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DEFINABLE SINGULARITY

WILLIAM J. MITCHELL

Abstract. The main result of this paper is a characterization of singular cardi-

nals in terms of the core model, assuming that there is no model of 3/c o(k) =

k++ . This characterization is used to prove a result in infinitary Ramsey theory.

In the course of the proof we develop a simplified statement of the covering

lemma for sequences of measures which avoids the use of mice. We believe

that this development will be capable of isolating almost all applications of the

covering lemma from the detailed structure of the core model.

1.  Introduction

This paper contains results on three different topics. The first, Theorem 1.2, is

a counterexample to a question in infinitary Ramsey theory, generalizing a result

in [Mi89b]. The second topic, which was first studied because it was required for

Theorem 1.2 but which became the main result of this paper, is a generalization

to sequences of measures of the result of Dodd and Jensen [D] that if 0 does

not exist and k is a singular cardinal which is not singular in K or in L(p),

then there is a Prikry sequence cofinal in k which is definable up to initial

segments. We show that if there is no model of 3k o(k) — k++ and k is any

singular cardinal, then there is a cofinal subset of k witnessing the singularity

of k which is (in an appropriate sense) definable. The third topic, which was

originally inspired by frustration with attempts at a reasonable exposition of the

second topic, is a statement of the covering lemma for sequences of measures

which avoids the mention of mice. This considerably simplifies the statement

and at least some applications (but not the proof) of the covering lemma.

The rest of the introduction will discuss three topics in more detail. The

topics will be given in chronological order as in the last paragraph.

1.1. Definition. We write [Xf° for {ccA: ordertype(c) = co} and Ky for

the set of equivalence classes of reals modulo "equality except on an initial

segment." The expression k —► (w)^ means that for every ordinal definable

function /: [k]w —► SRy there is c € [k]w such that / is constant on [c]œ .
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1.2.   Theorem. Suppose that k -» (eu)^   but (2W)+ y? (co)# . Then there is an

inner model having a cardinal a such that o(a) is measurable. Furthermore,

if K™ (co)%   holds and there is a function f: [(2W)+]W —» 3î, serving as a
f J

counterexample to (2W)+ —> (co)^   such that f(c) = f(c') whenever c and c

are countable sequences such that c\6 = c'\ô for some S < sup(c), then there

is an inner model of o(k) = k++ .

The proof of this theorem is given in §4. It requires finding, for each singular

cardinal k , a cofinal subset C of k which witnesses the singularity of k and is

nearly enough definable. The theorem was proved in [Mi89b] with the conclu-

sion weakened to assert only the existence of more than a measurable cardinal.

That proof used the Dodd-Jensen covering lemma [D], which asserts that if k

is a singular cardinal and 0 does not exist, then one of three possibilities must

hold: (1) there is no model L(p) with a measurable cardinal, and k is singular

in the core model K, (2) there is a model L(p) and k is singular there, or

(3) there is a model L(p), where p is a measure on k and k is singular be-

cause there is a set C which is Prikry generic over L(p). In cases (1) and (2) a

definable witness to the singularity of k is given by the definable well-ordering

of K and L(p). In the last case, which is the most interesting, the set C is

not definable but it does have the following maximality property: if C' is any

other Prikry sequence, then C'\C is finite. Since any other maximal Prikry

sequence must be eventually equal to C, the sequence C is definable up to an

initial segment.

This led to the problem of finding, under the weaker assumption that there is

no model of 3k o(k) = k++ , a witness to the singularity of a singular cardinal

which is definable (in some appropriate sense), and hence to the characterization

of singular cardinals which is the second phase of the research and which we

regard as the main result of this paper. This characterization is outlined in Table

1 and proved in §3. It turns out not to be true that every singular cardinal has a

witness which is definable up to an initial segment (case 4 is the exception) but

we do obtain a maximality property, and hence a definability property, which

seems reasonable and is strong enough to prove Theorem 1.2.

The table characterizes the singular cardinals k such that Xa < k for all

k < k , under the assumption that there is no inner model of 3k o(k) — k++ .

The ordinal ß used in the definition of the cases is the least ordinal such that

&~(k , ß) is not generated by indiscernibles, or o(k) if there is no such ordinal.

The precise definition of ß and of other terms used in the table appears below

and in §2. The proof of the assertions in this table is given in §3. In order to

save space in the table we have written K for K(£F), the maximal core model

for sequences of measures.

The following paragraphs define most of the terms in the table. Throughout

this paper o(a) means o (a). We use boldface c for the coherence function

for K(9r) : that is, c(k , l', X) is the least function g £ kk n K(9~) in the

ordering of K(9~) such that l' = [g]?-^ X).
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case

Table 1

description

of case cf(K)

description of
cofinal sequence

typical

forcing

Cf^(/C) < K Cf(cf*(K)) taken from K

ß = y+\

Maximal

Prikry sequence

for ^(k , y)

Prikry forcing

cf(/?) > K

Maximal accumulation

sequence for ß Gitik [Gi]

Cf*(/J) = K

c0=sc(0,i/)

ci+l=sc(f(ci),u)

Radin forcing,

0(k) = K

C^iß) < K tf(cf*(0)) c, =sC(f(i),u)

Magidor forcing,

0(k) < K

1.3. Definition. (1) A generating sequence for a measure ^(k , X) is a cofinal

subset C of k having a function g such that g(v) < o(u) for all sufficiently

large v e C and such that any set x £ K(iF) is in SF(k , X) if and only if for

every sufficiently large v £ C we have

v £X

xnv £Sr(v, g(v))

if g(v) = o(u),

if g(v) <o(v).

(2) ß is the least ordinal less than o(k) such that there is no generating

sequence for SF(k , ß), or ß — o(k) if there is no such ordinal.

The simplest example of a generating sequence for y (k , X) is a Prikry se-

quence C for £F(k , X), with g(v) - o(v) for all v £ C. The same sequence

C is also a generating sequence for every measure £F(k , X1) with X' < X,

using the coherence function g = c(k , X', X). If o(k) = cox then it is pos-

sible, using Magidor forcing [Ma], to add a cofinal sequence C consisting of

one indiscernible for each of the measures &~(k , X) with X < cox . Then this

sequence is a generating sequence for &~(k , X) for each X < cox, using the

constant function g(v) = X, since c(k, X, X')(u) = X for all X' < o(k) and all

X < min(A', k) .

