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WEIGHTED SOBOLEV-POINCARÉ INEQUALITIES
AND POINTWISE ESTIMATES FOR A CLASS

OF DEGENERATE ELLIPTIC EQUATIONS

BRUNO FRANCHI

Abstract. In this paper we prove a Sobolev-Poincaré inequality for a class

of function spaces associated with some degenerate elliptic equations. These

estimates provide us with the basic tool to prove an invariant Harnack inequality

for weak positive solutions. In addition, Holder regularity of the weak solutions

follows in a standard way.

1

Let Sf = YJl ,=i 9j(ajjdj) be a second-order degenerate elliptic operator in

divergence form with measurable coefficients. In this paper we shall obtain

pointwise estimates for the weak solutions of Sfu — 0 (Holder continuity of

the weak solutions and Harnack inequality for nonnegative solutions).

Let us recall that the original results for elliptic operators were obtained by

De Giorgi, Nash, and Moser. An extensive bibliography about the degenerate

case can be found in [FL1, FL2, FS].

To introduce the results of the present paper, let us recall some recent results.

In [FL1, FL2] a suitable metric d is associated with the differential operator

Sf in such a way that we obtain a new geometry which is natural for the de-

generate operator as the Euclidean geometry is natural for the Laplace operator

(or, more precisely, as a suitable Riemannian geometry is natural for a second-

order elliptic operator). In the smooth case, this idea is contained in many

papers: we refer to [FP, NSW]. The basic results in [FL1, FL2] are obtained via

a precise description of this geometry under suitable technical hypotheses on the

coefficients whose aim is to give a nonsmooth formulation of the Hörmander

hypoellipticity condition for sum-of-squares operators. We note that the same

idea is used in [NSW, S, J, V] to obtain pointwise estimates for sum-of-squares

operators. On the other hand, a different class of degenerate elliptic operators

is considered in [FKS]: instead of a geometrical degeneracy, a measure degener-

acy is allowed. A typical example of this class is given by Sfu - div(œ(x)Vu),

where co is a weight function belonging to the ^2-class of Muckenhoupt. Uni-

fied results for a class containing both the operators in [FL1] and in [FKS] have
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been recently proved in [FS]. In addition, classes of operators which somehow

are intermediate have been considered in [CW1, CW2, CRS].

In the present paper, we assume that the quadratic form of Sf is equivalent
n ") 1

to the diagonal form co(x) £V=1 Xj(x)¿¡j , where the A. 's are Lipschitz contin-

uous nonnegative functions and co is an ^2-weight function with respect to

the balls of the metric d associated with the vector fields Xxdx, ... , Xndn . For

precise definitions, we refer to §2. In addition, we assume that there exists a

nice family of integral curves of these vector fields starting from an arbitrary

point x. More precisely, we suppose that, if Çx, ... , ¡t,n are real parameters

bounded away from zero, then the integral curve t —> exp^^ tt\ A jd j does not

approach the coordinate hyperplanes centered at x too fast (i.e., faster than the

sides of a family of «-intervals which are equivalent to the ¿/-balls). An analytic

formulation of this hypothesis is contained in (H.4): we note that this condition

is satisfied in the case considered in [FL1, FL2, FS]. On the other hand, in §6

we shall give some sufficient analytic conditions such that (H.4) holds, showing

the class considered here is very large and contains many different kinds of de-

generation. In some sense, the present results are related more to the results in

[FL3] where a noninvariant Harnack inequality is proved for a large class of de-

generate operators. It is possible to prove that if co = 1, then hypothesis (H.4)

implies that a sub-Riemannian structure in the sense of [FL3] is associated with

the operator. In the present paper, however, quantitative estimates are obtained

in such a way that an invariant Harnack inequality and hence Holder regular-

ity follows. We note that in some particular cases our results partially overlap

with those in [CW1, CW2, CRS]. Moreover, in the case n = 2 and we 1,

recently Xu [X] has proved similar pointwise estimates. Finally, let us note that

some related results have been obtained by different techniques by Kusuoka and

Stroock (see [KuS] and previous papers quoted therein).

Following the Moser iteration technique, the crucial point of our proof is

to obtain a weighted Sobolev-Poincaré inequality. To this end we show that

if ß e (0, 1) is fixed, it is possible to find a family of deformed quasi-balls

such that a large part of these balls is attained by our integral curves. The

meaning of 'large part' is that the measure of the region which we can reach by

our integral curves is at least ß times the measure of the deformed quasi-ball.

Successively a careful control of the constants and a geometric result due to

Kohn and Jerison enables us to obtain our result. Once the Sovolev-Poincaré

inequality is obtained, the proof can be carried out in the same way as in [FS].

2

Let ii be a bounded open subset of M." and let Sf be the second-order

differential operator in fl defined in the following way:

',7 = 1

where a - — aj¡ are real bounded measurable functions for i, j — I, ... , n.
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We will denote by A = A(x) the matrix of the coefficients ai} .

In the sequel we will assume the following hypotheses are satisfied:

(H.l) There exists v e (0, 1) such that

uco(x)YjX)(x)e] < ¿ atj(x)^j < lco(x)J2*2j(x)Z2j
7=1 ¿,7=1 7=1

for any x^eflxl", where

(H.2) Xx, ... , Xn are bounded nonnegative Lipschitz continuous functions

in a neighbourhood of Q.

(H.3) The distance d associated with the vector fields Xxdx, ... , Xndn in the

sense of Fefferman and Phong (see [FP, FL1], and Definition 2.1 below) is finite

in Q and the function co is an A2-weight function with respect to the distance

d, i.e.

mbñL.AJ(y}dy- (mbriLA'^'"")ic-2
for any xefl and r e (0, p0], where p0 is a fixed suitable positive number,

and B(x, r) denotes the ball of center x and radius r with respect to the

metric d . Here \E\ denotes the Lebesgue measure of the subset E of Rn .

In what follows, if E is an L-measurable subset of E", we will denote by

co(E) the w-measure of E, i.e., co(E) = JE co(y) dy .

A precise definition of the above distance d will be given in the sequel,

together with a basic property (the so-called doubling property) giving a precise

sense to (H.3).

A further hypothesis on the vector fields Xxdx, ... , Xndn will be specified

later (H.4): roughly speaking, we will require that some nice family of optimal

curve exists.

Let us now recall some definitions.

Definition 2.1. We will say that an absolutely continuous curve y: [0, T] —► Í2

is a subunit curve (with respect to Xxdx, ... , Xndn) if

(y'(t),Z)2<¿2¿2j(y(t))Z2j
7 = 1

for any ^el" and for a.e. t e [0, T].

If x, y e Q, we will put d(x,y) = inf{T > 0 such that there exists a

subunit curve y: [0, T] -* Q, such that y(0) = x and y(T) = y} . We will say

that d(x, y) - oo if the above set is empty.

Clearly, by hypothesis (H.3), d is a metric on Q ; moreover, since we are

looking for local properties of the operator Sf, we may suppose that Xx,... ,Xn

are defined on all of M." .
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For the sake of simplicity, we will denote by X the vector-valued function X —

(Xx,... , Xn), by VA the vector-valued differential operator (Xxdx, ... , Xndn),

and by divA the differential operator acting on vector-valued functions / —

t/i./„) as

1=1

Moreover, without loss of generality, we may suppose Xx = 1, since at least one

of the vector fields Xxdx, ... , Xndn is different from zero in a neighbourhood

of a given point.

In the sequel we will denote by L a positive constant such that

(2.1) \X(x) -X(y)\ < L\x -y\   Vx.yel".

Definition 2.2. Let x eR" and r > 0 be fixed. Put

Cj(x, r) = {Uj(t),0<t<r, where u = (ux, ... , un)

is any subunit curve such that u(0) = x}

fox j =1, ... ,n.

It is easy to verify that Cj(x, r) is a compact interval containing x, , the

jth component of x, fox j = I, ... , n . Now we can put

Ak(x,r)=    max   Xk(sx, ... , sn).
SjKzL-j(X , r)

Remark. It follows from Definitions 2.1 and 2.2 that Aj(x, r) > 0 for r > 0 if

the distance d is continuous with respect to the Euclidean topology. We note

also that, if r < (2L)~X,

Ak(x,r)>       max      Xk(sx,... , xk,..., s ) > jAk(x, r).
SjeCj(x,r),j^k   K    l K n        l    k

Indeed, the first inequality is obvious; on the other hand, if s e C(x, r),

j = 1, ... , n , there exists a subunit curve y such that y(0) = x and yk(i) — sk

for a suitable t < r. Hence

Xk(sx,... ,sn)< Xk(sx,... ,xk, ... ,sn) + L\yk(t) - xtk\

—    k^\ ' " " " ' ^k '

—    fc\  1 ' ■ ■ • ' •*/£ '

<Xk(sx,... ,xk,... ,sn) + LtAk(x,t),

.sn) + L I \y'k(s)\ds
JO

,sn) + L i'xk(y(s))ds
JO

so that

Ak(x,r)<       max       Xk(sx, ... , xk, ... , s) + LrAk(x, r),
sJ€CJ(x,r),jiik

and the assertion follows.



SOBOLEV-POINCARÉ INEQUALITIES AND DEGENERATE ELLIPTIC EQUATIONS 129

If x e Rn and r > 0, denote by Q(x, r) the «-dimensional open interval

n

Q(x, r) = Y\(xk - rAk(x,r),xk + rAk(x, r)).
k=l

We will prove that these intervals are equivalent to the metric balls in the fol-

lowing sense.

