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ALEXANDER DUALITY AND HUREWICZ FIBRATIONS

STEVEN C. FERRY

Abstract. We explore conditions under which the restriction of the projection

map p: S" x B —» B to an open subset U C S" x B is a Hurewicz fibration.

As a consequence, we exhibit Hurewicz fibrations p: E —► / such that: (i)

p: E -+ / is not a locally trivial bundle, (ii) p~ (t) is an open «-manifold for

each t, and (iii) p o proj : E x R —► / is a locally trivial bundle. The fibers in

our examples are distinguished by having nonisomorphic fundamental groups

at infinity. We also show that when the fibers of a Hurewicz fibration with

open «-manifold fibers have finitely generated (n - l)st homology, then all

fibers have the same finite number of ends. This last shows that the punctured

torus and the thrice punctured two-sphere cannot both be fibers of a Hurewicz

fibration p: E —► / with open 2-manifold fibers.

0. Introduction

All spaces considered in this paper will be locally compact metric spaces. By

a fibration we will mean a map p: E —► B which is a Hurewicz fibration. By

a bundle, we will mean a map p: E -> B which has a local product structure,

i.e., such that for every b £ B there exist a neighborhood U of b, a space

F, and a homeomorphism h: p~x(U) —> F x U such that projoh-p, where

proj : F x U -* U is the projection. A bundle or fibration p has n-manifold

fibers if p~x(b) is an «-dimensional manifold for each b £ B. Throughout

this paper, we will assume that the base space B is a finite polyhedron.

We wish to study the relation between fibrations and bundles with «-manifold

fibers. A number of cases are known in which the two notions coincide. This

was proved by Raymond in [R] for the case in which the fibers are closed 2-

manifolds and by T. A. Chapman and the author in case the fibers are closed

«-manifolds with « > 4 [ChF]. In dimension 4, the same result is implied by

work of F. Quinn [Q2] (see Proposition 1.4). In dimension 3, the outcome

depends on the classical Poincaré conjecture. This is explained in Proposition

1.5.

Much of the motivation for this study was supplied by the close relationship

between fibrations with polyhedral fibers and automorphism groups of PL and

topological manifolds [H, W]. The theorem from [ChF] quoted above has a PL
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analog [Ch2] which globalizes the topological invariance of Whitehead torsion.

Such theorems can be thought of as rigidity theorems—that a topological home-

omorphism preserves stable PL structure or that a (topological) fibration has a

well-defined PL spine.

For noncompact manifolds, Chapman [Chx] proved that the two notions

nearly coincide for proper fibrations. (A map p: E -> B is called a proper

fibration if for each b £ B there exist a neighborhood U of b, a space X,

and proper maps r: X x U —► p~ (U) and i: p~ (U) —► X x U for which

r o i = id and r(X x {b}) = p~x(b) for all b £ U. A similar condition

has been studied by Dold [D]. Note that a proper fibration is not required to

be a proper map.) Chapman showed that a proper fibration with open (i.e.,

connected, noncompact, and without boundary) «-manifold fibers is a bundle

whenever « > 4 and the fibers are simply-connected at infinity. He proved a

similar theorem when the fibers are manifolds with boundary and the restriction

to the boundary is a bundle.

In the same paper, Chapman showed that the hypothesis at infinity can be

dropped if one is willing to cross the total space of the fibration with D .

Chapman and West, in unpublished work, have shown that the hypothesis at

infinity is entirely superfluous for high-dimensional fibers. It seems natural

to ask whether Chapman's "proper fibration" hypothesis can be weakened. In

particular, one can ask whether every Hurewicz fibration with «-manifold fibers

is a bundle.

In this generality, counterexamples abound. Let D" be the «-ball and let

proj : Dn x I -» / be projection . If ^4 is any subset of dDn x I, then

proj \(Dn x I - A): (Dn x I - A) —> / is a Hurewicz fibration (see Examples

1.6 for details). We will refer to a Hurewicz fibration p: E —> B with con-

nected open «-manifold fibers as an open n-manifold fibration. If p: E —> /

is an open «-manifold fibration with M = p~x(0) and N = p~ (1), we will

say that M deforms to N through open n-manifolds. Examples 1.6 suggest

searching for interesting deformations by studying sets A c S" x I such that

proj | : (Sn x I - A) —> / is a fibration. This case is more delicate than the one

above. Since the various fibers (proj |)~ (t) are homotopy equivalent, Alexan-

der duality dictates that the spaces At - A n S" x {t} must have isomorphic

Cech cohomology groups.

The notion of a homology fibration was defined by D. McDuff in [Mc] and

then redefined in a stronger way by McDuff and Segal in [McS]. We restate the

definition from [McS] using Cech cohomology to allow for the possibility of

non-ANR fibers. Recall that /: X —► Y is proper if f~x(K) is compact for

each compact subset K of Y.

Definition. A proper map p: X —► B from a finite-dimensional metric space to

a finite polyhedron is a Cech cohomology fibration if each b £ B has arbitrarily

small contractible closed neighborhoods N such that the inclusion p~ (b') —>

p~x(N) is a Cech cohomology equivalence for each b' e N.
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The next definition gives the standard tameness criterion for embeddings of

compacta into manifolds.

Definition. A compact subset X of a compact manifold M is said to be 1-LCC

(1-locally co-connected) if for each e > 0 there is a ô > 0 so that every map

f:Sx -> M - X with diam(f(Sx)) < S extends to a map f: D2 -» M - X

with diam(f(D2)) < e . An embedding i: X -» M is 1-LCC if i(X) is 1-LCC
in M.

Here is our main theorem:

Theorem 1. Let p: X —> B be a proper map from a finite-dimensional metric

space to a finite polyhedron. Then the following conditions are equivalent:

(i) p is a Cech cohomology fibration.