The set C referred to in cases 4 and 5 is a set of indiscernibles which contains

generating sequences for every measure below &~(k , ß) and which is maximal

in a sense to be described in §2. The function / is any continuous function in

K(9~) which maps cf* (ß) cofinally into ß and v is any sufficiently large

ordinal below k . The precise definition of the function 5 will be given in §2,

but the idea is that whenever X < ß and v < k then s (X, u) is the smallest

member of C\(v + 1) which is an indiscernible for some measure ^"(k, X')

with X' > X. If X < k then this implies that s (X, v) is the smallest member

y of C\(v + 1) such that o(y) > X.
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1.4. Definition. An accumulation sequence for an ordinal X < o(k) is a cofinal

set A = { an : n £ co} e [k]w such that A is not a generating sequence for

^(k , X), and such that for any sequence ô such that Ô < an for all n £ co

and any measure y (k , X') with X' < X there is a generating sequence C for

9~{k , X') such that C n {an\Sn) ¿0 for all n £ co.

A sequence A of accumulation points for X is maximal if any other sequence

of accumulation points for X is contained in A except for an initial set.

§2 below contains the simplified covering lemma which is used in proving the

assertions in Table 1. The covering lemma is given as two lemmas, Lemmas 2.5

and 2.15. The separation into two lemmas is for ease of exposition and they

are best regarded together as "the covering lemma." The proof of these lemmas

requires results from [Mi84 and Mi89a] and an understanding of the appara-

tus of mice used to define the core model A(y ) and to prove the covering

lemma as given in those papers. The rest of the paper makes no such assump-

tion, and it is intended that all of this paper except the proofs of Lemmas 2.5

and 2.15 should be accessible to any reader who has been exposed to coherent

sequences of measures as in [Mi74], to Prikry, Magidor, and Radin forcing,

and to some background in applications of the Dodd-Jensen core model theory.

We will be using the following facts about K(&~) : The core model y is a

coherent sequence of measures which is similar to (and in fact may be equal to)

L(&). Unlike general models L(%f), the sequence y and the model K(&~)

are unique and definable without parameters by a Il2 formula. In addition to

Lemmas 2.5 and 2.15 we use the basic consequence of the covering lemma, that

(k+) (  ' = k+ whenever k is a singular cardinal.

The last section of this paper, §5, contains some notes on generalizations of

results in this paper and some open questions.

2.   Indiscernibles and the covering lemma

Roughly speaking, a set of indiscernibles is a generating sequence C such

that each member v £ C can be assigned as an indiscernible for some particular

measure. Two key ideas in this paper are clauses (2) and (3) of Proposition 2.2,

which state that if such an assignment exists then it is essentially unique and a

member of K(9~), and Lemmas 2.5 and 2.15, which state the covering lemma

in terms of such assignments. In particular, Lemma 2.5 implies that every

generating sequence C can be given such an assignment, provided that \C\W <

k .

2.1. Definition. If C c k then an assignment for C is a function ß: C —►

o(k) such that

VA e K'9") 30 <kVv £ C\S Vx € h"v   v £ x <s> x £ &'k , ß(v)).

A set of indiscernibles in k is a set C c k such that C has an assignment

and |cT<|k|.
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Since any assignment for a terminal segment C\S of C can be extended

trivially to a assignment for all of C (for example, by setting ß(v) = 0 for

u £ C nô), we will call ß an assignment for C if it is an assignment for a

terminal segment of C.

Recall that the assumption in clause (2) that (k+) ' — k+ is a basic con-

sequence of the covering lemma, provided that there is no model of 3k o(k) —

K++.

2.2. Proposition. (1) If ß is an assignment for C D C' then ß\C' is an

assignment for C'.

(2) If ß is an assignment for C and (k+)K{ ' = k+ then there are functions

h and g in K(SF) such that for some ô < k and all v e C\S we have

ß(v) = g(v) £ h"v .

(3) If ß and ß' are each assignments for C and (k+) ( ' = k+ then there

is ô < k such that ß\(C\S) = ß'\(C\o).

Proof. Clause (1) is immediate. For (2), note that, since o(k) < (k++)k(- ), the

hypothesis implies that there is a one-to-one function h : k -» k++ in A(y )

suchthat range(/?) c range(A). Let (xv : v < k) £ K(9~) be a disjoint sequence

of subsets of k such that xv e ^(k , h(v)) and let z = { v : 3v' < u u £ xvi } .

Then z e ^(k , h(v)) for all v < k , so C is eventually contained in z . For

v £ z define g(v) to be h(v'), where v' < v is the unique ordinal such that

v £xv<. Then every sufficiently large v £ C satisfies the statements v £ z and

V¿; < v (v £ x( <& xi £ 9~(k , ß(v))), which together imply ß(v) - g(v).

The function g obtained in the last paragraph depended only on the function

h . If ß and ß' are two assignments for C then a function h can be chosen so

that range(/2) contains both range(/?) and range(/?'). It follows that ß and ß'

are both eventually equal to g and hence are eventually equal. This completes

the proof of clause (3) and of the proposition.   D

Thus we can pick, for each set C of indiscernibles, a function ß   £ K(&~)
c c

such that ß   fC is an assignment for C. The function ß   [C is unique up

to initial segments, and ß    is unique up to sets which are of measure 0 in

y(K, ß  (v)) for every sufficiently large v £ C.

If n < o(k) and t\ < k then we write 5 (n, £) for the least member v of C

above c¡, if there is one, such that ß (v) > n . For convenience we will say that

s (r\,Ç) = K if there is no such member v of C. It should be noted that this

definition is slightly different from that in [Mi89a].  The ordinal 5 (k , r\, £,)

as defined in that paper is equal to v = s (n, £) as defined in this paper if

ß (v) = n, and is undefined otherwise.

2.3. Proposition. Suppose C is a set of indiscernibles and f is a function

in A(y) such that f(v) < o(v) for all v £ C. Then there is a sequence

(£a: a < k) in A(y) such that for every sufficiently large member v of C

there is a(v) < v such that f(v) = c(k, £,.,, ßc(v))(v).   Furthermore, if
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x C K is in A(y ) then there is ô < k such that for all v £ C\ô we have

xnv£ 9~(k , /») &x£ F(k , £„(q)).

Proof. We first observe that

(1) {n:ßC(n) = ßC(v)}£F(K,ßC(v))

for all sufficiently large u £ C, since (using the notation of the proof of Propo-

sition 2.2) if t, < v is the ordinal such that ßC(v) - h(t\) then { n : ßC(rf) =

ßC(v) } = x( £ y (K, A(f )) = ST(k , ßc(u)).

For v < k set ¿^ equal to [/]^-(K ac,v)) and define a(n) to be the least

a < n, if there is one, such that f(n) = c(k , Za, ßC(n))(rj). Then the func-

tions £ and a are both in A(y). Since { n : f(n) = c(k , £„, ßc(v)){n)} g

9~(k, ßC(v)), equation (1) implies

(2) { n : a(n) exists and a(n) < v < n } £ 9~(k , ßC(u)).

