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ON THE RELATIVE REFLEXIVITY OF FINITELY
GENERATED MODULES OF OPERATORS

BOJAN MAGAJNA

Abstract. Let 32 be a von Neumann algebra on a Hubert space X with

commutant 32 and centre £?. For each subspace 5? of 32 let ref^ (S")

be the space of all B e 32 such that XBY = 0 for all X ,Y eâl satisfying
XS"Y = 0. If refj^) = 5» , the space S" is called ^"-reflexive. (If 32 =
3J(ß?) and SP is an algebra containing the identity operator, .^-reflexivity

reduces to the usual reflexivity in operator theory.) The main result of the

paper is the following: if S? is one-dimensional, or if S? is arbitrary finite-

dimensional but 32 has no central portions of type \n  for n > 1 , then the

space KS^ is ^-reflexive and the space 32' 3* is .^(^-reflexive, where the

bar denotes the closure in the ultraweak operator topology. If 32 is a factor,

then 3l'y is closed in the weak operator topology for each finite-dimensional

subspace 3* of 32 .

1. Introduction, notation and statement of the main result

Throughout this paper %? denotes a Hilbert space, 3&(ßf) the algebra of

all bounded operators on %?, 32 a von Neumann subalgebra of 31 (ß?), 32'

the commutant of 32, and ^ the centre of 32. The set of all projections

in 31 (that is, selfadjoint idempotents) is denoted by Proj(^), and for each

projection P the projection / - P is denoted by P1, where / is the identity

operator on ßf. The closure of any subset Of of 33(%?) in the ultraweak ( = a-

weak) operator topology is denoted by 3~, and for any subset 5? of £? the

symbol \3~ %f\ stands for the closure of the linear span of the set {Tx : T £ 3",

x £ 3?}. For each cardinal «, %?n is the direct sum of « copies of %?,

Mn(32) is the von Neumann algebra of all those bounded operators on %?n that

can be represented by matrices with entries in 31, and 31 is the subalgebra

consisting of all those diagonal matrices that have the same element from 32

along the diagonal. For each T £ 32 the diagonal matrix with T along the

diagonal is denoted by T{"'.
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A subalgebra 3* of 38(ßlf) is called reflexive if it contains all operators

in 38 (ß?) that leave invariant all closed subspaces of ß? which are invariant

for 3*. Let us identify each closed subspace 3£ of ß? with the orthogonal

projection onto 3?, denote 32 =38(ßff) and put

(1.1) ref^(^) = {B £ 32 : (V/> e Proj(^)) P^3?P = 0 =» PLBP = 0}.

Then 3" is reflexive if and only if ref^(3i') = S*. If 3" is generated by

operators A and /, then the reflexivity of 3* implies that A has nontrivial

invariant subspaces. This has been perhaps the first main reason to study re-

flexive algebras; however, reflexivity is important also for other reasons, as can

be seen, for example, in monographs [3] and [8]. Loginov and Sulman [20, 26]

extended the notion of reflexivity from algebras to subspaces of operators. For

each subspace 3* of the algebra 32 = 38(ß?) let

(1.2) Kfa{3") = {B£32 :(MP,Q£ Fro](32))P3iPQ = 0 => PBQ = 0} .

Then 3* is reflexive in the sense of Loginov and Sulman iff ref5?(^i7) = 3*.

It is easy to verify that a subalgebra containing the identity / is reflexive as a

subalgebra if and only if it is reflexive as a subspace. Reflexive subspaces have

been used by Kraus and Larson [15, 16] to construct reflexive algebras and to

study questions related to the Arveson distance formula. A nice exposition of

reflexivity of spaces and many examples of reflexive and nonreflexive subspaces

can be found in [5].

Obviously the same definition of reflexivity makes sense for subspaces of

algebras more general than 38(2?), but since it is possible for an algebra to

have only trivial projections, it is more natural to replace the projections P

and Q in the definition by arbitrary elements. So we arrive at the following

definition, which has been proposed in [17].

Definition. For each (complex) algebra sé and each subset 3* of sé let

(1.3) refs/(3p) = {B£sé : (VX, F £ sé)X3eY = 0 =► XBY = 0}.

A linear subspace 3* of sé is called sé -reflexive (or reflexive relative to sé )

iffref^(3*)=3>.

For each T £ 38 (ß?) we denote by R(T) the range projection of T (that

is, the projection onto [Tß?]), and by N(T) the null projection of T (the

projection onto KerT). Since a von Neumann algebra 32 contains R(T) and

N(T) for each T £ 32 , and since for any X, Y, T £ 32 the identity XTY = 0

is equivalent to N(X) TR(Y) — 0, we see that for subspaces of von Neumann

algebras, ref^J?7) can be defined by (1.2) instead of (1.3). In this form the

relative reflexivity has already appeared before, for instance in [19].

More generally, for a subspace 3" of 38 (ßf) and a von Neumann algebra

32 on ßf which does not necessarily contain 3*, we can consider the set

3% = {B£ 38 (ßT) : (VP, Q £ Proj (a?)) P3*Q = 0 => PBQ = 0}.
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(If 3> is a subspace of 32, then xtfm(3") =3%n32.) Suppose that 3" is

an ^'-bimodule, that is, 32'3° = 3° and 3m' = 3°. Then for each x £ ß?

the two projections Px with range \3*x\ and ß^ with range [32'x] are

in 32 (since their ranges are invariant under 32' ), and Px3yQx = 0. Thus,

for each B e ^, we have PXBQX - 0, hence Bx £ \3px\. Conversely,

if B £ 38(ß?) is such that Bx £ \3*x\ for all x £ ß?, then B £ SPg,.

Indeed, suppose that P,Q £ Proj(^) satisfy P3PQ = 0. Then for each

x 6 Qß? the relation P\3*x\ C P[3*Qß?] = 0 implies PBx = 0 (since

Bx £ \3px\ ), hence we have PBQ = 0 and therefore B £ 3*m. We have

just seen that 3^ = {B £ 38(ß?): Bx £ [3yx\ Vx £ ß?}. The last set is

independent of von Neumann algebra 32' over which 3" is a bimodule, hence

3^ = 3^,^, - xef^(ße,)(3p). This simple observation will be used later several

times, so we formulate it as a lemma.

Lemma 1.1. If 3* is an 32'-bimodule in 38(ß?), then

ref^(X)(^) = {B£ 38 (ß?) : (VP, Q £ Proj(^)) P3"Q = 0 =* PBQ = 0}.

An elementary operator of length less than or equal to n on 33(ß?) is a map

tp : 38 (ß?) -+ 38 (ß?) of the form

(1.4) 9.(7) = ¿^.75,.       (ieJ(/)),
!=1

where Ai and Bi are fixed elements of 38(ßff). If Ai and B( are all in 32,

then clearly ç? is an ^'-bimodule homomorphism of 38 (ß?). Lemma 1.1 has

as a consequence the following Hahn-Banach type result.

Corollary 1.2. Let 3" be a subspace of 38(ßtv), closed in the weak operator

topology, which is at the same time a bimodule over a von Neumann subalgebra

32 of 38 (ß?). Then for each B e 38(T)\3" there exists an 32-bimodule
homomorphism tp: &(ß?) -^3$(^) of the form (1.4) such that ^(3^) = 0 and

<p(B) ̂0.

Proof. Let w be a weak-operator continuous linear functional on 38(ßif) such

that œ(3*) = 0 and œ(B) ¿ 0. Then there exist xt., yl■ £ ß?, i = 1.n,

such that

co(T) = J2(Txl,yi)
i=\

for each 7 £ 38(ß?). With x = (xx, ... , xn) and y = (yx, ... ,yn) £ ßTn

we have co(T) = (T(n)x,y). From co(3*) = 0 and œ(B) /Owe have that

y is orthogonal to \3>{n)x\ and that {B{n)x, y) ± 0, hence B{n)x $ \3*(n)x\.

This implies that B{n) i ref^^^"'). Since 3*(n) is an ^"'-bimodule, by

Lemma 1.1 there exist two projections P' and Q' in (32{n))' = Mn(32') such

that P'3*[n)Ql = 0 and P'B{n]Q' ¿0. If A] are elements of any row of P'

and B\ are elements of any column of Q', and if tp is defined by (1.4) with
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A'¡ and B\ instead of A¡ and Bi, then ç>(3*) - 0. By choosing the row and

the column appropriately, we have also (p(B)^O (since P'B{n)Q' ^ 0).   D

Clearly the bimodule 3* in Corollary 1.2 is reflexive precisely when for each

B £ 38(ßi?) the homomorphism q> can be chosen so that it is represented by

an elementary operator of length one.

If 3* is a subalgebra of 32 containing /, then ref^^) can be defined

by (1.1), as in the case 32 = 38 (ß?). (We omit the simple proof of this fact

which will not be used in next sections.) If, in addition, 3* is selfadjoint,

then for a projection P £ 32 the condition P±3i'P = 0 is equivalent to the

condition that P commutes with 3*, and the space rcf^'S?) coincides with

the relative double commutant of 3* in 32 , that is, rtf^(3^) = (3"'r\32)'n32 .

The question when the relative double commutant in 32 of each von Neumann

subalgebra 3* of 32 coincides with 3* has already been considered by Murray

and von Neumann [24]. Von Neumann algebras 32 satisfying the condition

rtf^(3e') = 3* for each von Neumann subalgebra 3* ç 32 are called normal.

Now it is known that normal von Neumann algebras on separable spaces are

precisely factors of type I [14, p. 1046]. There are examples of factors 32

containing subfactors 3* such that 3*' n 32 — CI [14, p. 927]; in this case

we have ref^^) = (CI)' (~)32 = 32 . These are at the same time examples of

subspaces of 32 which are reflexive in 38(ßif), but not relatively reflexive in

32.
In this article we shall investigate the relative reflexivity of finitely gener-

ated central submodules over 32 and at the same time the reflexivity of 32'-

submodules of 38(ß?) generated by finite subsets of 32. The main result is

the following.

