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AUTOMORPHISMS AND TWISTED FORMS
OF GENERALIZED WITT LIE ALGEBRAS

WILLIAM C. WATERHOUSE

Abstract. We prove that the automorphisms of the generalized Witt Lie al-

gebras W(m , n) over arbitrary commutative rings of characteristic p > 3 all

come from automorphisms of the algebras on which they are defined as deriva-

tions. By descent theory, this result then implies that if a Lie algebra over a field

becomes isomorphic to W{m, n) over the algebraic closure, it is a derivation

algebra of the type studied long ago by Ree. Furthermore, all isomorphisms

of those derivation algebras are induced by isomorphisms of their underlying

associative algebras.

Introduction

In the middle 1950s, Rimhak Ree [5] introduced a collection of Lie algebras

over arbitrary fields of characteristic p > 0. He showed that they included

(properly, over some fields) the class of generalized Witt Lie algebras; I propose

to call them Witt-Ree algebra. Fifteen years later, R. L. Wilson [9] showed

that over an algebraically closed field, they each become isomorphic to one or

another of a fixed collection of generalized Witt Lie algebras W(m, n). These

W(m, n) constitute one of the four known types of nonclassical simple Lie

algebras over algebraically closed fields, and there is reason to suppose that no

other types exist [10]. Thus determining the twisted forms, i.e. the algebras that

become isomorphic to W(m, n) over the algebraic closure, is likely to play a

major role in the classification of simple Lie algebras over arbitrary fields. In

this paper, I shall prove that the Witt-Ree algebras are in fact (for p > 3) the

only such twisted forms. Furthermore, each Witt-Ree algebra is by definition a

Lie algebra of derivations, and I shall show that all isomorphisms among them

are induced by isomorphisms of the underlying associative algebras.

Though the results just stated are the attractive ones, they are not in fact

where most of the work will be done. The fundamental theorem in the pa-

per is that the automorphisms of the Lie algebras W(m, n) over arbitrary

commutative rings all come from automorphisms of the algebras on which

they are realized as derivations. To understand why this is fundamental, it

may help to review the history of the corresponding results in the case of
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ordinary Witt algebras. These are the full derivation algebras W of A =

R[xx, ... , xn]/(xp, ... , xpn). Jacobson, who introduced them over forty years

ago [3], showed that A and W have the same automorphisms and derivations

over any field. This was not sufficient to determine all the twisted forms, though

it allowed him to make the right conjecture. The conjecture was proved about

twenty years ago by Allen and Sweedler [1], who used an analysis of divided

power sequences in certain Hopf algebras associated with A and W. There-

upon I observed that their work essentially proved that the "formal groups" of

automorphisms of A and W were the same. By combining this with Jacob-

son's result and using some reasoning on affine group schemes, I was able to

show [7] that A and W had the same automorphisms over all base rings.

It was clear already then that if the automorphism result could be proved

independently, we could use it to derive the analysis of twisted forms by descent

theory. This is essentially what I have done here in the more general case. Only a

bit of theory will be needed, and I have tried to make this paper comprehensible

to algebraists with no previous knowledge of flat descent.

I should perhaps mention that all previous work on these automorphisms has

followed Jacobson in restricting p to be at least 5; here we shall also include

the case p — 3 (with one obvious exception for the algebra of dimension 3).

But this merely requires a few extra arguments and is not the main point of

interest.

1. Definitions and statement of the theorems

Throughout the paper, all fields and rings will have characteristic p > 3. A

finite-dimensional algebra A over a field k is called purely inseparable of height

one if it has the form

A = k[xx ,..., xn]/(xpx -ax,...,xpn-an)

for q; in k. It is not hard to see that these are precisely the algebras for

which A ®k k = k[yx, ... , y„]/(yp , ■ ■ ■ , yPn) ■ Looking at the pth roots of

the a¡ in k, one can show [3, pp. 116-117] that every such A has the form

E[ym+i > • • • ' yJ/(->m+i >■••>>'«)> wnere E is an inseparable field extension

of k of height one. The field E is uniquely determined (it is A modulo

nilpotents), and thus there is one purely inseparable algebra A of height one

and dimension p" for every purely inseparable field extension of height one

and dimension < p" .

Definition. Let A be purely inseparable of height one over a field k, and let

W be a Lie subalgebra of Dexk(A). Then W is a Witt-Ree algebra (on A ) if

the following hold:

(1) W is a free ¿-module, where aD is given by (aD)(x) = a(Dx).

(2) Only the constants k • 1 inside A are annihilated by all of W.

(3) W is central simple.
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Lemma 1.1. Let k be a field. Let W be a Lie algebra of derivations of an

algebra A over k . Let L be an extension field of k. Then W is a Witt-Ree

algebra on A if and only if' W®k L is a Witt-Ree algebra on A®k L.

Proof. The fixed behavior over the algebraic closure shows that A is purely

inseparable of height one iff A ®k L is. Condition (2) is linear, and hence it is

clearly true over k iff it is true over L. Condition (3) is equivalent [4, p. 293]

to saying that the mappings [x, -] and [-, x] for x in a basis of W generate

the full /c-algebra of k-linear endomorphisms of W, and hence it too is linear.

