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FLOWBOX MANIFOLDS

J. M. AARTS AND L. G. OVERSTEEGEN

Abstract. A separable and metrizable space X is called a flowbox manifold

if there exists a base for the open sets each of whose elements has a product

structure with the reals St as a factor such that a natural consistency condition

is met. We show how flowbox manifolds can be divided into orientable and non-

orientable ones. We prove that a space X is an orientable flowbox manifold if

and only if X can be endowed with the structure of a flow without restpoints.

In this way we generalize Whitney's theory of regular families of curves so as

to include self-entwined curves in general separable metric spaces.

All spaces under consideration are separable and metrizable.

0.   Introduction

0.1. Whitney's paper Regular families of curves [W] has been of great influence.

It laid the groundwork for the theory of cross-sections in flows and it can also be

seen as a prelude to the theory of foliations. In Whitney's terminology a curve is

a topological copy of an interval (open, closed, or half-open) or a circle. A family

of curves is a partition of a separable metric space into curves. The family is

called regular if for every e > 0 and every point p there is a ô > 0 such that,

whenever d(p, q) < ô, arbitrarily long arcs that are contained in the curve

through p can be pushed onto a similar arc through q by a homeomorphism

that moves the points of the arc not more than e . Using these two properties

Whitney proved the existence of cross-sections. He also showed that if the

family of curves is orientable and if the space is locally compact, it is possible

to endow the space with the structure of a flow in such a way that the open

curves and the endpoints of curves coincide with the orbits of the flow.

0.2. In this paper we present a generalization in two directions of these results.

First, we allow the curves to be self-entwined and only require that there is a

continuous bijection of R (or 5 ) onto the curve. Second, we perform the

construction of a flow for any separable metric space. It seems that our proof

has the additional benefit of being less complicated.

0.3. We found it more convenient to start our theory with a discussion of the

local product structure instead of beginning with regular families of curves. This
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is formalized in the definition of a flowbox manifold, a notion that encompasses

the notions of dimension-one foliation and flow. In passing we observe that the

importance of the local product structure has been noticed by various authors,

e.g., [G, MR].

0.4. A flowbox manifold is a space in which every point has arbitrarily small

neighborhoods with a product structure in such a way that a natural consistency

condition is satisfied. The basic results about flowbox manifolds are collected

in §1. In §2 we examine the dimension-one foliation of the flowbox manifold

and introduce the notion of orientability. We carefully analyze the intersection

of flowboxes in §3. Then we are in a position to prove our main result.

0.5. Main Theorem. Let X be an orientable flowbox manifold. Then there is

a flow on X such that each streamline in X is contained in some orbit of the

flow.

The converse of the main theorem is well known (see Examples 1.4 and 2.12).

0.6. The proof of the main theorem is carried out in §4. In §5 we extend

Whitney's original definition of a regular family so as to include more general

curves and spaces. The relation with work on matchbox manifolds is briefly

discussed.

1.   Flowbox manifolds

We discuss the basic properties of flowbox manifolds.

1.1. Definition. A separable metric space A is called a flowbox manifold if it

has the following two properties.

(1) Local product structure: there exists a base % = {Ug \ß £ B} for the

open subsets such that for each ß e B there exists a space S„ and a

homeomorphism h„: S„ xR -+ U„.

(2) Consistency: suppose that Ua = ha(Sa x SR) and U„ - h»(Sg x 5R) are

elements of %. If Ua c U„, then for each s £ Sa there exists t £ Sg

such that ha({s} xS})c ^({i} x K).

We first present some examples of flowbox manifolds.

1.2. Matchbox manifolds. According to [AM] a space A is called a matchbox

manifold if for each x £ X there is a zero-dimensional space Sx such that

Sx x îî is homeomorphic to an open neighborhood of x . It follows that there

are arbitrarily small such neighborhoods. It is to be noted that the components

of Sx x 5R are precisely the sets {z}xSR, z £ Sx. From this it easily follows that

condition (2) is satisfied. Consequently each matchbox manifold is a flowbox

manifold.