(ii) There is a fiberwise codimension-three fiber-preserving (= f.p.) fiberwise

l-LCC embedding i: X —► Sn x B for some n such that projß \(Sn x B - i(X))

is a Hurewicz fibration.

Example 1. Let K be a 2-complex with itx(K) ^ 1 and Ht(K) = //„(pt).

Let the cone on K be given as CK = K x I/K x {1} , where / = [0, 1]. Let

p : CK —> / be projection onto the /-coordinate. According to Theorem 1 there

is a fiberwise 1-LCC fiberwise codimension-three embedding i: CK —► S" x I

so that proj/ \(Sn x I - CK) is a Hurewicz fibration. This fibration has open

«-manifold fibers but cannot be a bundle, since one fiber is Rn , while the others

are not simply-connected at infinity.

Corollary 1. There are Hurewicz fibrations with open n-manifold fibers which

are not locally trivial bundles. In fact, different fibers in such a fibration can

have different fundamental groups at infinity. Such fibers are not even proper

homotopy equivalent.

Notation. If i : X -> Sn x B is an embedding, we will use i¡ : X -> Sn+l x B to

denote the embedding induced by the standard inclusion S" c S"+l.

We will prove that (i) =► (ii) in Theorem 1 by showing the following:

Theorem 2. Let p: X -» B be a Cech cohomology fibration and let i: X -► 5"" x

B be an f.p. fiberwise l-LCC fiberwise codimension-three embedding, n > 5. If

k = dim B, then for I > n + 4k + 4

(i) projB | : (S"+ x B - i¡(X)) —> B is a Hurewicz fibration and

(ii) the composition (Sn+l xB- i,(X)) x R2 -► (Snxl xB- i¡(X)) -> B isa

locally trivial bundle.

Since a fiber-preserving retract of a locally trivial bundle is a Hurewicz fibra-

tion, (ii) implies (i) in this theorem.

Corollary 2. There are Hurewicz fibrations with open manifold fibers which are

not locally trivial bundles but which become locally trivial bundles upon stabiliza-

tion by crossing with a euclidean space.
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Our proof of the (easy) implication that (ii) =>■ (i) in Theorem 1 rests on

the following duality theorem which mixes Alexander and Poincaré-Lefschetz

dualities.

Theorem 3. Let Mn be a compact orientable PL manifold with boundary and let

X c Mn be compact. Write dM — P U Q, where P and Q are codimension- 0

submanifolds of dM and dP = dQ. Then

Hk(M, ßU X) =■ Hn_k(M - X, P - P n dX)   forallk>0.

Here, we write dX = X n dM.

Our final result shows that even though proper homotopy type is not preserved

by deformation of open «-manifolds, some properties at oo are invariant.

Theorem 4. (i) Let M be a compact n-manifold with boundary. If M deforms

to another compact n-manifold with boundary N through compact n-manifolds

with boundary, then there is a 1-1 correspondence between boundary components

of M and boundary components of N. Moreover, corresponding boundary com-

ponents are homology equivalent.

(ii) Let M be a connected open n-manifold with dimFHn_x(M; F) < oo,

where F is a field such that M is orientable over F. If M deforms to an

open n-manifold N through open n-manifolds, then M and N have the same

number of ends.

Example 2. Let IF be a contractible 4-manifold with nonsimply connected

homology sphere boundary. Let N be a regular neighborhood of a point x e

dW and let dN = dN+ u dN_ , where dN+ =dNndW. Let c be the map

c: W — W/ cl( W - N) = N/dN_ S D4 . Let M(c) be the mapping cylinder of

c and let p: M(c) —► [0, 1] be the natural projection. Since c is cell-like, p is

a Hurewicz fibration. See [H] or apply the proof of Proposition 1.5 to the space

obtained by doubling M(c) along the boundary in each fiber and then recall

that a fiber-preserving retract of a Hurewicz fibration is a Hurewicz fibration.

It is also worth noting that p o proj : M(c) x I —> [0, I] is a bundle with fiber

D5.

Corollary 3. The 2-torus with one puncture and the 2-sphere with three punctures

do not deform to each other, even though these manifolds become homeomorphic

when multiplied by R .   D

Question. When do open «-manifolds M and N deform to each other through

open «-manifolds? When do compact «-manifolds with boundary M and N

deform to each other through compact «-manifolds with boundary?

I would like to thank Professor A. Dold for asking (during a hike at Oberwol-

fach) whether an open manifold fibration is always a locally trivial fiber bundle.

I would also like to thank T. Moore for helpful suggestions.
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1. Some elementary constructions

In this section, we prove some of the results described in the introduction.

Many of these results are known to experts, but the exposition may help the

reader to become oriented to what follows.

The basic tool for proving that a Hurewicz fibration is a bundle is a theorem

of Dyer and Hamstrom which is itself a corollary to a selection theorem of E.

Michael.

Definition [DH, p. 104]. A mapping / of a metric space X onto a metric space

Y is said to be completely regular provided that for each point y of F and

positive number e there is a positive number à such that if x is a point of

Y and d(x, y) < ô , then there is a homeomorphism of /" (x) onto f~l(y)

which moves no point as much as e .

Theorem 1.1 (Dyer-Hamstrom [DH, Note, p. 109]). If Y is finite-dimensional,

X is compact, and f: X —> Y is completely regular with the homeomorphism

group of f~x (y) locally contractible for each y £ Y, then f:X—>Y isa locally

trivial fiber bundle.

This meshes nicely with the following theorem of Edwards and Kirby.

Theorem 1.2 [EK, Corollary 1.1]. If M isa compact topological manifold of any

dimension, then the homeomorphism group of M is locally contractible.

Thus, to show that a fibration with finite-dimensional base and closed «-

manifold fibers is a locally trivial bundle, one need only show that nearby point-

inverses are homeomorphic via small homeomorphisms.

Proposition 1.3 [ChF], If n> 5 is fixed, B is a locally finite-dimensional locally

path-connected space, and p: E —> B is a Hurewicz fibration with p~x(b) a

closed n-manifold for each b £ B, then p is the projection map of a locally

trivial fiber bundle.