Clearly W ®k L is free if W is. Finally, if W ®k L is free over A ®k L,

then W is projective over A . But it is clear from the explicit description that

purely inseparable algebras of height one are local rings, and hence W is free

over A .   D

Example (cf. [9]). Let m be an integer > 1, and let n = {n(l), ... , n(m)}

be a sequence of integers > 1. Consider elements xa , where a is an w-tuple

of nonnegative integers with ith entry less than /?"(i). We make the k-space

with this basis into an algebra A(m, n) by the divided power multiplication

xa ' xb ~ ( a+J )-xq+« • I* *s easy t0 verify tnat this is purely inseparable of height

one, with each xp — 0 for a ^ 0; its dimension is p", where n = Y,n(i).

We define W(m, n) to be the algebra of derivations generated over A by

Dx, ... , Dm , where Z>. sends each xa to the corresponding basis element with

i th entry in a reduced by one. It is easy to verify that these W(m, n) are

Witt-Ree algebras. Their definition still makes sense when k is replaced by any

commutative ring of characteristic p .

Ree proved [5, 3.5] that an ¿-basis Dx, ... , Dm of any Witt-Ree algebra

can be chosen so that all [D¡, Dj\ are 0. He also showed [5, 6.1] that any

nonzero common eigenvector of the Z)( in A ®>k k is invertible. Using these

two properties, Wilson [9, Lemma 3] proved that every Witt-Ree algebra over an

algebraically closed field is isomorphic to exactly one of the algebras W(m, n)

(with the same parameter m ). More precisely, he established a stronger state-

ment for which we should introduce another definition.

Definition. If Wx and W2 are Lie algebras of derivations of algebras ¿1 and

¿2, a derivation isomorphism from Wx to W2 is an isomorphism induced by

an algebra isomorphism of ¿, to ¿2 that carries Wx isomorphically onto W2.

Theorem (Wilson). If W is a Witt-Ree algebra over afield k, then W ®kk is

derivation-isomorphic to exactly one of the W(m, n).   □

Example. When p = 3, the algebra W(l, {1}) is the classical Lie algebra

sl2. It is easy to see that every Witt-Ree algebra of dimension 3 is isomorphic

to it. It has a 3-dimensional family of automorphisms (from conjugation by

SL2), whereas the algebra k[x]/(x ) has only a two-dimensional family of

automorphisms. There are (in general) many different Lie algebras over k that

become isomorphic to sl2 over k ; they are given by the elements of trace zero
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in quaternion algebras over k , and they do not occur as Witt-Ree algebras. In

short, all the theorems to be proved in this paper are false for this case, and it

will always be excluded.

We can now state our two main classification results.

Theorem A. Say chax(k) > 3. If W is any Lie algebra over k for which

W ®kk is isomorphic to some W(M, n), then W is isomorphic to some Witt-

Ree algebra (except when dim(W) = 3).

Theorem B. For chax(k) > 3, all isomorphisms between Witt-Ree algebras (of

dimension > 3) are derivation isomorphisms.

As I said earlier, our main work will actually be concerned with automor-

phisms of the Lie algebras W = W(m, n) over rings, and we should introduce

a few abbreviations. We define the basic algebras A(m, n) and W(m, n) over

F . For any commutative ring R of characteristic p, we set

A(R) = A(m, n) ®F R   and   W(R) = W(m, n) ®¥  R.
p p

Here A(R) is still a truncated polynomial algebra, and W(R) is a Lie subal-

gebraofits i?-derivations. We let Aut(A)(R) denote the i?-automorphisms of

A(R), and similarly for Aut(W)(R). Clearly Aut(¿) and Aut(W) are functors

on ¥p-algebras R . We let Aut(¿, W)(R) denote the automorphisms of A(R)

that preserve W(R) ; this is again a functor. We can now state the fundamental

theorem of the paper.

Theorem C. The map Aut(¿, W)(R) -+ A\xt(W)(R) is an isomorphism over

every commutative ring R having characteristic p>3 (unless dim W - 3).

This isomorphism was proved by Ree [5, 12.8] when R is an infinite perfect

field with p > 5. But for descent theory, it will be crucial to have the result

over rings with nilpotents (rings like k ®k k for imperfect fields k). Corre-

spondingly, we shall need two different styles of argument. First will come some

computations similar to those in Ree's proof (and in the earlier proof by Jacob-

son [3] for the Witt algebras); these will be followed by more abstract descent

theory. Very little structural information on W(R) will be used. The reason for

this is that the automorphisms of A(R) do not have to preserve the ideal gen-

erated by the {xa\a ^ 0} when jR contains nilpotents, and hence the filtration

familiar on W over fields is no longer preserved by all automorphisms.

2. Technical preliminaries

Propositon 2.1. The only R-linear maps T:A(R) -* A(R) that commute with

all elements in W(R) are scalars.

Proof. We have D¡T(l) = TD¡(1) — 0 for all i, and hence we have T(l) equal

to a constant b in R. More generally, each element in A(R) is determined

up to a constant term by the values of the D( on it. For brevity, let xx denote

x{\ o     0) • ^e nave ^/i = ^(^(i) = T(DjXx) = DjT(xx) for each i, and hence
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we have T(xx) equal to bxx up to a constant. But then bxx = xxDx(Txx) —

(xxDx)T(xx) = T((xxDx)xx) = T(xx), so indeed Txx = bxx. For every a

finally we have

T(xa) = T((xaDx)(xx)) = (xaDx)T(xx) = (xaDx)(bxx) = bxa.   □

Corollary 2.2. The mapping Aut(¿, W)(R) -» kat(W)(R) is always one-to-one.

