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CONTROL OF DEGENERATE DIFFUSIONS IN Rd

OMAR HIJAB

Abstract. An optimal regularity result is established for the viscosity solution

of the degenerate elliptic equation

-Av+F{x, v,Dv) = 0,

A = j ^2a¡,{x)d ¡dXjpX:, x e R  . We assume the equation is of Bellman

type, i.e. F(x, v, p) = supueu[b(x, u) • p + c(x, u)v - f(x, u)], !/cR .

If we set X = infx u c{x, u), then there exists XQ > 0 such that 0 < A < A0

implies v is Holder, while X > X0 implies v is Lipschitz. The following is

established: Suppose the equation is also of Lipschitz type, i.e. suppose there

is a Lipschitz function u(x,v,p) such that the supremum in F(x,v,p) is

uniquely attained at u = u(x ,v,p); then there exists X{ > A0 such that

X > Aj implies v is C '   , i.e. Dv exists and is Lipschitz.

0. Introduction

Recall that a degenerate quasilinear equation

(0.1) -Av+F(x,v,Dv) = 0,        x£Rd,

<°-2> A-k£,Wt$z-
¡,j=\ '    J

is of Bellman type if

F(x, v , p) = sup (b(x, u)-p + c(x, u)v - f(x, u))
U€U

for some parameter set U c R   and smooth functions a, b, c, and /.

In this paper we are interested in the regularity of the bounded viscosity

solution v of (0.1). Set X = inf^ uc(x, u).

The following is known for appropriate X0 > 0 and X > X0 : The viscosity

solution v of (0.1) exists and is unique in Cft(R ) [8]. Moreover v is Lip-

schitz and semiconcave (see §1) and Av £ L°°(R ) in the sense of Schwartz
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distributions [7]. In particular if a is nondegenerate, this together with the

semiconcavity implies [7] the classical regularity result v g W '°°(R ) [3, 5].

For a degenerate, there are additional results concerning the regularity of v in

directions of nondegeneracy of a [5, 6].

The key to establishing these results is the variational representation of v as

the value function

v(x) = inf{t;"(jc) : all controls u}

of the control problem with dynamics

(0.3) dx = -b(x, u)dt + o(x)dw,       x(0) = xQ £ R ,

and cost criterion

(0.4) v\xQ) = E^e-^x{s)Ms))dsf(x(t),u(t))dt^.

Here w is a Brownian motion and a satisfies a a* — a.

Recall that the Bellman equation (0.1) is of Lipschitz type if the supremum in

the nonlinearity F is uniquely attained at u = u(x, v , p), where u is Lipschitz

in all variables.

When (0.1) is of Lipschitz type, it is known that, as a consequence of v £

W/2'0C(R ), the following holds [3] (see also §3). For each starting state x

there exists a unique optimal control u (vu(x) = v(x) ), and optimal controls

are characterized by the feedback (fixed point formula)

(0.5) u(t) = u(x(t),v(x(t)),Dv(x(t))),        t>0.

In the totally degenerate case, however, the existence of optimal controls, as

functionals of the driving Brownian motion, let alone their characterization, is

not as yet established, as v is not necessarily in W '°°(R ) in general.

The cut-off "discount-factor" X0 is necessary to assert the existence of Dv"(x)

and D2vu(x) for each fixed control u . In the particular case that b, a do not

depend on x, X0 = 0 [7].

In this paper we show that when (0.1 ) is of Lipschitz type and X is sufficiently

large, X > Xx > X0, the above issues can be resolved, even when a is totally

degenerate. In the simplest cases where b, a do not depend on x and XQ = 0,

Xx is related to the size of the Lipschitz constant of u.

Assume (0.1) is of Lipschitz type. We establish (precise assumptions in §1),

for X sufficiently large,

(1) v£ W2'°°(Rd), i.e. v £ Clb(Rd) and Dv is Lipschitz;

(2) for each x there exists a control optimal at x ;

(3) for each x there exists exactly one such control;

(4) for each x a control u is optimal at x iff the feedback (0.5) holds.

In particular, by choosing a = 0, we see that the regularity result ( 1 ) holds for

first-order Hamilton-Jacobi equations with nonlinearities of Bellman-Lipschitz

type.
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The above result also applies to the equation

(0.6) -Av+H(x,Dv) + Xv = 0,        x£Rd,

where H(x, p) — supu€U(u-p - L(x, u)), L is strictly convex in u, Lm > 0,

and U cR is compact convex. Here the supremum is attained at u(x, v , p) =

H' (x, p) ; in this case the fact that u is Lipschitz is well known convexity theory

and is recalled in the Appendix.

The regularity result ( 1 ) is best possible as a simple one-dimensional example

shows (§5).

By introducing generalized (weak sense) controls, it is known [2, 4], that

for each starting x there exists a generalized control ux optimal at x, which

can moreover be chosen in such a way that the family x i-> ux is Markovian.

However the fact that for each x the optimal control ux is Markovian in the

sense (0.5) has not been established. As a consequence of the techniques in

this paper, it follows that, for large X, (0.5) characterizes optimal generalized

controls as well. We do not formulate this result as we have no need here to go

outside the category of (strong sense) controls.

In the control of diffusions under partial observations, an analogous infi-

nite-dimensional control problem arises; there the state space is the space of

probability measures M(R ). As the techniques of this paper are purely prob-

abilistic, and thus are not a priori restricted to finite dimensions, results anal-

ogous to (l)-(4) above are expected to hold. Of course (1) implies that D v

exists almost everywhere on R and (0.1) holds almost everywhere. This result

is not listed above as it is not probabilistic and hence cannot be immediately

formulated in infinite dimensions. This work on partially observed control will

appear elsewhere.

In §5 we give two proofs of the main result (1), keeping in mind that in

infinite dimensions one technique may be more tractable than the other.

1. Dynamic programming

Throughout | • | denotes the euclidean norm of vectors in R , || • || denotes

the euclidean norm of matrices, \\M||   = trace(Af*Af ).

