition 5.2. For every «=1,2,3,4,..., the radius pn(z) of the disk

An(z) is given by the formula

(5-2) ^^-^¿CilÖ^rf.

Proof. By standard results on linear fractional transformations it follows (using

formula (5.1)) that pn(z) can be expressed as

(5-3) pn(z)
An(z)Dn(z)-Cn(z)Bn(z)

Bn(z)Dn(z)-Cn(z)Bn(z)

(We recall that all the coefficients in An(z), Bn(z), Cn(z), Dn(z)  are real.)

From (3.14a) we get

\An(z)Dn(z)-Cn(z)Bn(z)\ = l.

From (3.15a) we get (setting ( = z)

n
2

\

m=\

Formula (5.2) now immediately follows.   □

(5.4) \Bn(z)Dn(z) - Dn(z)Bn(z)\ = \z - 2\ ■ ¿ h2m_AQm_¿z)\2

We write A(z) for the intersection f|~ , AB(z). Then (by Proposition 5.2)

A(z) is a closed disk or reduces to a single point.

Proposition 5.3. The following statements are equivalent:

(A) A(z) reduces to a single point.

(B) E:=1Cl*m_,(z)|2 = oc,

(C) 2Z^h2m_x\Am_x(z)\2 = ™.
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Proof. The radius p(z) of A(z) is obviously given by p(z) = limB_foo pn(z),

hence

1 °°
(5-5) W)=\z-z\Y.hlm-^m-^zf-

Clearly E~=I h2m_x\Qm_x(z)\2 = oo iff YZ=xh2m_x\B m_x(z)\2 = oo, since

min(|z — a¡\,... ,\z — a \) > 0 for a given z £ H+. Thus (A) and (B) are

equivalent.

The transformation w -* s ,\   ■ gives rise to a sequence {II (z)} of nested

disks, where

nn(z) = {C=l/Sn(z,w):w£H°+}.

The intersection II(z) is a disk when A(z) is a disk and reduces to a single point

when A(z) reduces to a single point. The transformation w -» l/Sn(z, w) can

be written as w -> (7?„(z) + wDn(z))/(An(z) + wCn(z)). The radius tt„(z) of

nB(z) is given by

(5 6) * (z) =  *,(*)C,(')-^W.(*)
(     } n{)       A(z)Cn(z)-Cn(z)An(z)

Just as we obtained (5.2) from (3.14a), (3.15a), and (5.3), we obtain from

(3.14a), (3.15b) and (5.6) the formula

(5-7) 3n5T = i*-*i-¿*i-ii^-iWi2-nn[Z> m=\

Clearly SotilUrf = °° iff E^iCiMm-iWf = °° ■ Thus
n(z), and hence A(z), reduces to a single point iff E^=i h2m-l\Am_x(z)\2 = oo,

i.e., (A) and (C) are equivalent.   D

Theorem 5.4. If A(z) reduces to a single point for some z £ H®, then A(z)

reduces to a single point for every z £ H+.

Proof. The argument we give builds on a lemma of Perron [26], and is similar

to the one given in [10] for APT-fractions.

It follows from [26] that when bn is given recursively by

71-1

(5-8) K = ¿Zan,ibi + Cn> "-1,2,3,...,
i=0

then
(n \       n-\ i-l n-1

i'=l /        ¡=1 j=0 1=1

Set

(5-10) K = hnBn(z),        cn=hnBn(Q,

(5.11) an . = «,«„[5B(C)7,(0 - 4,(00,(0]
(*-«,.)
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Then it follows from Proposition 3.5 that (5.8) is satisfied for « = 1,2,....

Hence from (5.9) we get

/      «-i \
In   l-rX>,.(z)|

\      1=1

<x:i^(c)i2-r-ic-,2^^,,2|[^.(04(0-4(0^.(0]|2

,= 1 ,=U=0    ' \Z - an\2\t - "nf

Set d = min{|z - ax\, ... , \z - a \, \Ç - ax\, ... , \Ç - ap\} . By elementary

inequalities we get

EE,f_fl,V al2 www -4(o^(oi2
(513)      ,=w=oK y^-V

Substitution of (5.13) in (5.12) leads to

ln(l+X>?|*,(*)|2)

(5.14) V      ,=1 '

<E^(OI2 + ̂ ^ (p2WOlj • (ë*?WOlj •

Now assume that A(C) is a disk for some (. Let z £ H+ be arbitrary. Then by
Proposition 5.3, the right-hand side of (5.14) has a finite upper bound M in-

dependent of « , and consequently E^i n¡ \B¡(z)\ < oo . Then by Proposition

5.3, A(z) is a disk.   D

In view of Theorem 5.4 we may use the terms limit point situation (when

A(z) reduces to a single point) and limit circle situation (when A(z) is a disk)

without reference to a specified point z .