Theorem 2.3. Suppose Ak(x, r) > 0 for any x e Rn , r > 0, and k - 1, ... , n .

Then there exists a positive contant b such that

Q(x,r)DB(x,r)DQ(x,r/b)

for every x and r, r e (0, r0], where b and r0 depend only on « and L.

Proof. Let y belong to B(x, r). If k is fixed, there exists a subunit curve

y:[0,T]^Rn suchthat y(0) = x , y(T)=y, 7" <r, so that

\xk-yk\<[   \y'k(t)\dt<[  Xk(y(t))dt<TAk(x,T)<rAk(x,r),
Jo Jo

and the first inclusion is proved. The proof of the second inclusion is a little bit

more complicated. To prove it, let us prove some preliminary results (which in

turn will be helpful in what follows).

(2.3.1) For fixed x and r e (0, r0] it is possible to renumber the variables (in

general the permutation depends on x and r) in such a way that

(i) Ax(x,r)>A2(x,r)>--->An(x,r),

(ii) Ak(x,r) < 2A*(x, r) = rnax.SjeCj{Xyr)J<kXk(sx,..., xk, ... , xj .

Renumber the variables and the indices in such a way that (i) is satisfied. If

Sj e Cj(x, r) for j = 1,...,«, we have

n

Xk(sx ,...,sn)< Xk(sx ,...,xk,...,xn) + LYJ\sl- Xj\.
i=k

On the other hand, if z > k is fixed, there exists a subunit curve y starting

from x and such that y¡(t) = s¡ for a suitable t < r,

WO-■*/!< / Xj(y(s))ds<tAj(x,t)
Jo

so that

n

Xk(sx,... ,sn)<Xk(sx>... ,xk,... , xn) + L^rAj(x, r)
i=k

<Xk(sx, ... , xk, ... , xn) + L(n - k + l)rAk(x, r)

and hence

Ak(x, r) < A*k(x, r) + L(n - k + l)rAk(x, r).

If r< l/(2Ln), (ii) follows.
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We are now able to prove our second inclusion. Let x and r be fixed and

let us renumber the variables as in (2.3.1). For the sake of simplicity the proof

will be carried out in the case « = 3 .

Let Tx, W~xe Cx(x, r) and o^e C2(x, r) suchthat X2(s~¡, x2, xj - A*2(x, r)

and Xz{a[, W2, xj) = A*3(x, r). By definition there exists a subunit curve h

such that h(0) = x , hx (tj) - s^, with 0 < t0 < r. An analogous assertion holds

for fjj. Thus

(2.3.2) |J^" — Xj | < r   and   \o\ - xx \ < r.

In addition, there exists a suitable subunit curve h such that h(0) - x , h2(t0) =

a^ with 0 < tQ < r. We have:

f'°
(2.3.3) \o2 - x2\ = \h2(tj) - x2\ < /   X2(h(s)) ds < t0A2(x, tj)

Jo
< rA2(x, r) < 2rA*2(x, r).

Now let y belong to Q(x, r) ; suppose v > Xj for j = 1, 2, 3 (otherwise

the proof will be modified in an obvious way). In order to prove that d(x, y) <

br, we will use a technique employed in previous works (see, e.g., [FL1, FL2]).

We will construct a piecewise linear curve from x to y by using integral curves

of the vector fields ±AT = ±X <9, j = 1, 2, 3 , in the following way:

(1) from (xx, x2, xj to (s~¡, x2, xj along ±XX,

(2) from (s~¡,x2,xj to (sl~,o2~,xj) along ±X2,

(3) from (T¡", ?!J, x3) to {ïï[, W2, xj) along ±XX,

(4) from (ä~x,äl,xj to (W¡, ~ä~2, yj along X3,

(5) from (W¡,a¡,yj) to (57,rj¡,y3) along ±XX,

(6) from (s¡,o¡,y3) to (s~x,y2,y3) along ±X2,

(7) from (s¡,y2,y3) to (yx,y2,yj along ±XX.

Now we must prove that the length of each of the above arcs (i.e., the time

required along integral curves) can be estimated by an absolute constant times

the radius r. By (2.3.2) and (2.3.3), the length of the arc (1) is less than or

equal to r, whereas the lengths of the arcs (3), (5), and (7) are less than or

equal to 2r.

Let us now estimate the length of the arcs (2) and (6). We will estimate the

length of an integral curve of ±X2 from (Tx, z2, zj to (J[, ?JJ, zj) where

\z2 - x2\ < rA2(x, r) and |z3 - xj\ < rA3(x, r). Suppose, e.g., ?fj > z2. Let

q> be the solution of the Cauchy problem

V =X2(TX, p,z3),

9(0) = zv
Clearly the curve t —► (s^, <p(t), zj is a subunit curve. In addition, let us note

that A2(Jj\ z2, zj > 0. Indeed, by (i) and (ii),

> A*2(x, r) - LrA2(x, r) - LrA3(x, r)

> ^A2(x, r) - 2LrA2(x, r) > ±A2(x, r)
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if r < 1/8L. Hence, since tp > 0,

<p(t)-z2= / X2(Tx,<p(s),zjds> /  X2(TX, z2, zjds-Lt(<p(t)-z2)
Jo Jo
t_

4
Then, if t < 1,

>-A2(x, r) - Lt((p(t) - zj.

<p(t) - z2>       l      A2(x, r)
4(1+ L)2'

and hence <p([0, 1]) 2 [z2, z2 + A2(x, r)/4(l + L)].   Since 0 < o^ - z2 <

\al-x2\ + \x2-z2\ < 2rA2(x, r), provided rQ < 1/8(1+L) we get crj e <p([0, 1])

and hence d^ = <p(tj for a suitable t0 e [0, 1]. On the other hand

t
2rA2(x ,r)>o2-z2 = <p(tj) -z2> 4„ "     A2(x, r)

and hence t0 < 8( 1 + L)r. This remark enables us to estimate the length of arcs

(2) and (6).

Finally, the estimate of the length of arc (4) is easier. In fact, let us consider

the solution <p of the Cauchy problem

<p' =X2(W¡,a¡, ç>),

<P(0)  = Xy

Clearly the curve t -+ (JTX, o^, <p(t)) is a subunit curve. Moreover, let us note

that X2(~ö\, ö^, <p(t)) > 0. Arguing as above, if t < 1, we get

<P(t)-x3> j—^A3(x,r)

and hence <p([0, 1]) D [x3, x3 + A3(x, r)/(l + L)]. Thus there exists t0 e

(0,1) such that y3 = <p(tQ) with t0 < r(\ + L). Thus we have obtained an

estimate of the length of arc (4) and hence we have proved our assertion with

ô=17(l+L) + 7.   D

Remark. Let x, y be given and put r = d(x, y). By the above result, y e

Q(x, 2r) and y £ Q(x, r/2b). Hence there exists k e {I, ... , n} such that

\yk - xk\ > Fk(x, r/2b), where Fk(x, t) denotes the function t \~* tAk(x, t).

Thus,
n

r<2bFk-x(x,\yk-xk\)<2b'£Fjx(x,\yj-xj).

7=1

On the other hand, |y - x-\ < Fj(x ,2r) for j = 1,..., n and hence

1    "
r*2n-l2FJ~ (x>\yj-xj\

Hence we have proved that

J_
2«

2«
7=1

±-j^Fjx(x,\yj-xj)<d(x,y)<2bJ2Fjx(x,\yj-xj).
7=1 7=1
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We are now able to formulate our main hypothesis. We will suppose that:

(H.4) For any x0 e Rn there exists a neighbourhood U of x0 such that,

if 0 < e   < |£.| < 1  for j = 1, ... , « and if we denote by H(-, x,Ç) =

(//,(•■•), ... ,Hn(---)) the integral curve of the vector field £xXxdx-\-^nXndn

starting from x, we have

To
Xj(H(s,x,Ç))ds> Cj(ex,..., en)tA(x, t)

'0

for j — 1,...,«, where  C   is independent of t e (0, t0], x e U, and

ien;.ity,i].
In what follows we shall denote by e the vector (e1, ... , en), by A the

«-interval n"=i[«y, 1], and we shall put C = (|{,|,..., |£J).
In the sequel, we will explain more explicitly the meaning of the above hy-

pothesis and we will give some examples, but let us first prove some conse-

quences of our hypotheses.

Proposition 2.4. The functions t —> Xj(H(t, x, £)) are locally uniformly A^-

weight functions for j = I, ..., n, i.e., for any j = I, ..., n there exists Pj > 1

and Cj(e) > 0 such that

±j\j(H(s,x,&)dsy(jj\J(H(s,x,!i))-l/(pJ-l)dsy    <Cj(e)

for 0<t<t0, xeU, (|^|,...,K„|)GA£.

Proof. Note first that t —► H(t/y/h~, x, Ç) is a subunit curve starting from x.