1.3. Foliations. A dimension-one C°-foliation of an «-dimensional manifold

M may be defined as a partition Jzf = {La\a £ A} of M into one-dimensional
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sets (the leaves of the foliation) such that for each point x £ M there is a home-

omorphism (a chart) hx: U —> Ï?"-1 x 5R which takes an open neighborhood U

of x onto SR" such that for each a each component of La n U is mapped

onto {y} x *R for some y £ SR"~ and the family of all such charts forms an

atlas for the manifold. It is easily seen that a dimension-one C -foliation is a

flowbox manifold. See [CN] for more information about foliations.

1.4. Flows. Let n: X x 5R —► A be any flow (continuous dynamical system)

without restpoints (see, e.g., [Hl, NS]). Then A is a flowbox manifold. To

show that this is correct we note that for each x £ X there is a closed subset

Bx of A—called a local section at x—and a real number r\ > 0 such that

x £ Bx and n maps Bx x [-», n] homeomorphically onto a neighborhood of

x . See [HI, AM] for more details.

1.5. Standing notation. Let S be any space. We define Fs = S x [-1, 1] and

Es = S x (-1, 1). The space Fs is called a standard flowbox. For each x £ S

the set {x} x [-1, 1] is called a streamline of Fs . The natural projections of

Fs onto S and [-1, 1] are denoted by pr, and pr2 respectively. Both prj

and pr2 are open. As [-1,1] is compact, prt is closed as well.

We now define flowboxes which play a very important role in the development

of the theory.

1.6. Definitions. Let U„ be an open set witnessing the local product structure

of the flowbox manifold A, i.e., U„ = hg(Sß x 5R) for some ß £ B. A closed

subset V of A, which is contained in C/„, is called a flowbox if there exists a

space S, a dense subspace S of S, and a topological embedding <f>: Fs -» A

such that the following hold:

(1) V = (¿(iy and intf F = 0^) ;
(2) for each y £S there is a z£5, with <t>({y) x [-1, 1]) c M{z} x SR).

For each point p e intx F the set V is also called a flowbox neighborhood

of p . The induced map </>: i^ -► F is called a parameterization of V. The

sets 0({y} x [-1, 1]), y £ S, are called streamlines of V or of A.

It is to be noted that every flowbox F of a flowbox manifold A is a regular

closed set, i.e., V = clx int^. V. We shall now discuss the existence of flowboxes.

1.7. Proposition. Suppose that W is a neighborhood of x in a flowbox mani-

fold X. Then there is a flowbox neighborhood V of x such that x £ V c W.

Proof. In accordance with (1) in Definition 1.1, let Ua = h„(Sg x SR) be an open

set containing x . We may assume that W is closed and W c Ug. Applying

a translation parallel to 3? we may also assume that x = hg(y, 0) for some

y £ S g . The set hZx(W) is a closed neighborhood of (y, 0) in S„ x SR. Let

5° be a regular open subset of Sß such that y £ S° and S° x (-e, e) c KgX (W)

for some e > 0. We write S = cL (S°). Without difficulty one verifies that

tp: Fs —> V defined by <p(z, f) = h„(z, te) is a parameterization of V.
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As an immediate consequence we obtain the following result.

1.8. Proposition and Definition. Let X be a flowbox manifold. Then there

exists a countable collection 'P" = {V¡ \ i = 1,2,...} of flowboxes Vi = <f>i(Fs )

such that the collection {(pfE^) \i - 1,2, ...} is a base for the open sets. Such

a base 'V is called a flowbox base of X.

The following propositions are obvious (cf. [AM, 1.4]).

1.9. Proposition. Suppose that {Va | a £ A} is a discrete collection of flowboxes

in X. Then \J{Va\a £ A} is a flowbox in X.

1.10. Proposition. An open subset of a flowbox manifold is a flowbox manifold.

2.   Orientation

In the process of defining a flow structure on a flowbox manifold we have to

single out the sets which will become the orbits.

2.1. Definition. Let J be an arc in a flowbox manifold A and let g: [0, 1] —►

J be a topological embedding. Then J is called a partial orbit of A if for every

t £ (0, 1) there exists a flowbox neighborhood V - 4>(FS) of g(t) such that

V n / = 4>({x) x [-1, 1]) for some (unique) x £ S.

The following proposition is evident.

2.2. Proposition. Every streamline is a partial orbit.

In the following two key lemmas we investigate the intersection of a partial

orbit and a flowbox.