Proof. Any cp in the kernel commutes with all of W(R), so it is scalar; as it is

an algebra automorphism, it is the identity.   D

Corollary 2.3. Let y/ be an automorphism of W(R) and let E be an element

of W(R) with some p-power Ep  also lying in W(R). Then y/(Ep ) = y(E)p .

In particular, y/(E)p  lies in W(R).

Proof. Let ad(7)  denote the map X h-> [Y, X] on DexRA(R).   We have

(adE)p  = ad(Ep ), as DexRA(R) is a restricted Lie algebra.   For all X in

W(R), then, we have (ad(y/E))p (y/X) = ad(y/(Ep ))(y/X), since y/ preserves

the Lie algebra structure on elements in W(R). As y/ is an automorphism, the

elements y/X run through all of W(R). But of course (ady/E)p = ad((y/E)p ),

and thus ad((y/E)p') - ad(y/(Ep')) is zero on W(R). Thus (y/E)p' - y/(Ep')

is a linear mapping from A(R) to A(R) that commutes with all elements in

W(R), and hence by the proposition it is a scalar. As it is also a derivation, it

is zero.   O

This last result is of course a consequence of Theorem C, but we shall need

it in the proof. Specifically, we shall need to know that if Ep = E, then

y,(Ep') = y,(E).
Despite the naturalness of the algebras W(m, n), we shall find it easier (fol-

lowing Ree) to do computational arguments on a variant form of them. We

fix an algebraically closed field k of characteristic p , and we define objects B

and X over k as follows. Take a set of variables xjs for 1 < i < m and

1 < 5 < n(i). Set all (xis)p = 1, to get a purely inseparable algebra B of height

one. Let q(i) = pn(,), and for each i fix elements yis forming an Fp-basis of

F (/). Define derivations £( by setting

Ei(xjs) = SUyisxis-

It is easy to see that these E¡ axe the basis of a Witt-Ree algebra X.

Lemma 2.4. The algebra X on B is derivation-isomorphic to W(m, n) ® k .

Proof. Suppose first that m = 1. Then by Wilson's theorem (already proved

in this case by Ree [5, 8.4]), all we need to do is to check that the dimensions

are the same, which is obvious. For larger m , both our X and W(m, n) are

constructed as composite actions [5, p. 523] on tensor products of algebras of

height one, and thus the isomorphism can be extended inductively.   D

We now record some computational results about X.
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Lemma 2.5.  (1)   (E¡)9{i) = E¡ for each i.

(2) [xaEt, xßEj = xa+ß{(Es ßis7is)Ej - (Es ajs7jjEj} .

(3) &dx(Ej is diagonal in the basis xßEj with eigenvalues ¿Zsßjsyis.

(4) The mappings (adx(Ej))p for I < i <m and 0 < t < n(i) are linearly

independent.

Proof. (1) is obvious since each yjs is in F (/). Statement (2) is computed by

checking the left side on generators of B , and (3) is an immediate consequence

of it. For (4), let 0 = £V-tt bit(&dx(Ej))p . When we apply this map to the ele-

ment \~ls(Xjjx{s)Ej, we get a multiple of that element, and the multiplier must

then be zero; thus for each j and all x(s) in F   we get 0 = ^/¿>-/(5Zj7,-ít(j))p

for 0 < t < n(j) and I < s < n(j). As the y.   are a basis of F .., over F , this

says that the polynomial ¿2t bjfTp is identically zero on F ,... As its degree is

less than q(j), its coefficients must all be zero.   D

This last argument has shown that the linear equations imposed on the vari-

ables bjt over the field k have only the trivial solution. This automatically

remains true over every extension ring, and thus statement (4) of the lemma

(like the other parts) will remain true over all /c-algebras R .

3. Proof of Theorem C, part one: Making y/(Ej = E(

Let R be a local ring containing the field k, with maximal ideal 971. Set

B(R) = B ®k R and X(R) = X ®k R, and let y/ be a fixed i?-isomorphism of

X(R). We assume p > 3 and dim(Z) > 3.

Lemma 3.1. There are elements ux, ... , un in B(R) such that

(1) the monomials ua are a basis of B(R), and

(2) for every family (Xx, ... , Xm) with X¡ e F ((., there is exactly one mono-

mial ua with y/(Ej)ua = XjUa for all i.

Proof. The first step is to observe that we have (Ej)q{l) = E¡ for each i, and

by Corollary 2.3 the mappings e¡ = y/(Ej also satisfy (e¡)9(,) = e¡ for each i.

As F ... is contained in k , the roots of the equation Tq{l) - T = 0 are in R,

and the usual diagonalization argument shows that B(R) is a direct sum of the

eigenspaces. As R is local, all the eigenspaces are free. The et all commute,

since the E¿ do, and hence in fact we can write B(R) as a direct sum of free

submodules on each of which the e. are all scalars. Choose a basis (vf) of

B(R) consisting of common eigenvectors for the e¿. We can choose 1 as one

of them, since R • 1 is preserved by all of X(R) and is a direct summand of

B(R). Let M be the maximal ideal in the algebra B(R)/0JIB(R), and consider

the (iî/9Jl)-space (B(R)/MB(R))/M2. It has dimension n+ 1 , and the images

v¡ of the vx span it over R/Wl. Thus, we can find ux, ... ,un among the vx
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which (together with 1) give a basis of the space. It follows [3, p. 108] that the

monomials vf are a basis of B(R)/WIB(R), and hence (since R is local) that

the monomials ua axe a basis of B(R).