Throughout W2'°°(Rd) denotes the Sobolev space of functions v£L°°(Rd)

whose first and second distributional derivatives Dv , D v are in L°°(R ). Set

||v||^2,oo = ess sup(|v(x)| + |Z)v(x)| + \\D v(x)\\).
x£Rd

Let Cl ' ' (R ) denote the space of differentiable functions v such that v , Dv

are bounded on R   and Dv is Lipschitz on R . Set

Wc,,= sup Lwi+^wi+'^'f-y).
x.x'etf V \x-x\        J
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Since a function / G L°°(R ) has a distributional derivative Df in L°°(R )

iff / is Lipschitz, W '°°(R ) and Cf (R ) are isometric under the above

norms.

Let fí = Çlm = C0([0, oo) ; Rm) be the set of continuous paths in Rm starting

from the origin. Let w : [0, oo) x Q ->• Rm denote the canonical map and let

^ = o[w(s), 0 < s < t], & = a[w(t), t > 0]. Let W denote Wiener measure

on (Çl,^). Then w isa (Çl,&~t, W) Brownian motion.

We note that the er-fields SFt, SF are not completed nor is the corresponding

filtration made "right-continuous". Background on the relevant diffusion theory

is [11, Chapter 4].

Fix a closed convex set U c R .A control is a progressively measurable map

u : [0, oo) x Q -» U. Let & denote the set of controls. We say un -* u in ^

if un -» « in (¿/ x ^-probability on [0J]xfl for all T > 0. With this

topology, ^ is separable (Lemma A.l in the Appendix).

Our assumptions in this paper are the following.

• (0.1 ) is of Lipschitz type;

• (/cR   is convex closed;

• o £ Cl'l(R ) is (d x m)-matrix-valued;

• b(-, u), c(-, u), f(-,u), u £ U, lie in a bounded subset of Cxb ''(R ) ;

• b, c, f, bx, cx, and fx are Lipschitz on R  x U.

Throughout X - infx u c(x, u). For the special case of (0.6), these assump-

tions are implied by

• U c R   is convex compact;

• a £ Cxb'x(R ) is (d x m)-matrix-valued;

• L(-, u), u £ U, lies in a bounded subset of Cxb''(R ) ;

• L, Lx are Lipschitz on R   x U ;
• L£CX(Rd xRd);

• For some e > 0, C > 0,

e\u - u\   < (Lu(x , u) - Lu(x, u)) • (u - u) + C\u - u\ \x - x\,

X, X   £R   ,U,U   £ U.

When L £ C , the above hypotheses on L are equivalent to the boundedness

of L, Lx, Lu, Lxx , Lxu = L'ux , and the positivity Luu > el on Rd x U. The

fact that the strict convexity of L implies (0.6) is of Lipschitz type is recalled

in the Appendix (Lemmas A.2 and A.3).

To each starting state x £ R and control u corresponds the unique solution

x = xu(t, co; x) of

(1.1) x(t) = x-      b(x(s),u(s))ds+     cr(x(s))dw(s),        t>0.
Jo Jo
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Then xu is an Ito process with coefficients (a(x(t)), b(x(t), u(t))), where a -

oo*, and the map (t, co, x, u) ^ xu(t, co ; x), [0, oo) x Q x R   x ^ -> R

can be chosen jointly measurable.

It is well known that the state process x" = xu(t, co; x) can be chosen

differentiable in x £ R , x(-,co; •) £ C 'x([0, oo) x R ), for a.a.-w. In

particular if X(t) - Xu(t, co; x) denotes the (d x rf)-matrix-valued process

obtained by differentiating x"(t, co; x) with respect to the initial state x then

A is uniquely determined by

;i.2)

X(t) = I- f bx(x(s),u(s))X(s)ds
Jo

+ fcrx(x(s))X(s)dw(s),
Jo

t>0.

Here oXdw = axXdw, -\-h afXdwm , where <xv is the dxd matrix with

(i, ;')th entry d<rjk/dXj.

The cost vu(x) and the value function v(x) are as in §0.

Lemma 1.1. There is a constant XQ > 0 such that vu is differentiable on R  for

X > X0 and all controls u  (c — c(x, u)),

;i.3) Dv"(x) = E\ j dt
■ feds r f'
Jo       fx(x, u)X - f(x ,u)     cx(x, u)Xds

Jo

Dvu is Lipschitz, and ||t>"||ci,i < C'. Moreover the maps (x, u) h-> vu(x),

(x, u) h-> Dvu(x) are continuous on R  xW.

Proof. By Lemma A.4, £(||A(i)||2) < CeCt, t>0. Since fx, cx are bounded,

differentiation under the integral sign yields (1.3). Thus vu and Dv" are

bounded. We show Dvu is Lipschitz.

Given starting states x, x and a control u let x, x , X, X' denote the cor-

responding processes. Then E(\x(t) - x'(t)\ ) < e '\x - x'\ . Set b = b(x, u),

b' = b(x', u), bx = bx(x, u), b'x = bx(x , u), c = c(x, u), c = c(x , u),

cx = cx(x, u), c'x = cx(x , u), a = a(x), a = a(x), ax = ax(x), o'x =

ox(x'), f = f(x,u), f = f(x',u), fx= fx(x,u), f'x = fx(x , u). Now

Udvu(x)-Dv"(x')\2
6

<\\e ^\e-KcdsfxX-e-Kc'dsfxX'\dty2

+ l-l[E(J~\e-f°cdsf j\xXds-e-&c'dsf j'c'J ds\dt>fi

<\e(J~ \e-Kcds -e-^'ds\\fxX\dt^

[e-^'ds\fxX-fxX'\dt))2

(continues)

+ {E
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(continued)

+ {e (f~ \e~ !',"•' - e-í'«''d,\\S\ (jf ' \cxX\d*) dt) j'

+ {E([e-^y-A(j\xxus)d,)}2

+ {E(f\-^Vl(j;KX-^ds)d,)}2

= I + II + III + IV + V.

Since c(x, u) > X it follows that

,   - feds        - f c'ds,   .    -Xt  f  , i, j
\e  Jo      - e  Jo      I < e \c-c\ds.