2.3. Lemma. Let J be a partial orbit of a flowbox manifold X and let g :

[0,1] -► J = g([0, I]) C A be a topological embedding. Let V = <f>(Fs)

be a flowbox in X. Then the following holds: if g(t) = <f>(x, u) for some

t £ (0, 1), x £ S, and u £ (-1, 1), then there exists e > 0 such that

g((t-e,t + e))c<P({x}x(-l,l)).

Proof. Let V and g(t) = 4>(x, u) be as above. In view of the definition

of a flowbox, V is contained in an open set Ua with a product structure;

Ua = ha(Sa x SR). Let Vx = 4>X(FS ) be a flowbox neighborhood of g(t) such

that VxnJ = 4>x({y}x[-l, 1]) for some (unique) y £ Sx. Let Uß = hß(Sßx$t)

be an open set with a product structure such that Vx c Uß . We write

W = Uor\Uß\ [4>(S x {-1, 1}) U0,(S, x {-1, 1})].

In view of the local product structure there is a U = h (S x 5R) such that

g(t) £ U c W . By consistency we have for some p, q , and r

git) £ hy({r) x SR) c ha({p} x R) n hß({q) x »).

By condition (2) in Definition 1.6 we have

g(t)£cp({x}x[-l,l])cha({p}xK)
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and

g(t)£<Pl({y}x[-Ul])chß({q}x?R).

As U c W we may conclude

g(t) £hy({r}x M) cj>({x}x [-1,1])

and

g(t) £ hy({r] x ») c <f>x({y} x [-1, 1]) = Vx n /.

The set {/} x 5R can be written as {r} x SR = IJÍM x [-«, n]\n £ J^}.

Each interval {r} x [-«, n] is topologically embedded by h into /, n £Jr.

It follows that h ({/■} x SR) is an open interval in the arc /. The lemma now

easily follows.

2.4. Lemma. Let </>: Fs -+ V be a parameterization of a flowbox V in a flow-

box manifold X. Suppose that J is a partial orbit of X and that g: [0, 1] —► /

is a homeomorphism. Suppose that J n V ^ 0. Then there is a partition

0 < ax < bx < a2 < b2 < ■ ■ ■ < an < bn < 1 of [0, 1] such that

(1) VnJ = {g(t)\t£[ai,bi],i=l,...,n};
(2) g([ai, b(]) is a streamline of V, 2 < i < n - 1 ;

(3) if ax > 0, then g([ax, bx]) is a streamline of V ; if ax = 0, then

giiai > bx]) is a possibly degenerate subinterval of a streamline of V,

such that gibx) £ V\h(Es) ;
(4) if bn < I, then g([an, bn]) is a streamline of V; if bn = 1, then

gi[an, bn]) is a possibly degenerate subinterval of a streamline of V,

such that gian) £ V\h(Es).

Proof. Write C = {x £ S \ J n cf>({x} x (-1, 1)) ̂  0}. Now if g(t) = </>(x, u)
for some t £ (0, 1), x £ C, and we (-1,1), then by Lemma 2.3 we have

g((t - e, t + e)) c 4>({x} x (-1, 1)). Take the maximal interval (a, b) such

that g((a,b))c<p({x}x(-l, 1)). By continuity g([a, b]) c (¡>({x}x[-l, 1]),

the inclusion being strict for at most two values of x. Write (ax, bx) =

g~x(<t>({x} x (-1, 1))). Observe that {[ax,bx]\x £ C} is a pairwise dis-

joint collection. The collection is easily seen to be finite, as <f>(S x {-1}) and

4>(S x {1}) are disjoint closed sets.

Finally we observe that it cannot occur that for some t £ (0, 1), e > 0, and

x £ S the intersection

g((t-e,t + e))n<f>({x}x[-l, 1])

is equal to {g(t)} . This is seen to be true by inspecting the intersection of the

partial orbit <p({x} x [-1, 1]) and a suitably chosen flowbox neighborhood of

git).

The proof of the following proposition now offers no difficulty.

2.5. Proposition. Suppose that Jx and J2 are partial orbits in a flowbox man-

ifold X. If Jx n J2 j¿ 0, then Jx U J2 is a partial orbit.

By the proposition the following definition is justified.
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2.6. Definition. Let x be a point in a flowbox manifold. The orbit of x,

denoted by Fx , is the union of all partial orbits containing x .

The following proposition can be proved in a standard fashion.

2.7. Proposition. Let X be a flowbox manifold. The orbits of X form a par-

tition of X.