Proof. We sketch the proof. The reader is referred to [ChF] for details. Nearby

fibers in a Hurewicz fibration with compact total space are homotopy equivalent

via homotopy equivalences which are close to the identity in the topology of

the total space [Du, p. 400]. The main theorem of [ChF] shows that small

homotopy equivalences between high-dimensional manifolds are approximable

by homeomorphisms. Combining this with the theorems of Edwards-Kirby and

Dyer-Hamstrom proves Proposition 1.3.   D

Proposition 1.4. If B is a locally finite-dimensional, locally path-connected space,

and p: E —► B is a Hurewicz fibration with p~ (b) a closed 4-manifoldfor each

b £ B, then p is the projection map of a locally trivial fiber bundle.

Proof. This is the 4-manifold version of Proposition 1.3. We state it separately

because the proof is somewhat different.

If b and b' are nearby points of B , let a: I -> B be an arc with q(0) = b
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and q(1) = b'. Let a E be the pullback of p over a

a*E —-—y E

B

a*E is an ANR homology manifold, since a*E x S satisfies the conditions

of Proposition 1.3 with 5-manifold fibers and is therefore a locally trivial bun-

dle. Using lifting functions as in [Du, p. 400], one sees that a*E is a thin

«-cobordism (in the sense of [QJ) of ANR homology manifolds. Since a*E

has nonempty manifold boundary, the obstruction to resolution [Q2] vanishes

and a*E can be resolved relative to its ends to obtain a thin «-cobordism join-

ing (p*)~x(0) to (p*)~x(l). An application of the thin «-cobordism theorem

produces a homeomorphism h: (p*)~x(0) -> (p*)~ (1) which approximates the

original homotopy equivalence from p~x(b) to p~x(b'). This demonstrates the

complete regularity of p and completes the proof.   D

Proposition 1.5. IfL3 is a homotopy 3-sphere, then there is a Hurewicz fibration
_i -i _i -i

p: E —> / with closed 3-manifoldfibers so that p    (0) = Z   and p    (1) = S .
■5-1 ri -i

Proof. Let D  c Z   be a small standard disk and let c : Z  —> S   be the map
3 3

which crushes closure (1 - D ) to a point. Let E be the mapping cylinder of

c, E = Z x / II5 / ~ , where c(x, 1) ~ c(x). Projection onto the /-factor

induces a map p: E —> I with p~ (0) — Z and p~ (1) = S . It remains to

show that this map is a Hurewicz fibration (see Figure 1).

Our plan is to cross E with S to form a map with 5-manifold fibers. We

will show that p o proj : E x S —> / is completely regular, which will show that

it is a locally trivial bundle map. It then follows that p: E -> / is a Hurewicz

fibration, since one easily checks that a fiber-preserving retract of a Hurewicz

fibration is a Hurewicz fibration.

That p o proj : E x S -> I is completely regular is checked using Sieben-

mann's CE approximation theorem [S]. This theorem says that every cell-like

map between closed manifolds of dimension > 5 is uniformly approximable by

homeomorphisms. We need only check complete regularity near p~ (1). Since

the point-inverses of c are contractible, c is cell-like. Crossing with S satis-

fies the dimension condition, so the cell-like map c x id: Z x S —> S x S is

uniformly approximable by homeomorphisms. E x S is the mapping cylinder

of c x id, and the projection Z xS x {t} —> S xS is small in the topology of

the total space for t near 1. This shows that p o proj : ExS -* I is completely

regular and proves Proposition 1.5.   D

In contrast to the above, it is easy to produce examples of Hurewicz fibrations

which are not bundles when the fibers are manifolds with boundary.

Examples 1.6 (see Figure 2). (i) F. Raymond pointed out in [R] that the pro-
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jection from a 2-simplex to a 1-simplex is a Hurewicz fibration but is not a

bundle.
(ii) If p: D" x B —> B is the projection, the restriction p\ : (Dn xB - A) -> B

is a Hurewicz fibration for any A c dDn x B . If g: Z x I —> B is a map and

G: Z x I -> D" x B is a lifting, then (1 - t) • G is a lifting into Dn xB - A,

where • denotes scalar multiplication in the Dn -factor. In words, if the lifting

ducks inside quickly, it misses any disturbance on the boundary.   D

2. The proof of Theorem 2

We begin by proving Theorem 2. Since every finite-dimensional metric space

has a 1-LCC embedding in some Sn , this will show that (i) => (ii) in Theo-

rem 1. Let p : X -» B be a Cech cohomology fibration as in the statement of

Theorem 2. Note that since we are dealing with local properties it suffices to

consider the case in which B is contractible and p~ (b) -* X induces isomor-

phisms on Cech cohomology for each b £ B. We begin the proof of Theorem

2 by extending i2k+x to a fiber-preserving embedding j: X x B -> S"+ + x B

whose complement is a product.

Lemma 2.1. Let p: X -> B be a Cech cohomology fibration and let i: X ->

S" x B be an f.p. fiberwise l-LCC fiberwise codimension-three embedding, as in

the statement of Theorem 2. Let y: X -* X x B be given by y(x) = (x, p(x)).

Then there is a fiberwise l-LCC fiberwise codimension-three embedding j: X x

B -» sn+2k+x x B such that projBoy'(.x, b) = b (i.e., j is fiber-preserving over
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B) and such that

(i) j°y = ¿2/t+i- and

(ii)   projB | : (Sn+2k+x xB- j(X x B)) - B is a bundle.

Here, k = dim B as in the statement of Theorem 2.