Theorem 1.3. Let 32 be a countably generated von Neumann algebra on a

Hubert space ß? with centre <& and let 3" be a finite-dimensional subspace

of 32 . If 3* is one-dimensional, or if 32 has no central portions of type ln for

« > 1, then:

(i) ref¿g{^)(32'3?)^32'3' and

(ii) xtfgi(30) = W7?.

It is easy to show that if 32 contains a central portion of type ln for some

cardinal « > 1, then there is a finite-dimensional subspace 3* in 32 such that

31'3* is not 3§(ß?)-reflexive and ^5* is not ^-reflexive (see the remark after

the proof of Theorem 1.3 in §4). The reason for the restriction to countably

generated algebras in this theorem is the use of the direct integral decomposition

in the proof (such a decomposition requires a separable Hubert space). If 32

is a factor, then there is no countability restriction in the proof, and in addition

we shall see that in this case 32'3? is closed in the weak operator topology.

If 32 = 38 (ß?), we obtain from this theorem, as a special case, the known

fact that each one-dimensional subspace of 38 (ß?) is reflexive [15, Lemma 10].

The theorem is motivated by the recent work of Larson [18], where it is proved
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in particular that each finite-dimensional subspace of 38 (ß?), which does not

contain nonzero operators of finite rank, is necessarily reflexive. Partially it is

also motivated by a result from [21], which implies that each finite-dimensional

subspace of the Calkin algebra is reflexive.

In §2 we shall first show that the question of reflexivity of ^-modules (or

^'-modules) generated by a single operator is connected with a certain operator

equation, which has been studied in the algebra 38 (ß?) by Fong and Sourour

[10] and in prime C*-algebras by Mathieu [23]. Then Theorem 1.3 will be

proved in the special case when 3* is one-dimensional. In fact, a slightly more

general result in the context of C*-algebras will be proved, which has some

interesting applications. In §3 the case of factors will be studied, and in §4 the

proof of Theorem 1.3 will be completed by reduction to the case of factors. §4

also contains a consideration of «-reflexivity.

From now on we shall denote xzf^^AS?) simply by ref(^) and the word

"reflexive" will always mean "38(ß?)-reflexive".

2. Singly generated modules

The following lemma might be known to specialists in operator algebras and

is similar to a result concerning the algebraic tensor product of 32 and 32' (see

[14, 24 or 27]), but we have not found any reference for it, so a short proof is

included.

Lemma 2.1. Let A = (Ax, ... , An) and B = (Bx, ... , Bn) be two n-tuples of

elements of 38(ß?) and let 32 be a von Neumann algebra on ß?. Then the

identity

n

(2.1) ¿2AiTBi = °
i=\

holds for all T £ 32 if and only if there exists a projection P' - [C[] £ Mn(32')
such that

(2.2) E^4 = °   and   B, = ÈC'uBj
1=1 J=\

for all i, j £ {I, ... , n]. Moreover, if B £ 32", then P' can be chosen to be

in Mn(W).

Proof. Let Ä £ Mn(38(ß?)) = 38(ß?n) be the matrix with the first row equal

to A and the remaining rows identically zero, let B £ Mn(38(ß?)) be the

matrix with the first column equal to the transpose of B and the remaining

columns equal to zero, and recall that 7( is the diagonal matrix with 7

along the diagonal. Then the identity (2.1) can be written as AT B = 0. Let

P' = [C'u] £ 38(ß?") be the orthogonal projection onto [32{n)BTn].  Since

AT(n)B = 0 for all 7 £ 32, we have AP' = 0. From the definition of P'

we also have PB = B . The last two identities (when written componentwise)
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are just the identities (2.2). Since the range of P' is invariant under 32 , P'

must be in (32{n))' = Mn(32').

If B £32", then B £ Mn(32), hence B commutes with 32l(n), the range

of P' is invariant under 32,(n), and therefore P' £ (32'{n))' = Mn(32). Thus,

P' £ Mn(32') n Mn(32) = Mn{&).
The converse, that (2.2) implies (2.1), can be shown by a direct computa-

tion.   G

Corollary 2.2. // 32 is a factor, A, B e 32", and Ax, ... , An are linearly

independent, then (2.1) holds for all 7 e 32 if and only if Bi = 0 for all
i= 1,...,«.

Proof. Since 32 is a factor, the central elements C\, in (2.2) are just the com-

plex multiples of the identity operator /. Since the ^4 .'s are linearly indepen-

dent, the first family of equations (2.2) implies C(' = 0 for all i, j and the

second family then implies B¡ = 0 for all i.   D

Corollary 2.2 has been proved in the case 32 -38(ßtv) by Fong and Sourour

[10] and recently it has been generalized to prime C*-algebras by Mathieu [23].

The identity (2.1) has been originally considered by algebraists in prime rings

[13, p. 22], where the answer involves the notion of the extended centroid, which

is not always easy to compute for concrete rings.

Here we shall need an improvement of a special case of Lemma 2.1.

Lemma 2.3. Let 32 be a von Neumann algebra on ß? and A, B £ 38(ß?). If

ATB = BTA for all T £ 32, then there exists a projection Q' £ 32' such that

Q'B £ 32'A and AQ' =0. If in addition, A, B £32, then Q' can be chosen
in W and Q'B £WÄ.

Proof. Since ATB + BT(-A) = 0 for all T £ 32, Lemma 2.1 gives us a

projection

p' _ [ Ci     C2

in M2(32') such that

(2.3) AC\ + BC2 = 0,        AC2 + BC'3 = 0

and

(2.4) B = C'XB - C'2A ,        -A = C2B - C¡A.

From (2.4) we obtain

(2.5) (I-C'X + C2C2)B = C'2(C'3-2I)A.

Let Q' be the range projection of / - C'x + C'2C2 . By the functional calculus

for selfadjoint operators there exists a sequence (D'n) in 32' such that the

sequence D'n(I-C'x + C'2C2) converges to Q' ultrastrongly, hence (2.5) implies
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that Q'B £ 32'A. If in addition A and B are in 32, then P' £ M2{&) by

Lemma 2.1, hence Q' £ W and (2.5) implies Q'B £ WA .

We shall now verify that AQ11 = 0, or equivalently, that .4 (Ker Q') = 0. Let

x £ Ker Q'. Since Ker Q' = Ker(/ - C[ + C2C2) and since I - C'x and C2C2

are positive operators (for P' is a projection), it follows that (I-C[)x = 0 and

C'2C2 x = 0. Thus we have x — C[x, C2x = 0, and from the first equation

(2.3) we obtain Ax = 0.   D

The identity ATB = BTA has been considered in the purely algebraic con-

text of prime rings by Martindale [22]. In the special case when 32 is a factor

Lemma 2.3 can be deduced also by combining [22, Theorem 1] with the result

of Mathieu [23, Proposition 2.5] which states that the extended centroid of a

prime C* -algebra is isomorphic to the complex numbers.

Proposition 2.4. If f is a two-sided closed ideal of a C*-algebra sé and 3* is

a linear subspace of f, then

veff(3*)=fnre:fs,(3>).

Proof. Only the nontrivial inclusion ref\r (3*) c\fr\ ref^(3p) will be proved

here. Let B £ ref^(3;). We must prove that XBY = 0 for all X, Y £

sé satisfying X3PY = 0. We may assume that sé is contained in 38(ß?)

for some Hubert space ß?. Let {En} be an approximate unit in / (such

that 0 < En < I for all «, see [27, p. 27]). Then the net {En} converges

strongly to the projection E in the centre of sé such that J' — Ese . From

(EnX)3y(YEn) = 0 we have EnXBYEn = 0 (since B £ refjr(3*)), hence by

taking the limit we obtain EX BYE = 0. Since E is in the centre of sé and

B £ f , it follows that XBY = 0.    D

Let sé be a C*-subalgebra of 38 (ß?). A projection P in sé is called open

relative to sé iff P is contained in the weak operator closure of the algebra

PséPnsé ; a projection P £ sé is closed relative to sé if P is open relative

to sé . (In the case when sé is the universal representation of some C*-

algebra several equivalent characterizations of open projections can be found

in [25, p. 77 or 27, p. 168].) The central carrier of an element A in a von

Neumann algebra 32 is denoted by CA . (By definition, CA is the smallest

central projection in 32 satisfying CAA = A [14, p. 333].)

Theorem 2.5. Let sé be a C*-subalgebra of 38(ß?), 32 the ultraweak closure

of sé , and W the centre of 32 . Assume I £ 32 . If A £ sé is such that the

projection CA is closed relative to sé , then ref^(^) = WA (isé .

Proof. By Proposition 2.4 we may assume that I £ sé , since in general sé is

an ideal of sé + CI. Clearly sé nfêA ç xtf^(Ä), so only the reverse inclusion

requires a proof. Let B £ ref^(^). Let A = U\A\ be the polar decomposition

of A in 32; note that \A\'U* £ sé for each t > 0 [1, Lemma 2.1]. Let t > 0

be fixed, choose any positive element H e sé , and let E be any spectral projec-

tion of the positive operator H\A\ +tH corresponding to a closed or open subset
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of the spectrum. Using the spectral theorem it is easy to find two sequences (S )

and (Tn) in the commutative C* -algebra generated by H\A\x+tH and ^con-

verging ultrastrongly to E and E , respectively, such that Sn Tn = 0 for all « .