If n > 0 is fixed we have

\ fxj(H(s,x,Ç)j+'ds = -±= f "X(H(slVn~,x,ti)j+r,ds
t Jo   J Wn Jo       J

<Aj(x,t)"-^=^ nXj(H(s/Vh-,x,Z))ds

< CAe)-"-^ f nUH(s/Vn~,x,c:))ds
1 tyjn Jo        J

1+1

-tj Xj(H(s,x,Z))ds

= Cje)-n(jj\jH(s,x,t;))ds

and hence t —> XjH(t, x, Ç)) satisfies a reverse Holder inequality with con-

stants depending only on e. Then the assertion follows from standard results

about ^-classes [GR, IV, Corollary 2.13].   D

Now, since A -weights give doubling measures [GR, IV, Corollary 2.13],

we get
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Proposition 2.5. There exists a positive absolute constant c such that, if t e

(0, t0] and x e U, then

Ak(x, 2r) < cAk(x, r)

for k = 1, ... , « . In particular, Ak(x, r) > 0 if r> 0, k = 1,...,« .

Proof. Let £, be fixed such that |£| < 1. Then t >->• X(H(t, x, £)) is a subunit

curve and hence, putting Ck(Z) = Ck(\Çx\, ... ,\Çn\), we have

Ak(x,2r)<j£^rJorXk(H(s,x,Z))ds<^£xk(H(s,x,t))ds

<C'(tl)Ak(x,r).   D

The doubling property of functions Ak combined with Theorem 2.3 gives

us the basic property of the metric d : the metric space (Rn , d, dx) is a space

of homogeneous type. Here dx denotes the Lebesgue measure.

Theorem 2.6. There exist two absolute constants A, B > 0 such that

\B(x, 2r)\ < A\B(x, r)\   and   \Q(x, lr)\ < B\Q(x, r)\

for every x belonging to a compact subset of R" and for r e (0, r0].

The proof is straightforward.

Remark 1. A theory of A -weights in spaces of homogeneous type was devel-

oped by A. P. Calderón in [C]. Thus the above theorem gives a precise sense to

hypothesis (H.3).

Remark 2. An easy consequence of Proposition 2.5 and Theorem 2.6 is that

there exist positive absolute constants ax, ... ,an, kx, ... ,kn,k and a such

that

Aj(x,tr)>kjf'Aj(x,r)   for ; = 1, ... , «   and   \B(x, tr)\ > kf\B(x, r)\

for x belonging to a compact subset of E", / e (0,1), and r e (0, rj\.

In particular, there exist suitable absolute positive constants kx, ... ,kn such

that, in a compact neighbourhood of Q, A.(jc, t) > kjf>  for j = 1, ... , «

and te(0, 1).

Remark 3. Since t -* H(t/y/h~, x, Ç) is a subunit curve starting from x for

any Ç such that |£| < 1 for j = 1,...,«, by the doubling property of

Ak there exists an absolute constant ct > 0 such that, for this choice of £,

Xj(H(t ,*,£))< c,Aj(x ,t) for j= 1,...,« .

Remark 4. From Remark 2, Fjx(x, t) <Kjtxl{a'+X) for t small. Hence, taking

into account the Remark after Theorem 2.3, we obtain

the distance d is Holder continuous with respect to the euclidean metric.
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In particular, the topology of d is equivalent to the euclidean topology.

Hence when quantitative estimates are not involved, we can talk about 'close

points' without further specifications.

In this section, we will obtain basic properties of the integral curves H(t,x,¿¡)

which we will use in the following.  First, let us note that the function ¿f ->

H(t, x, £) gives nice 'polar coordinates' in a part of the ball B(x, t).

Proposition 3.1. Let x0 be fixed. There exists a neighbourhood U of x0 such

that, if ex, ... , en are real positive constants and e < 1 for j = 1, ... , n,

then, putting e = (ex, ..., en), there exist positive constants c*(e), c**(e), t0(e)

depending on e and c*** > 0, such that, if x e U, ¿;* = (\£x |, ... , \¿¡n\) e A£,

and 0 < t < tQ(e0),

(i) the map £, -> H(t, x, £) is injective;

(ii)   c***\Q(x, 0| > |detf (t, x, 01 > c*(e)\Q(x, t)\ ;
(iii)   ct > \H(t, x, Aj\/\Q(x, t)\ > c**(e), where ct  has been defined in

Remark 3 after Theorem 2.6.

Proof. For the sake of simplicity we will carry out the proof supposing X- is a

continuously differentiable function for j - 1,...,« . The result in the general

case will be obtained in the same way when derivatives are replaced by finite

differences. We note that H is Lipschitz continuous with respect to Ç, so that

the derivatives in (ii) exist a.e.

Thus suppose L > sup \dkXj for all j, k . It is well known that

?£-(t,x,Ç)= fj(H(s,x,Z),Z)?£-ds
OQk Jo oc,k

+ / Xk(H(s,x,t;))ds ek,
Jo

where ek - (0, ... , 1, ... , 0) and J(p, £),-,■ = djX¡(p)Cj. In particular, if

t0 < 1, there exists c, (L) such that

dHt.       ^
5C(í,*,í) ^0

<cAL) /  XJH(s,x,i))ds.

Moreover, without loss of generality, we may suppose Ç. > 0 for j

1, ... , «.

Let us now consider the matrix

D = D(t,x,Z,ci) = t—(t,x,t]) — (t,x,c:),
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where C , £,'* belong to Ae. We have

„        I dH, „/,   OH, „,

= ljtJ(H(s,x,t),Z')^ds,jtJ(H(s,x,i)ti)^ds\

+ j\jH(s,x,ci))ds- j^J(H(s,x,è:'),ï)^,e}jds

+ j\j(H(s,x,t;'))ds- Nj(H(s,x,i),H)^,e\ds

+ Sjj j' Xj(H(s, x, £')) ds ■ j' XjH(s, x, ¿)) ds

= au(t, x, f, {') + Sjj J'Xj(H(s, x, ¿))ds ■ f XjH(s, x, Ç))ds.

note that
rt ß zj M r) M

J  J(H(s,x,ï),è:')0—ds, j J(H(s,x,Q,0^-ds

<   fJ(H(s,x,H '),i')|? ds   f J(H(s,x,i),^ds
Jo CQi        Jo vÇj

-7:ifK

Now we note that

< c2(L)t2 j Xj(H(s,x,Z))ds- j Xj(H(s,x,Ç)) ds

<c3(L)t4Aj(x,t)Aj(x,t),

by Remark 3 after Theorem 2.6. An analogous argument shows that the second

(and the third) term in aij can be estimated by c4(L)t3A¡(x, t)A(x, t).

Now, if n e Rn and x e U, then

E DuWj = E %■(• • • )n,fij+E *? f w. *. í'))ds

Jo

> -c5(L)t3^Aj(x, t)Aj(x, n^^ + j^Cj^A^x, t)n]
i, j i

= -c5(L)t} \TAAx, t)n)   +c6(e)t2J£A*(x, t)n2

> (c6(e) - (-c5(L))nt)t2J2*2,(x,t)n2 > C-^lt2^A2(x, t)n]

if f0(e) is sufficiently small.
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Suppose now H(t, x,Çx) - H(t, x, Çj ; obviously the coordinates of Çx

and t\2 have the same sign and hence belong to the same convex component of

the domain of the points £ . Hence we have

0 = (fí(t, x, {,) -H(t, x, í2), |^(i, x, {,)«[, -i2)\

= /o1(^|(í,x,^ + ^1-^))(^1-^2),^|(í,x,^)(^-^2)^5

/Jo
(/)(/, x.^ + í^-Íj), {,)({,-^.(i,-^))^

and hence £t = £2 since A2(x, t) > 0 for any t > 0. Thus (i) is proved.

In addition, the same argument shows that, if we denote by A(x, t) the

matrix whose entries are given by <5, A;(x, t), then

D(t,x,Ç,c:)>c6(e)t2A2(x,t)/2,

such that a min-max argument shows that

,    uH, _.
det-^(t,x,0 = VdetD > c7(e)tn detA(x, t) = cs(e)\Q(x, t)\.

Hence it is enough to choose c*(e) = cg(e). Since the upper estimate for the

quadratic form of D is quite obvious, assertion (ii) is proved.   D

We are now able to prove our main results. To this end, we need to show that

it is possible to cover a sufficiently large part of a given ball by integral curves

starting from the center. In fact, we are able to prove this result when the ball

is replaced by a deformed one, where the deformation parameters depend on

how large the part we will attain is. The proof requires a careful control of the

constants. Let us begin with some technical preliminaries.

Lemma 4.1. Denote by F = FAx, t) the functions Fj(x, t) - tA-(x, t), j -

l,...,n. Let xQ and a — (ox,...,oj e {-1,1}" be fixed. For any

fixed 6 e (0,1) there exist e(6) > 0, c(6) > 0, and t(9) > 0 such that

for any t e (0, t(6)) and x close to x0, there exist 2« positive constants

cx(x, t, 6),... , cn(x, t, 6), ex(x, t, 9),... , en(x, t, 9) such that:

(i) If GjPj e [9Fjx, Cj(x, t, 9)t), Fj(x, Cj(x, t, 9)t)], j = I, ... , n, and

Oj£je[ej(x, t,9),l], then

op
ei(x,t,9)<—.-i-J-<i   forj= I, ... , «.
jK '- tiXj(H(s,x,{))ds

(ii) Sj(x, t, 9)> e(9) for j = 1, ... ,n
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(iii) 1 > Cj(x,t,9)> c(9) for j =1, ... ,n.

