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FIRST STEPS IN DESCRIPTIVE THEORY OF LOCALES

JOHN ISBELL

Abstract. F. Hausdorffand D. Montgomery showed that a subspace of a com-

pletely metrizable space is developable if and only if it is Fa and Gs . This

extends to arbitrary metrizable locales when "Fa" and "G¿" are taken in the

localic sense (countable join of closed, resp. meet of open, sublocales). In any

locale, the developable sublocales are exactly the complemented elements of the

lattice of sublocales. The main further results of this paper concern the strictly

pointless relative theory, which exists because—always in metrizable locales—

there exist nonzero pointless-absolute G^'s, Gs in every pointless extension.

For instance, the pointless part pl(R) of the real line is characterized as the only

nonzero zero-dimensional separable metrizable pointless-absolute Gs . There is

no nonzero pointless-absolute Fa . The pointless part of any metrizable space

is, if not zero, second category, i.e. not a countable join of nowhere dense sub-

locales.

Introduction

This paper initiates, not a generalization of descriptive set theory, but a re-

formulation of it admitting "pointless" subsets or sublocales of a metrizable

space. An open, or closed, or Fa sublocale is a subspace—open, closed, or Fg

respectively. However, the countable intersections of open sublocales, in the

lattice of sublocales, are not in general subspaces. We call them Ofs. In com-

pletely metrizable spaces, Os is the same as Gs . In general, any Os which is a

subspace is a Gs . One may think of the Of s as (1) those which are subspaces:

the nice Gfs, and (2) the others. The set of points of an 0& is a Gs , but two

different Of s can have the same set of points.

This first paper does not go much beyond a study of Ofs. Hausdorff and

Montgomery showed [K] that in a completely metrizable space, the subspaces

which are both Fa and G6 coincide with those which can be expanded in an

alternating series of closed sets,

■■■(((■■■ (((F0\FX)UF2)\F,)Ü---)Ö FJ\Fœ+x)U--- ,

with {Fa} decreasing (nonstrictly). It turns out that completeness is unneces-

sary, indeed spatiality is unnecessary for the Hausdorff-Montgomery theorem;

it holds in metrizable locales with "Osn in place of uG3n.
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In arbitrary locales, the complemented elements of the lattice of sublocales

are exactly the sublocales which can be expanded in an alternating series of

closed sublocales. Thus

In metrizable locales, the complemented sublocales are the same as the sublo-

cales which are at once F„ and O,.

That is much the best result of the paper. The most interesting of the further

results are (1) in metrizable locales, pointless absolute Of s exist: a pointless

metrizable locale is Os in every pointless metrizable extension if and only if it

is the pointless part (= largest pointless sublocale) of some completely metriz-

able space. But (l') this does not extend to dense embeddings in pointless

completely regular locales, as "absolute Gs" does for spaces. (2) There are no

nonzero pointless absolute Ffs. (3) The pointless part of the real line is charac-

terized as the only nonzero zero-dimensional pointless metrizable absolute Os

with a countable base. (4) The pointless part of any nonzero metrizable space

(complete or not) is second category, i.e. not a countable join of nowhere dense

sublocales.

1. Complements

In metrizable locales there seems to be a working descriptive theory; in more

generality, fragments. But the fragments are numerous, so we consider general

locales, as far as is easily possible. The needed background is almost all in [J,],

if you can stand the point of view: Johnstone's locales keep intruding their

frames into innocent conversation, rather as if people were continually showing

you their skeletons—

"Webster was much possessed by death

And saw the skull beneath the skin."

For me, a locale A has a frame T(A) of open parts (sublocales) and a lat-

tice S (A) of all sublocales. S (A), upside down, is the frame T(Ad) of the

dissolution locale Ad , which has a distinguished monomorphism to A repre-

senting the sublocales of A by their pullbacks (intersections) in Ad , which are

precisely the closed sublocales of Ad [I,, J2]. 5"(^)op is not just a frame but

a zero-dimensional frame; more fully, if x ^ y in S (A), there is a locally

closed sublocale UAV of A (symmetric difference of two open parts) which

has zero meet with one of x and y but not with the other. (This holds just

because x and y are determined by the respective relations U A x = V A x,

U A y = V A y , on T(A).) Zero-dimensionality follows, for locally closed

sublocales have complements.