For further use we shall also give a formula for the center on(z) of the disk

\(*)-

Proposition 5.5. For every « = 1,2, ... , the center an(z) of the disk An(z) is

given by the formula

(5.15) „^HC-'g.!^/.-,^-."),
(*-*)ELi*i-.ie-.Mi2

Proof. By standard results on linear fractional transformations (using (5.1)) it

follows that

Cn(z)Bn(z)-An(z)Dn(z)
(5.16) rjB(z)

Bn(z)Dn(z)-Dn(z)Bn(z)
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(Recall that all the coefficients in An(z), Bn(z), Cn(z), Dn(z) are real.) From

(3.15a) we conclude by setting £ = z that the denominator of (5.16) equals

(z - z)Yfm^xh2m_x\Qm_x(z)^. Similarly we conclude from (3.15c) that the

numerator of (5.16) equals 1 + (z + z)ELi h2m_xPm_xQm_x(z).   D

6. Asymptotic expansions and Nevanlinna functions

In this section we discuss the solution of the modified Pick-Nevanlinna prob-

lem.

Theorem 6.1. Let F(z) be a Nevanlinna function with the asymptotic expansions

(2.1a)-(2.1b). Let A(z) be the disk (or point) associated with F(z) through the

modified Schur algorithm, as described in §§2 and 5. Then F(z) £ A(z) for

every z £ H+.

Proof. For every z £ H+ we have F(z) — Sn(z, Fn(z)) (cf. (2.15)), where

Fn(z) are the tail functions defined by the algorithm. The functions Fn(z) are

Nevanlinna functions. Therefore Fn(z) £ H+ and so Sn(z, Fn(z)) £ An(z) for

all zE/iJ. Thus F(z) £ An(z) for all « , i.e., F(z) £ A(z).   D

Theorem 6.2. Let a positive collection of power series (2.19) be given. Let F(z)

be a function which is analytic in H+ , and such that F(z) £ A(z) for all z £ H+,

where A(z) are the disks or points associated with the series through the modified

Schur algorithm as described in §§2 and 5. Then F(z) is a Nevanlinna function,

and F(z) has the asymptotic expansions (2.19a).

Proof. That F(z) is a Nevanlinna function follows from the fact that A(z) c

H+ for all z£H\.

Let à > 0 be given, and let r £ {I, ... , p} be fixed. Then for every z £ Rr s

we have | Im(z - ar)/(z - ar)\ > S , hence \(z - z)/(z - ar)\ > S . Let A' be

an arbitrary natural number, and let « be a natural number such that rn = r

and 2q-2> V, where q = qn . We see that when {££), h2m_xQm_x(z)2}~x

is expanded in power series in terms of (z - ar), the leading term will be of

the form k(z - ar)2q (recall that Vn(ar) ^ 0). Thus there exists a constant cr

such that for z £ Rr s and z - ar sufficiently small, we have

(6.1) pn+x(z) < cr\z - ar\2q~X.

(Recall that \(z - ar)/(z - z)\ < ô.) We have fn+i(z, x) £ AB+1(z), while

F(z) £ A(z) c AB+1(z). It follows that

(6.2) \F(z)-fn+x(z,x)\<2cr\z-ar\2q-X.

It follows from (4.16) and Remark 4.4 (with « replaced by n + 1) that

(6.3) fn+x(z, x) = J2 y{;\z-ar)j + 0((z-ar)2q+2)   for t = 0 or for t = oo .

