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ON COMPLETE CONGRUENCE LATTICES
OF COMPLETE LATTICES

G. GRÄTZER AND H. LAKSER

Abstract. The lattice of all complete congruence relations of a complete lattice

is itself a complete lattice. In this paper, we characterize this lattice as a com-

plete lattice. In other words, for a complete lattice L , we construct a complete

lattice K such that L is isomorphic to the lattice of complete congruence re-

lations of K . Regarding K as an infinitary algebra, this result strengthens the

characterization theorem of congruence lattices of infinitary algebras of G. Grät-

zer and W. A. Lampe. In addition, we show how to construct K so that it will

also have a prescribed automorphism group.

1. Introduction

In 1983, R. Wille raised the following question [24]: Is every complete lattice

isomorphic to the lattice of complete congruence relations of a suitable complete

lattice? See also K. Reuter and R. Wille [20].

A closely related question was raised by G. Birkhoff [1] in 1945: Is every

complete lattice isomorphic to the lattice of congruence relations of a suitable

(infinitary) algebra? In 1948, Birkhoff restated this question in the second edi-

tion of his "Lattice theory" [2]; however, "(infinitary)" was dropped from the

question. This was intentional; Birkhoff referred to some continuity conditions

that must hold in a congruence lattice of a (finitary) algebra.

The finitary problem was solved by G. Grätzer and E. T. Schmidt [ 15] in 1961.

The congruence lattice of a (finitary) algebra was characterized as an algebraic

lattice. The proof was based on a transfinite sequence of constructions starting

out with a partial algebra with the required congruence lattice and some special

properties, and repeating two steps:

( 1 ) Form the free extension of the partial algebra.

(2) Introduce partial operations on the free algebra to "kill" all congruences

that do not arise naturally as congruences extended from the partial

algebra.
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The difficulty lay in showing that the special properties one started with were

preserved. A number of alternative proofs appeared. However, none provided

a direct construction; see, for instance, E. T. Schmidt [22], in 1973, W. A.

Lampe [16], and in 1976, P. Pudlák [18].
Grätzer and Lampe [13] announced a solution to the infinitary case in 1971—

1972, and obtained, in particular, an affirmative answer to Birkhoffs 1945 ques-

tion. Since the algebra to be constructed was infinitary, the two step transfinite

construction became even more complex; see Appendix 7 of [7] for full details.

See also E. Nelson [17].

Considering the complexity of this proof, it was with some surprise that

the first author discovered1 that the answer to the question of Wille is in the

affirmative:

Theorem 1. Every complete lattice L is isomorphic to the lattice of complete

congruence relations of a suitable complete lattice K.

We present in this paper a proof of this theorem, which is much simpler and

cleaner than the original proof of Grätzer (unpublished), and yields a lattice of

much simpler structure.

This result is a much stronger form of the infinitary case of the result of

Grätzer and Lampe: K is a complete lattice, while Grätzer and Lampe con-

structed an infinitary algebra of unspecified type. The construction is simple

enough to be presented in a few diagrams along with some explanations. The

lattice K is "planar" (i.e., of order-dimension 2). The proof uses a one step

construction, doing away with partial algebras, free algebras, and the transfinite

sequence of constructions. On the other hand, Grätzer and Lampe handle the
finitary and infinitary case together. The present method is infinitary in nature;

it does not apply to the finitary case.

A partial solution (L was assumed to be a complete distributive lattice in

which every element was the (infinite) join of (finitely) join-irreducible ele-

ments) was presented by Reuter and Wille in [20]. The construction of Reuter

and Wille yielded a finite lattice K for a finite lattice L. Hence their result

was a generalization of a theorem of R. P. Dilworth: Every finite distributive

lattice L is isomorphic to the congruence lattice of some finite lattice K.

The proof of Dilworth's result was first published in Grätzer and Schmidt

[14]. A somewhat different proof, due to Grätzer and H. Lakser, appeared in

[6, pp. 81-84].
The proof of Reuter and Wille was based on an earlier paper of Wille [24]

on complete congruence relations of concept lattices. In [12], Grätzer, Lakser,

and B. Wölk showed how the approaches of [6] and [14] also apply.