There are three properties equivalent to complementedness in any locale. A

developable sublocale is a sublocale

(*) Fo-^Vi^-^V.-.Vi^-F^V...,

where {Fa} is a transfinite descending sequence of closed sublocales.   This

notation (standard for spaces [K]) is interpreted in the obvious way from the
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left, (((F0 -Fx) WF2) -Ff) V... , and at a limit ordinal, intersect the descending

initial segments FQ, (F0-Fx)\/F2,.... ("-" means "meet with the complement

of.) For a development (*) one also requires continuity at limit ordinals A :

Fx — f\K<k FK . (If it were omitted, it could be restored by increasing the length

by 2, interpolating ' MM - AT at each limit position, where M is the required

term.) Second, we need the operation ', where S' is the meet of S with the

closure of the join of all sublocales of S~ disjoint from S (telegraphically,

S' =SA(S~\S)~). Put S0 = S, Sa+x=S'a, Sx = /\K<X SK at limit ordinals A.

Third, say that S splits T inseparably if (S A T)~ A (T\S)~ D T. (Precisely,

no closed proper sublocale of T contains S A T or contains all sublocales of

T disjoint from S.)

1.1. Theorem. For a sublocale S of a locale A, the following are equivalent:

(1) S is a complemented sublocale.

(2) S splits no nonzero (closed) sublocale inseparably.

(3) S is a developable sublocale.

(4) Sa = 0 for some ordinal a.

The proof depends on a lemma about developments, 1.2. For classical de-

velopments in subspaces, the operations U and \ are performed in a lattice of

all subsets and the lemma is evident. Here, recall that limit ordinals are even.

(2a is not q2 , but is the order type of a blocks of 2.) Recall also that every

locale A has a smallest dense sublocale D(A), [lx or J,].

1.2. Lemma. For a development in complemented sublocales,

F0-FlVF2-F3V...vF(a-F(a+lV...,

indexed by the ordinals less than a limit ordinal X, let M be the meet of the

even initial segments, FQ, F0- F, V F2, ... ; let J be the join of the odd initial

segments FQ-Fx, F0- FXV F2-F3, ... . Then J V (f\K<¿ FK) = M.

Proof. Just as for alternating series of real numbers, each odd initial segment is

< each even initial segment, so J < M ; and evidently (f\K<k FK) < M. So we

need only show that if z A M ^ 0 then z meets J or /\K<A FK . But if z A M

does not meet J, it never meets F0 - Fx V • • • V F2a - F2a+X. It is, however,

< M <(F0-FXV .--V F2a-F2a+x)V F2a+2. Hence" z A M < F2a+2 < F2a+X ;

z AM <FK for all k < A, so z A M < /\K<X FK .

Proof of 1.1. If (1) S has a complementary sublocale C, and T is a nonzero

sublocale, D(T) is nonzero. Not both S and C contain D(T); hence SAT

or C A T is not dense in T, so S does not split it inseparably.

Assume (2). Then every nonzero closed sublocale T has a closed proper

part T* which contains either S AT or (T\S)~ [all parts of T disjoint from

S]. Put EQ = A, Ea+X = E*a , Ex- [\K<X EK at limit ordinals. Evidently the

descending sequence {Ea} must reach 0, at some limit ordinal.

We now construct a subsequence of {Ea} which will be a development of 5

(discontinuous. As noted above, a continuous development can be obtained by
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interpolating suitable pairs of terms VM-M). E0 = A contains S. Let F0

be the last E which contains S ; since {E } is continuous at limit ordinals

and has a last term, F0 exists. If F0 = 0, stop. Otherwise F0 is some Eß,

and Eß+X = F0* does not contain S A F0 = S, so it does contain (F0\.S)_ .

Let Fj be the last Ea which contains (FQ\S)~ . [At this point the reader

may prefer to amplify "and so on" in his own notation.] Inductively, stopping

whenever we are out of F's (FQ = 0), with each F2a+2 being the last Eg

which contains SaF2q+1 and F2a+X the last Eg which contains (F2a\S)~ , the

successor E»+l contains the other (i.e., respectively (F2a+2\5)~ or SAF2a+x).