Jo

Thus by Cauchy-Schwarz, for X large,

1<Ce([°°e~U (í'\c-c'\ds)  dtjEÍre~Xt\\X\\2dt)

/•OO rt

<C       e~ltt\ E(\x(s)-x'(s)\2)dsdt<C\x-x'
Jo Jo

Now

'.2

¿H< \E^e-"\fx-fx\\\X\\dt

+ {E([e-^nX-X'V,)}

= 11' + 11".

By Cauchy-Schwarz, for X large,

II' < E (^°° e'X,\fx -fx\2dt} E QH e-"\\X\\2 dt}

<Ce([°°e~x'\x(t) -x'(t)\2dt\

< C\x - x | .

By Lemma A.4, for X large, (here \\ax - a'x\\2 = \\cjx - ax\\2 + ■ ■ ■ + \\ax - ctx'\\2 )

\2dt

/■OO

ll"<C       e    {E(\\X-X'\
Jo

<C j™ e~XteCtE [j\\\bx - b'x\? + \\ax - axf)ds} dt

rOO

<C I    e~{X~C),E(\x(t)-x'(t)\2)dt
Jo

< C\x - x I .
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Thus II < C\x - x'\ . Similarly for III, IV, V and so Dvu is Lipschitz in x.

The proof of the last statement is similar and is left to the reader.   D

A control u is optimal at x when vu(x) = v(x). A control is e-optimal at

x when vu(x) < v(x) + e.

Fix T > 0. For co £ Q set STco - co(- + T) - co(T). Then for each

control u there is a unique map 6Tu : [0, oo) x Q x Í2 —> U, measurable over

¿%([0, oo)) x y x ¡FT, such that 8Tu(-, -, co) is a control for each co and

satisfies

u(t+T, co) = 6Tu(t, SjCO, co),        t>0,co£Íl.

We refer to 6Tu as the ^--measurable family of controls "cut" from u at time

T.

Conversely a control u and a ^--measurable family of controls u'(-, -, •)

can be "pasted" together at time T to produce the control u®Tu uniquely de-

termined by the requirements that it equal u on [0, T) x Q and that

8T(u®T u) = u .

We mention in passing that "cutting" and "pasting" can be done on three

"levels". The simplest level is the deterministic case, where "cutting" and "past-

ing" are immediate, the next level is when controls are progressively measurable

maps (strong sense controls), which is discussed above, and the next level is

when controls are measures (weak sense controls), which we do not use in this

paper. Here "cutting" is conditioning on «5^. while "pasting" is in [11, §6.1].

By uniqueness of solutions to (1.1), for each T > 0 one has

(1.4)    xu(t+T, co; x) = x T (t, STco; x"(T, co)),        t>0,a.a.-co.

By uniqueness of solutions to (1.1), (1.2), it follows that for each T > 0

XdTU('-w)(t,STco;xu(T,co))

= Xu(t+T,co;x)Xu(T,co;xfX,        t>0.

Given (1.4), (1.5), the following is straightforward.

Lemma 1.2. For T > 0 and X > Xn

(1.5)

\x(T)) -or- f cds
7     Jt fdt

(1.6) Dv6t"(x(T))

-ai:— \   cds
7     JT fxX(-\T)-f

(/><
X(-\T)ds dt

almost surely, where X(t\T) = X(t)X(T)  x, t>T.   D

For completeness we derive Bellman's dynamic programming principle in this

context [3, 6, 7, 10].

Since (x, u) >-* vu(x) is continuous on R x W and W is separable, the

infimum in the definition of v(x) can be taken over a countable set of controls.
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Proposition 1.3. For T > 0 and X > 0

v(x) = infE¡í  e~$'°cdsf(x, u)dt + e~$» cdtv(x(T))\ ,

where the infimum is over all controls u.

Proof. Let e > 0, u £ W be arbitrary, and for each co choose a control

«'(•, -, co) that is e-optimal at xu(T, co) as follows: Let ux, u2,... be a

countable set of controls dense in W, and for each co let n(co) be the first

n such that un is e-optimal at xu(T, co). Then it can be easily verified that

u'(-, -, co) - un,u) is a ^--measurable family of controls. Set u" = u®Tu .

Then 6Tu" — u   and so by Lemma 1.2

v{x)<v""(x) = e([  e~$°cdsf(x, u)dt + e~$* cdtveTU"(x(T))\

<E\[  e~^cdsf(x,u)dt + e~^cdtv(x(T))\ + e~Ue

<E(fTe-fócdsf(x,u)dt + e-foTcdtveru(x(T))\+e-XTe

= E(ne-$'°cdsf(x, u)dt\+e~XTe

u,    ,   ,     —XT
= v (x) + e     e.

Taking the infimum over u and letting e | 0 the result follows.   D

Corollary 1.4. If u is optimal at x and T > 0 then 6Tu is optimal at x(T)

almost surely.   D

Corollary 1.5. For X > XQ the value function v £ Cb(R ) is Lipschitz on R

and semiconcave on R : There is a constant C>0 suchthat C\x\  -v(x) is
nd

convex on R .

Proof Clearly v is bounded. By Lemma 1.1 \Dv"(x)\ < C for all x £ Rd

and all controls u. This implies v(x) < vu(x) < vu(x) + C\x - x'\ ; taking

the infimum over u and reversing the roles of x,. x , yields \v(x) - v(x')\ <

C\x - x'\.
We also have D vu(x) < CI in the sense of Schwartz distributions; this

implies \C\x\ -vu(x) is convex. Taking the supremum of this expression, the

result follows.   D

2. Hamilton's equations

ose u is optimal at x. Fo:

e > 0 let u   be the control that equals a on [0, e) x Q and u elsewhere. Let

Fix x £ R   and suppose u is optimal at x. For constant a £ U and for
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vs(x) denote the cost corresponding to the control u   and starting state x

Then ve(x) > v°(x) = vu(x) for e > 0 and so £     + ve(x) > 0.

Below we need to address the possibility that \ ¡0e u(t, co) dt may not con-

verge to w(0, co) as e | 0. Note that since u is progressively measurable u(0)

is a constant identically on Q.