Since ß is an assignment, it follows that a(v) exists and is smaller than v

for all sufficiently large v £ C.

Now suppose that x £ K(SF). Then x £ ^(k , £ , ,) if and only if

(3) { n : x n n £ y (n, c(k , £a(i/), AC(^))('/)) }&^(k, ßC(u).

Now since {^ : a(n) < n} £ ^(k, ßc(v)), a(n) is constant on a set in

y (k , ß (v)), and it follows that for sufficiently large v £ C we have a(rç) =

q(î/) on a set in ^(k, ßC(v)) . Then by (1) we have c(k, ¿;a(l/), ßC(v))(r\) =

c(k , ia(,}, ßC(r]))(n) = /(?/) on a set in y (k , /?c(i/)), so that equation (3) is

equivalent to { r\ : x n r\ £ ^(r\, f(r\)) } e y (k , ß (v)), which for sufficiently

large v £ C is equivalent to xfli/e y (k , f(v)).   D

2.4. Corollary. If C is a set of indiscernibles and X < o(k) then C is a

generating sequence for !?(k , X) if and only if ß (v) > X for all sufficiently

large v £ C. In this case the unique function g (up to initial segment) witnessing

that C is a generating sequence for ^(k , X) is given by

J^) ifßC(v)=X,
8V      \c(K,X,ßc(u))(u)   ifßC(v)>X.

Proof. It is easy to see that if ß (v) > X for all sufficiently large v e C then

C does generate ^(k , X) via the indicated function g . Now suppose that

C generates 9~(k , X) via a function / £ A(y). Consider first C0 = { v £

C: f(u) = o(v) } . There is a set x £ K(SF) such that x £ &(k , X) but x i

£F(k, ßC(v)) for any v < k such that ßC(v) ^ X. Then by the assumption

on /, C0 is eventually contained in x and it immediately follows that for all

sufficiently large v e C0 we have ßc(v) = X and hence f(v) = o(v) = g(v).

Now consider Cx = {v £ C: f(u) < o(v)}. Let the function (¿;q: a < k)

be as given by the last proposition and let x be a set in A(y)  such that
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x € &~(k , X) and x £ y (k , Ça) whenever Ça ¿ X. Then since C generates

^(k, X) via the function /, x n v e &(v, f(v)) for all sufficiently large

v £ Cx. By Proposition 2.1, for all sufficiently large v £ Cx there is a(v) < v

such that f(v) = c(k , <*a(l/), ßc (v))(v) and xnv £ £F(v, f(v)) implies that

x £ SF(k , ¿LyO.  It follows from the choice of x that £., = X and hence

f(v)=c(K,X,ßC(v))(v) = g(v).

Thus the function / is equal to g on all but a bounded subset of C. It

follows immediately that X < ß (v) for all but a bounded subset of C.   D

The next lemma is the first installment of the covering lemma.

2.5.   Lemma. Suppose that D c k and \D\W < \k\ . Then there is a set C of

indiscernibles such that:

(1) There is a function h £ K(SF) such that A'V n (k\u) ^ 0 for every

member v of D\C.
(2) C contains all its limit points of cofinality co.

(3) If v is any limit point of C then Cnv is a set of indiscernibles in v.

(4) If v is any limit point of C in C then there is ¡t, £ C n v such that

v=sc(ßc(v)A).

(5) For any other set C'  of indiscernibles there is a S < k such that
c c1 c

s (n,v)<s   (r\,v) for every v e C\S and any n £ rangeß   .

Proof. We assume that the reader is familiar with [Mi89a]. Pick a set A ^ HK++

as in that paper with wX c A and D c A. Let m be the mouse, let Wm be the

system of indiscernibles which covers A, and let hm be the canonical skolem

function for m. The desired set C of indiscernibles will be U{ Wm(K, X) : X <

om(K) } (or more properly, a terminal subset of this union).

Clauses (1) and (2) are immediate; clause (2) because WX c A and clause (1)

because every ordinal v £ D\C either is not an indiscernible in Wm, and hence

is in Am'V , or else is in Wm(a, X) for some a such that v < a < k and some

X < o(a), so that a £ hm"v n (k\v) .

Now we show that C is a set of indiscernibles. First we use Wm to ob-

tain an assignment for C: Let ßm < om(K) be the least ordinal n such that

\Jx>rl Wm(K, X) is bounded in k . Define rm(ßm) = ß , the least ordinal less than

or equal to o(k) such that either ß = o(k) or ^(k , ß) is not generated by

any set of indiscernibles, and for r\ < ßm define Tm(rç) to be the unique ordinal

X < o(k) such that ^(k , X) is generated by { v £ C : ßm(v) > n } via the func-

tion g defined by g(v) = o(n) if ßm(v) = n and g(v) = cm(K, n,ßm(u))(v)

otherwise. The ordinal Tm(A) exists by [Mi89a, Lemma 2.6]. Now define

ßc(v) = rm(ßm(u)). We need to show that if / is any function in K{9~)

then there is 6 < k such that for all v £ C\8 and for all x £ f'v we have

v G x iff x £ &(k , ß (v)). Now this is almost immediate from the definition

of Tm, except that the statement of [Mi89a, Lemma 2.6] does not guarantee that

6 is independent of X. An examination of the proof of Lemmas 2.4 and 2.6
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of [Mi89a], however, shows that S does in fact depend only on the function /

and the set A.

Clause (3) follows immediately from [Mi89a, Lemma 2.4] and clause (4) fol-

lows from Corollary 2.7 of [Mi89a]. In fact the proof of the covering lemma

easily gives the following fact, which will be useful later in this proof and that

of Lemma 2.15:

2.6. Fact. Suppose that v is a limit point of C in C Then Cnv is a set of

indiscernibles defined from A in exactly the way C was, and for all sufficiently

large a£Cnv

(1) ßCru,(a) = cm(K , ßm(a), ßm(v))(v) = c(K , ßC(a), ßC(u))(u).

In fact the connection between Cnv and A is stronger than that between

C and A, since in the case of C n v the function corresponding to Tm is the

identity. This fact yields the first identity in equation (1).

The proof of clause (5) will be broken into two cases, depending on whether

or not cf(K) = co. Note that the argument for the case cf(K) = co actually can
cf( K ) cf( K Ï

be used whenever 'Id, and hence whenever \D\ y ' < k . For the case

of cí(k) = co we have another useful fact:

2.7. Lemma. range(Tm) Dlilj?, and if cf(K) = co (or, in general, ifci(K) X c

A ) then range(Tm) = Xn(ß + l).