Proof Let s: B -» R2k+X be a PL (and therefore 1-LCC) embedding. Writing

i(x) = (i'(x) , p(x)) £ Sn xB , we have a fiber-preserving embedding j: XxB ->

S" x R2k+X x B given by the formula j(x, b) = (z'(x), 5 op(x) - s(b), b). The

composition joy is clearly the composition of i with (identity) x {0}: Sn x

B -> S" x R + x B, i.e., the map sending (s, b) to (s, 0, b). Now, let

H: S" x R2k+X xB -^ Sn x R2k+X x B be given by the formula H(p,q,b) =

(p, q + s(b), b). Then H is a fiber-preserving homeomorphism over B with

inverse H~ (p, q, b) = (p, q - s(b), b). Moreover, the composition H o j is

given by the formula H o j(x, b) = (i'(x), s o p(x), b), which is the product

of a single embedding X -> S" x R2k+X with the identity on B. Radially

identifying S" x R + with a tubular neighborhood of Sn in Sn+ + and

letting j: X x B —► Sn+ + x B be the resulting embedding, property (i) in the

statement of the lemma is automatic. H is bounded in the R +1-direction

and therefore extends by the identity outside of the tubular neighborhood of

S" x B to a fiber-preserving homeomorphism 77: sn+2k+x xB^ sn+2k+x x B .

This verifies property (ii) in the lemma.   D

The rest of the proof of Theorem 2 consists of proving the following propo-

sition.

Proposition 2.2. Let p: X —► B be a proper map and let Y c X be a closed

subset such that the inclusion p~x(b) n Y —y p~x(b) induces isomorphisms on

Cech cohomology for each b £ B. If i: X —> S" x B is a fiberwise 1 -LCC

fiberwise codimension-three embedding, then for each I > n + 2, ((S"+ x B) -

i¡(X))xR2 is fiber-preserving homeomorphic to ((Sn+ x B) - i¡(Y)) x R..

To prove Theorem 2, apply Propositon 2.2 to the pair (XxB, y(X)) and the

embedding j constructed in Lemma 2.1. Since the complement of

j(X xB) is a product, the proposition shows that the complement of ; o y(X) =

¡2t+|(I) becomes a product after stabilization and multiplication by R . To

prove Proposition 2.2 we first need a lemma.

Lemma 2.3. Let (X, Y) be a pair of compact, connected, finite-dimensional

spaces such that the inclusion-induced homomorphism H*(X) —► H*(Y) is an

isomorphism. Then the inclusion ZF c "LX is a shape equivalence.

Proof. This follows directly from the cohomological Whitehead theorem in

shape theory. See [MS, p. 155] for details.   D

Definition. If p: X —* B is a map, then the fiberwise suspension Zß(/z) of p is

the projection from the double mapping cylinder of p to B. In symbols, let
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D(p) = X x[-l,l]UB x{-l,l}/~, where (x, e) ~ (p(x),e) for e = ±1.

Zß(p): D(p) —> B is induced by (x, t) -> p(x), (b, e) —> b . Note that if /? is

surjective, then for each b £ B , ZB(/>)~ (¿) is homeomorphic to Z(/?~'(è)).

We will have occasion to write D(p) as M+(p) Ux M_(p) in the obvious way.

We will also use c± : M±(p) -+ B to denote the mapping cylinder projections.

Proposition 2.2 follows from Proposition 2.4, which is a stable fibered version

of Chapman's finite-dimensional complement theorem. See [MS, p. 264] for

the unfibered version.

Proposition 2.4. Let p: X —► B be a proper map and let Y c X be a closed

subset such that the inclusion p~x(b)C\Y -+ p~x(b) is a shape equivalence for

each b £ B. If i: X —> S" x B is a fiber-preserving fiberwise l-LCC fiberwise

codimension-three embedding, then for I > n + I, ((Sn+ x B) - i¡(X)) x Rx is

fiber-preserving homeomorphic to ((Sn+ x B) - i¡(Y)) x R .

The idea of the proof is quite simple. To avoid losing the reader in notation

and details, we first sketch the unfibered version. For this, let (X, Y) be a

finite-dimensional pair with Y c X a shape equivalence and let i : X -* S" be a

1-LCC codimension-three embedding. Consider the embedding of Z = CXuY

CY in Sn+X obtained by coning X off to the north pole and Y off to the south

pole. Let cx:Sn+x -> S"+X/CX and c2: Sn+X -* S"+x/XuYCY be the quotient

maps. Since CX and Xl)YCY are codimension-three 1-LCC embedded cell-

like subsets of Sn+ , cx and c2 are uniform limits of homeomorphisms. (See

Lemma 2.5 below.) cx throws Z onto a copy of ZF in Sn+X, while c2 throws

Z onto a copy of "LX in Sn+ . This means, in particular, that the complements

of IX and ZF in Sn+X are both homeomorphic to the complement of Z in

Sn+X. If we knew that the resulting embeddings of IX and ZF in S"+x

were equivalent to the embeddings obtained by coning X and Y off to both

poles, then we would be done. An easy way to accomplish this stably is to

include the entire picture into a tubular neighborhood of S"+x in S2n+2. The

point of doing this is that the decomposition respects the pair (S2n+2, Sn+X),

so S"+X/CX and Sn+x/XöYCY wind up as standard S"+1'sin S2n+2. Klee's

trick ([Ru, p. 74] or see below) works as usual to show that any embedding of

1.X or ZF into a standard Sn+X in S n+ becomes standard in S2n+2. Thus,

1,X and ZF have homeomorphic complements in S n+1 and (S2n+X - X) x Rx

is homeomorphic to (S2n+X - Y) x Rx.

Lemma 2.5. If X c Sn , n > 5, is a codimension-three l-LCC embedded cell-

like set, then S" —> Sn/X is a uniform limit of homeomorphisms. If S" c Sn+

is the standard inclusion, then (Sn+ , S") —» (Sn+ /X, S"/X) is a uniform limit

of homeomorphisms of pairs.