Then (SnH\A\!U*)A(HTn) = SnH\A\t+xHTn = 0, hence SnH\A\!U*BHTn =
0 (since B £ ref^(A)). By taking the limit in the last identity we obtain

EH\A\'U*BHE = 0. Comparing this equality with the one obtained by inter-

changing E and E± we see that E commutes with H\A\'U*BH. It follows

(by the spectral theorem) that H\A\x+tH commutes with H\A\'U*BH and, if

H is invertible, this implies \A\x+tH2\A\'U*B = \A\'U*BH2\A\X+'. Letting t

approach 0 in this equality, we obtain \A\H2U*B = U*BH2\A\. Since each

element of sé is a linear combination of positive invertible elements (which are

necessarily of the form H2), we have \A\TU* B = U* BT\A\ for all T £ sé and,

by continuity, for all 7 £ 32 . By Lemma 2.3 there exists a projection Q' £ W

such that Q'U*B £ W\I\ and \A\Q^_= 0. From AQ^ = U^Q'1 = 0 we
have CA < Q', hence CAU*B £ <S'\A\. Therefore we may assume Q' = CA

(otherwise just replace Q' by CA). Put P = Q'1. Since by hypothesis CA

is closed, P is open, hence (by the Kaplansky density theorem) there exists a

bounded net of positive elements Gn in se P Usé converging strongly to P.

From PA = Q^A = 0 we have GnA = 0 (since Gn< P), hence GnB = 0

(since B £ ref^(^)), and PB = lim 6^5 = 0. This implies PU*B = 0 (since

P is central), hence we have now U*B = P±U*B = Q'U*B £ W\A~\, and this

clearly implies that B £ WA .   a

Note that the condition of CA being closed relative to sé is trivially satisfied

for every invertible A £ sé . To see that this condition is not redundant in

general, let sé be the C*-algebra of all continuous functions on the interval

A = [0, 1], which act in the usual way (by multiplication) on the Hubert space

L2(A, p), where p is the sum of the Lebesgue measure (restricted to A ) and

the point mass at 0. The weak closure of sé is identified with L^A, p) = fê.

If A is the (operator of multiplication by the) identity function (that is, A(t) = t

for each t £ [0, 1]), then ref^(A) = sé , but sé nWl = {B £ sé : 5(0) = 0}.

Corollary 2.6. Theorem 1.3 is true for one-dimensional spaces, that is, for each

A £32 the following two identities hold:

(i) ref(32'A) = 37A;
(ii) ref^(^) = ^^.

Proof. The identity (ii) is just a special case of Theorem 2.5. The identity (i) is

not a direct consequence of Theorem 2.5, but it can be proved in the same way.

Indeed, the proof is simpler here, since 32 contains all spectral projections of

its elements and since both factors ( U and \A\ ) in the polar decomposition

of A are in 32, hence we can take in the previous proof t — 0, Sn = E,

and Tn = E    from the beginning. For a given B £ ref(32'A) we then obtain a
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projection ß' e 32' such that Q'U*B £ 32'\A\ and \A\QiL = 0. Since U £ 32 ,

it follows Q'B £ 32'A and Q,±32\4 = Q,±A32' = 0; thus QtLB = 0 (since

B £ ref(32'(A)) and B = Q'ß£ 32'A .   G

Corollary 2.7. If sé is an irreducible C* -algebra of operators on a Hubert space

ß?, then each one-dimensional subspace of sé is relatively reflexive in sé .

Proof. Since sé is irreducible, sé = 38(ß?) and CA - I for each A ^ 0, so

Theorem 2.5 applies.   D

Another immediate consequence of Theorem 2.5 is the known result of Ka-

plansky that each noncommutative C* -algebra contains nonzero nilpotents [14,

p. 292]. In fact a slightly stronger result is true.

Corollary 2.8. Let sé be a C*-algebra with centre W(sé). For each A £

sé\W(sé) there exist positive elements X, Y in sé such that XAY ^ 0 and

(XAY)2 = 0.

Proof. Assume first that sé has a unit; then we may suppose that sé is em-

bedded in 38 (ß?) and / £ sé . From Theorem 2.5 we have ref^ (7) = W(sé),

hence A ^ ref^(/). Therefore there exist X, Y £sé such that XY = 0 and

XAY # 0. We may suppose that X and Y are positive (otherwise we replace

X and Y by \X\ and \Y*\, respectively, using the polar decompositions in

38(ß?)). Then XY = 0 implies YX = 0, hence (XAY)2 = 0.

If sé is without unit, then let sé be embedded in 38 (ß?) so that I £ sé

and denote sé¡ = sé + CI. By the previous paragraph there exist X, Y £ sé¡

such that XY = 0 and XAY ^ 0. Let {En} be an approximate unit in

sé with 0 < En < I. Then (EnX)(YEn) = 0 and there exists « such that

EnXAYEn t¿ 0, since {En} converges strongly to /. Since sé is a closed ideal

in séj, the elements X0 = \EnX\ and F0 = \EnY*\ are in sé, and as before

we have X0AY0 ¿ 0 and (X0AY0)2 = 0.   D

It is clear from (1.2) that for each A £ 32 we have ref^^) = {B £ 32 :

(Vß £ Proj (¿F)) BQß? ç [AQßT]} , and by Corollary 2.6 this is equal to Wa .
The natural question now is, for a given A £ 32, which operators B satisfy

the condition BQß? ç AQßT for all ß € Proj(^) ?

Proposition 2.9. Let A £ 32 and B £ 38(ß?). The inclusion BQß? ç AQßT

holds for all projections Q£32 if and only if B £ A32'. If in addition B £32,
then B £<%A.

Proof. If B = AT' for some T' £ 32', then BQß? = ^7'ß^ = AQT'ß? ç
AQß? for each Q £ 32 . To prove the converse, let B be such that BQß? c

AQß? for all projections ß in 32 and suppose first that A is positive. Corol-

lary 2.6 implies that B £ 32'A (if in addition B £ 32, then the same corol-

lary implies B £ WÄ). Since Bß? ç Aß?, there exists D £ 38(ß?) such

that B = AD. In fact, D is defined by D = (A\(KerA)-L)~xB, and D is

bounded by the closed graph theorem (see [9, Theorem 2.1 or 12]). (If in ad-

dition B £ 32, then an application of the double commutant theorem shows
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that D is contained in the von Neumann algebra generated by A and B,

hence D e 32.) If E is a spectral projection of A such that A is bounded

below on Eß?, then AD = B e A32' implies ED £ E32' = E32'. (In

the case when B £ 32, AD £ WÄ implies ED £ EW.) Since E32' is

just the commutant of E32E (and EW is just the centre of E32E [14,

p. 335]), we have (ED)(ETE) = (ETE)(ED) for each T £ 32. If we
now choose for E a projection from a sequence of spectral projections of A

converging strongly to the range projection F of A, we obtain in the limit

that FD £ (F32F)' = F32'. (In the case B £ 32, D is in the commuta-

tive von Neumann algebra generated by A and B, hence D commutes with

F and it follows FD = FDF £ centre(7^7) = FW.) Thus there exists

D' £32' (D' £ & if B £ 32) such that FD = FD' and we have now

B - AD = (AF)D = AFD' = AD', as was to be proved.

In general, when A is not positive, let A = U\A\ be the polar decomposi-

tion. Since for each projection ß in 32 the relation BQß? ç AQß? implies

U*BQß? C \A\Qß?, it follows from the previous paragraph that U*B £ \A\32'

(or U*B £ \A\ff if B£ 32), hence B £ A32'  (B £ AW if B £32).   D

To end the discussion of reflexivity of singly generated modules we give an

example showing that ref(^'^l) can be different from 32'A for a general ele-

ment A £ 38(ß?), so the hypothesis of Corollary 2.6(i) that A should be in 32

is not redundant.

Example 2.10. Let 3? = C and let f be the two-dimensional subspace of

38(3?) generated by matrices / and N, where

N =
0    1
0   0

Let ß? =, (2) , and let A £ 38 (ß?) be given by the matrix

A =
I    0

N   0

An easy computation shows that 32'A consists of all operators in 38(ß?) of

the form

lT2

where TX,T2£ /. By [15, Lemma 2] a general (weak* closed) subspace 3e1

of 38(ß?) (where ß? is arbitrary) is reflexive if and only if the preannihilator

3*L of 3* in the predual of 38(ß?) is generated (as a Banach space) by its

rank-1 operators. Now the preannihilator of 32'A consists of 2 x 2 matrices

[Sjj] with entries in 38(3?) such that Sxx and 512 are in the preannihilator

ß"L of f in 38(3?). (Here the predual of 38(3?), which in general consists

of trace class operators with the trace norm, has been identified as a set with

38(3?), since 3? is finite-dimensional.) A straightforward computation shows
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that f± is not generated by its rank-1 elements and, consequently, (32'A)± is

not generated by its rank-1 elements.

One might conjecture that the bimodule 32'A32' is reflexive in this case, but

even this is false. Indeed, 32'A32' consists of all 2x2 matrices [7 ] with

T¡j £ f , hence (32'A32')± consists of all 2x2 matrices [S¡j] with StJ £ f±

and is therefore not generated by its rank-1 elements.   D

We note that for certain von Neumann algebras 32 the spaces of the form

32'A are reflexive for all A £ 38(ß?). If, for example, 32 is an atomic max-

imal abelian selfadjoint subalgebra of 38(ß?), then every weakly closed 32-

submodule of 38(ß?) is reflexive by [26].

3. The case of factors

The main purpose of this section is to prove Theorem 1.3 in the case when

32 is a factor. For this we need some preparatory results.

Throughout the paper we shall denote by Q the fundamental system of neigh-

borhoods v of 0 in the strong operator topology of 32 (ß?), defined by

v = {T £38(ß?): \\Txa\ < 1,  / = 1, ... ,«},

where {xx, ... , xn} is any finite subset of ß?.

The nontechnical part of the following lemma will be improved later (Corol-

lary 3.6).