We have ef^uf, = cirur for some values cir in F (/), and then

eAu") = ( S cirar ) ""   for a11 Q = (°V) in vp-

We have p" different monomials and Tlq(i) = p" families of eigenvalues in (2),

so to prove (2) it is enough to show that no two monomials have the same family

of eigenvalues. If they do, then (subtracting) we get an a / 0 with ¿2rcirar = ®

for 1 < i < m. As the ar are in ¥p , we then have also ¿Z,r(cir)p ar = ® f°r

0 < t < n(i). Thus we have a family of n homogeneous equations in n

unknowns with a nontrivial solution. Hence the equations are dependent, and

there are constants ql( in k, not all zero, with J2¡ < ait(cir)P = 0 f°r a^ r ■ Let

e = 2~Z/ tQit{ejP ' a derivation of B(R).  This derivation is identically zero,

since it vanishes on all ua. Hence of course 0 = ad(e) — ¿2t !qit{ad(ei)}p .

It follows that the same equation holds for the restrictions adx,RAej). But

et = y/(Ej and y/ is an isomorphism on X(R), so the same equation must

hold for the adx,RAEj . But Lemma 2.5(4) shows that no such dependence

exists.   D

Observe that the reasoning here implies that the m by « matrix (cir) has

rank m.

Lemma 3.2. If ß is any n-tuple with all entries <p-2, the elements u: e are

a basis of {e e X(R)\[e¡, e] = (Y,cirßr)e for all i} .

Proof. We do have [e(, u ej) = (Y,r cirßr)ure. for every j . The submodule of

X(R) where all ad(E;) have specified eigenvalues is free of rank m by Lemma

2.5(3); and as y/ is an isomorphism, the same is true for the zd(e¡). Thus the m

elements tr e7 will be a basis if we can show that they are independent modulo

SOT. But if some ^.hM^ej reduces to zero modulo 971, then 2ZhjUßej(ur) =

¿ZhjCjrurur reduces to zero in B(R)/VJIB(R) for each r. By the hypothesis on

ß , the elements ußur axe part of a basis of X(R), so 2ZhjCjr is zero mod 9ÏÏ

for each r. Since (cjr) has rank m , it follows that every /z   reduces to zero

mod 9JÎ. Thus indeed the reductions of the tr e   are independent.   D

Lemma 3.3. The elements ur are all invertible.

Proof. It is enough to prove that the (ur)p , which lie in R, are all invertible.

We first suppose that p > 5. Consider (say) ux. Let Vs be the space where

each &dx,R.(ej has eigenvalue s-ciX. We have just seen that for s < p- 1, the

elements (uxfe¡ generate Vs. Every bracket [upf e¡, upx~ ej involves a factor
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of (ux) p~5, and hence [V 2> ̂ -3] is contained in ÎÏÏIX(R) if (ux)p is in the

maximal ideal 971. But now let Us be the space where each adx,RAEj has

eigenvalue s • ciX. As y/ is an isomorphism, it maps Us isomorphically to Vs,

and we must have [U 2, U 3] contained in WIX(R). Let ß - (ßit) be the

family in F   suchthat lZtyußit — ciX in F .., for each i. Then the elements

xsßEj for fixed s and varying i are a basis of Us. But [U   2, U   3] contains

[x{p~2)ßEj, x{p-i)ßEj] = x{~5ß)ciXEi for each i. Since the rank of (cir) is m,

at least one ciX is nonzero in k and hence invertible, so [U 2, U 3] is not

in fflX(R). This contradiction shows that (ux)p is indeed invertible.

Now we suppose p = 3, with (of course) n > 1. We still know that

uxex, ... , uxem are a basis of the space Vx where the &dx,RAe¡) have eigenval-

ues ciX, and Lemma 3.2 also shows that uxu2ex, ... , uxu2em axe a basis of the

space Vx2 with eigenvalues ciX + cj2. Simple computation then shows that all

elements in [Vx, [Vx, Vx2]] and [Vx2, [Vx, VX2]] involve a factor of (ux) and

hence are contained in WIX(R) if (ux) is in the maximal ideal 971. Again

the spaces Ux and Ux2, where the Et have these eigenvalues, are mapped

to Vx and Vx2 by y/, and thus it suffices to show that [Ux, [Ux, Ux2]] and

[UX2, [Ux, Ux2]] axe not both contained in VJIX(R). Let y be the monomial

in x with all E¡(y) = cjX, and let z be the one with all E¡(z) = ciX + ci2.

Then the elements yE¡ and zE¡ axe in Ux and UX2, respectively. Computa-

tion gives [yEj, zEj = cj2yzEj, [yEj, [yEj, zE¡]] = ci2(c¡x + ci2)y2zEj, and

[zEj, [yEj, zEj]] = ci2ciXyz E¿. The elements y and z axe invertible. As be-

fore, some ci2 must be nonzero in k and hence invertible. If ciX for this i is

invertible, then [zE¡, [yEj, zEj]] is not in ÍÜIX(R) ; while if cn is not invert-

ible, then [yEj, [yEj, zEj]] is not in 9JIX(R). Thus again the contradiction

shows that (ux)p is invertible.   D

Lemma 3.4. There is an extension ring S (local and free of finite rank over

R) and an automorphism cp of B(S) preserving X(S) such that y/ ®R (id)5

modified by the automorphism induced by cp sends each E¡ to itself.