Proof. By [St], 1-LCC embedded compacta satisfy general position with respect

to polyhedra. Applying McMillan's cellularity criterion [Ru, p. 178] one easily
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S"+1x|/>k /-""IK-\^M+(p)nS"+lx{í)l

^v^J^^^A^ (p I Y)n S"+[x{b}

Figure 3

deduces that X is an intersection of nested «-cells in S". The result then

follows using the usual squeezing argument. See [Ru, p. 44] for details. In the

case of pairs, one simply takes care that the squeezing respects the pairs.    D

Let X d Y and p: X -> B be as in the statement of Proposition 2.4. If

i: X -* SnxB is a fiberwise 1 -LCC fiberwise codimension-three embedding and

proj: S" x B —> B is the projection, let Zj9(proj): D(proj) —> B be the fiberwise

suspension. D(proj) is fiber-preserving homeomorphic to Sn+ x B and con-

tains D(p), D(p\Y), and Z = M+(p) U M_(p\Y) as fiber-preserving subsets.

Here, the " ± " refers to coning from the north and south poles, respectively.

The picture is the usual one associated with the Puppe sequence. Figure 3 is a

representative slice.

Since the inclusion p~~ (b) C\Y —> p~ (b) is a shape equivalence, the space

p~X(b) U C(p~x(b) n Y) is cell-like. Crushing out M+(p) in each fiber turns Z

into a copy of D(p\Y), while crushing out Z r¡M_(p) turns Z into a copy of

D(p). Of course the first fiberwise crushing operation is just

Sn+l xB^ (S"+X xB)Ur B

and the second is given by Sn+X x B —> (Sn+X x B) U,c uZnM ,pm B . By Lemma

2.5, crushing M+(p) n (Sn+X x {b})  or (Z n M_{p)) n (Sn+X x {b})  out of

Sn+X x {b} results in a space homeomorphic to Sn+ . We now prove that this

identification can be made fiber-preserving.

Theorem 2.6 [EK, Remark on p. 87]. If (M, N) is a locally flat manifold
pair, the group %?(M, N) of selfhomeomorphisms of (M, N) is locally con-
tractible.    D

It is easy to extend Theorem 1.1 to a theorem for pairs. Thus, we say that

/: (X, XQ) —► F is a completely regular pair of maps if for each point y £ Y

and £ > 0 there is ô > 0 such that if y £ Y and d(y , y) < 5, then there

is a homeomorphism h: (f~x(y), f'x(y') nl0) - (f~x(y), f~X(y)nX0) with

d(h, id) < e .

The proof in [DH] then allows us to conclude that if Y is finite dimensional

and /: (X, X0) —» F is a completely regular pair of maps with /" (y) a closed

manifold and f~x(y) n X0 a locally flat submanifold for each y £ Y, then for
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each y e F there is a neighborhood U of y in Y suchthat (/ X(U), f X(U)D

X0) is fiber-preserving homeomorphic to (/" (y), f~ (y) n X0) x U.

Proposition 2.7. Let M and N be closed n-manifolds and let B be a finite

complex. Iff:MxB->NxB is a fiber-preserving map such that f\M x {b}

is a uniform limit of homeomorphisms for each b £ B, then f is a uniform

limit of fiber-preserving homeomorphisms.

Proof. We proceed by induction on dim B . Assume that the proposition is true

for dimß < k and let B = B be a finite polyhedron with f:MxB->NxB a

fiber-preserving map as in the statement of the proposition. Let e > 0 be given

and choose 3 > 0 so that every map a : S ~ -> ßf(N) with d(a(x), id) < <5

for all x £ Sk~x extends to ä: Dk -> MT'K) with d(a, id) < e/2. We may

assume that 3 < e/2.

Triangulate B by Simplexes so small that d(fb, fb<) < a/3 whenever b, b' £

A1, A1 a simplex of B. Here we write fb for f\Mx{b} considered as a

map from M to N. By induction, there is a fiber-preserving homeomorphism

h: M x B{k~x) - N x B{k~x) with d(h,f\M x B(k~x)) < Ô/3. Let Ak be a

/c-simplex in B . Choose b0 £ A   and let hb : M -> N be a homeomorphism

which (5/3-approximates fb . If b' edA , we have

d(hbo,hb,)<d(hbo,fb) + d(fb,fb,) + d(fb,,hb,)< 3/3 + 0/3 + 3/3 = 0.

Define a: dAk ̂  &{N) by a(A') = Aft, o A"1, d(hb, o h~x, id) = d(hb, ,hb)<

3 , so a has an extension q: A —► %*(N), hb = a(b) o hb gives an extension

of h over A  . Now, for b £ B we have

d(hb , fb) = d(ä(b) o hK , fb) = d(a(b), fb o A"1)

< d(a(b), id) + ¿(id, fb o A"1) < e/2 + ¿(id, fb o A"1)

= e/2 + ¿(A¿o, /6) < e/2 + d\ , fbJ + d(fbg, fb)

<e/2 + 23/3<e.

Repeating this for each /^-simplex of B completes the inductive step and the

proof.   D

Remark. Proposition 2.7 is also true for pairs. Thus, if (M, M0) and (N, N0)

are locally flat manifold pairs, B is a finite complex, and /: (M, MQ) x B -*

(N, NQ) x B is a fiber-preserving map such that fb: (M, MQ) -» (N, N0) is

a uniform limit of homeomorphisms of pairs for each b £ B, then / is a

uniform limit of fiber-preserving homeomorphisms of pairs.   D

Proposition 2.8. Let X and B be compact with p: X -» B a map. Let

i, j: X -» R" x B c Sn x B be fiber-preserving embeddings. Then there is a

fiber-preserving homeomorphism H: R" x R" x B —> R" x R" x B with compact

support such that H(i(x), 0, p(x)) = (0, j(x), p(x)).
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Proof. The proof is the same as the usual version of Klee's trick. Consider fiber-

preserving embeddings a = (projÄ„ xO x proj5) oj\ X^RnxOxB and ß =

(0 x projÄ„ x projfi) o i: X -> 0 x R" x B . Let u = ß ocT1 : a(X) -► ß(X). Note

that u has domain a subset of R" x 0 x B and range a subset of 0 x R" x B and

that u has the form u(w , 0, b) = (0, ux(w, b), b). Let üx be an extension

of ux to all of Rn x B . We may arrange for ux to have compact support. Now

define Ú : Rn x R" x B -» Rn xR" x B by the formula U'(w, z,b) = (w,z +

ux(w , b), b). U' pushes a(X) to the set {(w , ux(w , b), b)\(w , b) £ R"xB).