The structure of orbits is now revealed by the following theorem and its

immediate consequences.

2.8. Theorem. Each orbit in a flowbox manifold is in its relative topology a

matchbox manifold.

Proof. Let F be an orbit of A. Let y £ F and <j>: Fs -> V be a parameteri-

zation of a flowbox neighborhood of y in A. Write C = prx(<j)~x(Vr)F)) and

Fc = C x [-1, 1]. Because J c F for each partial orbit J with / n F ^ 0,

it can be seen that Fc = <fTX(V n F). We write U = (int^ V)r\Y. It is not

difficult to see that all sets U which can be obtained in this way witness the

fact that Definition 1.1 is satisfied. As in [AM, Theorem 3.1], it is shown that

such a set as C above is countable, whence zero-dimensional.

From the results in [Al, AM] it follows that each orbit in a flowbox manifold

is either a topological circle, a topological copy of the reals 5R, or a special

one-to-one continuous image of the reals, called a P-manifold. We recall the

following definition from [Al, A2].

2.9. Definition. Let F be an orbit in a flowbox manifold. If F is a topolog-

ical circle, then any covering map p : ÎÎ —> F is called a parameterization of

F. If T is not a circle, then any continuous bijection p : SR —► F is called a

parameterization of F.

From the results in [Al, A2] it follows that every orbit admits parameteriza-

tions.

It turns out that if px and p2 are parameterizations of an orbit F, then

the map px o p2 : SR —> sr is a homeomorphism. If this homeomorphism is

increasing, we say that px and p2 have the same direction. Thus there are two

directions for each orbit. See [Al, A2] for more details.

2.10. Definitions. Let A be a flowbox manifold. Let {Ta | a £ A} be the

collection of orbits of A. If for each a £ A a parameterization pa : !R —> Fa

is given, we call the collection {pa\a £ A} a parameterization of X. If a

parameterization has been given, we shall say that a flowbox V = 4>(FS) is

coherently directed if for each x £ S and for any closed interval / in 5R such

that

PaiJ) = <P({x}x[-l,l])

for some a, the composition pr2 o <p~  o pa is increasing.
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Remark. In the last part of the above definition the a is unique. If Fa is not

homeomorphic to a circle / is also unique.

2.11. Definitions. A flowbox manifold A is said to be orientable if there is a

parameterization {pa \ a £ A} of A such that each point of A has a flowbox

neighborhood which is coherently directed. In that case the parameterization is

called proper.

The following example is no surprise.

2.12. Example. In 1.4 we have seen that any flow without restpoints is a flow-

box manifold. If the time (second coordinate) is used as parameter, a proper

parameterization is obtained. See [AM] for more details.

3.   Intersection of flowboxes

We investigate the intersection of two flowboxes. First we consider the case

where the flowboxes meet in a very special way.

3.1. Proposition. Suppose that Vx and V2 are flowboxes in X. For notational

convenience let Vx be identified with the standard flowbox by which it is defined:

Vx = Fs = S x [-1, I] c X. Let <f>: FT -* V2 be a parameterization of V2.

Then the following holds true. For each y £ S and x £ T   such that

({y} x [-1, 1]) n V2 = <p({x) x [-1, 1]) e M x (-1, 1),

there exist an open neighborhood U of x in T   and W c S such that

(Wx(-i, i))nv2 = <j>(Ux[-i, i])n*,.

Proof. The sets S x {-1, 1} and <p({x} x [-1, 1]) are disjoint and

4>({x} x [-1, 1]) is compact. Hence the distance between them is positive.

It follows that there exists a neighborhood U' of x in T   such that

<p(U' x[-l, l])c5x(-l, 1).

Since

({y}x[-l,l])nF2 = 0({x}x[-l,l]),

there exists a neighborhood U c U' of x in T° such that for each u £ U

either 4>({u} x [-1, 1]) n Vx = 0 or there exists a unique k(u) £ S such that

<t>({u] x [-1, 1]) = (k(u) x [-1, 1]) n V2. Finally we write W = k(U) c S.

3.2. Remark. Using the notation of the above proposition, it can be shown

that W is a neighborhood of y in S and that there exist continuous functions
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b, t: W ^ [-1, 1] suchthat

cj)(U x [-1, 1]) n Vx = {(w, s) | w £ W and b(w) <s< t(w)}.