Proof. First suppose that n £ Xnß . Then ¡F(k , r\) has a generating sequence

in V, and hence by elementarily it has one in A. This generating sequence

must be eventually contained in C, since otherwise it would have unbounded

intersection with the nonstationary set { v : h"v n k <£ v }. It follows by

Corollary 2.4 that ßC(v)>n for unboundedly many members of C, so there

is X < ßm such that Tm(X) > n. If rm(X) = n we are done, and if Tm(A) > n

then n — [c(k , n, T:m(X))]^-,K Z<«,X)). Now c(k , n, Tm(X)) is in m since it is in

A and ^(K)nA(y)nAcm,so n = Tm([c(K, n, rm(X))]^{KtX)).

Now suppose that cí(k) = co and n < ßm . Then ^(k , rm(n)) is generated

by {v £ C : ßm(v) > n} via the function g defined in Corollary 2.4. If A is a

countable cofinal subset of {v e C: ßm(v) >n} then ^(k, ?m(n)) is defined

from A via g\A. Since range(g) is contained in A and WX c A it follows

that both A and g \A are in A. Thus ^(k , xm(n)), and hence Tm(n), are in

A.    D

Now suppose that clause (5) fails and cf(K) = co. Then there are co-

sequences n and Ô in A such that S is cofinal in k and 5 (nn o¡) <

^(l^Sj) for each / in co. Let vi = sc(ni,ôi) e A. Then it is true in

V, and hence by elementarity in X, that there is a set A = Ç of indiscernibles

such that ôj < Çj < v¡ and ß (¿;;) > r¡¡. Then clause (1) implies that every

sufficiently large member of A is also in C, and Proposition 2.2 implies that

ßc(Cj) = ßA(Ct) > ni for every sufficiently large i in co. This contradicts the

assumption that i/¡ = s (r¡-, 0¡).
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Before considering the case of cí(k) > co, we note a simple corollary of the

statement of Lemma 2.5:

2.8. Lemma. Any set D of indiscernibles such that \D\W < k is eventually

contained in a set C of indiscernibles satisfying the conclusion to Lemmas 2.5

and 2.15.

Proof. Apply Lemma 2.5 with the given set D, let C be the resulting set of

indiscernibles, and let h be the function given by clause (1). Then x = {v :

h"v n/ccc) is a closed, unbounded subset of k in A (y) and hence is in

every set ^(k , n). Since D is a generating set it follows that every sufficiently

large member v of D is in x and clause (1) implies that every member of

D n x is in C.   D

Thus, if C' witnesses the failure of clause (5) then we can assume wlog

that C' D C and there is ô < k such that C'\S is generated as in the lemma

from a set X1 -< HK++. We can also assume that ßc (v) = ßc (v) for all

v £ (C n C')\ô. Now we can find a £ C n C' so that a > ô and a is a

countable limit of ordinals i/(. = sc(ßc (ia) , S¡) such that sc (/?c(ia) , S¡) < vt.

Then ßcna(v) = c(K, ßc(u), ßc(a)) and /?C'n» = c(k , ßC'(«/), ßC(a)) by

Fact 2.6. Thus, sc'na (ßCna (v t), 3,) < sCna(ßCna(ui),Si), so clause (5) fails

for C n a, contradicting the cofinality co case and proving Lemma 2.5.   D

2.9. Corollary. The closure of any set of indiscernibles in k is also a set of

indiscernibles.

Proof. Apply Lemma 2.5, letting D be the closure of the given set of indis-

cernibles. Then D is eventually contained in the set of ordinals v such that

/z'V c v and hence clause (1) implies that D is eventually contained in the set

C of indiscernibles, and hence is also a set of indiscernibles.   D

2.10. Corollary. Assume that D c k and \D\W < \k\ . Then the following are
equivalent:

(1) D has an assignment, and hence is a set of indiscernibles.

(2) D is eventually contained in every closed unbounded subset x of k such

that x £ A(y).

(3) D is a generating sequence for some measure &~(k , X).

Proof. The implication (2) => (1) is a corollary of Lemma 2.5, taking the set

x to be { v : h"v c v } , where h is the function of clause (1) of that lemma. It

is easy to see that clause (3) implies clause (2), and clause (1) implies clause (3)

with X = 0.   O

Note that the assumption that D is small is necessary. The implications

(1) => (3) => (2) are valid without this assumption, but neither of the other

implications hold. To see that (3) does not imply (1), assume o(k) = k+ and

let D be a Radin generic subset of k (see [Mi84aor Ra82]). Then D generates

every measure S^(k , X) on k , but we will show that there is no assignment for
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D. Suppose that ßD were such an assignment. Then ßD"D would be bounded

by some X < k+ and there is a set x such that x £ SF(k , X) but x $ !?(k , n)

for any n ^ X. Since ß is an assignment, it follows that x n D is bounded in

k , contradicting the fact that D is Radin generic and hence xnD is unbounded.

To see that (2) does not imply (3), let k be regular in A(y) and generically

collapse k+ onto k. Let D be a diagonal intersection of the closed, unbounded

subsets of k in A(y). Then D is closed and unbounded and satisfies (2),

but since the collapse preserves stationary subsets of k , and in particular those

stationary sets which are not members of any measure ^(k , X), the set D does

not generate any measures.

The next series of definitions leads up to Lemma 2.15, the second half of the

covering lemma. The main aim is to deal with those members v of C which

do not have the form s (ß (v), £) for any 1; £ C n v .

2.11. Definition. If C c k is a set of indiscernibles then a is an accumulation

point in C if a£C and a ¿ sC (ßC (a), v) for any v £ (C \J {0}) n a.

We would like to have a notion of an assignment y of the accumulation

points of C to ordinals n < o(k) which is similar to the assignment ß of

indiscernibles to measures on k . The idea should be that a is an accumula-

tion point for X < o(k) if a is a limit point of indiscernibles for arbitrarily

large measures below ^(k , X), but is not itself an indiscernible or limit of

indiscernibles for ¡F(k , X) or larger measures. For an individual accumulation

point this description makes even less sense than the notion of an assignment

of an individual indiscernible to a measure. This description does not even

make sense for a single set C of indiscernibles, in view of the fact that Corol-

lary 2.9 implies that no accumulation point a of C is a limit point of C. The

reader should compare Definition 2.12 with Definition 1.4 of an accumulation

sequence, which is (via Lemma 2.15) a special case of Definition 2.12.

2.12. Definition. An assignment for the accumulation points of a set C of

indiscernibles is a function y such that:

( 1 ) For all accumulation points a of C there is an ordinal ua £ C n a

such that for all sets C' D C of indiscernibles and all sufficiently large
c'

accumulation points a in C we have 5   (y(a), vf¡ > a .