;=0
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The function fn+x (z, x) is a rational function, and it has therefore a convergent

Taylor series in a neighborhood of ar. (Note that fn(z, 0) is analytic at ar if

Vn+\(ar) t¿ 0, and fn(z, oo) is analytic at ar if Yn+X(ar) ̂  0.) Consequently

there exists a constant d. such that

(6.4)

29-rl

fn+^,T)-Y,yf(z-ari
;=0

< d\z - a. ,29+2
for t = 0 or x = oo ,

when z £ Rr s , z - ar sufficiently small. Combining (6.2) and (6.4) we see

that there exists a constant k  such that

(6.5)

2?+l

F(z)-J2y{p(z-ar)j
;=0

<kr\z-ar
2q-\

when z £ Rr s, z - ar sufficiently small. Since N < 2q - 2, it follows that

there exists a constant K. such that

(6.6)

A'

F(z)-Y,yy{z-ar)} <K\z-a.
,N+\

when z £ R   ., z - a   sufficiently small. This means that

(6.7) F(z)^y;^-ar)}- u

Theorem 6.2 together with Theorem 6.1 characterize the solutions of the

modified Pick-Nevanlinna problem for a positive collection (2.19) of power se-

ries. (F(z) is a solution iff (2.1b) holds and F(z) £ A(z) for all z .) However,

Theorem 6.2 does not in itself insure that there exist any solutions. We now

turn to this problem.

Theorem 6.3. Let a positive collection of power series (2.19) be given. Let z0

be an arbitrary point in H+, and let a>0 be an arbitrary point on dA(z0).

Then for each « there exists a xn £ R such that a subsequence of {fn(z, xn)}

converges on H+ (uniformly on compact subsets) to a function F(z) which has

the asymptotic expansions (2.19) and which satisfies F(zQ) = co0.

Proof. Let ô > 0, r\ > 0 be given, and set Ss = {z £ Rs : Im z > n}. For

z £ Rs we have \z - z\ = |2Imz| > 2|z| sinr5 . Let m be the smallest regular

index. In view of (5.2) we have pm(z) — l/h    x\z - z\, hence there exists a

constant A such that |/>,(z)| < A/\z\ for z e Rs

we have om(z) = l/«m_,|z - z\, hence also |rj,(z)

fn(z, x) £ dAn(z), we then have

(6.8) \zfn(z,x)\<2A

for every generalized approximant fn(z, x), z £ Rs .

Similarly, in view of (5.2)

< A/\z\ for z £ Rs . Since
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For each « we can choose a xn £ R such that fn(zQ, xn) = Sn(z0, xn) = con,

where con -* coQ as « -> oo . It is easily seen that every compact subset of //°

is contained in a set Rs . It follows by using standard results on compactness

of families of analytic functions (see, e.g., [9, 13]) that {f„(z, xn)} contains a

subsequence {fn (z, rn )} such that degFn  = nk or degFB  = nk — 1, which

converges on H+ to a function F(z) which is analytic in H+ , and such that

{zfn (z, xn )} converges uniformly to zF(z) in every S¿    , ô, r\ > 0. Also,

{fn (z> xn )} converges uniformly to F(z) on compact subsets of H+ . Since

fn(Z0 > Tn) = Sn(Z0 > TJ = ^ > We haVe  F(Z0) = lim^oo W« = W0 •

Let e > 0, S > 0, n > 0 be given. We choose N so large that

(6.9) \zfnk(z,xnk)-zF(z)\<e/2

for z £ Ss , nk > N. (This is possible by the uniform convergence of

zfn (z, xn) to zF(z).) We fix one such nk and choose e > n so large that

(6.10) |z^(z,T^)-yi7)|<£/2

for z e Sj e. (This is possible by (4.17) and Remark 4.4.) We therefore have

(6.11) |z7(z)-yi7)|<e

for z £ Ss e. This shows that

(6.12) 7(z) = yi7)z-1+0(z~1).

For each z £ HQ+ and each «, fn(z, xn) £ AB(z).  Consequently F(z) £

A(z), and by Theorem 6.2, F(z) has the expansions (2.19a).   □

Theorem 6.4. Let a positive collection of power series (2.19) be given. Then

the corresponding modified Pick-Nevanlinna problem has solutions. An analytic

function which satisfies (2.1b) is a solution iff F(z) £ A(z) for all z e //° . The

problem has a unique solution iff the limit point situation obtains.