See [Al, AM] for more details.

3.3. Corollary and Definition. Let Vx and V2 be as described in Proposition

3.1. We define an integer-valued function n on T° as follows. Let x £ T°. If

there exists y £ S such that </>({*} x [-1, 1]) c {y} x [-1, 1], we define n(x)

to be the number of points x in T with ct>({x'} x [-1, 1]) c {y} x [-1, 1].

Otherwise, n(x) = 0. Then n is a function of T° to the integers Z which is

upper semicontinuous. The number n(x) is called the index of x with respect

to Vx.

Proof. First we consider a point x with n(x) = 0. Applying Lemma 2.4 with

the partial orbit 4>({x} x [-1, 1]) and the flowbox Vx we see that there is an

s £ [-1, 1] suchthat <f>(x, s) £ Vx. By continuity of (j) there is a neighborhood

U of x in T such that <f>(z, s) £ Vx for all z £ U, whence n(z) — 0.

Now assume n(x) > 0. There exists y £ S such that <j)({x} x [-1, 1]) c

{y} x [_1 > !]• It is to be noted that y is unique. Now we apply Lemma 2.4

with the orbit {y} x [-1, 1] and the flowbox V2. We find a partition

-1 < ax < bx < a2 < b2 < ■■ ■ < ak < bk < 1

of [-1, 1] suchthat

V2n({y}x[-l,l]) = \J{{y}x[a¡,bi]\i=l,2,...,k},

where each {y} x [at, b¡], with the possible exception of i = I or i = k, is

a streamline of V2. We see that n(x) = k, k - 1, or k - 2. By applying the

previous proposition with Vx to each of the flowboxes

Sx
bi + ai+i      bi+l+ai+2

i = I, ... , k -2

(and also S x [-1, (bx + a2)/2] and S x [(bk_x + ak)/2, 1], if necessary), we

see that the function n is upper semicontinuous.

4.   Main Theorem

In this section we' are going to show that there can be defined a flow on an

orientable matchbox manifold.

4.1. Notation. Throughout this section A is a fixed orientable flowbox man-

ifold. {Fa | a £ A} denotes the collection of orbits. For each a £ A,

pa : 5R -> ra is a parameterization of Fa and the parameterization {pa | a £ A}

is proper.

W = { V¡: I /' = 1, 2, ...} is a fixed flowbox base for A. We assume that each

Vi = (f>i(Fs ) is coherently directed by (f>l■, i = 1, 2, ... . For i= 1,2, ... we

denote by ^ the collection of all partial orbits of the form

<f>ii{x}x[a,b]),       x£S<¡, [a,b]c(-l, 1).
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We write g" = IJ{^ | J = 1, 2, ... } . ^ is endowed with the Hausdorff

metric. It is to be noted that each ^ is an open subset of ^, i= 1,2,... .

If J £ W, then a partition of / is a collection {Jx, ... , Jk] of elements of

f such that

J = Jxu---uJk   and    \J¡nJj+x\=l,       i = 1, ..., k - 1.

4.2. Lemma and definition. For each i - 1,2, ... there is a function pl■ : & ->

*R with the following properties:

(1) pt is supported by V^. pt(J) > 0 for each /e? such that Jnintx V; ̂

0 ;   Pj(J) = 0 for each J £ & such that J n intx Vi = 0.
(2) For each J £ g¡ U • • ■ U g) we «ave 0 < /!,.(/) < 1.

(3) //, is additive on %' : if Jx, J2, and JxuJ2 belong to W and \Jxr\J2\ =

1, then pt(Jx U J2) = ^.(/J + Pi(J2).
(4) /i;. z's continuous on W.

Proof. We first define px. Choose a continuous function fx : Sx -» [0, 1] such

that fx(x) > 0 for all x £ S°x and fx(Sx\S°x) = 0. Define ^: Sx x [-1, 1] -»

[0,1] by gx(x,t)^^fx(x)(l-\t\).
For any z £ Sx and a, b £ [-1, 1] with a < b, we let

ux({z}x[a,b])= f gx(z,t)dt.
Ja

Now px is defined as follows.