(2) If y   and ô are functions such that y'(a) < y(a) and ô(a) < a for all

accumulation points a of C, then there is a set C' of indiscernibles
c'    i

such that 5   (y (a), 3(a)) < a for all sufficiently large accumulation

points a of C.

Note that the assignment y for the accumulation points of C is unique

(except for initial segments) if it exists. We will write y for this assignment,

and we will write a (X,v) for the least accumulation point a of C above v

such that y (a) > X, or a (X, v) - k if there is no such accumulation point.
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Unlike the case of assignments for indiscernibles we do now know whether y

is the restriction to C of a function in A(y).

2.13. Proposition. Suppose C satisfies the conclusion of Lemma 2.5 and there

is an assignment y   for the accumulation points of C. Then:

(1) Except for boundedly many v e C, if v is a limit point of accumulation

points of C then ß (v)>y (a) for every sufficiently large a<v which

is an accumulation point in C.

(2) For every sufficiently large ordinal v e C there is ô £ (Cnz/)u{0} such

that either v = sc(ßc(v), S) or v = ac(yc(v), 5).

Proof. Suppose that clause ( 1 ) fails for unboundedly many v e C. For each

v £ C which is a limit point of C, the conclusion of Lemma 2.5 states that

there is 6V £ C n v such that v = sc(ßc(v), 8f).  If the statement of the

proposition fails for v then there is an accumulation point av of C such that

6V < av < a and yC(av) > ßc(a). Then by 2.12(2) there is a set C' D C of

indiscernibles such that for all but boundedly many such ordinals v we have

sc (ß (u), of) < av < v - s (ß (a), ua), contradicting Lemma 2.5(5) and

completing the proof of clause (1).

Now if v £ C is not equal to sc(ßc(v), ô)  for any S £ (C n v) U {0}

then v is an accumulation point in  C.   Let ô £ C be large enough that
c   c

s (y (v), ô) > v. Then there can only be finitely many accumulation points

a in C in the interval between 6 and v such that y (a) > y (v), since

otherwise the limit £, < v of the first co of them would, by clause (1), have

ßC(C) > yC(v), contrary to the choice of ô . Thus v - ac(yc(v), a), where

a is the largest of these accumulation points (or a — ô if there are none).   D

2.14. Definition. If A c o(k) then C is maximal for X if

( 1 ) there is an assignment y    for the accumulation points of C,

(2) for all sets C' of indiscernibles there is ô < k such that for all v e C\S

and all ß £ X u ßc"C u yc"C we have sc(ß, v) < sc'(ß, v), and

(3) if C D C is a set of indiscernibles and y exists then there is ô < k

such that for all v £ C\6 and all X e A U ßc"C u yc"C we have

ac(X,v)<ac'(X,v).

The set C is maximal if it is maximal for the empty set.

The following lemma is the second part of the covering lemma, and is the

second and last result in this paper which requires the techniques and notation

of [Mi89a] for its proof. Lemmas 2.5 and 2.15 will be all that is needed for the

rest of the paper.

2.15. Lemma. Suppose that D c k , g £ K(&~), and \D\W < \k\ . Then the set

C of indiscernibles of Lemma 2.5 can be chosen so that C is maximal for the

smallest set Y containing D and C and closed under g.
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Proof. The proof of this lemma is an extension of that of Lemma 2.5. The sets

C and A are chosen as in that proof, with the additional requirement that

g£X.
If a is an accumulation point of C then a is not a limit point of C but

C n a has no largest member. In this case define ym(a) < om(K) to be the

least ordinal y < om(K) such that {v £ a n C : ßm(v) > y} is bounded in

C n a. Now recall the function t1" from the proof of Lemma 2.5 which takes

ßm(K) + 1 into ß + 1 and define yc(a) = rm(ym(a)).

We will first have to show that y satisfies Definition 2.12, so that it is an

assignment for the accumulation points of C and then we will have to check

the other two clauses of Definition 2.14.

The definition of y   implies that for each accumulation point a of C there
c   c

is va £ C n a such that 5 (y (a), va) > a, and the definition of an accumu-

lation point implies that the inequality is strict.  Lemma 2.5(5) then implies

that, if C' D C, sc (yC(a), va) > sc(yc(a), ua) > a, as required for Defini-

tion 2.12(1).
To prove 2.12(2), suppose that y and ô are functions as given in the state-

ment of clause (2) and pick X' -< HK++ as in the proof of Lemma 2.5 such

that Cu {C, /, ô} c A'. Let C' and h' be obtained from X' as C and

h were obtained from A. We claim that C' is as required. Now, as in the

proof of Lemma 2.5(5), we suppose first that cf(K) = co (or, more gener-

ally, that c A c A). If C' is not as required then there is an co sequence

v = (ia : i e co) cofinal in k such that sc (/(ia), S(vt)) > ia for all i £ co.

Since range(Tm) c A by Lemma 2.7, the sequence (y(u() : i £ co) is in A.

By the definition of y , the structure A satisfies the statement that for all se-

quences ô and y such that a¡ < y¡ and y' < y(vt) for all i £ co there is a set

D of indiscernibles such that s (y\, S¡) < ia for all sufficiently large / £ co. By

elementarily V, and hence X', satisfy the same statement. In particular, there

is a sequence D' £ X' such that sD (/(ia) , o(v¡)) < v¡. Since every sufficiently

large member of D' is in C' this contradicts the choice of v .

If cí(k) > co then the same argument as that used in the proof of clause (5) of

Lemma 2.5 will show that the failure of 2.12(2) at k implies a failure of 2.12(2)

at a smaller ordinal of cofinality co, contradicting the argument above. This

completes the proof that y is an assignment for the accumulation points of

C. But Definition 2.14(2) is a restatement of Lemma 2.5(5), and clause 2.14(3)

is proved in the same way, so completes the proof of the covering lemma.   D

3.  The classification of singular cardinals

Throughout this section we assume that there is no inner model of 3k o (k) =

k++ , and that k is a singular cardinal such that Xw < k for all X < k . The

five cases are those of Table 1 in the introduction. The definition of each case is
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given in parentheses after the case number, and the statement of the case gives

the definition of the cofinal sequence, with further information in some cases.

Following this statement is a proof that the statement is correct.

The set C used in every case except case ( 1 ) is a set of indiscernibles given

by Lemmas 2.5 and 2.15. In some of the cases a particular set D and function

g from Lemma 2.15 is specified.

Case 1 ( k is singular in A(y) ). The least sequence in A(y) witnessing the

singularity of k is definable.   □

Case 2 (ß = X + 1). There is a maximal Prikry sequence.