Let (respectively) F2q+3 be the last E containing (F2a+2\S)~ , and F2q+2 the

last E containing 5aF2q+1. Having—as we do for F0 and F0-Fx—every

even initial segment I2S of the development containing S and every odd one

I2S+X contained in S, these extensions preserve those inclusions, as follows.

72a+3 = 72a+i v F2a+2 - F2a+3 > removing F2q+3 and thus (F2a+2\S)~ , so still

/2q+3 <S. And I2a+2 = I2a - F2q+1 V F2a+2, putting back F2a+2 >Sa F2a+X,

so still 72q+2 > S.

At a limit ordinal A, observe that vacuously (as for A = 0) the next E,

which is l\K<xFK , contains 5 A (l\K<xFK) . Let Fx be the last Ey which does

so, and let Fx+X be the last E which contains (Ff\S)~ . As before, IÀ > S

and 7A+1 < S. The induction runs. It can only terminate with a last term 0 or

with no last term but 0 intersection. In either case (in view of 1.2) we have a

development of S.

For (3) => (4), if S has a (continuous) development FQ- FXV F2- F3\/ ■■■

of a certain length a (i.e. Fa - 0 or the indices are the predecessors of a),

we shall see that Sa = 0. First, Sx — S A (S~\S)~ has a development G0 -

G, V C72 - C73 V • • • where C7Q = Fa A (S"\5')_ . But further, the first two terms

can be omitted, because (F0 - F,) A (S~\S)~ = 0 ; that follows from S~ < F0 ,

F0 - F, < S, and thence (5~\5')_ < F, . Now by an evident induction each

S« has a development i/2„ - /^2ß+i v " ' > wnere FIy = Fy A Kß , Kß being

(5'r_1\5'o_1 )_ if /? is a successor or /\Y<ßK if >5 is a limit ordinal. So

S =0.
a

Assume 5"Q = 0. Then for S to be complemented it will suffice that each

S - Sß is complemented. (Sß is complemented in S, being relatively closed.)

Now S - Sx = S - {S~\S)~ =S~- (S~\S)~ , open in a closed sublocale of A ,

thus complemented. Putting Sß for S, Sß-Sß+X is complemented; so S-Sß+X

is complemented if S - Sß is. For a limit ordinal A, the complements CK of

S - SK (k < A) are determined by CK A S = SK, CK v S = 1 in 5(^). Put

CA = /\ A C . We have CXV S = 1 since S (A) is anti-isomorphic with a

frame. And C¿ A S = (/\CK) A S = f\(CK A S) = /\SK = SA, so Cx is the

complement of S - Sx. The induction runs; the proof is finished.

The equivalence of (2), (3), and (4) for subspaces of a space is classical [KJ.
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1.3. A complemented sublocale of a space is a subspace.

Proof. If B and C are complements in S(X), every point is in B or in C ;

the join 5_ of the points in B satisfies B_w C = X since By C contains

all the points; since B_ AC = 0, B_ = B , a subspace.

1.4. Every complemented sublocale of a regular locale is a join of closed sublo-

cales; in fact, in any locale A, when a meet m of complemented sublocales xa

is complemented, 1 - m = V( 1 ~ xa) ■

Proof. The second clause implies the first, since every sublocale of a regular

locale is a meet of open sublocales [I,]. To prove it, let c = \/(l - xa). Each

c\/ xa = V(l -Xß) V xa > 1 ~xa V xa = 1 • Then, since S (A) is anti-isomorphic

with a frame, the join c V m - c V (f\ xa) - f\(c V xa) - f\ I - 1. Given the

existence of l — m, from c V m — 1 we have c > 1 - m and from m < x we

have 1 - m > 1 - xa , so 1 - m > y(1 - xa) = c. Thus 1 - m = c.

Of course 1.4 fails for frames; in fact, it fails in frames anti-isomorphic with

sublocale lattices S (A). That is, in S (A) itself, a join j of complemented

elements xo can have a complement which is not f\(l — xa). Let A be a

dense-in-itself Hausdorff space and the xQ the singletons; then V xQ = 1 has

complement 0, but /\(1 - xj D Z>(,4) 9¿ 0.