For J £ & with J c Vx let ^(7) = ^(¿¡"V)); for / e ? with /n
int Kj = 0 let («,(/) = 0; for any other / e ^ by Lemma 2.4 there is

a partition {/,,..., Jk) of / such that for each k £ {I, ... ,k) we have

JK C Vx or JK n int Vx = 0 and we define

/.,(/) = ¿^(/J.
K=l

It is easily checked that /i, satisfies (1) through (4).

We now define p¡ for i > 1. In order to guarantee that p. is also bounded

by 1 on gj U • • • U <ê?i_x we must control the value of the function gt on the

previous boxes Vx, ... , V¡_v For this purpose we will define the functions

«. , 1 < j < i - 1. First we choose a continuous function f',: Sl. —> [0, 1 ] such

that f(x) > 0 for all x £ S>¡ and ftS^S?) = 0. For each ; , 1 < j < i - 1,

and each x £ S® we let ntAx) denote the index of x with respect to Vj.

Further we define

M*) = n..(^->    and   W = min{^7(^) I 1 < J < 0-
»»(*) +2

The function «;: 5,° -+ [0, 1] is lower semicontinuous and 0 < A(. < \. Then

there exists a continuous «;: 5° -► [0, 1] such that 0 < A- < ft.. To see that
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this is correct recall that A( is lower semicontinuous if and only if {(z, t) £

S° x 5R 11 > A,.(z)} is closed.

Now define gt: S, x [-1, 1] -, [0, 1] by gfx, t) = ±«,.(x)./;.(x)(l -|i|). The
functions ia and p¡ are now defined in the exact same way as vx and px. In

particular, for any z £ Si and a, b £ [-1, 1] with a < b, we let

v,i{z}x[a,b])= [ gi(z,t)dt.
Ja

For J £W with J c Vi we let

ni(j) = vl((i>;\j)).

For general J £W the definition of p¡(J) is similar to the definition of px(J)

above. The only one statement of (1) through (4) that requires a proof is that

p¡ is bounded from above by 1 on gj u • • • U ̂ _¡. Let J £<§'j, 1 < j < i — 1.

Then pfJ) is computed by taking a partition {Jx, ... , Jk} of / such that for

each k £ {I, ... , k} we have JK c Vi or /K n int Vt = 0. The number of JK

with /K c Vi is bounded from above by n.(x) + 2, where x is some element

of 5,° such that </>,({x} x [-1, 1]) c J. For any such x however

!/,({*} X[-1, 1])=  /    £ (x, ,)</,<
J-l "ijJx) + 2'

whence //.(/) < (nu(x) + 2)/(nu(x) + 2) = 1.

We are now in a position to prove the Main Theorem (0.5) which has been

stated in the Introduction.

4.3.   Proof of the Main Theorem. We use the notation of the lemma.

The function p : W -> ÍR is defined by

k=\    L

It is to be noted that if J £ ^, then pk(J) < 1 for all /c > z by condition (2)

of Lemma 4.2, whence Y^T=i Afc(^)/2 < 2_,+1. It follows that the series at the

right-hand side is uniformly convergent on each &., i = 1,2,... . It is now

clear that p is continuous and additive on & .

In what follows it might be useful to think of p as a time span function,

that is, p(J) measures the time it takes to travel from one endpoint of J to

the other.

For each x £ X we define ax and cox as follows:

ax = inf{-^,.({z} x [-1, t])) | x = cpfz, t) £ V¿},

cox = sup{//(</>,.({z} x [t, 1])) | x = </>,(z, t) £ VJ.

For each x £ X and s £ (ax, cox) we define n(x, s) as follows. For 0 < 5 <

cox choose i and (z, /) such that x - <t>¡(z, t) and /¿(0(({z} x [t, 1])) > s.
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Then select the unique y - <pfz, u) such that /¿(«^({z} x [t, u])) = s and

t < u < 1. We let y = n(x, s). For ax < s < 0 the value of n(x, s) is defined

in a similar way.

Here we make the observation that it is only at this point that the orientability

of the flowbox manifold is required.

Finally we write

D = \J{{x] x (ax, cox) | X £ X} C A x SR.

The following facts are easily established.

(UO)  D is a neighborhood of A x {0} of the form above.

(Ul) Identity axiom: n(x, 0) = x for all x £ X.

(U2) Homomorphism axiom: if (x, t) £ D,   (x, t+s) £ D and (n(x, t), s)

£ D, then n(n(x, t), s) = n(x, t + s).