Lemma 3.1. Let 32 ç 38(ß?) be a factor and let 3* be a finite-dimensional

subspace of 32 . Then:
(i) The subspace 32'3* is ultraweakly closed and for each ultraweakly dense

subset 3s' of 32' the set 31 '3* is ultraweakly dense in 32'3^.

(ii) If B £ 38(ß?)\32'3p (respectively, if B £ 32\3*), then there exists

u0£Q such that P^BQ1 i p-L32'3*Q± (respectively, B £ PL3>Q^) for all
projections P, Q in v0 n 32 .

Proof. Choose a basis {Ax, ... , Ar) for 3*, denote by 32' ®32 the subalgebra

of 38(ß?®ß?) generated algebraically by all operators of the form 7'® 7, where

T £32 and 7' £ 32', and consider the maps (p:32n -> 38 (ß?) and y/ : 32" -►

38(ß?®ß?) defined by

<p(T'x,...,T'r) = YjT]A]
j=i

and

y/(T'x,...,T'r) = J2T']^Aj.
7=1

Obviously the range of tp is 32'3*. We regard 32" as a Banach space equipped

with the norm 11(7,', ... , 7r')|| = max{||7'|| : j = I, ... , r} . At the same time

32" is the dual of the Banach space 32#®x ■ ■ -®x32# , where 32# is the predual of
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32, and therefore 32 carries the weak* topology. Recall also that the weak*

and the ultraweak topology on 38 (ß?) are the same. It is easy to verify that the

maps tp and \p are weak* continuous. Since (p is weak* continuous, it is the

adjoint of a certain map between the preduals, hence the range of <p is weak*

closed if and only if it is norm closed [7, p. 173]. Thus, to prove that the range

of tp is weak* closed it suffices to prove that tp is bounded below. To prove this

last property of tp , observe first that tp - dip , where Û: R.' ®32 -> 38(ß?) is

defined by û{T[®Tl + --- + T'n®Tn) = T'xTx+-■■ + T'nTfl. It is well known that û

is one-to-one and that consequently a C*-norm can be defined on 32' Q32 by

||7||' = ||#(7)||. Since the usual operator norm is minimal among all C*-norms

on 32' ®32 ç 38(ß? ®ß?) [14, p. 858], it follows that # is bounded below by
1. Thus it suffices now to prove that \p is bounded below.

Since Ax, ... , Ar are linearly independent, there exist weak-operator con-

tinuous linear functionals co¡ on 38 (ß?) with norm 1 such that

(OiiAf) í 0   and   co^Aß = 0   for ; # i, i,j=l,...,r.

For any l' - (T[, ... ,T'r) £ 32" and any weak-operator continuous linear

functional p with norm 1 we now have

\y,(l')\\>\(p®(üi)(¥(T'))\ = E^'KH-) l/H^IKK)

hence || v(T')|| > c/|/?(7¡')¡, where ci = |<y;.(^;.)|. Taking the supremum over all

functionals p with norm 1 in this inequality we obtain ||^(T')|| > c.||7;'|| for

each i = I, ... , r, hence ||y(T')|| > c||T'||, where c - min{c1, ... ,cr) . This

proves that y/ is bounded below.

Since <p is weak* continuous and bounded below, q> is a weak* homeomor-

phism from 32" onto the range of tp . (Indeed, tp considered as a map from

32" onto Im tp is an adjoint of a certain map <p# between the preduals, and

<p# is one-to-one with dense range, since <p is bijective. But, since the range of

a linear map between two Banach spaces is closed if and only if the range of

its adjoint is closed [7, p. 173], tp# is a bijection, hence by the open mapping

theorem <p# is invertible. Then tp" is the adjoint of tp# , hence <p~ is weak*

continuous.) If 3' is a weak* dense subset of 32', then 3" is weak* dense in

32" and (p(3") is weak* dense in the range of tp , that is, in 32'3*. From the

obvious fact <p(3") ç 3'3* it now follows that 3'3* must be weak* dense

in 32'3P.

To prove (ii), suppose on the contrary, that for each v £ Q there exist

projections Pv , Qv £ v n 32 such that P^BQ^ £ P^32'3r°Q^ . Then

r

(3.1) PLBQL = S^ T' PLA QL
7 = 1

for suitable T1,   £ 32'. For each continuous linear functional p with norm 1
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and i = I, ... , r we then have

|*|| > l|7>ß,X|| > £7>P^X
7=1

(3.2) >

Put

7 = 1

Ep(T>^AjQt:
7=1

dw - £ vAP^jQÎMfy   for i = 1,..., r,
7=1

and consider this as a system of linear equations with unknowns p(T'jv). Then

the solutions can be expressed as

5¡/ i=i

1+7

ôl./i/     11/

where gv = detlw^PJ"^ ßj")] and g;jV are certain subdeterminants of gv of

dimension (r-l)x(r-l). With a = max{\\A.\\ : j — 1,..., r}, we obviously

have | g

I4J <

(3.3)

iyi/1

fill
< (r - l)\ar '  (since <y;, Py , and Qu   have norms  1)

(by (3.2)), it follows that

-i

Since

r-l
\p(T']V)\<r\d l\\B\\\gu\-     forall; = l,...,r.

Since the net {P^A.Q^ :u £Q} converges strongly to A; for each j and since

the functionals co¡ are strongly continuous, it follows that the net {gv : v e £2}

converges to detfcd,.^,)] = cox (Ax) x ■ ■ ■ x (or(Ar) / 0. By (3.3) this implies that

there exists vQ £ Q such that the set {\p(T'jv)\:vCvQ, ¡/eQ} is bounded for

each j = I, ... , r, and the bound is independent of p. Taking the supremum

over all p with norm 1, we see that the sets {||7'j| : v ç i>0} are bounded.

By the weak-operator compactness of balls in 32', there exist subnets {7- }

of {T1.} such that 7' —► 7', where Tj £ 32'. Taking the weak-operator

limit in (3.1) along these subnets we obtain B = Y?¡=\ TjA¡ £ 32'3* (since

P^AjQq -* Aj strongly, T1. -» Tj weakly, and {7J } is bounded for each j} ,

but this is in contradiction with the hypothesis that B $ 32'3*.

We have to prove also that for B £ 32\3* there exists uQ £ Q such that

PVBQL £ PL3>QL for all projections P, ß € v0 <T\32, but this follows easily

from the linear independence of the set {B, Ax, ... , Ar} and the compactness

of the unit sphere in Cr+ by arguments similar (but much simpler) to those

which we have already used above.   D
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Now we are going to show that Theorem 1.3 for factors follows from the

following technical lemma.

Lemma 3.2. Let 32 be a von Neumann algebra on ß? without nonzero minimal

projections. If {Ax, ... , Ar} is any subset of 32 and C, D are projections

in 32 such that CArD ^ 0, then for each neighborhood v £ Q there exists

subprojections E < C and F < D such that EArF ^ 0 and P, Q£v, where

r r

P = E\f\J R(AjF)   and   Q = F V \J R(A*E).
7=1 7=1

Proof of Theorem 1.3 for factors (assuming Lemma 3.2). If 32 is of type I¡,

the proof is trivial, so we assume that 32 is a factor of type II or III. The

proof is by induction on the dimension of 3*. By Corollary 2.6 the theorem is

true if 3* is one-dimensional, and by Lemma 3.1 we then have ref^'J^) =

32'3*. Assume inductively that ref^(^") = F and ref (32'3~) = 32'3^ for all

subspaces 3~ in 32 of dimension smaller than a given integer r, let 3" be

any r-dimensional subspace of 32 , and choose a basis {Ax, ... , Ar} for 3*.

We shall prove here only the identity ref (32'3*) = 32'3*, since the proof of

the identity ref^J?7) = 3* is the same. (To prove the second identity, 32'

must be replaced by W = CI in the arguments below, and only the easy part of

Lemma 3.1 (ii) is needed.) We shall prove that for each Ar+X £ 38(ß?)\32'3'

there exist X ,Y £32 such that

(*) XAjY = 0   forj=l,...,r   and   XAr+xY¿0.

By Lemma 1.1 this means that Ar+X g ref (32'3*), hence this will complete the

proof.

By the inductive hypothesis (applied to the span of {Ax , ... , Ar_x}) there

exist projections C, D £32 such that

CAjD = 0   for j = 1,... , r - 1    and   CArD ¿ 0.

If CAr+xD £ 32'CArD, then by Corollary 2.6 and Lemma 3.1 there exist

S,T £32 such that S(CArD)T = 0 and S(CAr+xD)T ¿ 0, hence we obtain

the desired relations (*) by putting X = SC and Y = DT.

We may therefore assume that CAr+xD = S'CArD for some S' £32'. Since

Ar+l i 32'3*, by Lemma 3.1 there exists a neighborhood v £ Q such that

P±Ar+xQ± i 32'PL3yQi~ for each projections P, Q £ v f\32 . By Lemma 3.2

there exist projections E < C and F < D in 32 such that EArF ¿ 0 and

P ,Q£v, where

r+l r+\

P = E\/\J R(AjF)   and   ß = 7 V \J R(A*E).
7=1 7=1

Since E < C and F < D, we now have

(3.4) EA]F = 0   forj=l,...,r-l,        EAr+xF¿0,
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and (from CAr+xD = S'CArD )

(3.5) EAr+xF = S'EArF.

From P±Ar+lQ i 32'PL3yQL it follows

P±(Ar+x-S'Ar)Q± i ^32'P^AjQ^,
7=1

hence by the inductive hypothesis there exist projections G, H £32 such that

GPxAjQxH = 0 for ;' = 1,..., r - 1 and GP±(Ar+x - S'Ar)QLH ¿ 0. We

may assume that G < P and H < Q (otherwise we just replace G by

N(GP±)± and 7/ by R(QLH) ), hence we have

(3.6) GAjH = 0   for ; = 1,..., r - 1

and

(3.7) G(Ar+x-S'Ar)H¿0.