The results of this paper were announced by the first author on June 25, 1988, at an invited

lecture at the International Conference on Universal Algebra, Lattices, and Semigroups, at the

Centro de Algebra, Instituto Nacional de Investigaçâo Científica, Universidade de Lisboa. See also

the announcement in G. Grätzer [8].
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A very important partial solution to the question of Wille was obtained in

S.-K. Teo [23]: Every finite lattice L is isomorphic to the lattice of complete

congruence relations of a suitable complete lattice K. The coloring construction

for chains used in this paper originated in Teo [23].

For infinitary algebras, Grätzer and Lampe [13] (see also Appendix 7 of [7])

proved a much stronger result combining congruences with automorphisms. The

first author announced in Grätzer [8] that their result could be strengthened

the same way as Theorem 1 strengthened their characterization of congruence

lattices of infinitary algebras.

Theorem 2. Let L be a complete lattice with more than one element. Let G be

an arbitrary group. Then there exists a complete lattice K such that the lattice of

complete congruence relations of K is isomorphic to L, and the automorphism

group of K is isomorphic to G.

Our proof of Theorem 2 is much simpler than the (unpublished) proof of

Grätzer.

The basic notation is explained in §2. In §3, we introduce the coloring tp of

a chain C, and investigate the complete congruences of the associated expan-

sion C(tp). The crucial construction, which we call the Wlx construction, is

discussed in §4; this, basically, guarantees that for a subset X of L - { 0 } , the

complete congruences associated with x £ X join to the complete congruence

associated with V^ • In §5, we construct a chain A* from a nonempty subset

X of L - { 0 } . From all such chains X' , we build the chain C, and define

a natural coloring <p of C. We add some elements to the expansion C(tp) to

obtain, in C(tp), a copy of Tlx, for each X ; the resulting lattice will be the

lattice K of Theorem 1. In §6, we investigate the complete congruences of K,

and prove Theorem 1. In §7, we show how to extend K to accomodate an

arbitrary automorphism group to provide a proof of Theorem 2. §8 contains

some comments on the construction.

2. Notation

L is the complete lattice we want to represent in Theorem 1. 0 and 1

denote the zero and unit element of L, respectively. If \L\ = 1, it is trivial to

represent L. We shall, henceforth, assume that \L\ > 2.

We shall be dealing with nonempty subsets X ç L - { 0 } . Let us write

(2-1) X = {xy\y<Cx},

where 1 < C* < C = \L - {0}|. Let

(2-2) {XS\6<x}
s

denote the family of all such sets; the elements of X   are well-ordered:

(2-3) XS = {xSy\y<HS}.

Since \L\ > 2, it follows that there is at least one such X, that is, 0 < / .
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9Jl3 denotes the five-element modular nondistributive lattice. £n is the n-

element chain with elements 0, 1, ..., n- 1.

Let a be an ordinal, and for y < a, let A be a lattice. We denote by

^2(A | y < a) the ordinal sum of the A for y < a ; for two components, A

and B, A + B denotes the ordinal sum of A and B (we place B on top of

A).

For ordinals a, ß , the ordinal product ax ß is regarded as the set { (y, <?) |

7 < a, S < ß} ordered by (yx, Sx) < (y2, S2) iff yx < y2 or yx = y2 and

SX<S2.

For a lattice A, let Ip A denote the the set of prime intervals in A , i.e., the

set of all intervals p = [u,v], where u -< v . If p = [u, v] £ IpA, then for any

lattice B and b £ B, we use the notation

p x {b} = [(u, b), (v, b)] £lp(A x B).

If px — [x,, yx] £ lpAx and p2 — [x2, y2] £ lpA2, then it will be convenient

to refer to the elements of the four-element sublattice of A x B generated by

px x {x2} and { x, } x p2 as follows:

o(Pi, P2) = (*i. *2> '    a^i > h) = ^1 ' xi) >

b(pi. p2) = (xi. y2).   »(Pi » p2) = <>r » y2)-

If Ax — A2 — A, and px = [x,, y,], p2 = [Xj,^] e Ip/í, the notation

o(pj, p2), a(px, p2), b(px, p2), i(px, p2) refer to the four elements in A ,

where p, is regarded as a prime interval of the first component, and p2 is

regarded as a prime interval of the second component.

For a (prime) interval p = [u, v] in the lattice A , we shall denote by O^(p)

or &A(u, v) the congruence relation generated by the prime interval p. If A

is understood, we use the notation 6(p) or 8(w, v). In case A is complete,

0^(p) or QcA(u, v) (or, simply, 8c(p) or Qc(u, v) ) will denote the complete

congruence relation generated by p = [u, v]. Note that u = v (8) is equivalent

to 8(p) < 8.