The main application of the formula in 1.4 is that the complement of a "C?á",

if it exists, is an Fa . Which brings up Fa and all that. We call a countable meet,

in S (A), of open sublocales an Oô sublocale—because when A is a space, UGS"

has an established meaning. However, a countable join of closed sublocales is

simply an Fa sublocale. In a space, closed sublocales are subspaces (= joins of

their points), so an Fa sublocale is also a subspace; moreover, clearly, the Fa

sublocales are exactly the Fa subspaces. As for Gs and Os, the relationship

is controlled by

1.5. A sublocale B of a regular locale A is the meet of sublocales S¡ containing

it if and only if for every nonzero closed part J disjoint from B, not all S¡ A J

are dense in J .

Proof. Clearly if all S¡ A J are dense, they and A^, contain D(J), which

is nonzero and contained in complemented J, disjoint from B . Conversely,

suppose C = /\Sj^ B . Since C > B , there is a nonzero symmetric difference

L of open parts of A which meets C but not B. Now L is locally closed;

thus there are closed parts La of A contained in L whose relative interiors

Ia cover L. L A C = \/(Ia A C) (by 1.0 of [I3]: a sublocale is the join of a

relatively open cover), so some IaAC ¿0 ^ LaAC . Consider J = (La A C)~ :

nonzero closed, contained in La and thus disjoint from B, with J AC dense

in /. Then every J A S¡ is dense in / .

The further Borel types will be called FaS , 0Sa , and so on. An FaS is a

countable sublocale meet of Ffs, so not the same in spaces as a classical FaS ;

so one must say "classical F f or "F' s sublocale".
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It is known [I2] that in locally compact spaces, every Gs is an Oô ; more,

every Os is a subspace. (So a G& , being the set of points of an Os , which is a

subspace, is that subspace. Seemingly the converse could fail; every Gs might

be Os , but some nonspatial sublocales could also be Os.) Therefore this is true

in G3 subspaces of locally compact spaces. For F3 spaces, the following is a

little more general:

1.6. In a regular space in which every nonempty closed subspace is second cate-

gory in itself, every Os sublocale is a subspace (so every Gs is an Of).

Proof. Let C = f\Ui bean Os sublocale (Ui open) and consider the subspace

B on fi U¡. If / is a nonzero closed set disjoint from B , not all Ui n J are

dense in J since then they would have a common point. Hence B = [\U¡ = C.

1.7. A closed Gs set in a normal space is an Os subspace.

Proof. If closed H is fl Ut (U¡ open) it is f\ Vi where ffc^C^'C Ui.

Hence H < ¡\ Vi < /\ V~ = H, so H is the Os sublocale A v¡ ■

1.8. There is a closed Gs set in a completely regular space which is not an Os.

Proof. In the compact Hausdorff space [0, l]x(eu,-fl) (where a>x + 1 has the

order topology) consider X = (P x {cox}) U (Q x eu,), where Q is a countable

dense set in [0, 1] and P = [0, l]\Q • P x {o)x} is closed in X, and Q x cox

is Fa since {q} x eu, is closed for each q £ Q. So P x {tu,} is a CTj set. But

a neighborhood of (p,cox) contains UxT fora [0, 1]-neighborhood U of p

and a tail F of eu, . A collection of these covering P x {euj has a countable

subcover, so it contains V x T for some neighborhood F of F and some tail

F of eu, . F x F is dense in [0, 1] x F; and from 1.5, clearly P x {euj is

not an Og sublocale.

Observe, by 1.4, the complement of an Os (which has a complement) is

an F . By 1.8, the complement of an Fa need not be Os . There is no such

example in metrizable locales, because Hausdorff and Montgomery showed, in

the complete case, that developable (= complemented) subspaces must be Fa

and GS[K], and this extends to the general case by means of two pullback

lemmas, 1.9, 1.10.

1.9. For a locale morphism f: A —> B and a sublocale L c B, if L is open,

or closed, or locally closed, or 0&, then so is the pullback fx (L) c A. If f is

an embedding then every open/closed/locally closed/Os sublocale of A is of this

form.