This set is a fiber-preserving graph of I71 : For each fixed b, it is the graph of

üx\Rn x {b} . U' is a bounded homeomorphism, so the usual radial squeezing

trick (see [C, Lemma 5]) done fiberwise yields a homeomorphism U which has

compact support and which equals U' in a neighborhood of a(X). Similarly,

one constructs a fiber-preserving homeomorphism V with bounded support

pushing ß(X) onto an extension of the graph of a o ß~x. H = V~x o U is

then the desired homeomorphism with compact support throwing a(X) onto

ß(X). The details are as in [Ru, p. 74].   D

The proof of Proposition 2.4 now follows exactly as advertised. Let X D Y

and p: X -> B be as in the statement of Proposition 2.4. If i: X -> R" x

B c S" x B is a fiberwise 1-LCC fiberwise codimension-three embedding, then

consider i x : X -» 5 " " x B . Then D(p), D(p\Y), and Z are all contained

in Sn+X x B c S n+ x B . Crushing, as in the discussion following Lemma 2.5,

and applying the Remark following Proposition 2.7, we see that (S2n+2 x B) -

D(p) and (S2n+2 x B) - D(p\Y) are both homeomorphic to (S2n+2 x B) - Z .

Proposition 2.8 shows that any two embeddings of Z into (Sn+X xB) c (S2n+1 x

B) are equivalent, so (S2n+2 x B) - D(p) and (S2n+2 x B) - D(p\Y) are fiber-

preserving homeomorphic. This shows that ((S n+x x B) - in+x(X)) x Rx is

fiber-preserving homeomorphic to ((S n+x x B) - in+x(Y)) x Rx .   D

Although Proposition 2.4 should be regarded as a fibered complement the-

orem, we note that it starts with weak data in that we only require that the

inclusion be a shape equivalence on each fiber. It follows from the complement

theorem of [CM] that after fiberwise suspension such an inclusion becomes a

fiber shape equivalence. One wonders if the suspension is necessary.

Corollary 2.9. Let X and Y be compact finite-dimensional metric spaces and

let p: X -* B and q: Y -> B be maps, B a finite polyhedron. If f: X -> Y is

a map with q o / = p such that f\ : p~x(b) —► q~x(b) induces isomorphisms on

Cech cohomology for each b £ B, then the fiberwise suspension ZB(/) : D(X) —►

D(Y) is a fiber shape equivalence in the sense of [CM].   D

Another consequence of the argument is the following generalization of the

classical Vietoris-Begle theorem.

Proposition 2.10. Let X, Y, and B be compact metric spaces and let p: X -► B

and q: Y —► B be maps.  If f: X —► F is a map with q o f = p such that
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f\: p (b) -> q (b) is a Cech cohomology equivalence for each b£B then f

is a Cech cohomology equivalence.

Proof. Using mapping cylinders, we may assume that / is an inclusion. The

construction used in proving Proposition 2.4 yields a compact space Z , a map

r: Z -* B, and fiber-preserving acyclic maps cx: Z ^ D(X), c2: Z —> D(Y).

By the classical Vietoris-Begle theorem, the maps cx are Cech cohomology

equivalences. Since ~LB(f) o cx is homotopic to c2, ~LB(f): D(X) —> D(Y)

is also a Cech cohomology equivalence. We have commuting diagrams of cofi-

brations, where Z denotes the usual (nonfiberwise) suspension and B+ and B_

are the two copies of B in D(X) and D(Y) :

B+    -+      D(X)      ->   D(X)/B+
I id | !,(/) |

B+    ->      D(Y)      ->   D(Y)/B+

and

B_    -    (D(X)/B+)/B_    -,   Z(X)
I id 1 I Uf)

B_    -    (D(Y)/B+)/B_    -    Z(F)

Passing to Cech cohomology and applying the Five Lemma shows that Z(/),

and therefore /, is a Cech cohomology equivalence.   □

3. A DUALITY THEOREM

Our proof that p: X —> B is a Cech cohomology fibration whenever (Sn x

B) - X —> B is a Hurewicz fibration requires the duality theorem stated as

Theorem 3. We give a proof.

Proof (Theorem 3). Write X = f]Ni, where Nx D N2 D N3 D ■ ■ ■ are codimen-

sion-0 PL submanifolds of M meeting dM, P, Q, and dP = dQ regularly.

We will write dX for X n dM. The following is a picture (see Figure 4). The

picture is slightly misleading in that it is perfectly permissible for X to meet

dP = dQ. We write

Hk(M,QuX)^limHk(M, QuNt)

=■ lim Hk(M - intiV,., (Q - int^ötf,. n ß)) U (dN; - (97V, n dM)))

=■ limHn_k{M - in\M Nt, (P - int9M(öiV. n />)))

^Hn_k(M-X,P-(XnP)).    D

We now prove that (ii) => (i) in Theorem 1. With notation as in the state-

ment of Theorem 1, we must show that for each b £ B there is a contractible

neighborhood U of b such that p~x(b') -> p~x(U) is a Cech cohomology

equivalence for each b' £ U .
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Figure 4

Case I. Let B = Ak and let b be a vertex of A* . We will show that p~x(b) -»

p_1(A ) induces an isomorphism on Cech cohomology.