For a lattice A , the congruence lattice of A is denoted by Con A ; the lattice

operations in Con A are denoted by A, v, and the infinite variants by A >

V . For a complete lattice A , the complete congruence lattice of A is denoted

by Conc A ; the lattice operations in Conc A are denoted by A , Ve, and the

infinite variants by /\, \/c. Notice that there is no change in notation for meets

(meets are set intersections); for complete congruences 8;, i € /, the complete

join, Ve(®, I ' € /) is tne smallest complete congruence of A containing

V(0/l'€/).
We refer the reader to [6] for the standard notation in lattice theory.

3. Coloring

A coloring of a chain C is a map

tp-.lpC ^L-{0).
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Figure 1

b

Figure 2

If p £ Ip C and ptp = a , one should think of 8^-(p) as the complete congruence

representing a £ L- {0} in some extension Í of C.

Following Teo [23], for a chain C and coloring tp , we define the lattice C(tp)

as follows: the lattice C(<p) is C2 augmented with the elements m(px, p2),

whenever pj, p2 e Ip C and pxq> — p2g>, and we require that the elements

(3-1) o(p,,p2), a(px,p2), ¿>(p,,p2), m(px,p2), i(px,p2)

form a sublattice of C(tp) isomorphic to 9Jl3, as illustrated by Figure 1, where

Pi = [*i > y\\ and P2 - [x2 > y¿] ■ Obviously, C(<p) is an extension of C . If C

is complete, so is C(<p).

For instance, let C be the chain of Figure 2, where the name of the elements

appear to the left of the o and the color of a prime interval appears to the right

of the edge. Figure 3 illustrates C((p).

The congruences of C2 are of the form Qx x 82, where 8, and 82 are

congruences of C. Now take only 8j and 82 with the following property:

(3-2) If p, , p2 £ IpC and px<p = p2<p, then

e(p,)<e,     iff    8(p2)<82.
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Now we extend the congruence 8,x82 on C to C(tp) (DC ) as follows: for

p, , p2 e IpC and px<p - p2q>, let the elements in (3-1) be in one congruence

class. Let 8¡ x 82 denote this extension. It is easy to compute that the

congruences of C(tp) are exactly the congruences of the form 8, x   82 .

In the special case 8 = 8¡ = 82, we shall use the notation Q(q>) for the

congruence 8x8.

Figure 3

i;oi

C 0

Figure 4
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Figure 5

By taking px = p2, we observe that 8, and 82 collapse exactly the same

prime intervals of C. Thus, for a finite C, we have 8( = 82 ; the congruences

of C(<p) are of the form B(q>), where 8 is a congruence of C with property

(3-2).
As an example, take the congruence 8 of the chain C of Figure 2, as shown

in Figure 4. Then Q((p) is the congruence of C(tp) as illustrated by Figure 5.

To handle the infinite case, for a complete lattice A and a complete congru-

ence 8 on A , we define the prime interior of 8, pi 8, as follows:

(3-3) pi 8 = Y(Qc(p) \p£lpA, 8(p) < 8).

For the complete congruences 8j and 82 on the complete chain C, the rela-

tion @x x 82, defined above on C(tp), is a complete congruence of C(tp) iff

condition (3-2) holds, in which case pi 8[ = pi82.

Let A be a complete lattice which is strongly atomic, that is, for any w , z £

A, w < z, there is an element p £ A satisfying w -< p < z. In a strongly

atomic complete lattice, there are very many complete congruences generated

by prime intervals:

Lemma I. In a strongly atomic complete lattice A, the equality

pie = 8

holds for any complete congruence 8 of A .
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Proof. The inclusion pi 8 < 8 is obvious. Conversely, let x < y and x = y

(8) ; we wish to prove that

x = y   (pi 8).

Since pi 8 is a complete congruence, it follows that there exists a maximal

element z in [x, y] satisfying x = z (pi 8). If z — y, we are done. Other-

wise, z < y, so, by the strong atomicity of A , there exists an element p with

^ -< P < y • By x = y (8), it follows that z = p (8). Since [z, p] is prime,

it follows from the definition of pi 8 that z = p (pi 8). Thus, x = p (pi 8),

contradicting the maximality of z .