Let u be a control. We say (/, co) is a Lebesgue point of u provided

e ft+E lM(5> &>) - w(i, <y)| ds -> 0 as e | 0. Then for each co, the point (t, co)

is a Lebesgue point of u for a.a. t > 0. Thus for a.a. t > 0, the set of co's

for which (/, co) is a Lebesgue point has Wiener measure 1. We now work

out the derivative of ve(x).

Lemma 2.1. Let u be optimal at x and suppose that (0, co) is a Lebesgue point

of u for W-a.a. co. Suppose X > X0 . Then

(2.1) u(0) = u(x,v(x),Dvu(x)).

Proof. Let xE denote the state trajectory corresponding to ue. Then by defini-

tion of ue, xe satisfies

(2.2) xe(t) = tf(t) - [ b(xe(s), u(s))ds+ [ a(xe(s))dw(s),        t>0,
Jo Jo

where
/•ÍAE

tf(t) = x + I     [b(xa(s), u(s)) - b(xa(s) ,a)]ds,       t> 0.
Jo

Since the initial data £?(■) is differentiable in the parameter e at e = 0+,

standard results on solutions of SDE's [6] imply the solution xe(-) is also dif-

ferentiable in e at e = 0+ , in probability. Let Z(t) denote the derivative at

e = 0+ . Differentiating (2.2) with respect to e yields

Z't) = { - / bx(xu(s), u(s))Z(s)ds+ [ ax(xu(s))Z(s)dw(s),       t>0,
Jo Jo

where £, = [b(x, u(0)) - b(x, a)]. Hence by (1.2) it follows that

Z't) = X(t)[b(x, u(0)) - b(x ,a)],        t>0.

Now

ve(x) = E (fe-$'°c[xa>a)dsf(xa(t),a)dt

+ E^°0e-f:^^f(x°(t),u(t))dt^

^E(Kj\-^a^f(x\t),a)di}

-EL-$>(x^a)-c(xa'u)]ds j\A:^a>^f{x<>{t), u{t))dt\

■^{x"'a)-c{x"'u)lds j" e-^{x'-u)dsf(x\t),u(t))dt)+ E\e
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Differentiating ve with respect to e , using (1.3) and the fact that (0, co) is a

Lebesgue point of u for a.a.- co yields

Dvu(x)[b(x,a)-b(x,u(0))]

+ [c(x, a) - c(x, k(0))]u"(jc) - [fix, a) - f(x, m(0))] < 0.

Thus m(0) attains the supremum in F(x, vu(x), Dv"(x)) ; since vu(x) = v(x),

(2.1) follows.   D

Corollary 2.2. Let u be optimal at x and suppose X > X0. Then

(2.3) u(t) = u(x(t), v(x(t)), Dve,u(x(t))),        t > 0, a.s.-(dt x W).

Proof. From above we know that for a.a. t > 0, (t, co) is a Lebesgue point of

u for W-a.a. co. Thus for each such (t, co), (0, co') is a Lebesgue point of

dtu(-, •, co) for W-a.a. co'. Also by Corollary 1.4, 9tu(-, -, co) is optimal at

x(t, co) for W-a.a. co. Since 6tu(0) = u(t), applying Lemma 2.1 the result

follows.   D

For / > 0 set

(2.4) p(t) = E^j™ e-S>dr fxX(-\t)-f^ScxX(-\t)dr^ds &?j ,

where as before X(s\t) - A(s)A(i)-1. Then Lemma 1.2 states that for each

t>0,
Dve,u(x(t))=p(t),    a.s.-W.

Thus the feedback (2.3) reads

(2.5) u(t) = u(x(t),v(x(t)),p(t)),        t>0,a.s.-(dtxW).

Hamilton's equations consist of the closed system for (x(t), p(t), X(t)) given

by (1.1), (1.2), (2.4), (2.5). In the simplest (but still interesting) case when b,

a do not depend on x , the equation for X(t) = I drops out.

3. The case v£ W2'°°(Rd)

It is well known that the value function v is a generalized solution of the

Bellman equation (0.1), in the sense of Schwartz distributions or in the sense of

Crandall-Lions viscosity solutions [1, 8]. In particular, v is the unique viscosity

solution of (0.1) in Cb(R ). Set F(x, v , p, u) = b(x, u) • p + c(x, u)v -

f(x, u). Then F(x,v,p) = supueU F(x,v,p,u).

We need the following lemmas. For completeness we state the well-known

result of P.-L. Lions [7], specialized here to the quasi-linear case.

Lemma 3.1. Suppose X > X0. In the sense of Schwartz distributions, Av G

L°°(Rd) and (3.1) holds almost surely on Rd. This together with the semi-

concavity of v (Corollary 1.5) imply v £ W '°°(R ), when a isnondegenerate,

(a(x)cl,cl)>e\cl\2,forall x,t:£Rd.   D
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Lemma 3.2. Fix a starting x and control u and suppose X > X0.   Suppose

Dv(xu(t)) exists for all t>0, a.s.- (dt x W). Then

(3.1) vu(x) = v(x) + E ( He~$'«c(x'u)ds[F(x, v(x),Dv(x))

- F(x, v(x), Dv(x), u)]dt

Proof. Assume first that a is nondegenerate as in Lemma 3.1. Then by Ito's

rule for W2'°° functions [6] and (0.1)

e~JCócdsv(x(t))- f e~Jfocdr[F-b(x,u)-Dv(x)-c(x,u)v(x)]ds,        t>0,
Jo

is a martingale. Thus

(3.2) 0 = v(x)- E(e'h cd'v(x(T)))

+ EU   e~fôcds[F-b(x,u)-Dv(x)-c(x,u)v(x)]dt) ,

where F = F(x, v(x), Dv(x)), for all T > 0.

Now we are going to change the underlying probability space. For emphasis

below we write Qm , S^"1 to indicate the dimension of the driving noise w .