Proof. It is simple routine to verify that the pullback /" (L) for L open is the

open sublocale f*(L). Hence for L closed, f~x(L) is closed A-f(B-L);

and similarly for locally closed parts (= open A closed). These verifications

are largely done in the proof of functoriality of the sublocale lattice S( ) [lx,

1.4]; and it is functoriality to upside-down frames, i.e. f~x preserves infinite

meets—hence Ofs. As for embeddings, they are defined by surjectiveness of
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/*, i.e. every open part of A c B is of the indicated form. Since / preserves

meets and complements, the rest follows.

From 1.9, a zero set of a real-valued continuous function is an 0& , which

generalizes 1.7. A closed Os in a completely regular space need not be a zero

set, and there is a painfully cute example. The familiar Tychonoff plank has a

long side L and a short side S, disjoint but without disjoint neighborhoods;

but since S is short, L is a zero set. So wedge two planks, S to S. Each copy

of L is still a closed Os but no longer a zero set.

1.10. If A is a sublocale of B, every complemented sublocale of A is C A A

for some complemented sublocale C of B.

Proof. A complemented sublocale D of A is developable,

D = F0 - Fx V F2 - F3 V • • •

for some descending transfinite sequence {Fa} of closed sublocales. Let Ga —

F~ in B. The development given by {Ga} expresses a complemented sublocale

C of B. The initial segments IQ, J0 of the two developments (J0 = F0,

J0 = G0) satisfy J0 A A = IQ ; when this is true for Ia and Ja it is so for a + 1

too, and similarly at limit ordinals. Hence C AA = D.

Now a metrizable locale A can be embedded in a complete metric space B,

where developable subspaces C, B - C are Fa and Gs (Hausdorff, Mont-

gomery [K, M]). So they are Os ; C A A, A - C are 0¿ , and by 1.4 they are

P.-

1.11. Complemented sublocales of a metrizable locale are Fa and 0&.

The converse of 1.11 is also true. Of course it is known in complete spaces;

this seems [K] to be due to Hausdorff alone. (For 1.11, the nonseparable case

essentially depends on paracompactness, and Montgomery's proof [M] before

paracompactness was thought of is fairly formidable. It is given also in [K].)

The key to finishing this is

1.12. A nonzero metrizable locale cannot be split inseparably by a sublocale which

is F, and Ox .

Proof. First let AT be a metric space and F, G = X\F two dense FCT's: F =

\JFn G - [j G ■, F¡ and (7 closed. Since F and G are dense, each C7 and

each F; are nowhere dense.

We may assume Fj+X D F;, G +1 D G . We construct a nonzero closed

subspace C of X contained in F, with each C\Fi dense in C. If this

succeeds, it will show that G is not Os ; for any sequence of open neighborhoods

Ui of G with intersection G gives us a representation of F as \J(X\U¡) > and

we shall always have a violation of 1.5.

Let px be a point of F. Then px is at positive distance 2e, from Gx ; all

later choices of points o , pjk will be outside the s, -neighborhood of Gx. Let

p2 be a point of F\F2 within distance 2~   of px. It is at positive distance 2e2
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from G2 , and all later p's will be outside the e2-neighborhood of G2. Having

a finite set of points pjk of F\Fj, they are at positive minimum distance 2e

from G , and we shall stay (hereafter) outside the e -neighborhood of G .

In F\FJ+X (which is dense), choose a finite set of points pj+x k including one

within distance 2~! of each preceding pim . Completing the induction, we have

a countable subset C0 = {pjk} of F . Any convergent sequence in C0 that is

not finally constant is finally out of each finite subset of C0, and therefore the

limit is not in any G ; so C = CJ" C F . By construction, each C0\Fi is dense

in C.

Now observe that one can do nearly the same thing in a metric locale A,

replacing points pjk with smallish closed sublocales njk. For instance, first

choose points pjk of the completion outside F and the proscribed neighbor-

hoods of G('s; then let Njk be the trace on F of a suitably small closed neigh-

borhood of pJk, closed in F and nonzero; and let njk be the first nonzero

Ft A Njk . (Since Njk is closed, 0 ¿ Njk A (V Ft) = \J(Njk A Ft).) Finitely many
indices k for each j will no longer suffice, but {pjk}k can be a set coming

within 2~J of all of V,< nim . witn no two pjk twice that close to each other.