Combining Lemma 1 with the discussion of the congruences of C(g>), we

obtain:

Lemma 2. Let C be a complete strongly atomic chain. Then the complete con-

gruences of C(tp) are the congruences of the form &(<p), where 8 is a complete

congruence of C satisfying (3-2) with 8 = Qx = 82, that is, if px, p2 £ Ip C,
px<p = p2ç>, and p, is collapsed by 8, then p2 is collapsed by 8.

We shall leave the routine, though somewhat tedious, verification of this

lemma to the reader.

4. The lattice Wlx

Let X = {xy | y < Çx } ç L - {0} be given as in (2-1).

First, we construct a chain At, then the lattice Wlx.   The chain At  is

defined (see Figure 6) as the chain

(4-1) €x + (œ x X) + €x.

The elements of X] are denoted as follows: the zero and unit elements are 0*
Y A A A

and 1   , respectively (for A , we use 0   and 1   ); the other elements are

(4-2) / = (0,x0) <(0,Xj)<---< (i,xQ) < (i,xx) <■■■ ,

for i < œ.

We define a coloring tpx (for X , denoted by tp ) on A* as illustrated by

Figure 6:

(4-3) [0X,jX]<pX = \JX;
x x

(4-4) [(/, xy), u]tp   - xy     for i < œ and y < Ç   ,

where

(4-5, „=(<'•*">>•        if'+,<f/
i(/+l,x0),     ify+l=CX.

Note that all the prime intervals are accounted for, so this is a complete defini-

tion of a coloring.

The following observation is trivial but crucial:
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<l.x,>

U.x0>

(0.x,>

(0,x0> - Jx

0X

Figure 6

Vx

mx

Figure 7

Lemma 3. The chain X   is well-ordered, and 1    is a limit. In X\ for every
Y Y Y Y

j   < u < 1    and for every y < (   , there is a prime interval p in [u, 1  ] such

that ptp = xy.

Now we define the lattice ÜJlx (and Wlxa ) (see Figure 7). First, we form

I* x î2.   For Jte^.we identify  (x, 0)  with x.   (We make the same
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Xi i

identification in (X ) x €2 , for ô < x .) This makes A1 a complete sublattice

of A* x £2. Then we form Wlx by adding to A* x €2 the element m* (denoted

by m   for A ) satisfying

OX. A. 1 A-<; w   -< l .

Obviously, 9Jlx is a complete lattice, and A' is a complete sublattice of Wlx .

5. The lattice K

Now we are ready to construct the lattice K of Theorem l. For every X ,

ô < x, we construct the chain (A )   and form the ordinal sum:

(5-i; c =
£I+Z{(XS)Í\S<X} + £I,     if^islimit;

¿i + £{ (*á)f I S < x } , if x is not limit

(see Figure 8). The zero and unit elements of C are denoted by 0C and Ie ,

respectively. Observe that if x is not limit, that is, x - Xq+ I > then l = l*°.

C is a well-ordered chain. In (5-1), we distinguished the two cases to make

sure that the unit element is a limit; this plays a role in the proof that K has

no nontrivial automorphism (see Lemma 14).

Ie o

lu o
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Figure 9

Next, we define a coloring tp of C. For a prime interval p of C, let

' ptpô ,     ifp€lp(Aá), for some 6<x\

(5-2) pp = j  1,        ifp = [Oc,00];

. 1,        ifp = [lá,Oá+1], for some ô < x-

Reading the proofs in §§5 and 6, the reader will see that, for ô < x, the color

[lâ, Oô+x]tp could have been defined as any element of L - {0}. Also, as an

alternative, in the definition of C , for ô < x , we could have identified 1   with

0â+x, thereby eliminating all prime intervals of the form [1  , 0S+X].

Finally, we define the lattice K as C(tp) augmented with the elements ms ,

for ô < x (see Figure 9).

More formally,

(5-3) K = C(<p)U{mS \ô<x}

partially ordered as follows, where x , y denote elements of C(tp) :

(5-4) x < y     retains its meaning in C(<p) ;

m  < x iff(lá,0C) <xinC(ç>),   for¿<;t;

x<m    iffx<(0 ,0 ) in C(tp),   for ô < x-

It is easy to see that A is a complete lattice, C(tp) is a complete {0, 1 }-

sublattice of K, and (0s , 0e) < m  < (l& , 0C) in K.
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We name a few elements of K :

(5-5)       o = (0C,0C);    / = <1C,1C);    fll = (0°,0c);    a2 = (0C,0°).

o is the zero and i is the unit element of K. K has three atoms: ax, a2,

and m([0 , 0 ], [0 , 0°]). Every element x ^ o of K contains an atom. In

fact, K is strongly atomic since every chain in K is well-ordered.