Let an be the dx(m+d) matrix (a, \l) . Let vn denote the value function

corresponding to b, c, f, and an . Then (3.2) applies, relative to Qm+ , and

we obtain

(3.2„)

0 = vn(x)-E(e-$°cdtvn(xn(T)))

+ E [Jo    € S{Fn-b(Xn>U)-DVn(Xn)-C(Xn>U)Vn(X)}dt\  »

where Fn = F(xn , vn(xn), Dvn(xn)) and c — c(xn, u). It is important to real-

ize that in (3.2J xn is &¡m+ -progressively measurable, even though u is only

&¡m-progressively measurable. However x is .^'"-progressively measurable. In

fact (3.2n) holds for u &~tm+ -progressively measurable, but we do not use this.

Now as n —* oo xn(t) —► x(t) in probability since on —> a uniformly. Since

vn -> v locally uniformly, it follows that vn(xn(t)) —» v(x(t)) in probability.

Since Dv exists at x(t) a.s. and vn are uniformly semiconcave (Corollary

1.5), it also follows that Dvn(xn(t)) -> Dv(x(t)) in probability. Passing to the

limit, it follows that (3.2) holds for degenerate systems, on Qm . Letting T | oo

we obtain

(3.3)    0 = v(x) + e([   e~f°cds[F-b(x,u)-Dv(x)-c(x,u)v(x)]dt

Combining (3.3) with (0.4), the result follows.   D
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Lemma 3.3. Suppose v £ W '°°(R ) and X > X0. Then for each x there exists

exactly one control u optimal at x. Moreover a control u is optimal iff

(3.4) u(t) = u(x(t),v(x(t)),Dv(x(t))),        t>0,a.s.-(dtxW).

Proof. Since v £ W '°° = Cxb'x, v and Dv are Lipschitz. Hence u(x) -

u(x, v(x), Dv(x)) is Lipschitz. Thus there exists a unique solution x* to the

equation

(3.5) x*(t) = x - [ b(x*(s), u(x*(s))) ds+ f o(x*(s)) dw(s),        t > 0
Jo Jo

(here we are in Qm ). Setting u(t) — u(x*(t)) yields a control satisfying the

feedback (3.4). Since F(x, v(x), Dv(x)) = F(x, v(x), Dv(x), u(x)), u is

optimal by Lemma 3.2. Conversely if u satisfies the feedback (3.4) then xu

solves (3.5) so xu — x* so u = u . The result follows.   D

4. AN A PRIORI ESTIMATE

In the next section we establish v G W ' 3 for X large. Since we do not

know this yet, the results in §3 do not apply and hence we do not yet know that

optimal controls exist. To this end we need a simple estimate.

In what follows vt(x, p) = u(x, v(x), p). Since v is Lipschitz, it follows

that u(x, p) is Lipschitz. Let x, x be two starting states and suppose optimal

controls u, u (on Q.m ) exist at x, x respectively; let x, p, X, x , p , X'

be the corresponding processes. Then we have the optimal feedbacks

u = u(x,p),       u =\x(x , p).

Set

p(t) = E(\x(t)-x'(t)\2 + \p(t)-p'(t)\2).

The technique in the following lemma is the key observation on which the

results of this paper turn.

Lemma 4.1. There exists Xx > X0 such that for X > Xx,

P(t)< C\x-x'\2eCt.

Proof. To begin note p(t) < Ce '. Set b - b(x, u), b' = b(x , u), bx =

bx(x ,u), b'x = bx(x ,u), c = c(x, u), c = c(x , u), cx = cx(x, u), c'x =

cx(x ,u), a = a(x), a = a(x'), ax = ax(x), o'x = ax(x), f = f(x,u),

/' = f(x , u), fx = fx(x, u), f'x- fx(x , u). Then since u is Lipschitz,

E(\u(t) - u'(t)\2) < Cp(t) ; this implies

E(\ip(t) -y/'(t)\2)<Cp(t),

where \p is any one of the components of b , bx, c, cx, a , ox, f, fx. Now

by Ito's rule

d\x - x'\  = 2(b - b')(x - x)dt + 2(a - o')(x - x')dw + \\a - a'\\ dt ;
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it follows that

(4.1) E(\x(t)-x'(t)\2)<\x-x'\2 + ^r f p(s)ds.
¿ Jo

Moreover X(s\t) = X(s)X(t)'x ,s>t, satisfies

X(s\t) = I - j' bx(r)X(r\t) dr + j¡ ax(r)X(r\t) dw(r), s>t;

this implies (Corollary A.5)

(4.2)

Let X'(s\t) denote the corresponding primed quantity. Now

E(\\X(s\t)\\2\^)<CeCis °,       s>t.

(4.3)

l7E(\p(t) -p'(t)\2)

< \e \e (^°° \e~ S>drfxX{.\t) - e~ rc'drfxX'(.\t)\ds %

5>Cdrfjt  cxX(.\t)dr

-e-^'drf [c'xX'(.\t)dr

<E{E

+ E

+ E{E

+ ElE

■ fs cdr        - V c dr
Jt — p    Jt WfM-\t)\ds

%

Ft

\cxX(-\t)\dr)ds

\e (^°° e~ S>'dr\fxX(.\t) - fxX'(.\t)\ ds

' (¡yi:

(/°° e~¡: c'd"u '/'1 (/ Kxm dr)ds

+ e\e^J\- S' c'dr\f\ (£ \cxX(.\t) - c'xX'(.\t)\dr^j ds

= I + II + III + IV + V.

Since c(x, u) > X it follows that

.   -fcdr        -fc'dr>.    -l(s-t)   fS , I,   ,
\e  ■>>      - e  ■>•      | < e \c-c\dr.

*
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Thus by Cauchy-Schwarz, for X large,

KCElE |c - c I dr I  ds ^

e~X{s~t]\\X(s\t)\\2 ds *¡\

Similarly

/OO /■!e   {s~'\s-t) /  p(r)drds.

ill < {is (ft°° e~Ms~']\fx - fx\ WIOU ds\*¡f)'(I
+ CIE

= 11'+ 11".

e~X(s't]\\X(.\t)-X'(.\t)\\ds

By Cauchy-Schwarz and A. 5, for X large,

n'<E{E(f~e-*-%-fxfds\^

x E (Íe'^-'ixmfds ?t

/oo e~ii'~t)p(s)ds.

Similarly using A. 5, for X large,

II" < c j°° e-^-')ec(s-t) (jSp(r)dr\ ds.