Proof. Let C be as in Lemmas 2.5 and 2.15, letting D be a generating sequence

for SF(k , X). By Proposition 2.10 every sufficiently large member v of D is

in C. Corollary 2.4 implies that ß (u) = X for every sufficiently large ordinal

v £ D : if it were smaller for unboundedly many v £ D then D would not

be a generating sequence for ¡F(k , X), and if it were larger for unboundedly

many v £ D then D would contain a generating sequence for ^~(k , ß). Thus,

Cx = {v £ C : ß (v) = X} is cofinal in k . On the other hand, if a is a limit

point of Cx then ß (a) > ß , so the set of limit points of Cx must be bounded

in k . It follows that the last co members of Cx form a Prikry sequence, and

this sequence is maximal because of the maximality of C.   D

Case 3 (cf(ß) > k). There is a maximal accumulation sequence for ß cofinal

in k .

Proof. For any v < k define Av - { s (X, u) : X < ß and sc(X, v) < k } . We

claim that Av is bounded in k . Otherwise the set Bv-{ß (y) : y £ Av) is

bounded in ß since \AV\ < k < cf ß . It follows that we can find a generating

sequence D for some measure ^(k, X) with X > supBu . By Corollary 2.10 the

set D is a set of indiscernibles, and by the maximality of C there is an ordinal

ô < k such that sc(n, ô) < sD(n, ô) for all n = ßc(a) with a e C\ô . We can

assume that ô is large enough that As is unbounded in k . Now Corollary 2.4

implies that ßD(v) > X for all sufficiently large v £ D, so sD(X, S) < k , and

since As is unbounded there is r\ £ Bô so that s (n, ô) > sD(X, S) > sD(n, ô).

The contradiction completes the proof that Av is bounded.

Now for any ordinal v < k define av tobe inf(C\sup(^)), so that av is an

accumulation point in C. We claim that y (afj = ß for every sufficiently large

v < k . Pick y < ß so that y > sup{ y (av) : v < k and y (av) < ß}, and let

D be a generating sequence for ^(k , y). Then if dv is a member of D above

av then sc(yc(af), v) < sD(yc(au), v) < ôv < k , and hence sC(yC(av), v) <

av by the definition of av . But then {sc(y, v) : y > yC(av)} is cofinal in

Av , which is cofinal in C nav , contradicting clause (1) of Definition 2.12 of

an assignment for accumulation points.
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Choose ¡Aj so that y (av) = ß for all v > uQ, and for i > 0 define vi+x —

av . Then Proposition 2.13 implies that k = sup; ia. Thus ( ia : i e cu ) is an

accumulation sequence for ß , and it is maximal by Definition 2.14(3).   □

Moti Gitik has constructed a model in which Case 3 holds. This construction,

which uses techniques of [Gi86] and is considerably more difficult then that

used to construct a model for the other cases, is given (for a slightly different

situation) in [Gi89].

Case 4 ( cf*( \ß) = k ). There is a function g £ A (y), a maximal set C of

indiscernibles, and an ordinal ô < k such that if 6 < c0 < k then the sequence

defined by ci+l - s  (g(c¡), c¿) is cofinal in k .

The cofinal sequence c need not be definable, but if sé is the set of all cofinal
c'    i

sequences d satisfying di+x = s   (g (d¡), d¡) for some continuous function

g £ A (y) taking k cofinally into ß , some set D of indiscernibles maximal

for g"D, and some choice of d0, then (1) if d is a sequence in sé which has

unbounded intersection with C then there is j < co such that d. £ C andJ j

d¡+\ — s {g{dt), d¡) £ C for each i > j, and (2) if c and d are two sequences

in sé then either c and d are eventually equal or there are integers n and m

such that cn+i < dm+! < cn+M for all i £ co.

This definability statement can be strengthened slightly: there is a definable

set 3? of nondecreasing functions k such that (1) range(K) c domain(K) c k

for all fcel, (2) for any set Y C k with 171™ < k there is k £ X with
Y c domain k, (3) any two members of 3tf agree on their common domain

(except on an initial segment), and (4) for any k £5? there is v < k such that

{k"(v) : n £co} is cofinal in k .

Proof. Let C be as in Lemmas 2.5 and 2.15, with g being the least continuous

function in A(y) taking k cofinally into ß. Note that if h is as given by

Proposition 2.2 then the set of v < k such that g(v) = sup(A'V) n ß) is a

closed and unbounded subset of k which is in A(y) and hence is eventually

contained in C. Choose ô < k so that v £ C\S implies that ß (v) < ß and

g(v) = sup(/z'V n ß). We claim that if c is any sequence such that ó < cQ£ C

and ci+x — s (g(c¡), c¡) for all i g co then c is cofinal in k . Suppose to the

contrary that v = sup c < k . Then v is in C, since it is a limit point of C of

cofinality co. Then since ß (v) £ h"v we have ß (v) £ h"'ci for all sufficiently

large i < co. But then g(c¡) > ß (v), and since Lemma 2.5(4) implies that

v = sc(ßc(v), c¡) for all sufficiently large i £ co, this contradicts the definition

of ci+l <v.

Now suppose that d G s/ , so that di+x = sD(g'(d¡), d¡) for some continuous

function g and some set D of indiscernibles which is maximal for g'"D.

Then the set of ordinals v such that g (v) = g(v) is closed and unbounded

and hence eventually contains C ö D. Pick ô < k so that g(v) - g'(v) and

sc(g(v), i>) = sC (g(v), v) for all v £ (CnD)\ô . Now suppose that dj £ C\ô .

Then for all i > j we have dM = sD(g'(di), d¡) = sc(g(dj), d¡) £ C. Finally,
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if c and d are any two members of sé then by the first part of this paragraph

we can assume that c and d are both defined from the same maximal set C and

function g. Then, if we set k(v) = s (g(v) ,v), k: k —» k is nondecreasing,

and ci+x = k(c¡) and di+x = k(d¡) for each i < co. It follows that c and

d are either eventually equal or eventually alternating, as required by the last

sentence of the second paragraph.

Finally, let Jíf be the set of functions k such that for some continuous

cofinal function g : k —► ß, some set Y, and some set C of indiscernibles

which is maximal for Y, where C c Y and Y is closed under g, the function

k with domain YnK is defined by k(v) -sc(g(v), v). Then X satisfies the

last paragraph.   D

The simplest examples of models for Case 4 are given under the assumption

that o(k) = k , either by adding a Radin generic set C or by a simple modified

Prikry forcing to add only a sequence c = (ci : i £ co) of indiscernibles such

that o(c¡+x) — Cj. Both of these examples have witnesses which are outright

definable. If C c k is Radin generic over A(y ) then the set of limit points of

C is equal to the set of ordinals v < k such that there is a set of indiscernibles

cofinal in v and hence is definable, but this is Radin generic for the sequence of

all measures on k except the order 0 measure. In the other case, the sequence

c added by the modified Prikry forcing is definable, since it is the only member

of sé such that o(c0) = 0 and o(ci+x) = ci for all i £ co (and sé is the set of

sequences which are eventually equal to c). The techniques of [Mi84a] or of

[Gi86], however, can be used to define a model in which no witness is definable

even up to initial segments.