Proof. Suppose for the moment that we had each (ur)p = (yr)p for some values

yr in R. The yr must then all be invertible. Our original choice of the ur

required only that they be basis elements of certain eigenspaces, so we can

replace ur by (yr)~~ ur and assume (ur)p = 1 for all r. Lemma 3.1(2) shows us

that for 1 < i < m and 1 < 5 < n(i-), we can find various v¡s = f] ur s) with

ejvis) = àijyisvis ■ Ahe vis all still have pth powers equal to 1. Furthermore,

suitable monomials in them obviously give all possible families of eigenvalues,

and hence they are again generators of the algebra. There is an automorphism

cp of B(R) sending each v¡s to the corresponding original generator xis, and

on derivations this obviously carries each e¡ to E¡. Thus cp will induce an

automorphism of X(R), and if we modify y/ by this automorphism we will

have each E¡ sent to itself.



GENERALIZED WITT LIE ALGEBRAS 193

Of course a priori the values zr - (ur)p in R may not be pth powers. This

is where the extension enters. We let S be the ring

S = R[TX, ... ,Tn]l(Tp - zx, ... ,TPn - zn).

This is obviously a free i?-module. Reduced modulo 971 it gives an algebra

purely inseparable of height one over Ä/971. We know that these algebras are

all local, and hence S is also local. The monomials in ur ® 1 are still a basis of

B(S) and still have all the properties described in the earlier lemmas. But now

in S we have also forced each (ur)p to be a pth power, and the construction

of cp can be carried out over S.   D

4. Proof of Theorem C, part two: When y/ fixes the E¡

Lemma 4.1. With the hypotheses and notation of the previous section, suppose

also that y/(Ej) = E¡ for I < i < m. Then each y/((XjS)'Ej) is a multiple

of (Xjj'Ej. For each i and s, the multipliers as functions of t are invertible

constants o(t) with o(t + u) = a(t)o(u) for t±u.

Proof. Fix i and s, and for brevity write x for xis and y for y;j. Clearly y/

preserves the subspaces of X(R) where the ad^) have specified values, and

thus we have y/(xlEj) - x'^2o(t, j)Et for some constants a(t, j). Applying

yi to the equality [xtE¡, xuEj) = (u - t)yxt+uEj gives us

J2{ucr(t, i)o(u, j) - ta(u, i)a(t, j)}yx'+uEj

j

= J2(u - ')<*(' + u > J)yx!+uEr
j

Look first at the coefficients of E¡. We get o(t + u, i) — a(t, i)o(u, i) for all

t ^ u. We also have er(0, i) = 1 since by assumption y/(Ej = Et. For 0 ^ t

we have t ^ —t, and thus o(t, i)o(-t, i) = 1 and all o(t, i) axe invertible.

Now look at the o(t, j) with j ^ i. The conditions there are a(0, j) =

0 and (u - t)a(t + u, j) = uo(u, j) - to(t, j). Taking t and « to be 1

and p - 1, we get a(p - 1, j) = (p - l)cr( 1, j). In general it gives then

uo(u, j) = (u - l)o(u + I, j) + o(l, j), and downward induction on u shows

that o(u, j) = uo(l, j) for all u. Thus

y/(xEj) = x' | o(t, i)Ej + t£>(1, k)Ek 1.

Consider now any ; ^ i and choose any r < n(j). For brevity again set

y = xjr and ô = y. , so we have Ejy = Sy and Eky = 0 for k ^ ;'. We know

y/(yEj has the form y(lZrbrEr) for some constants br. The coefficient ¿> is

invertible, by the same argument as for o(l, i). We have 0 = [x'E¡, yEj] =

[y/(xlEj), y/(yEj]. When we work this out, we see that the coefficient of the
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x'yE.-term is ta(l, j)bja-b¡t ya(l, j). Since this expression must be zero for

t - 1 and t = 2, it is identically zero. But ¿>. is invertible, and hence o(l, j)

must be zero. But j was an arbitrary element different from i. Writing a(t)

for o(t, i), we have our result.   D

We now need the following cute little fact.

Lemma 4.2. Let o:A^B be a function from one abelian group to another, and

suppose a(t + u) = o(t) + o(u) for t ^ u. Then o is a homomorphism so long

as A has more than three elements.

Proof. For fixed t, choose v different from 0, t, and 2t. We have

o(2t + v) = o(2t) + o(v)

and also a(2t + v) = o(t + [t + v]) = a(t) + o(t + v) = a(t) + [a(t) + o(v)] =

2a(t) + a(v). Thus additivity holds also when t = u.   D

Lemma 4.3. Under the hypotheses of Lemma 4.1, there is an isomorphism of

B(R) of the form cp(xj = C¿Xj (with (C¡)p — 1) such that y/ modified by the

automorphism induced by cp preserves all the elements (xis)Ej.