(iv) Put ay = (oxyx,..., onyn); if

n

oy e Y[[Xj + 9Fj(x,Cj(x,t, 9))t, x} + Fj(x, Cj(x, t, 9))],

7 = 1

then there exists Ç such that e (x, t, 9) < Oj^j < 1 for j = 1, ... , « and

H(t ,x,Ç)=y. The point Ç is unique by Proposition 3.1.

Proof. First, we note that we can reduce ourselves to the case cr = (l,...,l).

In fact if x is fixed, denote by Tx g the mapping y -» (xx + ox(yx - xx), ... ,

xn + aÁyn - ■*«)) and Put ¿fa) = *j(Tx,<,(y)) ■ If we sti11 denote by Q*,

H*, ... the new objects we obtain by replacing A by X* in the definition of

Q, H, ... , we get

Q(x, t) = Q*(x, t),       H(t,x,Ç) = Xj + Oj(Hj(t,x, oQ-Sj,

and

Xj(HJ(s,x,^)) = Xj(Hj(s,x,o-x)).

Hence, in what follows, we may suppose o = (1,... , 1).

Let / = (ix, ... , in) be a permutation of {1, ... , «} such that z, = 1.

Let us consider the positive real numbers e(I, I, 6), ..., e(I, n, 6) defined as

follows:

e(I,l,9) = 9,        e(I,k+l,9) = 9^(^CjkJe*(I,k,9))y'   \

k — I, ... , n- I,

where Cx, ... , Cn axe the constants of hypothesis (H.4) relative to the neigh-

bourhood U of x0, c, has been defined in Remark 3 after Theorem 2.6,

and kx,... ,kn, ax, ... , an are the constants of Remark 2 after Theorem 2.6.

Finally the vector e*(I, k, 6) = (e*x(I, k, 9),... , e*n(I, k, 9)) is defined as
follows:

*      . ( e(I, j, 9) if i = i,; for j < k,
e*(I,k,9) = I   v ' J

y I/n otherwise.

Now we put

k(9)=        min        minC (s*(I, k - 1, 9)).
/=(/,,...,/„),i,=l   k     '*

The first choice of t(9) is the following one: put

A = max sup A, (x, t) < oo ;
k    x,t<l

then we will assume that

(t(9)Ljp]+x - 1     2f(fl)A [a,.]+i       1
2cj(9)nL— _ t-+ —£— max{L '    } < ^k(9)

for j = 1,...,« . Here [x] denotes the integral part of x. Without loss of

generality, we may suppose c, > 1.
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Now let t < t(9) be fixed and let I = I(t, x) - (ix, ... , in) be a permutation

of {1, ... , «} such that i, = 1 and

Aj(x,t)>Aj(x,t)>--->Aj (x,t).
1 2 n

Put

Ej (x, t, 9) = e(I(x, t), k, 9)   for k = 1,...,«,

cx(x,t,9) = l,       Cj   (x,t,9) = \Cj   (e*(I(x,t),k,9))
k+l lk+\

for k — 1,...,«- 1.

Without loss of generality, we may suppose ck(x, t, 9) < I, k = I, ... , n .

In order to prove (i), by an induction argument let us prove first that for

any positive integer m, fox j = 2, ... , n, and for er(x, t, 9) < £r < 1 for

r = I, ... , n we have

(4.1.1)       ['Xj(H(s,x,c;))ds
Jo    '

>[Cjje*(I(x,t),j-l,9))

- 2tnctL(l + tLij + ■■■ + (tLijm~x)]tAj (x, t)

_^r^r-xYdfdsiSdo\Xl(H(o,x,c:))
f^jJo      Jo

-Xik(H(o,x,C(x,t,j)))\,

where

C = C(x,t,j) = (Cx(x,t,j),...,Cn(x,t,j))

is defined as follows:

.,      f f,-       if r = i  foxp<j,
tr(x,t,j) = \    ' p

\\ l/n   otherwise.

We note that, if r = ip for some p < j, then r - i for some p <

j - 1, so that Ç(x,t,j) = ^ and e*(I(x,t),j-\,6) = e(I(t,x),p,9) =

e, (t,x,6) = er(x,t,9) and hence Cr(x, t, j) > e*(I(x,t),j-l,9). Oth-
P

erwise, ¿¡*(x, t,j) = l/n = e*(I(x, t), j: - 1, 9), so that

Cr(x,t,j)>e*r(I(x,t),j-l,9)

for r = I, ... , n .
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Case m = 1.

f'x,XH(s,x,i))ds
Jo    >

= ('li{H(s,x,C))ds+ f'[XiiH(s,x,i))-Xi (H(s,x,Çm))]ds
Jo    i Jo     I i10    > Jo

>Ci(B*(I(x,t),j-l,0))tAi(x,t)
J j

-¿E/ \H¡k(s,x,t)-H¡k(s,x,t*)\ds
k=lJo

= Ci(e*(I(x,t),j-l,6))tAi.(x,t)
j j

-L'E['\HiAs,x,Q-Ht(s,x,?)\ds
k<jJo

- L £ ¡\\H, (a, x, fl -x,k| + \H, (s,x,t*)-x¡k|)ds
k>j   °

>Cl(em(I{x,t),j-l,e))t\iix,t)
j j

-l£ fds fda\L(H(a, x, ®) - L(H(o, *,fl)|i,
k<jJo      Jo

- L Ei' "s (/J dcXik (H(a , x, í))(¡k + £ dalik {H(a, x, Ç))^) .
K£.J

Now the assertion follows since

LT f ds f doXj (H(o, x, !;)%
k>jJo      Jo

<ctLt Y,\(x,t)<ctLt (n - j + l)Ajjx, t),
k>j

and the same estimate holds for the other term corresponding to ¿¡*.

Case m + 1 . Suppose now (4.1.1) holds for m . We have

[' X,(H(s,x,i))ds
Jo    J

>[C, (e*(/(x, t),j-l, 6)) - 2tncL{l + tLii + ■ ■ ■ + {tLii)m~l)]tAi (x, t)
j ' ' j

-Lmjm-ltm-i52['dsfSda\}..(H(o,x,t))

-k¡h(H(a,x,C(x,t,j)))\

> [Ci (e"(I(x, t),j-l,6))- 2tncL(\ + tLi, +■■■ + (zL¡,)m_1)]íA, (x, t)
j ' ' j

- Lm^]mtm-X £ fds fdo\H¡k(o,x,Q - H,k(o,x,C{x, t,j))\
k<jJo     Jo

-L^rr-^fds íSdc\H,k(c,x,i)-Hik(o,x,í'(x,t,j))\.
k>j  °        °

Now, arguing as above, the last sum can be estimated as follows:
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Lm+Xjmtm 'T, íds f do\Hj (o,x,í)- Hj (o,x,C(x,t,j))\
k>jJo      h

<Lm+ljmtmJ2f\\Hik(s,x,Z)-xik\ + \Hik(s,x,?)-xik\)t
k>jJo

lytmjr£ds (J^doXik(H(a,x,Q)Zik

+ f ' daXi (H(o, x, t))$
Jo k *

m+l .n

k>j-

- ~    Tm+l .m ,m+2      .     - .
< 2«L     j  t     ctAj (x, t).

On the other hand,

Lm+Xjmtm-X Y ['ds f da\Hi (o,x,Z)- Hj (o,x,C(x, t, j))\
k<jJo      Jo

<Lm+Xjmtm-X¿2['ds I'do fda'^ (H(a',x,Q)
]~Jo      Jo       Jo *

-Xj(H(o',x,C(x,t,j))Mj
k */V

< Lm+xjmtmT f'ds ido\Xj (H(a,x,Ç))-Xj (H(o,x,C(x, t, j)))\.
kTjJo     Jo

Thus assertion (4.1.1) is proved.

Now, let us choose m = max{[a(] + 1} . Without loss of generality we may

suppose tLij < 1, so that (tLij)m < (tLij)[a^]+x. By our choice of t(9) > t,

we have (kj axe the constants of Remark 2 after Theorem 2.6)

(4.1.2)    í'Xj(H(s,x,í))ds
Jo    >

>
(tLijt>]+x - 1

Ctj (e (I(x ,t),j-l,9))- 2tnc,     ¿. _ 1 tAj(x,t)

» T m .m+l .m .
-2L  t     ]  A

> Cj(e*(I(x,t),j-l,9))-2tnct
(tLijp]+x - 1

tLi] - 1

2tA rrKl+'i
- -y- max{LL 'J   } tAj (x,t)

> Cl(e*(I(x,t),j-l,9))-=k(9) tAj(x,t)

> ]rCj(e*(I(x, t),j-l, 9))tAj(x,t) = Cj(x,t, 9)tAl(x, t).
2   h

Obviously, the same estimate holds for j = 1.
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We are now able to prove (i). We have

Pi Fj(x,Cj(x,t,9)t)

ll)Xj(H(s,x,c;))ds ~ Cjjx, t, 0)íA,.(x, t)

On the other hand, by Remark 3 after Theorem 2.6,

Pj 9cl(x,t,9)Aj(x,ci(x,t,9)t)
j ~>      j j        i

/0r^(//(5,x,O)^" ctAj{x,t)

>(9/ct)kjCjjx,t,9)aiJ+'

= (9lcjkiy2Cji(e*(I(x,t),j-l,9)))a^

= (by definition) e(I(x, t), j, 6) = e¡ (x, t, 9).