Case 5 ( cfK(9r)(ß) <k). Let Y £ K{9~) be the least subset of ß in the order

of construction of K'P) suchthat Y is cofinal in ß and \Y\K(9r) = cfK(9r)(ß).

Then there is a set C of indiscernibles which is maximal for Y, and for any

such set C there is v < k such that the set { sC(X, u) : X e Y } is cofinal in k .

Furthermore this sequence is, up to initial segments, independent of the choice

of C and v.

Proof. To get the set C of indiscernibles which is maximal for Y, let D —

cf ( \ß), let g be a function in K(9~) taking D onto Y, and apply Lemma

2.15.
From the choice of Y, limsup{/? (v): v £ C} - ß. For v < k set

Av = {s (X, v): X G Y} and suppose that yv — sup^ < k. Then yv is in

the closure C of C, and ßC(yf) > sup(F) = ß for sufficiently large v < k .

It follows that there is some v < k such that Av is unbounded in k . The

maximality of C implies that Av is unique except for an initial segment.   O

4.  The Ramsey theorem

Now we can apply the results of §3 to the proof of Theorem 1.2. The strategy

is to define a function /: [ORD]0 —► %tf such that for no v £ ORD is there any
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c G [v]w such that / is homogeneous on c. We will define /(c) by recursion

on sup(c). The induction will preserve the property that /(c) = /(d) whenever

c and d are equal except for an initial segment. In Case 5 this independence

of initial segment will be needed for the induction hypothesis.

We are given f0: [(2ea)+]co ~* K, so that for no v < (2W)+ is there any

sequence c G [vf which is homogeneous for fQ. For the final sentence of

Theorem 1.2, in which f0(c) is assumed to be independent of initial segments

of c, we will set f\[(2w)+]w equal to f0 . For the general case we will still set

/(c) = f0(c) whenever v - sup(c) < (2CU)+ and cf (  \v) is measurable in

A(y), but if v < (2W)+ and cf*^!/) is not measurable in K{&) then we

will use a modification of an argument of Spector's [Sp] to explicitly construct

/(c) so that it is independent of initial segments.

Fix v < (2W)+ such that cf*^'^) is not measurable in A(y). There is

no ultrafilter U on ^)ni(F) such that ult(A(y), U) is well founded,

since otherwise if / is a nonconstant function in A(y) such that [f\u is

minimal, then U' = {x : f~ (x) £ U} is a normal ultrafilter U' on ci \v)

suchthat ult(A(y), U') is well founded. This contradicts the assumption that

ci (u) is not measurable in A(y), since [Mi?, Lemma 7.16] implies that

any such ultrafilter would be on the sequence y.

Now let c be a cofinal member of [v]w and let Uc be {x c v : e\x is

bounded}, the filter generated by c. We consider first the case in which Uc is

not an ultrafilter on A(y). In this case let xc c v be the least set x in the

order of construction of A(y) such that neither x nor v\x are in Ue, define

g(c) = {n£co:3ici£xc and ci+n £ xc and V; (0 < j < n ^ ci+j i xc)},

and let /(c) = [g(c)]f G 3îy. Then /(c) is independent of initial segments of

c. Now suppose y £ [g(c)]w . We will show that there is d G [c]" such that

g(d) = y , so that / is not homogeneous on c. If y = { yJ. : i G co } then the

members of d are chosen in increasing order by picking, in the /th stage, one

member of c n xc followed by yi members of c\xc. This is always possible

since neither xc nor its complement are in Uc, and this procedure ensures that

neither xc nor its complement is in £/,. Thus Ud is not an ultrafilter, and

xd = xc since Uá D Uc. It follows that g(d) = y , as desired.

Now consider the case that £/. is an ultrafilter but K(Sr)K/Uç is not well

founded. In this case define ( hn : n £ co ) by recursion on n : h0 is the

least function in the order of construction of K(9~) such that K(^)K/[/, is

not well founded below [hQ]u  and hn+x is the least function in the order of

construction of A(y) suchthat [Al <[h„]u  and K(Sr)K/U  is not well
c c

founded below [hn+x]u . Now for i £ co define n¡ to be the least n such that

hn+l(c,) < hn(Ci), define g(c) = {n¡ : i G co}, and set /(c) = [^(c)^ g tof.

Then / is independent of initial segments of c. Let d be any member of [c]w .

Then UA = Up and hence the sequence (A   : n £ co) is unchanged. Thus for
c
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any infinite subset y of g(c) we can set d = { cj; G c : n¡■ £ y } so that y = g(d)

and hence c is not homogeneous for /.

Now we define /(c) for sup(c) > (2W)+ by recursion on k = supe, ensuring

that if sup(c) > (2C0)+ then /(c) does not depend on initial segments of c.

Since cf(K) = co < k , we can use the five cases from the last section:

Case 1 ( k is singular in A(y ) ). Let A G A (y ) be the least continuous, cofinal

function in the order of construction of A(y) which takes cf*( \k) cofinally

into k , and let /(c) = /(c ), where c (i) is the ordinal v < cf*( '(k) such

that A(i^) < ci < h\v + 1).

Cases 2 and 3 (ß = y+l or cf (ß) > k). In these cases k has a cofinal co-

sequence C which is either a maximal Prikry sequence or a maximal sequence

of accumulation points. In either case C is definable up to initial segments.

Define gc(c) = { |(cI+1\c¿) nC\ : i £ co} and set /(c) = [gc(c)]j-. Then / does

not depend on the maximal sequence C and is independent of initial segments

of c. If c is any sequence in [k]w then for any infinite y c co there is c' G [cf0

such that y\g(c) is infinite, and thus c cannot be homogeneous for /.

Case 4 (cf^ \ß) - k ). Let X be the class of functions given by the last

paragraph of Case 4 of §3. If k = supe and k is a member of 3Í such that

c c domain(K) then define gk(c) — {n £ co : 3i G co kn~ (c¡) < c¡ , < kn(c¡) } .

If k' is any other member of X with domain(K') D c then there is i £ co

such that k' and k agree on their common domain above c;. It follows that

gk(c) = gk'(c) except on an initial segment, so that /(c) = [gk(c)]f does not

depend on k and is independent of initial segments of c. If y is any infinite

subset of co then there is d G [c]" such that y\gk(d) is infinite, and hence c

is not homogeneous for /.