Proof. Suppose first p > 5 . It follows then from Lemma 4.2 that each t >-> a(t)

is a homomorphism from Fp to the multiplicative group of R, and hence

a(t) — C for some £ = Çis with C,p = 1 . We define the automorphism by

cp(xis) — (C(i)_ xis. This preserves all Ei and thus induces an automorphism

of X(R), and we can modify y/ by it. After making that modification, we have

every y/((x¡s)'Ej) = (xls),E¡.

Now let p = 2S, and suppose first that m > 1, so there is some other 2?. ̂  E¡.

Let x(s) be the coefficient of xsE} in y/(xsEj. We have [x'E¡, xsEj] =

syxs+,Ej. Applying y/ to this and looking at the coefficient of xs+tEj, we find

that syo(t)x(s) = syx(s + t). We get four different equations from this by taking

5 and t equal to 1 and 2. As we know t(0) = 1 and a(2)o(l) = 1, they give us

x(s) = o(s) and a(2) = a(l) and then o(l) = 1, so again we get a(t) = lj

with C3 = 1 •

Finally, suppose p = 3 and m = 1 . We then have n(i) > 1. Choose z to

be another xir with r ^ s , and set X = yjr. We know that y/ maps x'zuE¡ to a

linear combination of various x'z"£ . Let c(t, u) be the coefficient of x'zuEj

in y/(x'zuE¡). We have [x'zuE¡, xvzwEj] = {(v -t)y + (w -u)X}xt+vzu+wEj.

Applying y/ to this and looking at the Ej-texm, we get

{(v - t)y + (w - u)X}c(t, u)c(v, w) = {(v - t)y + (w - u)X}c(t + v, u + w).

As y and X axe linearly independent over F3, we can conclude that

c(t, u)c(v , w) - c(t + v , u + w)

for (t, u) t¿ (v, w). As c(0, 0) is 1, we again know that all c(t, u) axe

invertible. Thus Lemma 4.2 shows that c is a homomorphism on F3 x F3, and

again o(t) = c(t, 0) = (' with (j = 1 .   D
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Lemma 4.4. Suppose y/ preserves every (xisf Et. Then y/ is the identity.

Proof. This is a simple induction. Suppose first that we have a nontrivial mono-

mial Xa involving only the variables xjX, ... , xt- s_x, and we know already that

y/ preserves xaEj. For i^O we have

[XaEl , (Xjj'Ej] = | tyis - Y, <*ir7ir j xa(XjjlEj.

As yiX, y(2, ... are independent over ¥p , the coefficient on the right here is

nonzero. Since y/ preserves the two entries on the left, it must then preserve

xa(xis)tEj. Thus it preserves XaEj whenever xa involves only the /-variables.

Now suppose inductively that y/ preserves xaEj whenever xa involves only

variables xks with k in a certain subset of {I, ... , m} (containing i ). Let j

be an index outside that subset, and let xß be a nontrivial monomial involv-

ing only variables of the form x- . We have E;x   — xxß for some nonzero
Jà J

x in k , and we must have y/(xa+ Ej = xa+ ¿ZcrEr for some constants cr.

We also have [xa+ßEj, x~ßEj] = -xxaEj, and by induction (and the pre-

vious paragraph) we know that y/ fixes XaEj and x    2¿ •.  Hence we have

[xa+ßJ2crEr, x~ßEj = -xxaEj. That is,

xaCj(-x)Ej - xaCjXEj + '^xacl.(-x)Er = -xxaEj.

r¥J

Comparing coefficients, we get c¡ = 1 and cr - 0 for r ^ i, j and -2c = 0.

Thus we have y/(xa+ßEt) = xa+ßEj.   D

Recall now (Lemma 2.4) that the pair (B, X) is derivation-isomorphic to

(A(k), W(k)). Thus the results of these last two sections can be summed up as

follows:

Proposition 4.5 (Weak Form of the Fundamental Theorem). Let R be a local

ring containing the algebraically closed field k, and let y/ be an element of

Aut(W)(R). Then there is an extension ring S (local and free of finite rank

over R) and an element tp o/Aut(¿, W)(S) having the same image as y/ in

Aixt(W)(S).    U

5. Proof of Theorem C, part three: Descent

In this section, the style of the argument changes heavily, as we use faithful

flatness arguments to deduce Theorem C from the weak form (Proposition 4.5)

together with Corollary 2.2. I have tried to give enough detail to make the

arguments very nearly self-contained.

Among the invertible linear maps from the algebra A(R) to itself, those that

are algebra isomorphisms are precisely those that satisfy certain equations on
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their matrix entries. As A(m, n) is defined over F , the equations have coeffi-

cients in F . This means that there is an F -algebra U0 (given essentially by im-

posing those equations on a set of variables) such that the elements of Aut(A)(R)

naturally correspond to the ¥p-algebra homomorphisms from U0 to R. (By

definition, this says that Aut(¿) is an affine group scheme [8, p. 5] defined

over ¥p .) Clearly there is similarly an F -algebra U2 such that Aut(W)(R) =

F -AlgHom(U2, R) for all Fp-algebras R. Since W(m,n) is a vector sub-

space of Der(¿(m, n)), it is similarly true that the elements of Aut(¿, W) axe

determined by equations, so Aut(¿, W)(R) = F -AlgHom(C/j, R) for some

¥p -algebra Ux.