Now put K — E + G and L = F + H. Then K and L are projections (since

E < P, G < P1-, F < Q, and 7/ < ßx ). From the definition of P and ß

we see that R(AjF) < P and Qx < N(EAß for all j = 1.r + 1. Since

G < P"1 and 77 < ßx , this implies G^7 = 0 and 7^.// = 0, thus we have

KAiL = (E + G)Ai(F + H)
(3.8) ; J
K     ' = EA,F + GA,H   for all ; = 1, ... , r + 1.

7 7 J

From (3.8), (3.4), and (3.6) we obtain

(3.9) KAjL = 0   forj = l,...,r-l.

Moreover, we claim that KAr+xL $. 32'KArL. To prove this, suppose on the

contrary that KAr+xL = 7'KArL for some T' £32'. From (3.8) and (3.5) we

then obtain

(3.10) S'EArF + GAr+xH = T'EArF + T'GArH.

Since E ±G, this implies S'EArF = 7'7^,.7, or (7 - S')EArF = 0. Since

7 -S' £32', EArF £ 32, EArF ¿ 0, and 32 is a factor, the last equality

implies 7 - S' = 0. Putting now 7 = S' in (3.10) we obtain GAr+xH =

S'GArH, but this is in contradiction with (3.7).

Since KAr+xL £ 32'KArL, by Corollary 2.6 (together with Lemma 3.1 and

Lemma 1.1) there exist two operators V,W e 32 such that V(KArL)W = 0

and V(KAr+xL)W ¿0. Thus, denoting X = VK and Y = LV and recalling

(3.9), we obtain the desired relations (*).   D

If 32 is a factor of type I and 3* is a finite-dimensional subspace of 32

which has zero intersection with the ideal y generated by finite projections in
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32, the above proof can easily be modified to show that 3* is ^-reflexive, and

Lemma 3.2 is not needed in this case.

The proof of Lemma 3.2 is very short if 32 is a factor of type II. Namely, in

this case we may assume that the projections C and D in Lemma 3.2 are finite

(otherwise we just replace them with suitable finite subprojections such that the

condition CArD ^ 0 is still satisfied). Moreover, since each projection in 32

can be expressed as an orthogonal sum of two equivalent subprojections [14, p.

426], we can find two decreasing sequences, (En) and (Fn), of subprojections of

C and D, respectively, such that EnArFn ^ 0 for each « and p(En) < 2~" ,

P(Fn) < 2~", where p is a faithful normal semifinite tracial weight on 32

[14, p. 541]. Using the fact that the range projection of each operator 7 is

equivalent to the range projection of 7* and Kaplansky's formula [14, p. 403],

we now have

P[En V V W.)       * *E») + £ P(R(A/n))

= p(En) + YdP(R(FnA]))<(r+l)2-n.

7=1

Since the sequences (En) and (Fn) are decreasing and p is faithful, it follows

that the projections

Pn = Env\J R(AjFn)     I and similarly ß„ = 7„ V \/ R(A*En)

converge to 0. This proves Lemma 3.2 for factors of type II.

The proof of Lemma 3.2 for general von Neumann algebras without nonzero

minimal projections is a little more technical, although elementary. The lemma

is needed only for factors, but the assumption that 32 is a factor of type III

would not simplify the proof. We need three additional lemmas, the first two

of which are very short.

Lemma 3.3. If E, F £ 38(ß?) are two projections such that \\FE\\ < 1, then

7 V 7 <a(E + F), where a = (1 - ||77||)_1 .

Proof It is well known that E V F = R(E + F) [9]. For each jc £ Eß? and

y £ Fß? we have

II* + y\\2 > IWI2 + IMI2 - 2\(x, y)\ > |W!2 + ILv||2 - 2||77|| ||x|| \\y\\

>(l-\\EF\\)(\\x\\2 + \\y\\2),

or \\x\\  + Hyll   < a\\x + y\\  . Putting x = Ez and y — Fz in this inequality,

where z £ ß? is arbitrary, we obtain

((E + F)z, z) = ||7z||2 + ||7z||2 < a\\(E + F)z\\2 = a((E + F)2z, z).

This means that E + F < a(E + F)2, hence (by functional calculus) R(E+F) <

a(E + F).   D
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Lemma 3.4. Let 32 be any von Neumann algebra on ß?, A £ 32, and F £

Proj(^). // Aß? <£ Fß?, then there exists a subprojection G < N(A)1- in 32

such that GyiO and \\FR(AG)\\ < 1.

Proof. From Aß? g Fß? we have A*F±A ¿ 0, hence A* A - A* F A > 0.

Thus, there exists t £ (0, 1) such that the positive part of the operator S -

t A* A-A* F A is nonzero. Let G be the spectral projection of S corresponding

to the strictly positive part of the spectrum of S. Then G ± N(S) and it

follows that G < N(A)1, since Ker^ ç Ker5". Further, from GSG > 0 we

have G A* FAG < tGA* AG, or \\FAGx\\2 < t\\AGx\\2 for all x £ ß?. This

implies \\F\AGß?\\ < txß , which is clearly equivalent to \\FR(AG)\\ < tx/2 .   D

Lemma 3.5. Let 32 be a von Neumann algebra on ß? without nonzero minimal

projections. Then:

(i) For each finite subset {Ax, ... , Ar] of 32, each nonzero projection E £

32, and each strong neighborhood uQ of 0 there exists a nonzero subprojection

E0 of E in 32 such that the projection \frj=x R(AjE0) is in i>0r\32.

(ii) For all projections E, F in 32, where 7^0, and for each strong neigh-

borhood u0 of 0 there exists a nonzero subprojection 70 of E in 32 such that

FVE0£F + V0.

Proof, (i) The proof is by induction on r. Suppose first that r — 1, denote

Ax simply by A, and let AE - U\AE\ be the usual polar decomposition of

AE. We may assume that AE ^ 0, otherwise the proof is trivial. There

exists an orthogonal sequence of nonzero projections Gn in 32 such that Gn <

R(\AE\) and Gn reduces \AE\ for each «. Indeed, if the spectrum of \AE\

is infinite, then we can obviously take for Gn suitable spectral projections. If,

on the other hand, the spectrum of \AE\ is finite, then let G be the spectral

projection of \AE\ corresponding to some nonzero eigenvalue of \AE\ and let

(Gn) be any orthogonal sequence of nonzero subprojections of G in 32 . (Such

a sequence exists, since 32 does not contain nonzero minimal projections.)

Since Gn < R(\AE\) < E and since U is isometric on [\AE\ß?], we now

have [AGnß?] = [AEGnß?] = U\\AE\Gnß?\ = UGnß? = UGnU*ß?, hence

R(AGn) = UGnU*. This implies in particular that the sequence (R(AGn))

converges strongly to 0, hence Gn £ uQ for all sufficiently large « and we may

put 70 = Gn for one such « .

Suppose now inductively that part (i) of the lemma holds for all neighbor-

hoods v, all projections E £ 32, and all subsets of 32 which have at most

r - 1 elements, where r is a fixed positive integer. By the inductive hypothesis

(applied to the set {Ax, ... , Ar_x), to projection E, and to the given neigh-

borhood uQ £ Q) there exists a nonzero subprojection G0 of E in 32 such

that P0£ u0, where

P0 = r\jR(AjG0).

7=1

If P0 V R(ArG0) £ vQ, then the proof is completed by putting E0 = G0.  So
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assume that P0 V R(ArG0) £ v0. Then (ArGQ)ß? <£ P^ß? (since P0 € v0 ),

hence by Lemma 3.4 there exists a nonzero subprojection H < N(ArG0) < G0

in 32 such that

(3.11) b=\\P0R(ArH)\\<\.

By the already proved case r = 1 (applied to the operator Ar and projec-

tion H ) there exists for each v £ Q a nonzero subprojection Kv of H in

32 such that R(ArKv) £ v. By the inductive hypothesis (applied to the set

{Ax, ... , Ar_x} and projection Kv ) there exists for each ¡/ e fi a nonzero

subprojection Lv of Ä^ in 32 such that ß^ e v, where

Qu = r\jR(AjLv).

7=1

From Lv < Kv < H < G0 we now have 7?(^r7J < 7?(^r//) and ßy < P0,

hence (3.11) implies that \\QvR(ArLu)\\ <b<l for all v £ Q. By Lemma 3.3

we now have

(3.12) QvNR(ArLv)<a(Qv+R(ArLv))   foralli/e«,

where a = (l-b)~x. Since ßy £ v and ^(¿LXJ < R{ArKv) £v for all i/ 6 Q.,

we see from (3.12) that the net {Qv V R(ArLv): v £ Q.} converges strongly to

0. It follows that for the given neighborhood v0 there exists v £ Q such that

Qv V R(ArLv) £ uQ and this proves part (i) of the lemma (put 70 = Lv ).

(ii) For each v £ ÇI let Ev £ 32 n v be a nonzero subprojection of E

(here again the fact that 32 has no nonzero minimal projections is used). If

Ev < F, then, denoting EQ = Ev , we have 70V 7 = 7 € 7 + u0 and the

proof is completed in this case. Assume therefore that Ev ß? <£ Fß? . Then

by Lemma 3.4 there exists a nonzero subprojection G of Ev in 32 such

that \\FG\\ < 1 . Since 32 has no nonzero minimal projections, there exists a

decreasing sequence (Gn) of nonzero subprojections of G in 32 that converges

strongly to 0. Then of course ||7GM|| < \\FG\\ and Lemma 3.3 implies that

FvGn < a(F+Gn), where a = (1-H7GH)"1 . The decreasing sequence (7vGJ

has the strong operator limit, say H, and from 7 < F V Gn< a(F + Gn) we

have 7 < H < aF (since Gn -»0), Since 7 and // are projections, this

implies H = F . So the sequence (7 V Gn) converges to F and, consequently,

F v Gn£ F + v0 for all large enough « ; put E0 = Gn for one such « .   D

Proof of Lemma 3.2. We may assume that CArD ^ 0 for all nonzero subprojec-

tions D of D in 32 (otherwise replace D by D- (N(CAr) AD)). By Lemma

3.5(i) there exists for each neighborhood v £ Q. a nonzero subprojection D0

of D in 32 such that P0 £ \v, where

P0=\jR(AjD0).