Case 5 (X = cf (ß) < k ). The analysis from the last section shows that

in this case there is a function o: X —> k which is continuous, cofinal, and

definable up to initial segments. If sup(c) = k then set /(c) = f(ca), where

the sequence c is defined as in Case 1: c° is the ordinal Ç < X such that

g(£) < c¡ < a(Ç + 1).  Then there is no homogeneous sequence c for / in

[Kf.
Now suppose that f(c") is independent of initial segments of c" . Since the

function a is definable up to initial segments, it follows that /(c) is indepen-

dent of initial segments of c, and that / is independent of a and hence is

definable.

Now if X > (2W)+ then f(c) is independent of initial segments of c by

the induction hypothesis. If, on the other hand, X < (2a)+ then f(ca) is

still independent of initial segments of c , either because f\[(2(0)+]ca - /0 is

independent of initial segments, or because X<o(k) implies that X is smaller

than the first measurable cardinal in A(y), so that cf (X) is not measurable

in A(y) and f(ca) was explicitly constructed to be independent of initial

segments,   a
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5.  The full covering lemma and other open problems

The obvious open questions concerning the results of this paper deal with

possible strengthenings of the covering lemma, Lemmas 2.5 and 2.15. The

problem of constructing a core model for larger cardinals is beyond the scope of

this paper, but a solution to the following question might give some information

about the existence and properties of such models.

5.1. Question. Is there, under any large cardinal hypothesis, a class model M

of ZFC which contains a singular cardinal k such that there is no witness in

M to the singularity of k which is, in some reasonable sense, definable.

The criterion for definability of the witness has deliberately been left vague.

The weakest positive answer to the question would be a model violating the

naive generalization of the definability from §4, that is, a model in which there

is a singular strong limit cardinal k such that either cf(K) > co and no witness

is definable up to initial segments, or cí(k) = co and there is no class X

witnessing the cofinality as in Case 4 of §4. A stronger example would be a

model in which the hypothesis to Theorem 1.2 holds, that is, k —* (co)^   holds

for some cardinal k above (2<u)+ but for no cardinal k below (2W)+ . For the

strongest positive answer one might ask for a forcing which makes k singular

and has homogeneity analogous to the forcing for adding Cohen subsets of k .

We can consider two general questions concerning the covering lemma for

sequences of measures:

5.2. Question. What is the full covering lemma: the strongest (and most ele-

gant) statement of the covering lemma for sequences of measurable cardinals.

5.3. Question. Can the full covering lemma from Question 5.1 be stated, as in

this paper, without the use of mice?

The first question is presumably inconsistent in asking for both strength and

elegance. Lemmas 2.5 and 2.15 could, for example, be strengthened ad nauseum

by adding more clauses. One can, however, hope for a simple basic statement to

which extra information can be added by clauses which are natural, reasonably

simple, and independent of each other.  Conjecture 5.4 below would, if true,

give a start on such an approach. In order to state it we have to first observe

that the definition of a set of indiscernibles can be extended to allow for a set C

of indiscernibles which contains indiscernibles for measures on more that one

cardinal—that is, to a system of indiscernibles as defined in [Mi84a]. This is

done by defining an assignment for a set C of indiscernibles to consist of two

functions, a    and ß   , so that an ordinal v £ C is an indiscernible for the

measure £F(a (v),ß (v)). Then the functions 5    and a    now have three

variables:   sc(a, ß, £) is the least v £ C\Ç + 1  such that aC(v) - a and
c c

ß  (v) = ß , and similarly for a  (a, y ,Ç).

5.4. Conjecture. Suppose that x c k and |x| U cox < \k\ . Then there is a set

C of indiscernibles, a function A G A(y ), and an ordinal ô < k such that
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x c y, where y is the smallest set such that ô c y, C is maximal for y, and

y contains every ordinal v such that any of the following conditions hold:

(i)   v £ h"y n v .

(ii)   v = sc(a, ß, Ç), where a and ß are in hu(vny) and <j; is in v ny.

(iii)   v = a (a, y, <¡f), where a and y are in A"(v ny) and £ is in v ny.

The difficulty here is in getting ß (v) and yC (v) to be members of H\vny).

Proposition 2.2 says only that ßC(v) G A'V , and we do not even have this much

for y . The advantage of using the formulation of the covering lemma which

uses mice is that both ßm(v) and ym(v) are in hm"(vny). A positive answer to

Conjecture 5.4 would follow from a positive answer to the following question:

5.5. Question. Is the function Tm defined in the proof of Lemma 2.5 a member

of A(y) ?

If the answer to this question is "no" then there must be a mouse with a

repeat point.

Note that one strengthening of Conjecture 5.4 follows immediately from its

statement: a recursion on k can be used to replace ô < k with the stronger

condition \S\ = \x\ U cox.

Another way of approaching Question 5.2 is to ask whether the covering

lemma for sequences of measures can be made to look more like the Dodd-

Jensen covering lemma for a single measure, which is both more elegant and

(given the hypothesis that 0* does not exist) stronger than any statement of the

covering lemma for sequences of measures. The next two questions address this

problem.

5.6. Question. Suppose that k is a singular cardinal in V and is regular in

A(y). Must k have been made singular by a forcing extension? That is, is it

always true that there is a model M and a set generic extension M[G] of M

such that k is regular in M and singular in M[G].

Note that the answer is almost certainly no if M is required to be equal to

A(y). In [Fr], S. Friedman starts with a model L(p) and uses Jensen coding

theory [BJW] to construct a class generic extension M such that the measure

p extends to a measure in M and there is a real number a in M which is not

set generic over L(p). The same construction is probably possible starting with

a model L(y) such that o(k) = co, so that each of the measures ^(k, n)

for n < co extends to a measure in M. In this case it is possible to make k

singular by modifying Prikry forcing to add a countable set C of indiscernibles

such that {ßc(v) :v £C] is equal to the set of integers which code up some

initial segment of a. Then the real a would be coded by any witness to the

singularity of k in M(C), and hence M(C) cannot be set generic over L(y).

The final question is not a new problem, but a reminder of work which has

been neglected in all of the author's research starting with [Mi84]:
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5.7.   Question. Can 2    and X   be replaced with cox and Xöcox throughout

this paper?

The analogy with the Dodd-Jensen covering lemma suggests it can. The

assumption that WX c A has been used rather heavily in [Mi84b, Mi?, and

Mi89a] as well as in this paper, so an answer to this paper would require a

good deal of work even if the mathematics turns out to be routine. It shold be

noted that our willingness to assume that Xœ < k , but not that Xe (K) < k , is

somewhat artificial. If we made this second assumption then (as noted in the

proofs of Lemmas 2.5 and 2.15) several of the arguments could be simplified

since the proof for cf(K) = co would apply to the case of uncountable cofinality

as well.
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