We have a natural homomorphism from Aut(¿, W) to Aut(W). Yoneda's

Lemma [8, p. 6] says that this natural mapping is induced by a ring homomor-

phism from U2 to Ux, and that the natural mapping is bijective for all R iff

that ring homomorphism is an isomorphism.

Lemma 5.1. The mapping Aut(¿, W)(R) -> Aut(W)(R) is bijective for every

local R containing k.

Proof. Take any y/ in Aut(W)(R), and construct S and cp as in Proposition

4.5. There are two .R-algebra maps S —> S ®R S, sending s to i ® 1 and to

1 ® s . Using an ic-basis of S, it is easy to see that only elements of R have

the same image under both maps. We rephrase this symbolically as saying that

the sequence

0^R-+S=iS®RS

is exact. It follows that any homomorphism cp: Uj —> S that gives the same

values when composed with the two maps S =£ S ®R S must have values lying

in R. Thus we have a commutative diagram

0   -*    Aut(A,W)(R)    -»    Aut(A,W)(S)    =i   Aut(A, W)(S®R S)

I I I
0   ->      Aut(W)(R)      -»      Am(W)(S)      =T      Aut(W)(S®R S)

in which the rows are exact. In addition, we know by Corollary 2.2 that

the vertical maps are one-to-one. Our y/ in A\xt(W)(R) gives an image

y/s in A\xt(W)(S) which in turn has the same image under both maps into

A\xt(W)(S®R S). But we know that y/s in Aat(W)(S) comes from some cp in

Aut(¿, W)(S). The two images of that cp in Aut(¿, W)(S ®R S) give the

two images of y/s, and hence the two images of cp must be equal. Hence cp

actually comes from some cpR in the subgroup Aut(¿, W)(R). This tpR must

also give y/ , since it does so after the inclusion into Aut(¿, W) (S). As y/ was

arbitrary (though the construction of 5" depended on y/), we have shown that

Aut(¿, W)(R) -» Aut(W)(R) is bijective.   □

Lemma 5.2. The mapping Aut(¿ , W)(R) —> A\it(W)(R) is bijective for every R

containing k.

Proof. This is a quite similar argument. Given y/, we take a maximal ideal

M of R and form the localization RM, getting an automorphism  y/M of
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W(RM). By Lemma 5.1, there is some <pM in Aut(¿, W)(RM) giving y/M.

Now W(RM) and A(RM) are finitely generated modules; thus, when we write

out cpM in some basis, only finitely many denominators (all outside M ) will be

used, and we can find a common denominator outside M. Likewise, the fact

that cpM is an automorphism and yields y/M is a statement requiring the equal-

ity of finitely many entries in RM and needs only one suitable denominator. All

in all, then, we can find an element d(M) in R outside M such that the single-

denominator localization Rd,M) gives an element cpd,M) in Aut(¿, W)(Rd,Mj

yielding y/d,M) in Aat(W)(Rd,Mj . The collection of all these d(M) for various

M lies in no maximal ideal, so it generates the unit ideal of R . Consequently,

some finite subset {d(i)} of these denominators generates the unit ideal. Let

S be the .R-algebra fIRd,^ ■ Then we know that S contains an automorphism

cp — (cpduj of A(S) that yields y/s in Aixt(W)(S). The exact sequence

0^R^S=tS®RS

is valid again in this situation; this follows from the faithful flatness of the S

thus constructed (see, e.g., [8, 15.6]) and is also not hard to prove directly. The

argument in Lemma 5.1 now works exactly as before to show that y/ is in the

image of Aut(¿, W)(R).   o

Theorem C. The map Aut(¿, W)(R) —► Aat(W)(R) is an isomorphism for every

R.

Proof. The natural mapping Aut(¿, W) —► Aut(W) is induced by a ring ho-

momorphism from U2 to Ux. It is easy to see [8, p. 11] that the restriction of

that mapping to k-algebras corresponds to the base-extended homomorphism

U2®f   k —> Ux ®¥   k. As our natural mapping is bijective for A:-algebras, it
p p

follows that this fc-algebra homomorphism is an isomorphism. But then (just

by linear algebra) the ring homomorphism U2 —► Ux must be an isomorphism,

and consequently the natural mapping is bijective for all ¥p-algebras (= com-

mutative rings of characteristic p).   D

6. Relation to the derivations of W

Derivations are just special kinds of automorphisms, and so it is no surprise

that Theorem C quickly yields the following result, which was proved in a quite

different manner by Ree [6].

Proposition 6.1. Let k be any field of characteristic p > 3. The Lie algebra of

derivations of W(k) has dimension dim(W) + (n- m), and it is isomorphic to

the smallest restricted Lie subalgebra of Dexk(A(k)) containing W(k).

Proof. Inside Dexk(A(k)), the n-m derivations (Djp for 1 < i < m and

1 < 5 < n(i) axe easily seen to be independent modulo W(k). Thus the smallest

restricted algebra, W, has dimension at least dim( W) + n - m . It is a general

fact [2, Exercise 1.22] that [W, W] is contained in W, and it follows from

Proposition 2.1 that W then injects into the derivations of W. Hence it will
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suffice to show that the derivations of W form a space of dimension at most

dim(W) + n - m .