Without danger of confusion, we can identify the element (x, 0C) of A

with the element x of C. Thus, C becomes a complete sublattice of K.

Note that in (5-4), with the new notation, we get:

m  -< 1  ,     for S < x ;        0  -< m ,     for ô < x ;

and the new named elements become:

nC ,,0
o = 0;       ax =0 .

It is important to observe that the interval [0 , (1  , 0 )] of K is isomorphic

to DJlxs.

To sum up:

Lemma 4. K is a complete lattice. It contains C(<p) as a complete {0, 1 }-

sublattice and C as a complete sublattice. K is strongly atomic. Every chain in

K is well-ordered. For ô < x, attached to the appropriate part of C (namely,

to [0 , I ]), K contains a copy of fflxs.

6. The complete congruences of K

Let x € L. We are going to define a binary relation 8* on K. We show

that the correspondence

(6-1) y/:x^ex

is an isomorphism between L and Conc K (the lattice of complete congruences

of K ), proving Theorem 1.

As a first step, we define a binary relation <P* on C as follows: for v,

W £ C ,  V < W ,

(6-2) v = w (<PX)    iff    ptp < x for every p £ Ip [v , w].

It is routine to check that <P* is a complete congruence on C. Note that

O  = œc , the zero congruence, and O = ic , the unit congruence.

Next, on C(<p), we define (see §3)

(6-3) 8* = 4>x(<p).

Finally, to extend &x to K, we only have to make provisions for m , for

ô<x- For y, z£{ms ,0s, Is], y ji z, let

(6-4) y = z (Bx)   iff   03 = Ia (<D*) in C.
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For w £ C(<p), let

(6-5) m  = w (ex)    iff    0á = lá (<t>x)

and 1   = w (Qx) in C(tp).

Lemma 5. For all x £ L, &x is a complete congruence relation on K.

The verification of this lemma will be left to the reader. We give just one cau-

tion: In C, by (5-2), [0C, 0°]ç» = 1 • Hence, the prime interval [0s, (0s, 0°)]

of K is not collapsed under any Qx with x < 1. Were this not true, Lemma

5 would fail.

Note that 8 = toK and 81 = iK .

Lemma 6.  y/ is one-to-one and isotone.

Proof. Let v, w £ L. If v < w, then by (6-2), (6-3), (6-4), and (6-5), we
conclude that &v < &w . Hence, y/ is isotone.

Let v , w £ L- {0} , and let @v -@w . There is a prime interval [a, b] in

C with [a, b]<p = v , and so in K,

a = b   (ev).

Since 8" = 8™ , it follows that

a = b   (ew).

By the definition of ew = ®w(tp) (in §3), it follows that, in C,

v = [a, b]tp < w.

By symmetry, w < v , implying that v = w . Therefore, \p is one-to-one on

L - { 0 } . Since 8° = œ and 8X ^ co, for all x £ L - {0 } , it follows that y/

is one-to-one on L.

The next lemma is our first step in proving that all complete congruences

^ co of K are of the form 8* , for some x £ L - {0 } .

Lemma 7. Let p be a prime interval of K. Then there exists a prime interval p

of C CK such that
ecK(p) = ecK(p).

Proof. Let q, and q2 be prime intervals in C. The listing p —> p given below

is complete (that is, any prime interval p of K occurs on the left side):

(6-6) q,x{x}->q,, forxeC;

{x } x q2 —> q2, for x £ C;

[o(qx , q2), m(qx, q2)] -» q,, if c\x<p = q2<p ;

[w(q,,q2), /(q1,q2)]^q1, ifq,^ = q2^;

[mS,lâ]^[0â,/], forô<x;

[0S,mâ]^[0â,jS], forá<^.
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The first five pairs of intervals in (6-6) are in fact projective, hence,

eK(p) = eK(p);

in particular,

ejr(p) = e^(p).

To verify the last assertion in (6-6), compute:

0s = ms   (e(Oâ,mâ)),

and so

(0â , 0°) = 0% (0â , 0°) = mâ V (0S ,0°) = (lS, 0°)    (8(0á , m0)),

yielding

0â = (0â , 0°) A / = (Ia , 0°) A / = /    (6(0* , m6)).