Thus (i) is proved for z . On the other hand, {/,,..., in} is a permutation of

{1, ... , «} and hence the assertion is completely proved.

Assertion (ii) follows by definition, since, if j = ik for k suitable, we have:

Ej(x, t, 6) = e¡k(x, t, 9) = e(I(x, t),k,9)

= 9(kik/c*)(\Cjk(e*(I(x,t),k-l,9)))a^

>9(kjjc*)(k(9)/2)a^

> (9/c*)max{kj }(/c(0)/2)max{iV'> = e(9).

Analogously,

Cj(x, t, 9) > {-k(9) = c(9)   for; = 1, ... , «,

and (iii) follows.

Finally, we note that our assumptions imply that

TO
Xj(H(s,x,c;))ds>0   if t > 0, L > 0, j = 1,... , n.

/o

Thus, by (i), and by usual continuous dependence results for ordinary differen-

tial equations, the mapping

t „ na = (      y'"Xl _y"~x*      )
\tiXx(H(s,x,t))ds'"" f¿Xn(H(s,x,Z))ds)

is continuous from Yl"=x[Sj(x, t, 9), 1] = A(x, t, 9) to itself. A fixed point

argument shows that there exists ¿; e A(x, t, 9) such that

y. = Xj + j' XjH(s, x, {)) dst; = Hj(t,X, {).

Thus, assertion (iv) is proved.   D
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Now put

Qe(x, t) = l[[Xj - Fj(x, Cj(x, t, 9)t), Xj + Fj(x,Cj(x,t, 9)t)],

7=1

Q6+(x, t) = Q\x ,t)n{yj>xJ,j=l,...,n},

n

S6+(x, t) = Y[[Xj + 9Fj(x, Cj(x, t, 9)t), Xj + Fj(x, Cj(x, t, 9)t)].

7 = 1

In what follows, if there is no way of misunderstanding, we will write only
Qe, Q8+,se+.

The aim of the next result is to obtain a suitable representation formula for

a function u vanishing on a sufficiently large subset of a ball.

Lemma 4.2. Let u be a Lipschitz continuous function and let ß e (0,1) be a

fixed positive constant. Then there exists r(ß) > 0 such that, if r < r(ß) the

following assertion holds: suppose

\E\ = \{yeQe(x,r);u(y) = 0}\>ß\Q6(x,r)\,

where d = d(ß)=\- r\/l~^~ßß- Then there exists Qe(0, 1) such that

\u(x)\ < cx(ß)r\B(x, r)\Q-XMQ(\Vx\xCiB)(x),

where MQ(f)(x) = sup;>0 \B(x, t)\~   fB,x r) |/(y)|^y is the fractional maximal

function of order Q, c2B = B(x, c2r), Xa iS me characteristic function of A,

and c2 is an absolute constant. In particular, these constants are independent of

r < r(ß) and x e U, U being a suitable neighbourhood of a fixed point.

Ñ fin
Proof. Without loss of generality we may suppose \E+\ = \E r\Q \ > ß\Q |/2  .

We have

2~n\Qd\ = \Qe+\>\(EöSe+)nQe+\ = \(EnQä+)uSe+\

= \(EDQe+)\ + \Se+\-\EnSe+\

= \E+\ + \Se+\-\EnS6+\ > ß2~n\Qe\ + (l- 9J2~n\Qe\ -\EnSe+\

= 2-"(l + ß/2)\Qe\-\EnSe+\

and hence \E n Se+\ > 2~n~xß\Q6\.

Now choose r(ß) < t(9(ß)), where t(9(ß)) is defined in Lemma 4.1 and

put I = {£ € AE{X r e) ; H(r, x,Ç) e E+f) Se+}.   The first step consists of

estimating |X|. By Lemma 4.1  H(r, x, At(x r ej D S+(x, r) ; hence, putting
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H(r, x, {) = y, by Proposition 3.1 we get

=Ldi>-L
\Er\S°

ß H
dy det-—(r,x,¿;(y))

ß      \Q6(x,r)\

-i

—   ***i
c***\Q(x,r)\~ 2n+xc*** \Q(x,r)\

>    J      f]cAx, r, 9f'+x > -J—c(9J+^a> = cAß),
2"+V

7 = 1
2"+1c*

where c(9) is the constant of Lemma 4.1.

Now let K be a smooth nonnegative function such that K = 1 on A£(e),

where e(9) is the constant defined in Lemma 4.1(ii). We note explicitly that

Ae(e, D A£,x r g,. Assume that u is continuously differentiable. We have

|M(x)| = \u(x) - u(H(r,x,i))\K(i)   for {el.

Hence

|Z| \u(x)\ = j \u(x) - u(H(r,x,c;))\K(c:)dÇ

<frdtf       dt l-u(H(t,x,Z))
Jo        ./suppA- "f

- f dt f       dZ\(Vu(H(t,x,c:)),H'(t, x, {))|
Jo        JsaççK

<^frdtf       d^\Vxu(H(t,x,0)\-
Jo        JsuppK

Now put H(t, x, {) =y ; keeping in mind Proposition 3.1, we obtain

where, for the sake of simplicity, we have denoted by e(9) the vector (e(ô), ... ,

E(d)).

On the other hand, / i-» H(t/\fñ, x, {) is a subunit curve starting from x

for any { such that {• < 1 for j = 1,..., n, so that H(t, x, suppAT) is

contained in B(x, c2t) which is in turn contained in B(x, c2r) - c2B. Thus,

keeping in mind the estimate of |Z| obtained above and the equivalence between
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\Q(x, t)\ and \B(x, t)\ (Theorems 2.3 and 2.6), for Q e (0, 1) we get

\u(x)\<c,(ß) i' dt\B(x, t)\Q xsup\B(x, x)\ Q f       dy\Vxu(y)\xc
JO r>0 Jb{x,t)

= cA(ß)MQ(\Vx\xCiB)(x)j^dt\B(x,t)t

= c,(ß)rMQ(\^x\xCiB)(x)j^ dx\B(x,

< c4(ß)r\B(x, r)\Q'XMQ(\Vx\xCiB)(x) j'dxx0

1{X,T)

trll2-1

.ö(ß-l)
u l

'0

= c5(ß)r\B(x, r)\Q-XMQ(\V,\Xc2B)(x),    ifa(Q-l) > -1.

Now, a standard regularization argument enables us to extend the above in-

equality to Lipschitz continuous functions, completing the proof of the lemma.

D

Lemma 4.3. Let x0 belong to Q and let ß e (0, 1) be fixed. Let w be an

A -weight for a given q > 1 with respect to (Rn , d, dx). In addition, let u be

a Lipschitz continuous function such that

\{yeQ8(x0,r);u(y) = 0}\>ß\Qe(x0,r)\,

where 9 = 9(ß) - 1 - "jT^ßJl. If Q is chosen as in the previous lemma, then

for any p > q and for any k e [1, (1 - (1 - Q)p/q)~x), there exist c6(ß) > 0

(depending only on ß, the doubling constant A, p, and k) , a positive constant

r(ß), and an absolute constant c7 such that, if r < r(ß),

(-^- Í \u(y)\Kpw(y)dy)
\w(Q9(x0,r))JQ°(Xo,rj )

<cAß)r(    ,D, 1-TT / \V,u(y)\pw(y)dy)     .
-  6KH'   \w(B(x0,c7r))JB(Xo,Cirj   * v"'     v"   y)

Here c7B = B(x0, cyr). We note explicitly that the constant can be chosen

uniformly with respect to x0 belonging to a small neighbourhood V of a fixed

point.

Proof. Let x belong to Q (x0, r) ; then there exist two positive constants cs(ß)

and c9(ß) depending only on ß such that

Qe(x,c,(ß)r)DQe(x0,r)   and   Qe(x0, c9(ß)r) D Q8(x, cs(ß)r).

Let us prove the first assertion. We have Q (xQ, r) C Q(x0, r) C B(x0, br).

Hence

Qe(x0,r)çB(x,2br)CQ(x,2br)

= (putting cs(ß) = 2b/c(9) > l)Q(x, c&(ß)c(9)r)

CQ6(x,cJß)r)
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since c(9) <c(x, t, 9). Analogously

Q6(x, cs(ß)r) Ç Q(x, cs(ß)r) Ç B(x, c,(ß)br)

C B(x0,2c,(ß)br) ç Q(x0, 2c%(ß)br)

= (putting c9(ß) = 2bc,(ß)/c(9)) Q(x0,cg(ß)c(9)r)

CQ6(x0,c,(ß)r)

since c(9) < Cj(x0, t,9).  We note explicitly that the constant c(9) can be

chosen locally independent of x and r.

Now

\{y e Qe(x, cs(ß)r) ; u(y) = 0}| > \{y e Qe(x0, r) ; u(y) = 0}\

>ß\Qe(x0,r)\>cxo(ß)\Qe(x,cs(ß)r)\.