(U3) Continuity axiom: n is continuous.

Properties (UO) through (U3) of n : D -+ X are precisely the defining prop-

erties of a germ of a local flow [U, H2]. There is a standard way of extending the

domain D. For t > 0 the point (x, t) £ X x SR is called admissible if there ex-

ists a partition 0 = tQ < tx < ■ ■ ■ < tk = t of [0, 1] such that tK+x -tK< con,x t,

for each k = 0, ... , k- 1. Then for k = 0, ... , k- 1 one defines inductively

n(x, tK+x) = n(n(x, tK), tK+x - tK).

A similar definition applies when t < 0. See [H2] for details. In this way one

arrives at a local flow. The reader is referred to [Hl, U] for more information

about local flows.

The proof of the theorem is completed by invoking a result of Carlson [Ca]

which states that for a local flow there exists a reparameterization which turns

it into an equivalent global flow.

4.4. Remark. By a simple compactness argument it can be shown that the

orbits of the flowbox manifold, as defined in Definition 2.6, coincide with the

orbits of the flow. From this observation combined with results of Ura [U] it

may be deduced that the flow which has been constructed in the above proof is

unique up to a reparameterization.

5.   Regular families of curves

In Whitney's paper [W] a family of curves in a space A was defined as a

partition of A into arcs, with or without endpoints, and circles. In the second

part of the paper arcs with endpoints are excluded. We shall extend Whitney's

major results in such a way that more general curves are admitted.

5.1. Definition. A curve is either a circle or a separable metric space which is a

one-to-one continuous image of the real line SR. A family of curves in a separable

metrizable space A is a partition {Ca \ a £ A} of the space into curves.
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5.2. Remark. In what follows it is convenient to denote a family of curves in

A by {Cx\x £ X) , where x £ Cx for each x £ X. So every element of the

partition is labeled by each of its elements.

5.3. Definition. A family {Cx \ x £ X} of curves in A is called regular if for

each s > 0, each x £ X, and each arc J with x e J c Cx there exists a

ô > 0 such that for every y £ Bs(x) there is an e-embedding h: J —► C (i.e.,

d(s, h(s)) < e for every s £ J) such that h(x) = y.

The following is a preparation for the proof of Theorem 5.7 which states the

equivalence of the notions of flowbox manifold and regular family of curves.

The definition, lemma, and theorem below are an almost verbatim generaliza-

tion of the results in §3 of [AHO]. In fact the proofs in [AHO] closely follow

the argument designed by Whitney in the original situation [W]. Proofs will be

omitted.

5.4. Definition. Suppose that {Cx | x £ X} is a regular family of curves in

A. Let x £ X. A closed set A is a local section at x provided that x £ S and

that there exists a neighborhood U of x such that for each y £ clxU each

component of C n cl^ U intersects S in exactly one point.

5.5. Lemma. Suppose that {Cx \ x £ X} is a regular family of curves in X.

Then X admits a local section at every point x £ X.

5.6. Theorem. Suppose that {Cx \ x £ X} is a regular family of curves in X.

Then for each x £ X there exist a neighborhood U of x, a section S at x,

and a topological embedding y/: S x [-1, l]-> clxU such that

(i)   y/(S x {0}) = S and y/(x, 0) = x,

(ii)   y/(s, t) £CS for each s e A and t £ [-1, 1].

5.7. Theorem. A separable metrizable space X is a flowbox manifold if and

only if there is a regular family of curves in X.

Proof. The "if part immediately follows from the preceding theorem. It is to

be noted that the consistency condition follows from the fact that we start out

with a family of curves by which the local products are lined up.

To prove the "only if part we show that if A is a flowbox manifold, then

the family {Fx | x £ X} of all orbits (Definition 2.6) is a regular family. If

the flowbox manifold A is orientable, then by the Main Theorem (0.5) there

is a flow n ; X x ÍR —» A such that each streamline of A is contained in some

orbit of the flow. It easily follows that every Fx coincides with some orbit in

the flow. The condition expressed in the definition of a regular family is a well-

known property in the theory of flows. Sometimes it is called the continuity

of the initial conditions [Hl, NS]. If the flowbox manifold is not orientable we

have to fall back on the method of pasting together of flowboxes. This method

has been described in a very detailed way in [Al] for a P-manifold and can be

adapted for the present situation with only minor modifications. The crucial

lemma leading up to the Pasting Theorem is Proposition 3.1 above.
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The method of pasting flowboxes together can also be employed to prove the

following result which already has been observed by Whitney [W] and Chewning

[Ch].