This proves that

e(0ô,jS)<e(0â,mô);

in particular,
ec(os,js)<ec(os,ms).

To prove the reverse inclusion, we start with

oW  (ec(osjs)).

It follows that

m  =0 \l m  = j  y m  =1     (8(0,;)),

and thus, for any u £ [j ,1 ], we have

0a = mâ Au=ló Au = u    (Sc(0ó,jó)).

s s

By Lemma 3, 1    is limit, hence the complete join of these elements u is 1  .

Thus,

O^l5    (8c(0á,/)),

and so

0S = 0âAmâ = lS/\mâ = mS   (8c(0á,/)),

completing the proof of the last case.

By Lemma 7, to investigate the congruences 8c(p) of A, it is sufficient to

take prime intervals p of C.

Lemma 8. Let px and p2 be prime intervals of C satisfying px<p - p2<p . Then
ecK(px) = ecK(p2) in k.

Proof. If px<p = p2q>, then p,  and p2 are projective in K (see Figures 1, 2,

and 3) and the statement follows.

The following formula is the crucial step in the proof of Theorem 1:
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Lemma 9. Let X ç L - { 0 }, and X ¿ 0. For each xeAU{VA}, choose a

prime interval px of color x of C ç K. Then, in K,

(6-7) e^(pVx) = Vc(e^(pj|x€A).

Proof. Let A = A   ( ô < y). By Lemma 8, the complete congruences are not

effected by which prime interval of a given color we choose. So we choose

(6-8) py x = [0s , /] ;        px = [(0 ,xy),u],     for x = xy ,

where

,6.9, u=((04'>' if'+1<c;
1(1,4),       if y + 1 = C*.

The statement of Lemma 9 can, now, be rephrased as follows:

In K,

(6-10) QCK(0Ô, f) = \IC(@CK((0, xsy),usy) \y<CS),

where u   is defined in (6-9).
2 2 r\

As we pointed out in §5 (see Lemma 4), the interval [0 , (1  , 0 )] is iso-

morphic to Tlxs. Hence the following statement is a stronger form of (6-10):

in     Wlyi   ,x
S     .6

s
(6-11) ecn â(0â,jâ) = VC(B^ ,«0, x5y), usy)\y< Cs),

where u   is defined in (6-9).

To prove (6-11), consider in Wlxs the well-ordered chain Q :

j = (0,Xq) < (0,xf) <•••< (i,xS0) < (i,xSx) <•••< (i,xy) <••■ ,
2

where i < co and y < Ç . Each prime interval of this chain,

A Â S
[(i,xy),(i,xy+x)],        for i < co, y<C ,

A A A
[(/', xy), (i + 1, x0)],     for i < co,  y + 1 = C ,

is of color x , for some x e A—see (4-3) and (4-4). Thus

s

collapses all the prime intervals of Q.  Since Q is a well-ordered chain,  1
2

is a limit, Ö U { 1  } is a complete sublattice of Wlxs, and 8 is a complete
A        A

congruence, it follows that 8 collapses [j , 1 ]. Thus,

Now,

/si*    (8^a(/,lá));



400 G. GRÄTZER AND H. LAKSER

2

meeting with m , we get that

0á = má   (e£,,(/,l')).
Xs

2

Joining with (0 , 1), yields that

(<f,l) = (l',l)   (8^/, Ia)).

2

Finally, meeting with j , we obtain that

0¿ü/    (8cOTá(/,lá)).

Therefore,

VcO^ (px) | x e A) = e^ (/, Ia) > 8^ (0s, /) = 8^ (pvx),

proving < in (6-11). Since > in (6-11) follows from Lemma 6, this completes

the proof of the lemma.

Applying Lemma 9 to the special case X - {a, b} , 0 < a < b in L, and

to two prime intervals px, p2 of C ç K, with pxcp = a and p2cp = b, we

conclude that

Lemma 10.  pxcp < p2cp in L implies that 8^(p¡) < 8^-(p2) in K.

Now we are ready to tackle complete congruences generated by prime inter-

vals:

Lemma 11. Let p be a prime interval in C ç K. Then

(6-12) ecK(p) = epr

Proof. Lemma 10 states that 8^.(p) collapses all prime intervals p, of C sat-

isfying pxcp < pep . Thus 8^.(p) defines the relation to™ of (6-2) on C which

was used to define 8Pi> in (6-3), (6-4), and (6-5), hence the equality.