Proof. It follows from Theorem 6.3 that the problem always has solutions. In

the limit point situation there is exactly one analytic function F(z) satisfying

F(z) £ A(z) for all z £ H+, hence by Theorem 6.1 there is exactly one analytic

function with the expansions (2.19). For the limit circle situation there is for an

arbitrary z0 an infinity of analytic functions having the asymptotic expansions

(2.19).   D

Remark 6.5. We observe the following. Let F0(z) be a given Nevanlinna func-

tion with the asymptotic expansions (2.19). Then the collection of asymptotic

series is positive. It follows that the convergent subsequences of generalized

approximants used in the proof of Theorem 6.3 converge to N-functions F(z)
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with the same asymptotic expansions as F0(z). (However, no such subsequence

need convergence to F0(z).)

1. The extended Hamburger moment problem

The extended Hamburger moment problem (associated with the set {ax,... ,

a }) is the following: Let {c'1' : j = 1,2, ...} , i = 1, ... , p , be sequences

of real numbers and c0 a real number. Find distribution functions \p(t) (i.e.,

bounded, nondecreasing functions) which have the property

(7.1)

n dW(t)=c0,   r^aML cf, i=i,...,P, j=i,2,....
J-oc J-oo (t - at)]      }

(For convenience we do not require here that y/(t) has infinitely many points

of increase.) This problem was treated in [17, 18] within the framework of

a theory of positive linear functional and orthogonal rational functions. In

this paper we show (without making use of the material in [17, 18]) how the

moment problem fits into the framework of the theory of asymptotic expansions

of Nevanlinna functions.

We associate with the given sequences the series

oo

(7.2a) E$i(* "«,)'.        i=U...,P,
7=0

(7.2b) -c0z-X.

That is; we set

(7.3) yf = $,    fori=l,...,p, j=l,2,...,        y{^ = -c0,

and consider the series (2.19) with these coefficients.  Asymptotic expansions

are as usual in the angular regions R¿ s , i — I, ... , p, and Rs , ô > 0.

For each distribution function y/(t) we define its Stieltjes transform

J-oo   *       z

We note that y/(z) is a Nevanlinna function.

Theorem 7.1. The following result holds for given {Cj}, c0: If the distribu-

tion function y/(t) is a solution of the moment problem (7.1), then the Stieltjes

transform ip(z) has the asymptotic expansions

oo

(7.5a) \j/(z) «Ecí'+i(z ~ aiî}   fori=l,...,P,
j=o

(7.5b) V(z) = -c0z  l + o(z~X).

Proof. Set z — x + iy . We then have

,-, ^ -, x     Z-00 [x(t-x)-y2] + ity ,   ..
7.6 zip-(z)=        l—^--\2      2    ' d\p(t).

J-oo      (t-xf + y2-
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We note that (x(t - x) - y2)/((t - x) + y ) is bounded for z £ Rs, and tends

to -1 as z tends to oo in Rs. Consequently,

/oo dip(t) = -c0.
-oo

This means that

(7.8) W(z)-(-cJz) = o(z    ),

which is (7.5b).

Next fix an i £ {i, ... , p].  By expanding l/(t - z) in a finite geometric

series in terms of powers of (z - a¡)l(t - a¡) we get

1 »    (z-aj   |       (z-a¡rx

l~z    ei'-*,)*1     (t-a^d-z)

and hence

W(z) = YJ(z-ai)}
j=o •/-<

Thus we have

(7.9)

dw(t)

(t-a, \J+l
+ (z

dip(t)

oo(t-ai)n+X(t-z)

ip(z) = ^Uz-^i)1 + ^(z).(z-ai)

7=0

n+\

where

(7.10) *?<*: =/_:

dy/(t)

(t-air+x(t-z)

It can easily be seen that \t - z\ > (t - a^sinâ , hence

dip-(t)
|A(')(Z)| <    1    f1 " v n - sinr5 /_, f-a m+2

when z £ Ri s . Note that

/oo W)/l
-oo

i"+2   „
/ - ÛEj-l < OO

xii+2
since  ff^, dy/(t)l(t - at)n     is assumed to exist. Thus there exists a constant

s¡ n such that

(7.11)
7=0

<5,-„|z-a,.
n+l

when z £Ri 6.