Then if r is small enough (depending on 9 and hence on ß) we can apply

Lemma 4.2 to get

\u(x)\<cxx(ß)r\B(x, r)\Q-XMQ(\Vxu\xB(x^rj(x)

<cxx(ß)r\B(x,r)\Q-XMQ(\Vxu\xCiB)(x),

since, arguing as above, B(x, c2r) ç B(x0, (b + cjr) = B(x0, c7r). Moreover,
a

without loss of generality, we may suppose Q (x0, r) ç Q(xQ, r) ç B(x0, br) ç

B(x0, c7r). Thus, we have

i r \l/Kp

\u(y)\Kpw(y)dy\
jQ"(x„,r) )w(Q°(xQ,r))JQ

<cxx(ß)r\B(x,r)\Q-X

\W(Q   (XQ, r))JQe(x0,r)

<cxx(ß)r\B(x,r)f-X

• f-77^7-« / MQ(\Vlu\xCiB)(y)[lKPw(y)dy
\W(Q   (X0,r))JB(x0,c7r)

<cl2(ß)r\B(x0,c7r)\Q-x

• [-77J7-« / MQ(\Vxu\xCiB)(yfKpw(y)dy
\w(Q (x0,r))JB(x0,cir)

11 KP

11KP

by the doubling property of the measure of d-balls. Now we note that

l-\B(x0,c7r)\-\B(x0,c7r)\C{U)        -C^>
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and hence, taking into account that w is an ^-weight function, w(Q (xQ, r))

> cX4(ß)w(B(x0, c7r)). Thus, we have

I /KP

r\B(x0,c7r)f-X (-*- f MQ(\Vxu\xCjB)(y)l/KPw(y)dy
\w(Q (xQ,r))JB(x0,cir)    w ,

<cX5(ß)r\B(xQ,c7r)\Q-X

■ (swshaj L,v, M^"KM'"^ if) "" ■
We can now apply a continuity property for fractional maximal functions in

spaces of homogeneous type (with a precise estimate of the continuity constants:

see [FS, Lemma 4.4]) in order to complete the proof.   D

Lemma 4.4 (Weak Sobolev-Poincaré inequality). Let u be a Lipschitz contin-

uous function. Let U be a neighbourhood of a fixed point as in the previous

lemmas. Then there exists r0 > 0 such that, if w is an A -weight function for

a given q > I, p > q, k is fixed as in Lemma 4.3, x e U, and r < rQ, then

11 Kp

{^Bk^)Ljuw-"'rwMdv,

1—- / ¡Vlmfw(y)dy
■0>Cnr>) JB{x0,cl7r) j

\ Ip

-C^[w(B(x0

where the constants c16 and cX7 depend only on p, q,K, and on doubling

constants. The constant uB can be chosen to be either the Lebesgue average of

u, i.e.,

-.-TT / u(z)dz,
\B(x0,

or the weighted average

uR = .,.,„,„—-TT / u(z)w(z)dz.
I> HT JB(xQ,r)B     w(B(xn

Proof. We chose in Lemma 4.3 ß = \ and we put 90 - 9(¿). Now all

the constants are fixed. In addition, we note that B(xQ, r) ç Q(x0, r) ç

Qe°(x0, r/dj) - Qe°(x0, yr). Let us choose rQ such that yrQ < r(^) in Lemma

4.3.
A standard argument (see e.g., [FS, Theorem 4.5]) shows that there exists

peR such that

\{y e ßVo. yr); "(y) > n}\ > L2\Qe°(x0, yr)\

and

\{y e Q6°(x0, yr) ; u(y) < p}\ > {\Qe°(x0, yr)\.
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We can apply Lemma 4.3 to u+ = max{w - p, 0} and u~ = max{p - u, 0} in

Q °(xQ, yr) to obtain

f k \l/K"

/ \u(y)-p\Kpw(y)dy\
jQeHxn,yr) J

Up

-3-  / llifv) - U,K>
w(Qti°(x0,yr))JQ°o{Xo,yr)

s ̂  (Î) ' \&wkm L,v; '^•Ü'X'-W*'
On the other hand, by the doubling property the Lebesgue measures of

Q8°(x0, yr) and B(x0, r) axe equivalent and hence the itr-measures are equiv-

alent also.   Thus, keeping in mind that B(x0, r) ç Q0(x0, yr) and putting

yc7 = cx7, we get

i      r k       Y/KP
(y)-p\Kpw(y)dy)

w(B(x0,r)) L    '"Jß(x0,r)o •

1/P

-rr / |V1w(y)|pu;(y)rfy
i(x0,cX7r))JB{Xo>c¡irj   *w(B(x0

Finally, the complete proof of our lemma can be obtained from the above in-

equality in a standard way (see [FS, Theorem 4.5]).   D

In fact, up to a new choice of the constant cX6, we can put c17 = 1, by means

of a technique due to R. V. Kohn and D. Jerison [K and J]. Arguing as in the

proof of Theorem 4.5 in [FS], we get

Theorem 4.5 (Sobolev-Poincaré inequality). Assume w e Aq(Rn, d, dx) and

let B = B(x0, r) be a given ball of radius r < rQ. Then, if p > q, zc is fixed as

in Lemma 4.3, and u is Lipschitz continuous in a neighbourhood of B, then

Up

< cr —-J——Í        \Vxu(y)\pw(y)dy
W{JJ{X0, CX7r)) JB(x0,r) j

where c and r0 can be chosen locally uniform with respect to x0 . In addition, c

depends only on p, q ,k , and on the doubling constants. The constant uB can

be chosen to be either the Lebesgue average of u, i.e.,

UB= \R(r    rM / u(z)dz--
IB{

or the weighted average

1
u. / u(z)w(z)dz.

Jß(xn,r)w(B(x0,r))JB{Xo¡

We are now able to prove some important inequalities.
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Theorem 4.6. Assume w e Aq(Rn , d, dx) for some q > 1 and let B — B(x0, r)

be a given ball of radius r < rQ. Let ß e (0, 1) be fixed. Then, there exists

c(ß) > 0 such that, if p > q, k is fixed as in Lemma 4.3, and u is a Lipschitz

continuous function in a neighbourhood of B such that

then

\E\ = \{xeB;u(x) = 0}\>ß\B\

' \    lIKP

^è^)L,)Hyrwiy)dy)
Up

where c(ß) and rQ can be chosen locally uniform with respect to x0. In addition,

c(ß) depends only on ß, p, q, zc, and on the doubling constants.

Proof. We have

(—tôt-TT /        \u(y)\Kpw(y)dy)
\w(B(x0,r))JB{Xo,rj v>\      vt  yj

\   11 KP

Bk^)Lju{y)-u*r^<L./»,-    .^ / \u(y)-uR\Kpw(y)dy\       +\u.

Let us now estimate the second term in the right-hand side of the above

inequality. Keeping in mind that w is an A -weight, we have

l"*l -   \E- j \u(y) -uB\dy<-—j \u(y) -uB\dy

—rr j \u(y)-uB\Kpw(y)dy)
,r))JB(xa,r) J

% U«P<cil_L

Thus,

ß \w(B(x0

' i(y)\KPw(y)dy[        \u(

Ukp

\w(B(x0,r))

< M) I^ÜT-ñ /        \u(y) - uB\KPw(y)dy\
"HJyw(B(x0,r))JB{Xotrj V7y      Bl      v'y     J

and the assertion follows from the Sobolev-Poincaré inequality.   D

Keeping in mind the doubling property of the measure of d-balls, a straight-

forward consequence of the preceding inequality is the following Sobolev theo-

rem for compactly supported functions.
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Theorem 4.7. Assume w e A (Rn, d, dx) for some q > 1. If p > q, k is

fixed as in Lemma 4.3, and u is a compactly supported Lipschitz continuous

function such that supp« is contained in a given ball B = B(x0, r) of radius

r <r0, then

(ïmk^Ljuiyrw<y)dy)

^ß)\isd^L,^um'wwiyT -
where c and rQ can be chosen locally uniform with respect to xQ. In addition,

c depends only on p, q, k , and on the doubling constants.

5

In this section we shall apply the inequalities of §4 to prove pointwise esti-

mates for the weak solutions of the class of degenerate elliptic equations de-

fined at the beginning of §2. In the sequel we shall use the notations introduced

therein. In addition,

In the sequel we will suppose hypotheses (H.1)-(H.4) are satisfied.

Let us now recall some standard definitions [FL1, FS].

Given a measurable set E ç Rn we denote by LP(E), 1 < p < oo, the

usual Lebesgue spaces, while, if w is an A -weight function, we denote by

Lp(E,w), 1 < p < oo, the Banach space of the measurable functions /

such that \\f;Lp(E,w)\\ = (¡E\f\pw(x)dx)x/p < oo. Observe that since

w-U(p-U e LxXoc(Rn), then LX(E) 2 LP(E, w) for any bounded measurable

set.
i ° i

We use the notations H 'p(Sl) and H 'p(Sl) for the usual Sobolev spaces,

while we indicate by Hxx'p(Çl, w) (respectively by HX'P(Q, w)) the closure

of the space Lip(i2) of Lipschitz continuous functions on Q (respectively of

Lip(fi) n W'(Q.)) with respect to the norm

||/; Hxx'p(Çl, w)\\ = ||/; LP(Q, tiz)|| + ||V,/; LP(Q, w)\\.

Moreover, the spaces Lpoc(E, w) and Hx'foc(Cl, w) axe defined in the usual

way.

The following assertion is straightforward.

1    1
Proposition 5.1. The bilinear form 38 on Lip(Q) n/^ ' (Q,oj) defined as

n        .