Now we are ready for the final step:

Lemma 12. All complete congruences ^ co of K are of the form 0X , for some

x£L-{0}.

Proof. Let <P be a complete congruence of K. Since K is strongly atomic

(Lemma 4), by Lemma 1, pi O = í>, and so

0 = Vc(ec(p)|P€lpA, 8(p)<<D).

Thus, by Lemma 7,

<D = Vc(0C(p)|peIpC, 8(p)<<D).

By Lemma 11, it follows from this formula that

<D = VC(0*l*eA),
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where A = { pep \ p £ Ip C, 8(p) <<!>}. By Lemma 7, A / 0. Now we apply

(6-7), and we obtain

* = eVx,

completing the proof.

By Lemma 6, y/ is one-to-one; by Lemma 9, y/ preserves joins (in fact,

infinite joins). By Lemma 12 and the observation that coK = 8 , any complete

congruence O of A can be represented as <P = &x for some x £ L ; thus, y/ is

onto, proving that y/ is an isomorphism between L and ComeA, completing

the proof of Theorem 1.

7. Proof of Theorem 2

Based on the results of R. Frucht [4] and G. Sabidussi [21] (see, also, A. Pultr

and V. Trnková [19]), it is routine to see that we can represent the group G as

the automorphism group of a connected undirected graph 0 = ( V, E) without

loops, where V is the set of vertices and E is the set of edges.

Next, we represent G by a bounded lattice and lattice automorphisms. As

in Frucht [5], from 0 we form the lattice:

H=VÙEÙ{0, 1},

where 0 < v < 1, 0 < e < 1, for all v £ V and e e E ; let v < e in H iff

v £ e . Note that H is of length three, and therefore complete.

The graphs constructed in Frucht [5] have the following property:

(7-1) For v £ V, there are ex, e2 £ E with v $fc ex, e2 and ex n e2 = 0.

It is easy to prove that if the graph 0 has property (7-1), then the associated

lattice is simple. Hence, H is a simple lattice.

We attach H to K by identifying the unit element i of K with the zero 0H

of H ; we add a complement q of i (see Figure 10). The next three lemmas

show that the resulting lattice KH will do the job.

Figure 10
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Let 8 be a complete congruence relation of K. We shall define an extension

8 of 8 to KH : If 8 < iK , let 8 be the congruence relation of KH that is 6

on K and trivial outside of K. More formally,

(7-2)  x = y (8) iff x = y orx, y £ K and x = y (8)

for x , y £ KH . We define T¿ = iK  .

Lemma 13. The complete congruence relations of KH are the relations of the

form 8, where 8 is a complete congruence of K.

Proof. The proof is by straightforward computation. Note only that if 8 < i,

then, in K, { o} is a congruence class of 8 ; this is why the extension 8 can

be defined to be trivial outside of K. Since H is simple, it follows that all

complete congruences of KH extend from K.

Lemma 13 immediately implies that the complete congruence lattice of KH

is isomorphic to the complete congruence lattice of K.

Now, for the automorphisms.

Lemma 14. K has no nontrivial automorphism.

Proof. Let a be an automorphism of K. Under a, the image of a meet-

reducible atom is a meet-reducible atom; therefore, axa — ax or axa — a2. The

latter is impossible since, in K, [ax) is nonmodular while [a2) is modular.

Hence,

axa = ax   and   a2a = a2.

The elements Ie (=(1C,0C)) and (0C,1C) are the only doubly-irreducible

and completely join-reducible elements in K ; since axa = ax, it follows that

lCa=lC    and    (0C, lC)a=(0C, 1C).

Therefore, the interval [ax, I ] is mapped into itself by a and so the meet-

reducible elements of the interval, that is, the elements of the form (0C, x),

x £ C, are mapped into themselves. We conclude that a can be regarded as

an automorphism of C. Since C is a well-ordered set, it has no nontrivial

automorphism and so a is the identity map on C. Arguing similarly, we get

that a is the identity map on { (0 , x) | x £ C } . Therefore, a is the identity

map on C x C. It now easily follows that a is the identity map on C(cp) and

on K. This completes the proof of the lemma.

Now, let a be an automorphism of H. We extend a to KH trivially:

xa,     if x £ H ;
(7-3) xq= .