7 = 1
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Replacing C by the smaller projection C - (C A R(ArDQ)±), we may assume

that CArD0 ^ 0 for all nonzero subprojections C of C in 32. By Lemma

3.5(ii) (applied to projections C and P0 ) there exists a nonzero subprojection

C0 of C in 32 such that P0 V C0 € 70 + \v , hence we now have C0^r/)0 ,¿ 0

and 70 V C0 e v (since 70 € \v ), or

r

C0v\jR(AjD0)eV.

7 = 1

The projections C0 and D0 still do not necessarily satisfy all the require-

ments of Lemma 3.2, since we cannot be sure that the projection

D0V\/R(A*C0)
7=1

is in v . But repeating the above arguments with {A*,...,A*},D0, and C0 in

place of {Ax, ... , Ar} , C, and D, respectively, we obviously obtain subpro-

jections E and 7 of C and D (respectively) that satisfy all the requirements

of Lemma 3.2.   D

Since each reflexive subspace of 38 (ß?) is obviously closed in the weak op-

erator topology, we have the following

Corollary 3.6. If 3* is a finite-dimensional subspace of any factor 32 on ß?,

then the space 32'3* is closed in the weak operator topology.

Proof. If 32 is of type II or III, the corollary follows immediately from the

already proved case of Theorem 1.3 for factors together with Lemma 3.1. If 32

is of type I, then there exists a Hubert space 3? and a cardinal « such that 32

is (unitarily equivalent to) 38(3? y' ; hence 32' = Mn(CIx) and there exists

a subspace 3~ of 38(3?) such that 3* = 3r(n). (In the language of tensor

products this means that there exist Hubert spaces 3? and %? such that 32 is

(unitarily equivalent to) 38(3?) % CIg, and 32' = CIjr®38(ST) [14, p. 815].)

Since 3* is finite-dimensional, it is now easy to see that 32'3* = Mn(3") (that

is, 32'3* consists of bounded matrices with entries in 3" ). This implies that

32'3* is closed in the weak operator topology.   D

Remark. For a countably decomposable ( = cr-finite) factor 32 of type III part

(ii) of Theorem 1.3 can be improved in the following way: if 3" is a finite-

dimensional subspace of 32 and tp: 3* —> 32 is any linear map, then there

exist X, Y in 32 such that XAY = <p(A) for each A £ 3?. (A similar result

is proved in [21] for the Calkin algebra.) The proof uses Theorem 1.3(ii), but

it is quite technical and will not be given here. We merely remark that such a

result is possible only in simple algebras ( = without two-sided ideals).

4. Reflexivity in general von Neumann algebras

In this section we shall first complete the proof of Theorem 1.3. The theorem

has been already proved for factors in the previous section.   Here it will be
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extended first to general von Neumann algebras acting on separable spaces,

then a very short argument will show that the theorem holds for all countably

generated von Neumann algebras. Although there is no reason why the theorem

should not be true for completely general von Neumann algebras, the author has

been unable to deduce this in a simple way. It is possible to extend the reduction

theory of [6] from non-self-adjoint algebras to subspaces of operators, but since

we are dealing here only with special kinds of subspaces, the ordinary self-

adjoint reduction theory will be sufficient. We refer to [14 or 27] for complete

treatments of reduction theory and to [6, §2] for a brief survey of the notions

used here. Our first very simple lemma will imply that for any vector space of

decomposable operators 3~, ref(3~) consists also of decomposable operators.

Lemma 4.1. Let 32 be a von Neumann algebra on ß? with centre W and let

3" be any subspace of &. Then vzf(3~) ç W'.

Proof. Let B £ ref(y ). For any projection P in & we have P±3rP = 0,

hence P±BP = 0. Interchanging the roles of P and P1, we see that B

commutes with P, hence (since P is arbitrary) B £ W'.   D

Proof of Theorem 1.3. We shall prove in detail only part (i), since the proof of

part (ii) is very similar. Only the inclusion xtf(32'3') ç 32'3? needs a proof,

the opposite inclusion is trivial.

Assume first that the Hubert space ß?, on which 32 acts, is separable. Then

there exists the direct integral decompositions of 32 and ß? along the centre

% of 32 , so that

ß?=(  ß?(X)dp(X)   and   32 = f  32(X)dp(X),
Ja Ja

where A is a complete separable (locally compact) metric space and p is a pos-

itive complete Borel measure on A. Moreover, the algebra of all diagonal oper-

ators coincides with W and 32' can be decomposed as 32' = f® 32' (X) d p(X),

where 32'(X) = 32(X)' almost everywhere. Choose a basis {Ax, ... , Ar} for

3* and let A¡ = /® AfX)dp(X) be the decomposition of Aj, where Ai ) are

Borel functions on A. For each X £ A let 3C/(X) = span{^¡(A), ... , Ar(X)} ;

clearly another choice of basis and representing functions gives a family of

spaces which agrees almost everywhere with 37(X). Let

y = {7 £ & : 7(A) € 32'(X)3>(X) for almost all X £ A},

where, of course, 7 = /® 7(A) dp(X). We shall prove that

(4.1) Tef(32'3>)ç3rC32'3p;

this will complete the proof of part (i) of the theorem. For simplicity of nota-

tion let us assume that the spaces ß?(X) are all equal to a fixed Hubert space

ß? ; the general case is treated in the same way by using measurable transfer

[14, p. 1020]. In this case ß? is identified with the Hubert space 72(A, 3?, p)

of all equivalence classes of measurable functions x from A to 3? satisfying
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/a II* WH dp(X) < oo, the algebra W of all decomposable operators consists of

all multiplications by measurable mappings 7: A —► 38(3?) such that the func-

tion A —► || 7(A) || is essentially bounded, and W consists of all multiplications

by functions of the form A —> f(X)I, where / £ Lx(A, p).

To prove the first inclusion in (4.1) assume on the contrary that there exists

B £ ref(32'3*)\3~. Since B £ ref(32'3*) and 32'3* ç W', Lemma 4.1 implies

that B is decomposable; let B = ¡® B(X) dp(X) be the decomposition of B,

where B( ) is a Borel operator valued function. Let {A'n}™=x be a countable

strongly dense subset of the unit ball of 32'. By standard theorems of the

reduction theory there exists a Borel subset A0 of A such that p(A\AQ) = 0

and for each A e A0 the following conditions are satisfied: 3P(X) ç 32(X)

(that is, Aj(X) £32(X) for j = I, ... , r), the set {A'n(X)}^Lx is strongly dense

in the unit ball of 32'(X), 32'(X) = 32(X)', and 32(X) is a factor of type

I,, II, or III. (For the last condition, the assumption that 32 has no central

portions of type ln for « > 1 has been used.) Consider the subset Z of

A0 x (Proj(^) x Proj(^)) consisting of all triples (A; P, Q) satisfying the

following conditions:

(i) PA'n(X) = A'n(X)P and QA'n(X) = A'n(X)Q for all n = 1, 2,... ;
(ii) PAj(X)Q = 0 for all j=l,...,r;

(iii) PB(X)Q¿0.

Standard arguments show that Z is a Borel (hence analytic) subset of the Polish

space A x Proj(^) x Proj(^), where Pro}(3?) is of course equipped with the

strong operator topology. Denote by Ax the projection of the set Z into the

first coordinate space A; then Ax is analytic, hence a measurable subset of

A. Condition (i) implies that P and ß are in 32(X) if (A; P, Q) £ Z ;

thus, by Lemma 1.1 conditions (ii) and (iii) imply that A, = {A e A0 : B(X) £

ref(32'(X)3*(X))} . Since 32(X) is a factor of type I,, II, or III for each A £ A0 ,

we have from §3 that ref(^'(A)^(A)) = 32'(X)3P(X), hence A, = {A £ A0 :

B(X) $ 32'(X)3>(X)}. From B i 3^ and p(A\A0) = 0 it now follows that

p(Ax)>0.
By the principle of measurable choice [14, p. 1041] there exists a measurable

mapping tp : Ax -* Proj(^) x Proj(^) such that (A, <p(X)) £ Z for all X £ Ax .