3§(u,v)= ]T   / üjjdjUdjVdx
1,7 = 1    a

1   7
can be extended to all of Hx' (SI, ca).
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Definition 5.2. Let f = (fx, ... , f„) he a vector-valued function such that

l/l/eu e L (Si, co). We say that u is a solution of the Dirichlet problem

r^zr = div,/   inQ,(DP) xJ    .       '

I w = g in <9£2

0 1   2

if w - g e Hf (Si, co) and

"    r o

<%(u,<p) = T     Kf-P&d*   V<f> e ̂ Í'2("' w)-
,=i Jn

In addition, we say that v e Hxxj0C(Si, co) is a local subsolution (local su-

i ° 1   2
persolution) for J? if for any open set Si € Q and for any tp e Hf (Si, co),

<p > 0, we have 3§(u, <p) < 0   (¿$(u, <p) > 0).  Moreover we say that u e
1     ~)

Hx 'Xoc(Si, co) is a local solution for ¿¿? if it is both a local subsolution and a

local supersolution.

Theorem 4.7 says that if w e A2(Rn, d, dx)  and Si is bounded, then
o i   ~ ^ o 1   0

//¡' (Q, tzj) is continuously imbedded in I (Si,w). In fact, Hf (Si, w)

is compactly imbedded in L K(Si, w). The proof can be carried out by using

the Sobolev-Poincaré inequality by the same arguments of Theorem 4.6 in [FS].

We note explicitly that the proof therein relies only on the Poincaré inequality

and on the fact that (R" , d, dx) is a metric space of homogeneous type. Then,

by (H.3) we have:

0   1    9 9

Theorem 5.3.  Hf (Si, co) is compactly imbedded in L K(Si, co) for 1 < zc <

Moreover, by the Lax-Milgram theorem we have

Proposition 5.4. Let f = (fx,... , fn)  be a vector-valued function such that
7 1    2

|/|/a> e L (Si, co) and let g belong to Hf (Si, co). Then there exists a unique

solution u e Hx' (Si, co) of the Dirichlet problem (DP) of Definition 5.2.

We can now repeat the arguments in §5 of [FS] in order to obtain the basic

pointwise estimates for weak solutions of the equation Jzfu = divx f.

Theorem 5.5. If u e Hx \0C(Si, co) is a local supersolution for 2f, then

u(x) > Infu   a.e. in Si,
an

where Infdnu is taken in the Hx' (Si, co) sense (the definition is the same as

in the elliptic case: see [KS, Definition 5.1]).

Theorem 5.6. Let k > 1 be fixed as in the Sobolev-Poincaré inequality. Let

/=(/.,...,/.) be a vector-valued function such that \f\/co e Lp(Si, co) for
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o j   2

p > 2k/(k - 1). Then if u e Hf (Si, co) is a solution in Q of SCu = divA/,
we have

Sux)\u(x)\<C(Si)w(Sij/2-X/p-X/2K\\f/co;Lp(Si,co)\\,
n

where C(Si) depends only on the diameter of Si.

1    ?
Theorem 5.7. Let u e Hx \0C(Si, co) be a local subsolution of SPu = 0. Then

there exists M > 0, M independent of r < r0 and u, such that, if Q(x, r) cSi,

then

Sup   u < Ml
Q(x,r/2) \VJ(Q(X

Tvi/     ¿udy)
H) JQ(x,r) J

1      J
Theorem 5.8. Let u e Hx \0C(Si, co) be a local solution of Sfu - 0. Then there

exists M > 0, M independent of r < r0 and u, such that, if Q(x, r) c Si,

then

Sup   \u\<M\——- /        ucody)     .

Theorem 5.9 (Harnack inequality). Let u e Hx '20C(Si, co) be a local solution of

S?u = 0. Then there exists M > 0 and a > 0, M and a independent of x, r

and u, such that, if r <a- d(x, dSi), then

Sup u < M Inf u.
Q(x,r) Q(x,r)

The proofs of the above results can be obtained by repeating verbatim the

proofs of the corresponding results in [FS]: in fact the techniques we used in

[FS] require only the following tools:

(i)   (R" , d, dx) is a space of homogeneous type (here proved in Theorem

2.6);
(ii)  Sobolev-Poincaré inequality (here proved in Theorem 4.5);

(iii) existence of cut-off functions on the ci-balls (or, equivalently, on the

quasi-balls Q(x, r)).

The following proposition provides us with the next tool.

Proposition 5.10. Let x, rx, and r2 be given, 0 < rx < r2 < rQ. Then there

exists a cut-off function cp e C^(R ) such that:

(i)   suppcp c Q(x, rx), cp = 1 on Q(x, r2), 0 < <p < 1 ;

(ii)   IV^I < C(r2 - rx)~ , where C is an absolute constant.

Proof. Let cp be a smooth function on [0, oo) such that 0 < cp < 1, cp = 1 on

[0, r,/z-2], cp = 0 on [1, oo), and \<p'(t)\ < 2(1 -r,/r2)_1. Put

'00-O'ir?
Xj\

7=1
r2Aj(x,r2)J'
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Obviously cp is a smooth function and 0 < cp < 1. If y ^ Q(x,r2), there

exists j e {I, ... , n} such that |y. -xj > r2Aj(x, r2) and hence

<P(\yj-Xj\/r2Aj(x,r2)) = 0

so that cp(y) — 0. Let now y belong to Q(x, rj) ; then |y - xj < r,A.(x, rj

fox j = I, ... , n and hence

|y;. - xj/r2Aj(x, rj) < rxAj(x, rx)/r2Aj(x, r2) < rx/r2,

since A;.(x,r,) < Aj(x,r2), so that p(|y;. - xjlr2Aj(x, rj) = 1  for j =

1, ... , n . Thus ç»(y) = 1 and part (i) is proved. On the other hand,

\yk~xk\^wfwi-nMïj^)
;¥*

V5
r2Ak(x,r2) r2Ak(x,r2)

Obviously, if 1 = 0, then (ii) holds. Hence we may suppose y e Q(x, r2). By

Theorem 2.3, y e B(x, br2) and hence there exists a subunit curve « : [0, T] i->

R" such that /z(0) = x, A(T) = y, and T < br2. In particular, ¿¿(y) =

Xk(h(T)) < Ak(x, br2) < cAk(x, r2), where c is an absolute constant. Then

/ < 2c Ak(x>r2Ï =    2c
(l-rx/r2)r2Ak(x,r2)     r2-rx'

and the assertion is completely proved.   D

In a standard way it follows from the above results that weak solutions are

locally Holder continuous (De Giorgi-Nash-Moser theorem).

Theorem 5.11. Let k > 1 be fixed as in the Sobolev-Poincaré inequality. Let

f = (fx, ... , f)  be a vector-valued function such that \f\/a> e Lp(Si, co),
° 1   2

where p > 2zc/(zc - 1) and co e A ,s, S = J2 a -. Then if u e Hf (Si, co)

is a solution in Si of ¿zfu = divxf, u is locally Holder continuous in Si.

More precisely, there exist a e (0, 1) and a > 0 such that, if x0 e Si and

0 < r < R < a ■ d(x0, dSi), then

sup   \u(x) - u(y)\ < c(R)      -7-^t-—£tt / ucodx)
\x-xü\<r \  \ CO(H(X0, K)) JB{X   R) I

P <T}( ~        „\      , .Ml       J3+ \\\f\¡co;Ü(B(xC),r),co)\\\r

6

In this section, we will exhibit simple examples showing that a large class of

operators satisfy our hypotheses. In particular, we are concerned with hypoth-

esis (H.4). In what follows, we will deal mainly with the case co = 1, since the

two different degenerations (the metric degeneration and the measure degener-

ation) can be treated separately. A discussion of some examples of ^42-weights

with respect to degenerate metrics is given in [FS].
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Example 1. Previous results obtained in [FL1, FS] are particular cases of the

present ones. In fact, in these papers pointwise estimates for the weak solutions

are obtained under the following assumptions:

(i)  Xj(x) = Xj(xx,... ,Xj_x), j = 1,...,« ;
(ii)   X- is continuously differentiable when xx.x,_, # 0, j = 1, ... , « ;

(iii)   Xj(x) = Xj(xx, ... , \xk\, ... , Xj_x), and 0 < xkdkXj(x) < ajkXj(x)

for any x and for k = 1, ... , j - 1.

Now, if (i)-(iii) are verified, hypothesis (H.4) is an immediate consequence

of Proposition 7.3 in [FS], keeping in mind Proposition 2.7 in [FS] and Theorem

2.3 in the present paper.

Moreover, we note that if hypothesis (H.4) is satisfied, by Proposition 3.1

a sub-Riemannian structure is associated with the operator S? in the sense of

[FL3]. Thus, the regularity results for the weak solutions of f? are, in a suitable

sense, an improvement of the estimates in [FL3] in the diagonal case.

Example 2. Let us consider in detail the case « = 2, where hypothesis (H.4)

assumes a very simple form. As we pointed out in § 1, in the particular case « =

2 and co = 1 similar Sobolev-Poincaré estimates have been recently obtained

in [X] by different techniques; nevertheless, an explicit form of (H.4) in this

case can suggest the meaning of the condition in higher dimension. Without

loss of generality, we may suppose Xx = 1 so that a straightforward calculation

shows that (H.4) is satisfied if

(H.4') / X2(xx±s, x2)ds >ct max X2(xx±s, x2).
Jo 0<s<t

We will say that a function g belongs to RH^ (i.e., satisfies an infinite

order reverse Holder inequality) if /; g(s)ds > c\I\ max/ g for every compact

interval /. Thus, (H.4') can be formulated in the following way:

(H.4")        5 —► X2(s, x2) belongs to RHx , uniformly with respect to x2.