The derivations of an algebraic structure over k axe precisely the automor-

phisms over k[e]/e that reduce to the identity when we set e = 0. Thus by

Theorem C the derivations of W(k) are precisely the derivations of A(k) that

preserve W(k). The action involved is the adjoint action, so Dexk(W(k)) is

isomorphic to the subset of derivations d of A(k) for which [d, W(k)] ç

W(k).
To determine the dimension involved, we can pass to the algebraic closure

and thus assume k — k. Just to make the notation a bit easier, we can then

replace (A(k), W(k)) by (B(k), X(k)). It is clear from the definition that an

element E in X(k) is determined by the values E(xiX) for 1 < i < m, and

that these values in B(k) can be arbitrarily prescribed. For any derivation d

of B(k), we can thus find some E in W(k) agreeing with it on all xiX. If then

ad(d) maps X(k) to itself, the same is true of ad(d-E), and so we can restrict

our attention to the d with d(xiX) = 0. But then it is trivial to compute that

[d, Ej](xjx) = 0 for all i and j ; thus [d, E¡], being in X(k), must be zero

for all i. Clearly d will be determined by the values d(xis) = J2aca(i, s)xa

for 5 > 1, and we must have

£ca(i,*) Ea/;< x° = EAxis) = dEJxiS) = V*XX(*>s^a
a \   t / a

for all j. As the yJt for fixed j are independent, it is easy to see that each

d(Xjj must be a constant multiple of xis. Thus these d give at most n - m

extra dimensions.   D

Remark. By yet a different argument, Wilson [9, pp. 196-198] showed that this

proposition remains valid for p = 2. Thus there is still a close relation between

Aut(¿, W) and Aut(¿) in characteristic 2 (specifically, they are affine group

schemes with the same Lie algebra). One might hope that, as for p = 3, the

two may be isomorphic except for certain low-dimensional cases.

7. Proof of Theorems A and B

We consider now an algebraic structure that consists of a pair (¿0, WQ),

where ¿0 is a commutative algebra and WQ is a Lie subalgebra of derivations

of ¿0 . The automorphisms of the pair (A(R), W(R)) then are exactly the set

we have been calling Aut(¿, W)(R). Restating material from §1, we get

Lemma 7.1. The Witt-Ree algebras, viewed as pairs (¿0, WQ), are precisely the

twisted forms of the pairs (A(m, n), W(m, n)).    D

Theorem A. Say chax(k) > 3. If W is any Lie algebra over k for which

W ®k k is isomorphic to some W(m, n), then W is isomorphic to some Witt-

Ree algebra (except when dim(W) = 3).

Proof. We continue to use the notations A and W . We need to recall the basic

nature (though none of the details) of faithfully flat descent theory [8, §V]. Use
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the isomorphism to identify W0 with a subset of W(k). It is then determined as

the set of elements ¿ZWj®c¡ inside W(k) = W(k)®k k satisfying an equation

of the form cpÇffJwi®cl®l) = 1£iWj®l®ci,vthexe cp is in Aixt(W)(k®k k).

This cp satisfies a "cocycle condition", an equation relating its three images

in Awt(W)(k ®k k ®k k), and conversely every such cocycle gives a twisted

form. Thus we have described the twisted forms in a way that mentions only

the automorphisms of W over various rings. But of course we can do the same

thing to find the twisted forms of the pair (A, W). Theorem C tells us that the

homomorphism Aut(¿, W) —► A\xt(W) is an isomorphism for every ring. Thus

every cocycle for W actually comes from a cocycle for (A, W), and hence the

twisted forms of W all arise from twisted forms of (A, W). Lemma 7.1 tells

us that these are the Witt-Ree algebras.   D

Theorem B. For char(rc) > 3, all isomorphisms between Witt-Ree algebras (of

dimension > 3) are derivation isomorphisms.

Proof. If two Witt-Ree algebras are isomorphic, they certainly are twisted forms

of the same W(m, n). The descent theory tells us that if cp and y/ axe cocy-

cles, then the isomorphisms between the corresponding twisted forms (viewed

as subsets of W(k)) axe given by those X e Aut(W)(k) which in a suitable way

intertwine cp and y/ . As in the previous proof, these X must come from auto-

morphisms of (A, W) satisfying the same condition; that is, they correspond

to isomorphisms of the twisted forms of (A, W).   D

Corollary 7.2. Let E be a purely inseparable field extension, and let W0 and

Wx be two Witt-Ree algebras on E. Then they are not isomorphic unless they

coincide.

Proof. The uniqueness in Wilson's theorem shows that they cannot be isomor-

phic unless they are twisted forms of the same algebra. They then cannot be

isomorphic if they are distinct, since there are no algebra automorphisms of

E.   D

Theorem B implies in particular that each Witt-Ree algebra uniquely deter-

mines the isomorphism type of the algebra ¿0 on which it acts. For the original

Witt algebras, there is actually a one-to-one correspondence between forms of

W and forms of A ; this is an immediate consequence of the fact that we have

Aut(¿, W) = Aut(¿). But this correspondence no longer holds for more gen-

eral Witt-Ree algebras, even if we make the obvious restriction that they should

be of the same type (m, n). Indeed, on any inseparable field extension E of

dimension p2 it is easy to construct distinct Witt-Ree algebras of type (1, {2}),

and Corollary 7.2 shows that they are not isomorphic.

Corollary 7.3. Let E be a purely inseparable field extension, and let W0 be a

Witt-Ree algebra on E. Then WQ has no nontrivial automorphisms.   D

This result was proved by Ree [5, 12.2] for the case m — 1 .
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