Proof (Case I). We proceed by induction, assuming that the result is true over

proper faces of A . Let p : X —► A be the given map and let i : X —> S" x A

be a fiber-preserving map such that S" x A - i(X) -> A is a Hurewicz fibration.

Let ß' be a (£-l)-dimensionalfaceof A and let P' be the closure of A -ß'.

Let Q = S" x Q' and let P = S" x P'. Then d{S" xAk) = PuQ. Applying

Theorem 3, we have Hk(S" xAk , QuX) =" Hn_k(S" x Ak -X, P-(PndX)).

Since 5%A - z'(A') -»A is a Hurewicz fibration, the group on the right is

zero for all k and we have 77 (Sn x A , Q U X) = 0 for all k. This implies

that Hk(QuX) =■ Hk(S") for all k. Since Ä*(ß) 2 77*(S"), we see that

Hk(QuX, Q)^Hk(X, ßn*) = 0 for all fc. Thus, Hk(Q) ^ Hk(QnX) is an

isomorphism for all /c. By our inductive assumption, Hk(QnX) -^Hk(p~x(b))

is an isomorphism for all k, so Case I is proved.

Case II. Let 5 = A   and let b be an interior point of A  .

Proof (Case II). Starting from è produces a triangulation of A in which b

is a vertex. Case II is now a simple application of the Mayer-Vietoris theorem

using Case I.

Case III. Let B = Ak and let b be a point of dA* .

Proof (Case III). In proving Case I, we showed that if A is a face of A ,

then p~ (A ~ ) —> p~ (A ) induces isomorphisms on Cech cohomology. If b

is an interior point of ä'cA1, p~\b) -» P~X(Al) and p~X(Al) -» p_1(A*)

both induce isomorphisms on Cech cohomology.

Case IV. The general case.

Proof. If B is a finite polyhedron and b £ B , then ¿> has a closed neighborhood

which is a simplicial cone with vertex b. That p~x(b) —> p~x(B) induces

isomorphisms on Cech cohomology follows from Case I and the Mayer-Vietoris

theorem. If b' is in the cone neighborhood, then there is a simplex a of B

containing both b and b'. Since p~X(b) -» p~X(B) and p~X(b) -> p_1(cr)

induce isomorphisms on Cech cohomology, so does p~ (er) —► p~X(B). Since

p~ (A') —> p~ (cr) induces isomorphisms on Cech cohomology by Case III, so

does p~x(b')^p~x(B).   D
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4. Examples, conjectures, generalizations,

and the proof of theorem 4

Theorem 1 is a stable result. We conjecture that it can be improved enor-

mously:

Conjecture. If p : X —> B is a Cech cohomology fibration from a finite-dimen-

sional metric space to a finite complex and i: X -* S" x B is a fiber-preserving

embedding which is codimension-three and 1-LCC on each fiber, then

pTOjB\:(SnxB_i(X))^B

is a Hurewicz fibration.

Remark. Some tameness condition is necessary. If a: [0, 1] -> S is the

Fox-Artin arc (see [Ru, p. 68]), there is a continuous family of embeddings

at: [0, 1] -» S3 suchthat a( is tame for t < 1 and ax=a. (S3xI-a(IxI)) ->

/ is not a Hurewicz fibration because the fibers have different homotopy types.

Of course, including S into a larger sphere as in the proof of our main theorem

removes this difficulty.

As stated, Theorems 1 and 2 apply only to maps from finite-dimensional

spaces to finite polyhedra. It is customary to state theorems of this sort at least

for bases which are Euclidean neighborhood retracts (ENR's) as in [D]. Every-

thing we have discussed generalizes easily to this case except for the definition

of Cech cohomology fibration itself. The problem is that the definition given

requires that the base space have arbitrarily small contractible covers. This is

sufficient to guarantee that the base space be an ENR, but it is by no means

necessary. A related problem is that it is not obvious from the original defini-

tion that Cech cohomology fibrations are preserved under pullbacks. A version

of this is a consequence of Theorem 1 :

Proposition 4.1. Let p: E -» B be a Cech cohomology fibration. If K is a finite

polyhedron and f:K^>B is a map, then the induced map p* : f*E -> K from

the pullback to K is a Cech cohomology fibration.

Proof. By our main results, there is a fiber-preserving embedding i: E —> SnxB

such that ((S" x B) - i(E)) x R —> B is a locally trivial fiber bundle. Pulling

back the pair (S" x B, i(E)) over / gives an embedding i* : f*E -> S" x K

for which the complement has the same property—implying that f*E —> K is

a Cech cohomology fibration.   D

Remark. We could now define a Cech cohomology fibration to be a map p

from a compact metric space X to a compact ENR F such that for every map

a: A —> F the pullback p* : a X —> A is a Cech cohomology fibration in the

original sense. Standard properties of pullbacks show that Theorems 1 and 2

extend immediately to this extra generality.

We begin our proof of Theorem 4 with the following proposition.

Proposition 4.2. Let p: E -> [0, 1] be an n-manifold fibration, n ^ 3. If

t0 £ [0, 1] and D is a compact subset of int(p~ (t0)), then there exist an open
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neighborhood U of D in p (t0), a 3 > 0 and a continuous family of open

embeddings ht: U -> p~ (t), t £ (t0 - 3, t0 + 3) n [0, 1], with ht = id^ .

Proof. The main theorem of [ChF] shows that small homotopy equivalences

between «-manifolds, « > 5 , can be approximated by homeomorphisms. The

argument is a handle induction and applies to an open neighborhood U of

D to give the stated result separately on fibers. One then uses the local con-

tractibility of the homeomorphism group [EK] to obtain a continuous family of

embeddings. In dimensions 4 and 2, results of Quinn [Q3] and Jakobsche [J]

replace [ChF].   D

Proof of Theorem 4(i). If p~x(t0) is a compact «-manifold with boundary, let

C be a collar on dp~x(tQ) and let D be the closure of p~\t0) - C. If C

is chosen so that dC is collared in D, then D is homeomorphic to p~X(t0).