It is easy to show that (H.4") is satisfied by a very large class of Lipschitz

continuous functions satisfying no monotonicity condition as in Example 1.

Consider, e.g., the function g = g(\xx\) defined in the following way: if a > 0

and « is a positive integer, put

na)       '        6 \2na     2(n+l)a)     2na     2(n + l)a

and let us linearly interpolate between these points. Clearly, g is a Lipschitz

continuous, bounded nonnegative function. Now a straightforward direct calcu-

lation shows that g belongs to RH^ . We note explicitly that g is essentially

nonsmooth.

Example 3. Suppose «>2 and X (x) = A. x(xx).X, „(xn), where X- k isa

positive Lipschitz continuous real function for j, k = 1, ... , n . If d(x, y) <

oo for any x, y and the distance d is continuous, it was shown in [FL1,
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Theorem 2.4] that without loss of generality we may suppose X ■ . = • • • =

Xj n = 1 for j = 1,...,« . Suppose now Xj k belongs to RH^ for k < j,

j = 2, ... , n. We will show that (H.4) holds. Preliminary, we note explicitly

that in particular the A, k 's are ,4^-weights. Hence, if J and / are intervals,

J CI, then

(6.3.a)   j^^dsAWWtf'^ f*j,k(s)ds> j^Xuk(s)ds-(\J\l\I\)a>*

for some positive constants a- k and /3  k .

Let us now prove that (H.4) holds. For the sake of simplicity, let us restrict

ourselves to the case « = 3 . In this case

H1(t,x,Ç) = xx +f{,,

H2(t,x,£) = x2+ j X2 x(xx +sÇx)dsÇ2,
Jo>0

H3(t,x,c;) = x2+     X3 ,(x,+5{,)A3 2(H2(s, x, c¡))dsc¡3.
Jo

Obviously (with the notations in (H.4)),

/ XAH(s,x,Z))ds = 1 = tAAx, t).
Jo

In addition, if we denote by I(a, b) the interval whose endpoints are the real

numbers a and b, we get

/ X2(H(s, x,£,))ds= / X2 ,(x, +s£x)ds = tt-t / X2 x(s)ds.
JO JO        ' |S]| JI(xl,xl+ttil)

Hence, keeping in mind (6.3.a) and the RH^ hypothesis,

I'X2(H(s,x,Q)ds>\^-X I X2 x(s)ds
Jo Jl(x..x.+t)

x,+t

>cxt\ix\a>>  X f '   X2 x(s)ds
Jx,-t

(by the doubling property of A2 , (s) ds)2,1'

a2.!-l

2-1 J,-2V
> c2e[2''    A2(x, t) ,

since A2 , belongs to RHx and C,(x, t) = [x, - t, x, + t].

Let us now prove the corresponding estimate for A3. Keeping in mind that
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X3 , belongs to A   for some p > 1, by Theorem 2.8 in [GR] we have

/ Xi(H(s,x,i))ds= / X3 x(xx+sÇx)X3 2(H2(s, x, Ç)) ds
Jo Jo

= 177 / ¿3 i(5')A3 2(H2((s' -xx)/c¡x,x,c;))ds'

(putting x, + j{, =5')

>C2ÏT7  / A3   ((5)^5Isil y/^.^+zí,)

•(tITt/ Xx3/p2(H2((s-xx)/tx,x,c:))ds)  .

On the other hand,

fp\i Xxjp2(H2((s-xx)ltx,x,a))ds)
H(xx,x.+tL

= t-%\"(j Xx3lP2(H2(s,x,Ç))ds

j¿jFU^W*.*.«)^iWjtXtí))= ,gfÄM,)BM

^í „.,   ,  V7, ^,
/        \Jl(x2,H2(t,

>t~P'jjjp[    max    A2 , / A^2(j)í/j

|{ f ( \~P ( N '~P
> ¿ ^t^ttî       max    A, , ) max       A, ,

|{2|p V(*,, *,+«,)     '/       V^.HiC*.«)

(u,. V
A3 2(s)ds'3,2

- <V ''tttp I     max    ^2 1)     l-^2(?' x, í) -x2|p       max      A
3 \C2f   VU, >*,+'í,)    ¿'lJ ¿ ¿     I(x2,H2(t,x,i))   ó'¿

= cA~p\¿.\p (     max    A,,)     (/  XAHis, x, i))ds )        max      A,
3      '   V'(*i.*i+«i)   • /    Vio  2 / /(*2.ä,(i,x,c)) 3

> (arguing as above) c,{?       max      A, ,,
3   ' /(jt2,ff2(/,x,{))    3'2

so that

i'X3(H(s,x,0)ds>c4ex   ' í A
■/O .//(*, .x.+fí.)

7\S)ds •       max      A, ,.
/<*, ,*,+«,) /(x2,TÍ2(l,x,í))   3'¿

Now we note that a straightforward calculation shows that  C, (x, f)  =

[X[ - t, xx + t] and

CAx,t)c x, - ?    max    A, ,, x, + t    max    A, ,
1       [x.-t,x.+t]  ¿<l      '       U,-í,x.+;]  l']
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Hence, if we suppose for the sake of simplicity that {  > 0 for j = 1, 2, we

get

t\A,(x, t) < t    max    A, , • max A, ,
[xi-t,xi+t]   J'1    [x2-imaxlM_, ^i+(]/l2 ,,...]   ¡'L

rx,+trx]+l rx2+-

<c5 X3x(s)ds X32(s)ds-
J X.—t J X-> — ■"Jx2- l'maX[x1-í,x1+í]^2,l

rxl+l rx2 + -

<c6 X3x(s)ds X32(s)ds-
Jx, Jx, l maX[Xl-t,xl+t]^2,l

(by the doubling property of A3 ¡(s) ds, i = 1, 2).

In order to estimate the second integral, let us note that

t    max    A, ,>//,(*, x, {)-x, ={, / A,(x, + sÇ,)ds
[Xl-t,Xl+t]   ¿'1 Jo

>{2{^1_1 rHX2x(s)ds>c¿2gj--lt    max    A2 ,.
Jx, ' [xx-t,xx+t]   ¿'1

Hence

1 fxi+
/        A3 2(s)ds

Jx-,tmaX[xt-t,Xl+t]^2,l Jx2

</ x,,(s)äs.''max<--'-^A""_L
/J[x2,H2(t,

l3,2

K2,n2" *,«)]  3' V H2l?>x,Z)-x2  j      tmax[x   tx   XX2

. ^maV-l,x1+^2,l'
< max      A, -, •    —m—!-^-

[x2,H2(t,x,i)]   3'2     ^   H2(t, X , tl) - X2

(     i     V32"1
< max      A

ix2,H2(t,x,s)] 3>2 Vc7^2'i_1;

Thus (without loss of generality we may suppose a  k > 1 ),

rA'(*'/} -c* (^pr)       C'^x(s)ds\X2^^2-

Hence,

/'To

A3(ff(j, x, {))</* > c9C1+(fl2'1_1)(fl3'2_1)^'2_1íA3(x, i)

> c9e"'e22?A3(x, í),

for suitable a, , q2 > 0.

Thus, the assertion is completely proved.

Remark. A final remark about RH^ is now in order. As is easy to see from

our proof, the doubling property of \B(x, t)\ plays a key role in the Harnack

inequality for degenerate elliptic operators.  On the other hand, the doubling
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property of the measure of the d-balls is equivalent to the same inequality for

the function t —> Ak(x, t), k — 1,...,« . Now we can prove the following

result:

Let <p be a real smooth function and put <P(x, t) = max[;c_i x+t] \<p\. If

(*)
0(x, 2t) < C<P(x, 0   and   <I>(x, /) > 0   for any real x and any t > 0,

then \cp\ belongs to RH^ on any compact subset K of the real line.

Suppose (*) is satisfied. A standard argument shows that there exists q > 0

such that 0(x, i) > ia<P(x, 1) > CKf foxxeK and t e (0, 1). Now we

note that if pm — pm(t) = a0 H-+ amtm is a real polynomial of degree m,

then there exist two positive constants cx m , c2 m depending only on m such

that

(**) 'maxbJ<climElß;V <c2,m      \Pjs)\ds.
i   , j J=0 j-t

Indeed, up to rescaling the variables, we can reduce ourselves to the interval

[-1, 1] where the uniform norm, the L -norm, and the sum of the absolute

values of the coefficients give equivalent norms (the space of polynomials of

degree < m is finite-dimensional).

Now let x e K be fixed and let us write the Taylor polynomial of cp up to

order [a]. If max[;c_; X+(X \cp\ = cp(x + s*) with |j*| < r, we have

<P(x, t) - <p(x + s*) <
E(l   /     \    *!

cpy '(x)s

;=0

+ C(K)t
[a]+l

< max
\s\<t

xyw
i=0

+ C(K)t
a]+l

E<P(,)Ms'ds + C(K)t< ¿A Í
-   at Jo

<Ca\ f\cp(s)\ds + C'(K)t{a]+X
1 Jo

H+i

<Ca\ j' \cp(s)\ds + C"(K)t£cp(x,t),
1 Jo

where e = [a] - a + 1 > 0. Thus, the assertion is proved if t is small enough.
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