Joins of discrete families of closed sublocales are closed. Again we find that G

is not Os in A.

1.13. Theorem. A sublocale of a metrizable locale is complemented if and only

if it is Fa and Os.

Proof. Necessity is in 1.11. If B c A is Fa and Os, so is B AC for each

closed sublocale C, so by 1.12 B splits no such C inseparably, and B is

complemented.

2. Pointless parts

It seems highly unlikely that locales without points are less diverse than topo-

logical spaces; but our descriptive vocabulary for them is much poorer. The

pointless locales which are best known are the 'discrete' or Boolean ones, whose

frame is a complete Boolean algebra. (Thus they can be defined by "Every open

part is closed". In fact every part, i.e. sublocale, is open [and closed] [I,].) They

occur in every locale A, as its (smallest) dense part D(A). As the heading

indicates, we are going to look at pointless parts, meaning largest pointless parts

of spaces. But first we look at the simple and definitive results on dense parts.

2.1. The Boolean sublocales of a space X (or of a locale A) are precisely the

sublocales D(H) where H is a closed subspace of X (respectively a closed

sublocale of A). If H ¿ H' then D(H) ¿ D(H').

Proof. Every sublocale B is dense in its closure H. If B is Boolean, D(H) c

B, and D(H) is dense in B, so D(H) = B . The correspondence is bijective

since H = B~ , B = D(H).
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2.2. The real line R has eu0 nonisomorphic Boolean sublocales, namely the

discrete spaces of cardinal n for 0 < n < eu0, and D(R) plus a discrete space

of cardinal n for those n .

Proof. Evidently R can be replaced by [0,1]. Each of its closed subspaces

consists of the closure of the countable set E of isolated points and an open

set U which is empty or locally compact dense-in-itself. If U~ ^ 0 it is an

irreducible quotient of the Cantor set C, and D(U) « D(C) « D(R) [LJ; and

D(E) = F, countable and discrete.

2.3. D(R) is characterized, up to isomorphism, as a nonzero Boolean pointless

separable metrizable locale.

Proof. If A is such a locale, a metric completion of A is separable, dense in

itself, and without isolated points. Being separable, it has a metric compactifi-

cation F . F is an irreducible quotient of C, and A = D(F) « D(C) « D(R).

The first thing about the largest pointless part is that it need not exist: the

join of all pointless parts of a space may have points. Describing this (in order

to avoid it) involves the weakly scattered spaces of Niefield and Rosenthal [NR],

one definition for which is "Every nonzero sublocale has a point". There are

various characterizations [NR].

2.4. The join pl+(X) of the pointless sublocales of a sober space X is the meet of

the sublocales (subspaces) which have weakly scattered complements. Two open

sets U, V have the same trace on pl+(X) if and only if the symmetric difference

UAV is weakly scattered.

Proof. If UAV (which is open in its closure, and thus is a complemented

sublocale) is weakly scattered, all pointless sublocales of X and therefore their

join are contained in the complement, so U and V have the same trace on

vl+(X). If UAV is not weakly scattered, not both of its parts U - V, V - U

(in the distributive lattice of sublocales) lack pointless parts; so U and V have

different traces on some pointless part and therefore on pl+(X). This shows

that the join pl+(X) is the meet of the complements of certain weakly scattered

sublocales. But any sublocale with weakly scattered complement must contain

pl+(X), so it is the meet of all of them.

2.5. A sober space X has a largest pointless sublocale pl(X) if and only if each

point x has a weakly scattered relative neighborhood in {x}~ .

Proof. The question is when no point x is in pl+(X). Now if x has a weakly

scattered relative neighborhood A in {x}~ , x is in the relative interior of A

which is disjoint from pl+(X). If all relative neighborhoods of x in {x}~ fail

to be weakly scattered, they all have nonzero pointless sublocales. The meet of

{x}~ and pl+(X) is dense in the irreducible space {x}~ , so it contains {x}~

and x.