Continuing in this manner yields

III <C r e~Ks~l\s - 0 ( r P{r) dr) ds,

■f;e~Ks~']p(s)ds..

V < C i0" e-X{s-t] f (p(r) + eC{r-'] (f p(q) dq

',2

Combining (4.1), (4.3) yields

(4.4) p(t)<(Kp)(t)-

where K is the positive linear operator

C  f
Kf(t) = jjof(s)ds

f e-(k-C)(s-t] (/(,) + CJ* (/(r) + Cft f(q) dq) dr
+ Clt
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Now if K were causal (4.4) would be a Volterra inequality which can be iterated

in the usual way. However K is not causal. Nevertheless (4.4) is a Fredholm

inequality which can be iterated and solved in the usual way when the norm of

K = Kk is small enough; but this happens when X is large enough.

Specifically when X > 8C, /(f) < ea implies Kf(t) < ôeCt, where ô =

\ + x=§c < 1 ■ Iterating (4.4) yields

p{t) < (I + K + K2 + ■ ■ ■ + K"~x)\x - x'\2 + Knp(t)

. /.   ,   o.  ,   ¡.2  . ,   ft-Ki 'i2  Ct  ,   en,-,  Ct
<(l+ô + ô+--- + ô     )\x-x\e    +3 Ce

1      i i,2   Ct . _
\x - x I e      as n î oo.   D

l-<?'

Since p(0) - Dv"(x), setting t = 0 in Lemma 4.1 yields

Corollary 4.2. Let X > Xx. \Dvu(x)-Dv" (x')\ < C\x-x'\ for any two controls

u, u optimal at x, x respectively. Moreover un, u optimal at xn, x and

x„-»x implies u„ —> u in &.   Dn r n

5. The main results

Theorem 5.1. X > Xx implies v £ W '°°(R ) = Cf (R ) : v is differentiable,

v and Dv are bounded, Dv is Lipschitz on R , and ||f||ci,i < C.

First Proof. First we assume a is nondegenerate.   Then we use Lemma 4.1

to derive an estimate on the Cx'x norm of v independent of the ellipticity

constant. Then we pass to the limit.

Assume a is nondegenerate. Then v £ W ' and optimal controls exist.

Fix x0 £ Rd . For Ç £ Rd , let xt = x0 + /£ . Let ut, t>0, denote the control

optimal at xt ; then

v(xt)-v(x0) <vu"(xt)-vu"(x0)

t - t

and so

r|0 t

v(xt)-v(x0) ^ vu'(xt)-vu'(x0) = j^u,,^ j

liminft;(^)"t,(3Co) > liminfDvu>(x*)c: = Dvu°(x^,
tio t -    tio v ' '^ v 0/^

by Corollary 4.2 and Lemma 1.1. Thus for each x, Dv(x) = Dvu(x), where

u is the control optimal at x. Hence by Corollary 1.5 d and Dv are bounded

on R"* and by Corollary 4.2 again \Dv(x) - Dv(x')\ = \Dvu(x) - Dv" (x)\ <

C\x-x'\. This establishes ||i>||ci.i < C when a is nondegenerate, with C

independent of the ellipticity constant.

Also

so
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For the general case we now set, as in Lemma 3.2, an = (a, £/). Then

an = ana*n is nondegenerate. By the above, ||v„||ci,i < C with C independent

of n . Since v  —* v , the result follows by passing to a subsequence.   D
n

Second Proof. This proof avoids totally the results in §3 and P.-L. Lions' theo-

rem; the price we pay is the use of relaxed generalized (weak sense) controls as

well as the fact that this proof works well only when c(x, u) = c(x) does not

depend on h. A generalized control is a control where the underlying probabil-

ity space and Wiener process is allowed to depend on the control [2, 4]. Because

the dependence of b(x, u) ( f(x, u) ) on u is not necessarily affine (convex

respectively), one needs to extend the definition to the class of relaxed general-

ized controls [2, 4] to force b, f to be affine and convex respectively, albeit

at the cost of replacing U by Ü = M(U). Writing vu(x) = Ep(0(x, «)),

where P denotes the law of (x(-), «(•)), and imposing an appropriate weak

topology on the space of deterministic controls u(-), the lower semicontinuity

of «J> follows as well as the compactness of the laws {P} . Without giving the

precise definitions, this implies the existence for each x of a relaxed generalized

control optimal at x, even in the degenerate case. Given two such controls u,

u optimal at x , x respectively, defined a priori on two different probability

spaces, one constructs a single probability space supporting both controls, fol-

lowing Yamada-Watanabe (see [11]). They then can be compared pathwise and

the results in §4 hold with no change whatsoever. This establishes Corollary 4.2

when u, u are relaxed generalized controls optimal at x , x respectively and

so we see that there is a Lipschitz function F on R such that F(x) = Dvu(x)

for all x. By the argument in the first proof we see that Dv(x) exists and

equals Dvu(x) = F(x) for all x . The result follows.   □

Corollary 5.2. Let X > Xx. Then for each x there is exactly one (strong) control

optimal at x.

Proof. Combine Theorem 5.1 and Lemma 3.3.    D

The above regularity result is best possible (using these kinds of techniques).

For example take the one-dimensional system f(x, u) = \u + <p(x), <p £

C^°(R), equal to \x near x = 0, U = [0, l]cR, b(x, u) = u, c(x, u) = X,

a(x) = 0. The value function then satisfies

H(v') - <f>{x) + Xv = 0,       where H(p) =

0, p<0,

\p\       0<p<l,

P-\,    />>!•

Then near and to the left of zero, the value function is v(x) = ¿x ; near and

to the right of zero, the value function is v(x) = ^kx , where k solves the

(Riccati) equation k + Xk - 1 = 0. This shows that v is Lipschitz near zero

but v" does not exist at zero, for all X > 0.
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We conclude with some philosophical remarks concerning regularity which

may shed some light on Theorem 5.1. We have shown above that, for X suffi-

ciently large, v £ Cxfx = W2'°° . However the identification Cxb'x = W2'°° is

measure-theoretic, i.e. makes use of a reference measure on R . Since proba-

bilistic methods do not a priori interact with base measures on the state space

(they involve the measure on ii), there is no way these methods imply directly

that the value function v is in W ' °° .