I. x,       otherwise

Lemma 15. Let a be an automorphism of H. Then q is an automorphism of

KH . Conversely, every automorphism of KH can be uniquely represented in this

form.

Proof. Let ß be an automorphism of KH. Observe that 0^ = i is the only

element u of KH with the property that there is a maximal chain of length three
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in [u, lH]. Hence, iß = i. Thus ß induces an automorphism ßK of K and

an automorphism ßH of H. By Lemma 14, ßK is the identity map. Define

a = ßH. Then ß = â~, as defined in (7-3), as claimed. This representation is

obviously unique, completing the proof of the lemma.

Lemma 15 obviously implies that the automorphism group of KH is isomor-

phic to G. Therefore, Lemmas 13 and 15 prove Theorem 2.

8. Concluding comments

We see from this paper how differently complete congruences of a complete

lattice and congruences of a lattice behave. If A is a lattice and p is a prime

interval of K, then 8(p) is a join-irreducible element of Con K. The complete

lattice K constructed in the proof of Theorem 1 has the property that every

8 > co is generated by a prime interval; that is, for every complete congruence

8 other than the trivial congruence co there is a prime interval p of K such
that 8 = 8c(p).

We have already utilized in Lemma 13 another property of K : If 8 is a

complete congruence of K and 8 < /, then { o } is a complete congruence class

of 8. To prove the result announced in [9], we also need the dual property.

Let us state the properties of K formally:

Theorem 1 '. For every complete lattice L, there is complete lattice K with zero

and unit elements o and i, respectively, with the following properties:

(1) L is isomorphic to the lattice of complete congruence relations of K.

(2) For every complete congruence 8 of K other than the trivial congruence

co, there is a prime interval p of K such that 8 = 8c(p).

(3) For any complete congruence 8 ofK,ifQ<i, then { o } is a complete

congruence class of 8.

(4) For any complete congruence &ofK,if@<i, then { i} is a complete

congruence class of 8.

(5) K has no nontrivial automorphism.

Proof. To satisfy (4), we have to add a dual atom m to C, and color the new

prime interval by 1 : [mc, lc]cp = 1. The only problem is that the resulting

lattice K' fails to satisfy (5). It is easy to see that by removing from K' two

elements, (1 , 0 ) and (0 ,1 ), we obtain a lattice K" satisfying all five

properties.

Alternatively, in the construction of A, we can choose ^ as a successor

ordinal, ¿; + 1, and choose I{cl-{0} so that \/ Xi = 1. Then K satisfies

property (4).

From the point of view of infinitary universal algebras, Theorem 1 is very

pleasing; it represents every complete lattice L as the lattice of complete con-

gruence relations of a suitable complete lattice K, while Grätzer and Lampe

[13] represented L as the lattice of congruence relations of an infinitary uni-

versal algebra of unspecified type. Since one can view a complete lattice L as
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an infinitary algebra, the new result contains the old. However, it should be

pointed out that we do not get a uniform type. In fact, it was proved in 1979 by

R. Freese, Lampe, and W. Taylor [3] that it is not possible to have a uniform

type of finitary universal algebras in the unitary congruence lattice characteriza-

tion theorem. The analogous result for infinitary algebras is trivial to prove. In

contrast, what we get in Theorem 1 is a family of types associated with complete

lattices.

It seems like an interesting question whether there is a natural family of

finitary types that would admit a uniform representation of congruence lattices

of finitary universal algebras.

In Grätzer and Lakser [11], we present a general result, the One Point Exten-

sion Theorem, concerning extending lattices by an element for every interval in

a given family of intervals. The One Point Extension Theorem gives conditions

under which congruences extend, and extend uniquely. A number of special

cases of this result are contained in the present paper: the statement in the

paragraph following (3-2), Lemmas 2, 5, and 13.

Some of the results of this paper generalize to 9Tt-complete lattices; these

results were announced in [10] and written up in [11].

Theorem l' has an interesting application to infinitary universal algebra an-

nounced in [9]: a new proof of the independence of the congruence lattice, the

subalgebra lattice, and the automorphism group of an infinitary universal alge-

bra. This independence result was first announced in [13] (see Appendix 7 of

[7] for a complete proof). While the proof of Grätzer and Lampe apply to both

the finitary and infinitary case, the new simpler proof only does the infinitary

case.
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