By Proposition 4.2, there is a 3 > 0 so that D embeds in p~x(t) for every

t £ (t0 - 3, t0 + 3) n [0, 1 ]. Since this embedding is a homotopy equivalence for

each t£(t0-3,t0 + 3)n[0, 1], Ht(p~l(t)-wt{ht{D)), ht(dD)) = 0. By dual-

ity, H,(p-x(t)-int(ht(D)),dp~x(t)) = 0 for each t £ (t0 -3, t0 + 3) n [0, 1],

so

Ht(dp-X(t0)) - H¿ht(dD)) * H,(p-X(t) - int(ht(D)))

=-Ht(dp~x(t))   for all í e (i0 - <5, i0 + <5) n [0, 1].   D

Corollary 4.3. If M and N deform to each other through open n-manifolds,

then M is orientable if and only if N is.

Proof. By crossing with a high-dimensional sphere, we may assume that the fiber

dimension is > 6. Choose a section and consider this to define a basepoint in

each fiber. If [a] £ itx(p~ (t)), let [ay] 6 itx(p~ (t1)) be the corresponding

element. Proposition 4.2 applies to a neighborhood of a representative of [a]

to show that [a] preserves orientation if and only if [ay ] does for each t' in a

neighborhood of / in [0, 1]. Applied separately to each element of nx(p~x(t)),

this proves the corollary.   D

Notation. For the remainder of this section, Hk(M) and H (M) will mean

homology and cohomology with coefficients in a field F over which the manifold

M is orientable.

Our proof of Theorem 4 will rely on the following propositions.

Proposition 4.4. // M" is a connected orientable open manifold, « > 6, with

dimFHn_x(M) < oo, then there exists a compact submanifold Nn c M such

that Hn_x(N) —► Hn_x(M) is an isomorphism.

Proof. By [KS], M has a handle decomposition. Choose a compact submani-

fold TV' of M large enough that Hn_x(N') -» Hn_x(M) is an epimorphism. By

Alexander Duality, Hl/(M - k) ^H"(M, N'), Dimr H*/(M - k) measures
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the number of compact components of M - N and the exact sequence of the

pair (M, N1) shows that this number is finite. Let

N = N' U {compact components of M - N1}.

We now have H¡/(M - N) = Hn(M, N) = Hn(M, N) = 0. Since TV d N',

Hn_x(N) -► Hn_x(M) is still an epimorphism. The exact sequence

...^Hn(M,N)-+Hn_x(N)-*Hn_x(M)^---

shows that Hn_x(N) -> Hn_x(M) is an isomorphism.   D

Addendum. The proof above shows that Hn_x(N) -» Hn_x(M) is an isomor-

phism whenever:

(i)   Hn_x(N) —> Hn_x(M) is surjective and
o

(ii)   M - N has no compact components.

This means that for « > 2 we can always find TV so that Hn_x(N) -> Hn_x(M)
o

is an isomorphism and H0(dN) —> /70(M - TV) is an isomorphism.

o

Proo/". Since Af is connected, every component of M - N meets dN. If a
o

single component of M - N contains more than one component of dN, run
o

arcs between these components in M - N and add regular neighborhoods of
o

these arcs to N. We now have H0(dN) -» H0(M - N) an isomorphism. Since

(i) and (ii) still hold, Hn_x(N) -> Hn_x(M) remains an isomorphism.   D

Proposition 4.5. Let M be a connected orientable open n-manifold and let

N c M be a compact n-manifold with Hn_x(N) -> Hn_x(M) and H0(dN) ->
o

H0(M-N) isomorphisms. Then the number of ends of M is equal to the number

of boundary components of N.

Proof. Since H¡¡(M - N) = Hn(M, N) = 0, the components of M - N are

noncompact. We have a commuting diagram:

0

II
Hn(M,N) -      Hn_x(N)      $        Hn_x(M)        -* Hn_x{M, N)

Î* î T î*o
->    Hn(M-N,dN)    ->    H^^dN)     -*    Hn_x(M - N)    —    Hn_x{M-N,dN)    ->

o

which shows that Hn_x(dN) —> Hn_x(M - N) is an isomorphism. Since this

must hold componentwise, the result follows from:

Proposition 4.6. If W is a connected noncompact n-manifold with compact con-

nected nonempty boundary such that Hn_x(dW) -* Hn_x(W) is an isomor-

phism, then W is l-ended.

Proof. Suppose that W has more than one end. Then there is a neighborhood

of infinity in W with more than one noncompact component. We may there-

fore choose a disconnected manifold neighborhood  V of infinity which has
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Figure 5

compact boundary, no compact components, and a single connected comple-

mentary domain. Since W is connected, such a V has disconnected boundary.

The exact sequence

0 = Hn(W, dV)^ Hn_x(dV) - Hn_x(W)

shows that dim¥HnX(W) is at least two, contradicting the assumption that

F = Hn_x(dW) is isomorphic to Hn_x(W). See Figure 5.

Proof (Theorem 4(ii)). By crossing with a high-dimensional sphere, we may

assume that the fiber dimension is at least six. Given t0 £ [0, I], choose a

compact submanifold V of p~x(t0) such that Hn_x(V) -> Hn_x(p~x(t0)) is

an isomorphism. By Proposition 4.2 there is a 3 > 0 such that V embeds

in p~x(t) for t £ (t0 - 3, t0 + 3) n [0, 1]. By Proposition 4.5, the number of

ends of p~ (t) is equal to the number of boundary components of V for each

t £ (t0 - 3, t0 + 3) n [0, 1]. Theorem 4 follows by compactness.    □

We close with some questions.

Question 1. Is Theorem 4 true without the hypothesis on Hn_x(M) ?

Question 2. If /?:£■—► B is a Hurewicz fibration with open manifold fibers,

then if p o proj£ : E x R   -> B a locally trivial bundle for some k ?
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