For example in the study of Bellman equations on Hubert space there is no

natural reference measure. Hence optimal regularity must be formulated in

terms of Cx'x [9]. Another example is partially observed control where the

state space is the space of probability measures M(R ). Here again there are

no natural Sobolev spaces and one expects optimal regularity to be formulated

in terms of C ' .By contrast, on Wiener space Q there is a natural reference

measure and so the Malliavin Calculus can be formulated in terms of Sobolev

spaces on Q.

A. Appendix

Lemma A.l.  W is separable.

Proof. Let ^ be the bounded controls. Since any control can be approximated

in probability by bounded controls, it is enough to show Wb is separable. Next

since fjCl = L ([0, oo) x Q, e dt x W), it is enough to show that %?b is

separable in L -norm. Now note that [0, oo) x Q is a Polish space. Thus we

can use Lusin's theorem to produce a map / G Cb([0, oo) x Q, ; U) that approxi-

mates any given u £Wb in L -norm. Given a £ R let a = (aAn)V(-n) ; given

v = (vx, ... , vm) £ Rm let v" be the vector whose ith component is (v¡)n .

Given co £ Q, let co"(t) = (co(t))n and let con denote the piecewise linear

interpolation of co over a partition of mesh ^. Then for all co the path (con)n

is uniformly bounded by nm and is Lipschitz in t with Lipschitz constant

2m«2. Thus the set {(t An, (co")n) : t > 0, co £ Q} c [0, oo) x Q is compact

and so gn(t, co) = f(t A n, (co")n) is bounded and uniformly continuous and

approximates f in L -norm for large n. Since the space of bounded uniformly

continuous maps on [0, oo) x Q is separable in the sup norm, we conclude there

is a sequence of maps fx, f2, ... in Cb([0, oo) x Q ; U) such that any bounded

control can be approximated arbitrarily closely in L2-norm by elements of this

sequence. Let ux, u2, ... denote the L2-projections of fx, f2, ... onto the

Hubert subspace of all progressively measurable maps. Since U is closed con-

vex the projections are controls and the result follows.   D

Let Ur = U n {u\ \u\ < r}. Lemmas A.2 and A.3 establish the fact that

F(x, v , p) = H(x, p) + Xv in (0.6) is of Lipschitz type when L is strictly

convex.
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Lemma A.2. Let U c Rd be closed and convex. Let L £ CX(R  xR ) satisfy

(L.l) inf      . '—- —► +oc   as \u\ -* oo, u £ U,
xeRd     \u\

(L.2) sup sup(\L(x, w)| + \Lx(x, u)\) < +00,
xe*d "6£/r

and

(L.3)  (Lu(x, u) -Lu(x, u))-(u - u) > er\u - u\ ,       x £ R , u, u £ Ur,

for some er > 0, both for all r > 0. Set H(x, p) = supueU(p • u - L(x, u)).

Then H £ Cl(Rd x Rd),

(H.l) sup sup(\H(x,p)\ + \Hx(x,p)\ + \Hp(x,p)\)<+oo,
x€Rd \P\<r

for all r>0,

(H.2) L(x ,u)-p-u + H(x,p)>0,       x,p£R ,u£U,

with equality iff

(H.3) u = Hp(x,p),

and Hx(x, p) = -Lx(x, H (x, p)). In particular Hx and Hp are bounded on

R xR and H has at most linear growth in p on R xR , when U is compact,

and H (x, ■) :R —> R is a global homeomorphism with inverse L (x, •) for

all x £ Rd, when U = Rd.

Proof. To begin, (H.2) holds by definition of H.
Given x, p, let un be a sequence in U such that p • un- L(x, un) ap-

proaches the supremum in the definition of H. Then by (L.l), un must lie in

a bounded subset of R . Hence the supremum is attained at some point in U.

Now suppose that the supremum is attained at two points u and u . By (L.3)

the function t —» L(x, (1 - t)u + tu) is strictly convex on 0 < í < 1. This

implies that the supremum is not attained at either u or u . Hence for given

x, p , the supremum is uniquely attained at some point in U ; call it u*(x, p).

Since H is a supremum of continuous functions, it follows that H is lower

semicontinuous. To establish upper semicontinuity, let xn —> x, pn -* p . Then

by (L.l), un = u(xn, pn) lies in a bounded subset of R . Hence by passing to

a subsequence, H(xn ,P„)=Pn-un- L(xn ,u*n)-*p-u- L(x, u) < H(x, p).

This implies upper semicontinuity, and also implies the continuity of u .

Now let Ç £Rd and set pt=p + tc¡, ut -u(x, pt). Then H(x, pt) > pt •

uQ-L(x, uQ), H(x, pf) = p0- uQ-L(x, uf). Subtracting these two expressions,

dividing by t, and letting t [ 0 yields

,.    .  .H(x,p + t£)-H(x,p)       *.       ,   x
hminf —-—- > u (x,p)-c¡.

tio t
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Reversing the roles of pt, p0 yields

.. H(x,p + tQ-H(x,p)       »        ,
hmsup —-—-—-—— < u (x,p)-Ç,

no t

where we have used the fact that u* -^ u*0 as t j 0. This shows H (x, p) —

u(x,p) and establishes (H.3). An almost identical argument shows that

Hx(x, p) = -Lx(x ,u(x, p)) = -Lx(x, Hp(x, p)).

By (L.2) it follows that H is bounded below on R x {p : \p\ < r} for all

r > 0. By (L. 1 ) it therefore follows that H   and hence H, Hx are bounded

on Rd x{p: \p\ < r} for all r > 0. This establishes (H.l).

Now if U = R then U is open; since the supremum defining H is attained

at u = u(x, p) we must have p - Lu(x, u) = 0. Thus Lu(x, •) is onto. If

Lu(x ,u)=p for some other u then the function f't) = -(p • ut) - L(x, ut),

ut = (1 - t)u + tu , is strictly convex on 0 < t < 1 and satisfies f(0) = /(l) =

0. Thus u — u , showing that Lu is one-to-one. Since u   = H (x, p) this

establishes Lu(x, -)~x = Hp(x, ■) for all x £Rd .