5.8. Corollary. Suppose that {Cx | x £ X} is a regular family of curves. Sup-

pose that x and y belong to the same curve (i.e., Cx = C ). Let Sx and S

denote a local section of x and y respectively.  Then there are neighborhoods

Wx and W  of x and y respectively such that Wx n Sx is homeomorphic to

ivynsy.

The following is a generalization of another theorem by Whitney [W].

5.9. Theorem. Suppose that C is a closed subset of a space X and that X\C

is an orientable flowbox manifold. Then there exists a flow p: X x SR -» A such

that p | (A\C) x SR has no fixed points and each x £ C is a fixed point of the

flow p.
Proof. By Theorems 5.7 and 0.5 there exists a flow n: (X\C) x SR -► A\C such

that the curve Cx coincides with the orbit Fx of n through x, x £ X \ C.

We shall now define a parameter transformation which slows down the motion

near C. The techniques we are going to use can be found in [NS, Ca]. We first

define a continuous function g: X —* SR such that g(x) = 0 for x £ C and

0 < g(x) < 1 for x £ X\C.
For x £ X\C we write G(x) = l/g(x). Now we define the parameter

transformation x: (X\C) x SR —► SR by

x(x, t) — I  G(n(x, u))du.
Jo

By direct computation it can be verified that the function r has the following

properties:

(i)   t is continuous.

(ii) For each x £ X\C the function xx: SR -+ SR, defined by xx(t) =
t(x , t), is an increasing topological map of SR onto SR and xx(0) = 0.

(iii) For all t, s £ SR one has

t(x , s + t) = r(x, t) + x(n(x, t), s).

We define a new flow p: (A\C) x SR —> A\C by p(x, u) — n(x, x~ (u)). It

is not hard to show that p has the group property. To see that p is continuous

we define <f>: (X\C) x SR -► (A x C) x SR by <D(x, /) = (x, r(x, t)).

We consider the commutative diagram

(A\C) x SR -» (A\C) x SR

«I I'
X\C     -^-+     x\c

Note that t = pr2o <p. Then i> is topological by [Ca, Lemma 1]. The

continuity of p follows, as p - n o 4>~ .
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Finally we define p : X x SR -» A by

~l      t\-\X if X £C,
p[X,t)~\p(x,t)   ifxiC.

The only thing that requires a proof is that (x¡, t¡) —► (x0, t0), xi £ C,

i = 1,2,..., and x0 £ C implies that p(x¡, t¡) —► /J(x0, t0) = x0. For each

i we write 5- = t~ (ff.). Then /?(x¿, í() = 7i(x¡, s¡) for each i. For z -♦ oc

we have t¡ -* tQ and G(x¡) —> oo. As ti = t(x; , s?.), it follows that s¡ -* 0.

Consequently,

lim p(x¡, t,) = lim n(x¡, s¡) = n(x0, 0) = x0.
l—>oo i—>oo "

This completes the proof.

In Example 1.2 we discussed the matchbox manifolds. As is stated below the

flow on a matchbox manifold can be given a very special form. For details the

reader is referred to [AM].

5.10. Theorem. If X is a one-dimensional orientable flowbox manifold, then

the flow on X, whose existence has been established in Theorem 0.5, is a sus-

pension Y,(S,h) of some autohomeomorphism of a closed subset S of X.

The dimensional restriction in the preceding theorem is necessary as the fol-

lowing example shows.

5.11. Example. This is an example of a two-dimensional flowbox manifold A

that is not a suspension. It is a well-known example leading up to the Reeb

foliation [CN]. A is the strip {(x,y) \ -f < y < f} in the plane SR2. The
elements of the partition are the lines y = ±| and the curves x + c = 1/ cos(y),

ceSR.
The family of these curves is regular and the flowbox manifold A (Theorem

5.7) is orientable. In [NS, p. 30], there can be found a description of the flow,

which exists by Theorem 0.5, by means of differential equations.

It can be shown that the local sections of A must be connected and locally

homeomorphic to an arc [HI, Chapter VI]. From this it can be deduced that A

cannot be a suspension.
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