Then of course tp consists of two projection valued measurable mappings P( )

and Q( ) on Ap Extend P( ) and Q( ) to A by defining P(X) = 0 and

Q(X) = 0 for A £ A\A¡ and denote by P and ß projections in 38(ß?) defined

by the two mappings P( ) and Q( ). Then condition (i) (together with the fact

P(X) = 0 and Q(X) = 0 for A £ A\A¡) implies that P and ß are in 32, (ii)

implies that P3?Q = 0, and (iii) implies that PBQ ¿ 0 (since p(A0) > 0). It

follows now that B £ ref(32'3?), but this is in contradiction with the choice

of B.
The proof of the second inclusion in (4.1) is easier. We must show that

each ultraweakly continuous linear functional co on 38 (ß?), which annihilates
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32'3*, must annihilate 3". Let œ be given by
oo

(4.2) co(T) = Y,{Txn,yn)       (T£38(ß?)),
n=\

where (xn) and (yn) are two sequences of vectors in ß? satisfying £||;cj|2 <

oo and SH^JI   < °° • For each decomposable operator 7 = f® T(X)dp(X),

(4.2) can be rewritten as
r. OO

(4.3) co(T)= / ¿2{T(X)xn(X),yn(X)).
jAn=\

(Here the change of order of integration and summation is easily justified by

the Fubini theorem, since £II*J \\yn\\ < oo.) Let now 7 s 32'3". Then

WT ç 32'3^, hence co(CT) = 0 for all C £ &. Since each C e W is a

multiplication by some function f £ L^A, p), we see (by replacing 7 with

C7 in (4.3)) that

/ f(X)Y<{TWxn(X),yn(X))dp(X) = 0
J*        „=i

for all / e L^A, /z). Since / is arbitrary, the last condition is equivalent to

oo

(4.4) £(7(A)x„(A),>;„(A)) = 0   a.e.
n=\

Since the sums Yl ll*,¡WI|2 anc* 2"HI.K„WI|2 are finite almost everywhere (be-

cause their integrals are finite), one can define linear functionals œk on 38(ß?x)

for almost all A £ A by cox(S) = J2(Sxn(X), yn(X)), and by (4.4) we have

0)x(T(X)) = 0 almost everywhere for each 7 e 32'3? . Thus, except possibly on

some fixed set of measure 0, we have wx(A'n(X)A (A)) = 0 for all j = 1, ..., r

and all « = 1, 2, .... By Lemma 3.1 (i) the space

svan{A'n(X)Aj(X) : j = I,..., r; n = 1,2,...}

is ultraweakly dense in 32,(X)3P(X) if 32'(X) is a factor, hence œx(32'(X)3i'(X))

= 0 almost everywhere. From the definition of 3~ it now follows Oi(3~) - 0,

as claimed. This proves part (i) of the theorem for separable ß?.

Suppose now that ß? is arbitrary, but 32 is countably generated. Then for

each x £ ß? the space [32x] is separable, hence the range of any countably

decomposable projection É £ 32' is separable (since, by definition, E' can be

expressed as a direct sum of a countable set of cyclic projections). Note that

32E' has no central portions of type \n for « > 1, since 32E' is isomorphic to

32CE,, where CE, is the central carrier of É [14, p. 335]. Let B £ xzf(32'3>).

Then it is easy to verify that É BE £ ref(7 '32 ' E '3*Ë), hence, by considering

32E1, (32E1)' - É32'É , 3"Ë and E'BE' as objects acting on the separable

space E'ß?, it follows that ÉBÉ e E'âl'E'SPE' c 32'3?. Choosing a net

{E'ß} of countably decomposable projections in 32' converging strongly to /,
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we see that B £ 32'3?. (We remark that the proof of the second part of the

theorem is reduced to separable spaces in a similar way. The only difference is

that E'^E'S^E' is generally not contained in fêS? (since E' is not necessarily

in ^). But using the isomorphism 32CE> -» 32E1, it follows thai BCE, £

CE,%3* Q W? for each B £ ref^(3i'), hence B £ W?, as above.)   D

Remark. If a von Neumann algebra 32 on a separable Hubert space ß? con-

tains central summands of type Im for m > 1, then 32 contains a two-

dimensional subspace 3* such that the space 32'3* is not reflexive and the

space í£5^ is not ^-reflexive. To see this we may assume (using the central

decomposition of 32 and 32' ) that 32 is of type \m and 32' is of type \n for

some cardinals m and «, where m > 1. Then 32 is (unitarily equivalent to)

the von Neumann algebra Loo(A,38(3?yn', p) consisting of all multiplications

by essentially bounded measurable mappings from A to 38(3?)w acting on the

Hubert space 72(A, 3?(n), p) = 72(A, p) ®3?(n), where 3? is a Hubert space

of dimension m , A is a (complete, separable, compact) metric space, and /z is

a (regular) positive Borel measure on A. Note that 32' = L^A, Mn(CIx), p)

and W — 7œ(A, p)Ip ■ Let y be a two-dimensional nonreflexive subspace

of 38(3?), and let S9 be the subspace of 32 = Loc(A,38(3?){n), p), con-

sisting of constant mappings with values in y(n) (so that 3f is isomorphic

to 9~). Then it is not hard to see that 32'3* = L^A, Mn{J~),n) = 32'3"

and ^3* = L^A, 3^{n), p) = W?. Since 3~ is not reflexive in 38(3?),

its preannihilator 3~L is not generated by operators of rank 1 in 3~L [15,

Lemma 2]. Since the preannihilator of Mn(3~) can be identified with all trace

class elements in Mn(3\), it follows that Mn(3r)± is not generated by its el-

ements of rank 1, hence Mn(3~) is not reflexive in 38(3?"). Choose now

any B £ Tef(Mn(S'))\Mn(S') and let B be the operator on L2(A,3?{n), p)

defined by the constant mapping with value B, that is 7i(A) — B for all A £ A.

Clearly B £ 32'3P ; we claim that B £ ref(32'3*). To see this, let P and ß

be any projections in 32 satisfying P32'3i'Q = 0. Then P(X)Mn(3r)Q(X) = 0

for almost all A £ A (by the separability arguments, already used in the proof of

Theorem 1.3), hence P(X)BQ(X) - 0 almost everywhere (since B £ ref(32'3*))

and therefore PBQ = 0. By Lemma 1.1 it now follows that B £ xef(32'3p).

This proves that 32'3? is not reflexive.

Since y is not reflexive in 38(3?), 3r{n) is not reflexive in 38(3?)[n). The

same reasoning as above now shows that 7oo(A, 3 "', p) is not reflexive in

L^A, 38(3?){n], p) and this means that WP is not ^-reflexive.

The question of relative reflexivity in general C*-algebras is of course harder

than in von Neumann algebras, but Corollary 2.7 suggests the following

Conjecture. A finite-dimensional subspace of an irreducible C*-subalgebra sé

of 38 (ß?) is relatively reflexive in sé if and only if it is reflexive in 38 (ß?).
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This conjecture is easily seen to be true if sé contains (one and hence all)

nonzero compact operators.

A natural extension of the notion of reflexivity is «-reflexivity. A subspace

3* of 32 is called n-reflexive relative to 32, where « is a positive integer,

iff 3p{n) is Mw(/?)-reflexive. For the algebra 32 = 38(ß?), «-reflexivity has

been considered for example in [5, 16], where a dual characterization is also

given. Note that one can define the relative «-reflexivity without mentioning

the matrix algebra Mn(32), but using elementary operators instead. Namely, a

subspace 3" of 32 is «-reflexive relative to 32 if and only if 3* contains all

B £ 32 satisfying <p(B) = 0 for all elementary operators tp of length at most

« with coefficients in 32 such that $(3*) = 0. (Here an elementary operator

of length at most « with coefficients in 32 is of course a map tp: 32 —> 32

defined by (1.4), where all Ai and B¡ are in 32 .)

A finite-dimensional subspace 3" of 38(ß?) is «-reflexive if and only if

3p{n) is reflexive in Mn(&(ß?)) = &(ß?n), and this is the case if and only if

3* contains all operators B £ 38(ß?) satisfying B[n)x £ 3p{n)x for all vectors

x = (xx, ... , xn) £ ß?" . Denote by 3?x the subspace of ß? spanned by the

components xx, ... , xn of x . Then the condition B(n)x £ 3" x means that

B\3?x £ 3*\3?x, where 3*\3?x = {S\3?x : S £ 3*}. Since each «-dimensional

subspace 3? of ß? is equal to 3?x , where x £ ß?" is any vector such that its

components xx, ... , xn form a basis of 3? , it follows that 3" is «-reflexive

if and only if it contains all operators B £ 38(ß?) satisfying B\3? £ 3*\3?

for each «-dimensional subspace 3? of ß?. We shall prove that each «-

dimensional subspace of 38(ß?) is «-reflexive and, more generally, that the

space 32'3* is «-reflexive (relative to 38(ß?)) for each von Neumann algebra

32 on ß? and each «-dimensional subspace 3* of 31.

Recall that a subspace 3? of ß? is separating for a space of operators 3*

on ß? iff the only operator S £ 3* satisfying S(3?) = 0 is S = 0. By [5,

p. 36] for each r-dimensional subspace 3* of 38 (ß?) there always exists an

r-dimensional separating subspace in ß?. In the lemma that follows we give

a slight improvement of this result. For the proof we need the generalization

of Kaplansky's lemma on locally algebraic operators, obtained by Aupetit [4,

Theorem 2], which can be formulated in the following way:

If an r-dimensional subspace 3* of 38 (ß?) has no separating vectors, then

3? contains a nonzero operator of rank < r — 1.

In [4] the result is formulated (in slightly different language) for operators

between two arbitrary complex vector spaces and it is in fact valid for vector

spaces over arbitrary infinite fields. The next lemma is also true in this more

general algebraic setting, but since the generalization requires more or less only

notational changes, we remain in the Hubert space context.

For each x, y £ ß? the symbol x <g> y denotes the rank-1 operator on ß?

defined by (x <g> y)z = (z, y)x  (z £ ß?).
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Lemma 4.2. Let 3? be an r-dimensional subspace of 38(ß?), where r > 2.

Then either there exists an (r - l)-dimensional separating subspace 3? for 3"

or dim[3ß?] = 1.

Proof. Let us first consider the case r = 2. Assume that there does not exist any

1-dimensional separating subspace for 3*. Then by the result from [4] quoted

above 3* contains an operator Ax of rank 1. Choose any A2 £ 3* linearly

independent of Ax. Then for each x £ ß? there is a nontrivial combination

ax(x)Axx + a2(x)A2x = 0 (aÂx) £ C), since x is not separating for 3*.

This implies that A2x £ Axß? for all x such that a2(x) ^ 0. On the other

hand, if a2(x) = 0, then ax(x) ^ 0 and the same equation implies Axx = 0,

hence x £ Ker ,4, . Since each x £ KerAx can obviously be expressed as

x = xx + x2, where xx, x2 £ Ker^ , it follows that A2x £ Axß? for all

x £ß?. Since {Ax, A2} is a basis of 3*, we have [3*ß?\ = Axß?, which is a

one-dimensional space.