If (7 is compact then Hn £ U is bounded and hence by (L.2) so is Hr .   O

We note that assumption (L.3) above is equivalent to

Luu(x ,u)>erI,       x £ R , u £ Ur,

when L £ C2. Moreover when U is compact (L.l) is equivalent to L bounded

below on R x R because one can always obtain (L. 1 ) in this case by modifying

L off U.

Lemma A.3. Continuing Lemma A. 2, assume that Lx is Lipschitz on R x Ur

and

(LA)      er\u - u\   < (Lu(x , u ) - Lu(x, u)) ■ (u - u) + C\x - x\ \u - u\,

x £ R , u, u £ Ur, for some er > 0, both for all r > 0. Then Hx, H are

Lipschitz on R x {p : \p\ < r} for all r > 0. In particular if Lx is globally

Lipschitz on R xR and e in (LA) can be chosen independent of r, then Hx,

Hp are globally Lipschitz on R  xR .

Proof. Choose ck £ R, £k £ Rd , k > 1, such that U is the intersection of the

half-spaces {u : Çk • u < ck} , k>l. For n > 1 set

n

L"(x,u) = L(x,u) + n£(0 V (Çk -u - ck))2
k=\

and for n > 0 set

Hn(x, p) — sup(p ■ u - Ln(x, «)),

UÇ.9."
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where L — L; let H be defined as in Lemma A. 2. Then Ln > L satisfies

(L.l) uniformly in n > 1. Thus u*n - H"(x, p) lies in a bounded subset of

R . By passing to a subsequence, we have Hn(x, p) = p • u*n - Ln(x, u*n) <

p • m* - L(x ,un)—*p-u- L(x, u) for some u £ R . We claim u £ U. If

not then for some k > 1, e > 0 one has ¿^ • u > ck + e ; thus for n sufficiently

large -oo < H(x,p) < Hn(x,p) < H°(x,p)-ne2 -> -oo as n î oo, a

contradiction, Thus u £ U. This yields limsupnHn(x, p) < H(x,p). Since

H(x, p) < Hn(x, p), we conclude that Hn(x, p) -> H(x, p). Moreover the

above argument also shows Hp(x,p) -> Hp(x,p). Since Lnx = Lx, it also

follows that Hx(x,p)^Hx(x,p).

Now (L.4) for L implies (L.4) for Ln with the same er ; thus

|w -u\< Cr\Lu(x , u ) - Lu(x, u)\ + Cr\x -x\,

for all x, x , u, u £ Ur. Since Hp(x, ■) is the inverse of Lnu(x, •), inserting

u = Hp(x ,p), u = Hp(x, p), yields

\Hp(x ,p)-Hp(x,p)\<Cr\x -x\ + Cr\p -p\

for all x, x , \p\ < r, \p'\ < r. Letting «-»oo we obtain H is Lipschitz

on Rd x {p : \p\ < r} for all r > 0. Since H"(x, p) = -Lnx(x, Hp(x, p)) =

-Lx(x, H"(x, p)) we also have the same result for Hx . Finally if the constants

do not depend on r, it is clear that the global result holds.   D

We note that Lemma A. 3 is optimal: When L is C°° , H  is at best Lipschitz

in general; if however one also has U = R then H is also C°° and in this

case H = L~u . Also if L is C then the Lipschitz conditions in Lemma A. 3

are equivalent to boundedness conditions on Lxu , Lxx .

Lemma A.4. Let B0, ... , Bm, B'0, ... , B'm, be bounded (d x d)-matrix-valued

processes and suppose X, X' satisfy

dX = BQXdt + BxXdwx + ■■■ + BmXdwm ,    X(0) = /,

dX' = B'QX'dt + B'xX'dwx +■■■ + B'mX'dwm ,    x'(0) = /.

Then £(||A(i)||2) < CeCt, t>0,and

{E(\\X(t) - A'(i)||)}2 < CeCtE U í ¿ ||^(5) - B'k(s)\\2 J ds\ .

Proof. The reader may find the proof more enlightening by first checking the

case d — 1, m — 1. For simplicity we assume m = 1 and we set B0 -

A,B'0 = A', Bx =B,B\ = B'. Set (P, Q) = trace(P*Q). Then 2(P, Q) <

ll^ll2 + HÖH2. \\PQW < \\P\\ IIÔII • Set Q = A'A"1. Then by Cauchy-Schwarz

(A.1) {E(\\X(t) - X'(t)\\)}2 < E(\\Q(t) - /||2)£(||A(i)||2).
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We first estimate £(||ß0(?)||2) where Q0 = Q-I.

Now by Ito's rule

dQ0 = (~Q(A - B2) + A'Q - B'QB)dt + (B'Q - QB)dw.

Then

¿llßoll2 = 2<Öo > -Q0iA - B2) + A'Q0 - B'Q0B)dt

+ 2(ß0, iA' -A)- (B' - B)B)dt + \\B'Q - QB\\2dt + (■■■ )dw

(A.2) < C\\Q0\\2dt + C(\\À - A\? + \\B' - B\f)dt + (■■■ )dw

(A.3) <C\\Q0\\2dt + Cdt + (---)dw;

here we used \\B'Q - ß5||2 < 2\\B'QQ - ßQ5||2 + 2\\B' - B\\2 < C||ß0||2 +

2||fl'-£||2. Taking expectations in (A.3) yields E(\\QQ(t)\\2) < CeCt. Choosing

A = B = 0 yields E(\\X'(t) - I\\2) < CeCt which implies the first assertion.

Taking expectations in (A.2) and using (A.l) yields the second assertion.   D

Corollary A.5. With notation as in Lemma 4.1, £(||A(j|r)||2|i^ < CeC{s~t),

s > t, and

E{E(\\X(s\t)-X'(s\t)\\ | ̂ )2} < CeC{s-'] £ p(r)dr, s> t.

Proof. By (1.2), (1.4), (1.5) it is enough to consider the case t = 0. In this case

the result follows from Lemma A.4.   D
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