This shows that \j/(z) has the asymptotic expansions (7.5b).   D
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Theorem 7.2. The following result holds for given {cj!)}, c0 : If the distribu-

tion function y/(t) is such that its Stieltjes transform \fr(z) has the asymptotic

expansions (7.5a)-(7.5b), then y/(t) is a solution of the moment problem (7.1).

Proof. Again set z = x + iy . We then have

(7.12) Re(w(z»)= f°° -f^dyz(t).
J-oo t +y

It follows from (7.5b) that iyip(iy) —> -c0 , and since c0 is real, this implies

(7.13) Re(iyy/(iy))—>-c0   as>>-»oo.

The family y2/(t2 + y2) tends to 1 monotonically as y tends to oo, and

therefore

(7.14) i°° ^^dy/(t)^ T dy/(t)   asy-oc.
J-oot +y J-oo

From (7.12), (7.13), and (7.14) we conclude that

/oo dy/(t) =
-oo

Let k be a given index. We have

(7.16)       R4^+fr»-r(;-y,).
/-oo (t-ak) +y

It follows from (7.5a) that

(7.17) y/(ak + iy)^c[k]   asy^O.

Since c[k) is real, this implies

(7.18) Re(<p(ak + iy))^c[k]   asy-^0.

By considering the cases / < ak and t > ak separately, we see that

t-ak

c0.

(t-ak)2+y2

tends to l/(t - ak) monotonically when y tends to zero, and therefore

,71Qs Í00 (t-ak)dy/(t)       {k)
(7.19) /-^-2^cx      asy^O.

J-oo (t-aA¿ + y¿

It follows from (7.16), (7.18), and (7.15) that

dy/(t)      <k)
(7.20) H j^

J — oo  '

Now assume that for some « it is known that

-oo '      ak

f°°     dip

J-oo (t - a

dy(t)     _ jk)

{t-aky
(7.21) /     r¿ZXfa = c™,        ; = 0,...,«.
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It follows from (7.5a) that

(Z - ak) \ 7=0

(7.22)-—r    y(z) - Ec5+i(z - akY I

when z -+ afc in 7?fc ¿ . This means that

ïf£^-§^H
Sz-aky

(z-akrxJ-oo{t-z    £-(

.(*)tends to cB+;2 when z tends to a^ in 7?fc á. By summing the finite geometric

series under the integral sign we can write this as

/oo

(t      r\<Vn\«*~*¿*+1'-oo (t - z)(t - ak))(t-ak)n+x       n+2

Since c[j2 is real, the real part of the left-hand side of (7.23) tends to c^ ,

hence

I d¥(t)_t c(k)

oo [(t-ak)2+y2](t-ak)n
(7-24)-^^----><&   as>-0.

Again l/[(t-ak)2+y2](t-ak)n tends to l/(t-ak)n+2 monotonically for t < ak

and t > ak when y tends to zero, and therefore

dtp(t) f°°     dy/(t)_
n+2 ■

(725)     r_d-^_►/
J-oo[(t-ak)2 + y2](t-ak)n     J-oo(t-a

Thus by (7.24) and (7.25) we have

(7-26) fJ—<

dV(t)_   _ Ak)
n/1+2 _ Ln+2

-oo (t-aky

It follows by induction that all the moments of y/(t) exist, and that y/'t) is a

solution of the moment problem.   G

Theorem 7.3. Let a positive collection of power series (2.19) be given. Then the

Stieltjes transforms of the solutions of the moment problem (7.1) are exactly

those analytic functions F(z) in H+ for which (7.5b) is satisfied and for which

F(z) £ A(z) for all z £ H+. Equivalently the Stieltjes transforms are those

analytic functions F(z) in H+ which have the asymptotic expansions (7.5).

Such functions exist. The moment problem has a unique solution iff the limit

point situation obtains.

Proof. Let F(z) be a Nevanlinna function with the series (7.2) as asymptotic

expansions. From the expansion F(z) = -c0z~ + o(z~ ) it follows in partic-

ular that for y real,

(7.27) sup|/>7(f»| < oo.
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Then there exists a distribution function y/(t) such that F(z) - \j/(z) (see, e.g.,

[1, pp. 92-94]). Thus all Nevanlinna functions with the series (7.2) as asymp-

totic expansions are Stieltjes transforms of distribution functions. The theorem

now follows by combining Theorems 6.1-6.4 and Theorems 7.1-7.2.   D
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