Suppose now, inductively, that the lemma is true for all subspaces of 38(ß?)

of dimension at most r, where r > 2 is a fixed integer, and let 3* be an

(r + 1)-dimensional subspace of 38(ß?). Assume that there are no separating

r-dimensional subspaces for 3*. Then there does not exist any separating vec-

tor in ß?r for the space 3"^ (since the linear span of the components of a

separating vector for 3"^ would be a separating subspace for 3? of dimen-

sion at most r ). Hence, by the quoted result from [4], 3i'(r' contains a nonzero

operator of rank at most r and, consequently, 3* contains an operator Ax of

rank 1. Ax is necessarily of the form

(4.5) Ax=bx®ax

for suitable vectors ax and bx in ß?, where ||a,|| = 1 and bx ^ 0. Let

ß?x = {ax}    and let P be the projection onto ß?x.

Observe that there does not exist any (r-1)-dimensional separating subspace

for 3"P in ß?x . Indeed, if 3?x were such a subspace, then 3? = span{«^¡, ax}

would be an r-dimensional separating subspace for 3" (since ax is separating

for 3PPJ~ ), but this would contradict our assumption about 3". This implies

that dim(^P) = r; indeed, dim(^P) < r + 1 (since AXP = 0), and the

assumption dim(3pP) < r — 1 would lead us to the contradiction that 3*P

has an (r- 1)-dimensional separating space (by [5]). Moreover, since 3*P has

no separating spaces of dimension r - 1, the induction hypothesis implies that

dim[3*Pß?] = 1. If b is a nonzero vector in \3>Pß?\, then for each A £ 3*

the operator ¿IP must be of the form

(4.6) AP = b®x(A)

for a suitable vector x(A) £ ß?x = Pß?. Since dim^P) = r, the space

%? - {x(A) : A £ 3s1} ç ß?x must be also r-dimensional. Thus, if 3?x is

any subspace of 3* complementary to CAX (so that 3* = 3PX © C4,), the

mapping A -> x(A) is one-to-one on 3"x and therefore we can choose a basis
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{A2, ... , Ar+X] for 3*x so that {x(A2), ... , x(Ar+x)} is an orthonormal basis

for g?. Denote x(A¡) by at and for each i £ {2, ... , r + 1} let

3?i - suan{ak :k±i, k-l,...,r+l}.

Then dim3?i = r. Since 3* has no r-dimensional separating spaces, there

exists a nonzero Bi £ 3* such that B^3?^ = 0. With Bi = Yfjí\ aijAj (where

etjj £ C) it follows for k ^ i, 1 (by using (4.5), (4.6), and the orthonormality

of the set {ax, a2, ... , ar+x})

r+\

0 = Biak = 1EauAJak = aik-
7 = 1

Thus, a,. = 0 for all k é i, k = 2, ... , r + 1, hence ß = a.,/1. + a¡¡A¡, and
trC 1 / 1 J. / 1 1

we now have (since ax £ 3?¡)

(4.7) 0 = Biax=alXbx+al¡A¡ax.

If a a were 0, then (4.7) would imply an = 0, hence B¡. = 0, but this is a

contradiction. Therefore a/; ^ 0 and from (4.7) we have A¡ax = ßf)x with

suitable ßi £ C, hence (Ai - ß(Ax)ax = 0, for each i = 2, ... , r + I. Denote

Sx = Ax and St = Ai - ß{Ax for i = 2,...,r+l. Then {£,,..., Sr+1}
is a basis for J?7. For i > 2 we have 5,-a, = 0, hence (since ^4,P = 0)

S¡ = S¡P - AjP — b®x(At) = b® ar Thus, we now have

(4.8) Sx—bx®ax   and   Si = b®ai   for i = 2, ... , r+ 1.

Let finally ^ = span{ö[ + ar+1, a2, ... , ar) . Since dim3? = r, 3? is not

separating for 3*, hence there exists a nonzero 5 £ 3* such that 5(^) = 0.

With S = £/=í yiSi (y, € C) we now have (by (4.8) and the orthonormality

of the ak's) 0 = Sak = ykb for k = 2, ... , r, hence 5 = yxSx + yr+xSr+x . But

then we see from 0 = S(ax + ar+x) = yxbx + yr+xb, that b is a multiple of bx

(otherwise yr+x = yx = 0 and S would be 0). By (4.8) this means that the

ranges of all operators Si are spanned by the same vector bx, and since these

operators form a basis for 3", it follows that dim[3ß?] = 1.   D

Proposition 4.3. For any r-dimensional subspace 3" of a countably generated

von Neumann algebra 32 on a Hubert space ß? the space 32'3? is r-reflexive

(relative to 38(ß?)), and the space Í2?7 is r-reflexive relative to 32.

Proof. We shall prove only the assertion about 31'3*, for the proof of the asser-

tion concerning KS^ is similar. Let us first consider the case 32 = 38(ß?). We

must show that 3* contains all operators B £38(ß?) satisfying B\3? £ 3*\3?

for all r-dimensional subspaces 3? of ß? . Denote 3~ = soan{B, 3*}, so that

dim 3~ = r + 1. If there exists an r-dimensional separating subspace 3? ç ß?

for 3~, then B\3? £ 3?\3? implies B £ 3* and the proof is completed. If

there are no r-dimensional separating subspaces for 3~, then by Lemma 4.2,

dim[3ß?] = 1 , hence there exist vectors c ^ 0, b and a    (j=l,...,r) in
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ß? such that B - c®b and such that the operators A. = c <g> a ■ (j = I, ... , r)

form a basis of 3?. The fact that B\3? e 3*\3? for each r-dimensional

subspace 3? of ß? implies in particular that Bx is a linear combination of

Axx, ... , Arx for each x £ ß?. If x is orthogonal to all a , then Ax = 0

for all j, hence Bx = 0 and x must be orthogonal to b. This implies that

b £ span{a1, ... ,ar] , hence B £ spanf^ , ... , Ar) = 3*.

Let us now consider the case of a general (countably generated) von Neumann

algebra 32 on ß?. The same reasoning as in the proof of Theorem 1.3 reduces

the proof first to algebras acting on separable spaces and then to the case of

factors. Thus, we assume that 32 is a factor. If 32 is of type II or III, then by

Theorem 1.3 32'3* is even reflexive, hence we many assume that 32 is a factor

of type I. Then there exists a Hubert space 3?, a cardinal « , and a subspace 3~

of 38(3?) such that 32 = 38(3?)(n), 32' = Mn(CIx), and 5* = 3r{n) (as in

the proof of Corollary 3.6). Since 3~ is finite dimensional, it is easy to see that

32'3* = Mn(3~) = 32'3*. By [16, Theorem 2.1] an arbitrary ultraweakly closed

subspace S? of 38 (ß?) is r-reflexive if and only if its preannihilator ^_ in the

predual of 38(ß?) (which is the trace class Wx(ß?)) is the closed linear span of

operators of rank at most r in g?± . In our situation Mn(3~)± can be identified

with all trace class elements in Mn(3^). Since 3~ is an r-dimensional subspace

of 38(3?), 3" is r-reflexive in 38(3?) by the first paragraph of this proof. It

follows that 3]_ is the closure of the linear span of operators of rank at most

r in 3]_ ; consequently Mn(3~)± is also the closed linear span of its elements

of rank at most r.   a

There are known simple examples of nonreflexive 2-dimensional subspaces

of 38(ß?), but for larger r the following problem seems to be open.

Problem. For each positive integer r determine the smallest k = k(r) such

that all r-dimensional subspaces of 38(ß?) are k-reflexive.

We have seen above that k(r) < r, but for large r, k(r) is perhaps consid-

erably smaller than r.

To end this paper, let us note that one can define the relative hyperreflexivity

for subspaces of von Neumann algebras as in the case of the algebra 38(ß?).

Namely, for each subspace 3* of 32 and each B £ 32 denote by d(B, 3*)

the distance of B to 3*, put

ôa'B, 3>) = sup{||Pßß|| : P, Q £ Pro}(32), P3*Q = 0},

and call 3* hyperreflexive relative to 32 iff there exists a constant k such that

d^(B,3y)<KÔ(B,3p)

for all B £ 32 . The smallest such constant k = k^(3^) is called the constant

of ^-hyperreflexivity of S*. Note that in general S^(B, 3*) < d(B, 3") for

each B £ 32 , and that 3* is ^-reflexive if and only if ô^(B, 3") / 0 for

each B e 32\3?. The idea of hyperreflexivity was introduced by Arveson, who
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showed in [2] that nest algebras are hyperreflexive in 38(ß?). Kraus and Larson

extended the notion of hyperreflexivity from subalgebras to subspaces in 38 (ß?)

and observed that each 1-dimensional subspace of 38(ß?) is hyperreflexive [16].

The author does not know if a similar result holds in general von Neumann

algebras, that is, if a hyperreflexive version of part (ii) of Corollary 2.6 is true.

In the special case A = I, the hyperreflexive version of Corollary 2.6(ii) is

indeed true; more precisely, the centre W of each von Neumann algebra 32

is ^Miyperreflexive with Km($?) < 2. This follows from the result of Zsido

and Gajendragadkar [11] that for each B £32 , d(B, %) = \\\DB\\, where DB

is the derivation on 32 defined by DB(T) = BT - TB (7 6 32), and from

the estimate \\DB\\ < 4sup{||P"LfiP|| : P £ Proj(^)}. The last estimate is a

consequence of the fact that projections are precisely the extreme points of the

positive part of the unit ball of 32 (see the computation in [3] or [8, p. 101]).

The hyperreflexive version of the first part of Corollary 2.6 is open even in the

special case A — I ; this is the well-known problem of hyperreflexivity of a

general von Neumann algebra.
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