In particular, if each point is open in its closure—e.g., closed— pl(X) exists.
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Remark. "Weakly scattered" is "without pointless part": pointlessnessless. So

the meet of complements of weakly scattered subspaces is pointlessnesslessness-

less. 2.5 tells us when it is simply pointless. Clearly in any case pointlessness-

lessnesslessnessless = pointlessnessless, or weakly scattered.

In particular, for X c R (in fact for X sober F,) we have pl(AT). I have no

idea how to characterize the locales which are pi (something) (like the Boolean

locales which are D (something)). It is not true (as it is for D( )) that a sublocale

of X which is isomorphic with some pl(Y) is pl(Z) for some Z c X, even for

complete separable metric X (2.17.b below). We can, however, imitate 2.1 so

far as to describe the pairs of subspaces Y, Z , for which pl(T) = pl(Z) c X.

One would hope to characterize locales A of the form pl(X) by constructing

a suitable X from A . (For D( ), this is easily done.) In any case, what can

we say about X, given vl(X) ? One such result is

2.6. For X regular and dense in itself, pl(X) has the same weight as X.

Proof. Of course any sublocale 5" has no greater weight, since the trace of a

basis on S is a basis for S. Conversely, if X is dense in itself and Tx, pl(X)

contains the smallest dense part; but in a regular space, that has the same weight.

Probably there is no closer relation between the number of points of X and

the size of pl(X), in any considerable generality, than the inequalities implied

by 2.6. (For weight w and power p , w <2P and p < 2W .) For X metrizable

and dense in itself, I do not know if pl(X) determines whether X is countable,

i.e. homeomorphic with Q. (Using 2.8, it is simple Polish routine to prove

that X is countable if an isomorphism of pl(A") and pl(Q) is induced by

embeddings X cY, Q c Y.) What I know about pl(g) is in 2.17 and 2.18.

A metrizable space is called totally imperfect if every Cech-complete subspace

is scattered. Equivalently, it contains no Cantor set—for it is easy to construct

a Cantor set in a complete dense-in-itself metric space. (In fact, this is done in

2.15 below, a bit more generally.) Countable complete metric spaces are scat-

tered; scattered separable metric spaces are countable; so separable metrizable

X is totally imperfect iff all its Cech-complete subspaces are countable.

2.7. For a subspace A of a space X, if rA(X\A) c X is rA(X) then every

subspace of A closed in X is weakly scattered, and the converse is true in regular

spaces. Thus in completely metrizable X, ol(X\A) = vl(X) iff A is totally

imperfect.

Proof From 2.4, pl(X\A) = pl(AT) iff every locally closed D c X with D\A

weakly scattered is weakly scattered, which certainly implies that subsets of A

closed in X are weakly scattered. If weakly scattered subsets of X are scattered

(e.g., if they are regular), and pl(A\^4) ^ pl(X), we have locally closed D c X

with D\A scattered but D not scattered. The dense-in-itself kernel K is closed

in D. K\A is scattered, so K\A is not dense in K. In the regular space K,

this means there is a regular closed set L ^ 0 disjoint from K\A . L is dense

in itself, contained in A , closed in D. So L is locally closed in X : there are

closed sets L   of X contained in L whose interiors relative to L cover L.
a
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But any of those interiors that is nonempty is dense in itself, so its closure is

dense in itself, closed in X, and contained in A .

In regular spaces, 2.7 gives the criterion for the general relationship:

2.8. For subspaces Y, Z of a regular space X, pl(T) c Z if and only if every

subspace of Y\Z closed in Y U Z is scattered.

Proof. Observe

(f) Fora (sober) subspace S of a space T having a pointless part pl(F),

pl(5) = 5Apl(F).

Proof. Concerning "sober", pl( ) is defined in terms of sublocales, so only sober

subspaces count. [If you prefer, define pl( ) on spaces via sobrification.] Then

S A pl(F) is pointless and contained in S, so it is contained in pl(5). But

pl(5) is contained in S and in pl(F).

(ft) In spaces having pi, pl(T U Z) = pl(T) v pl(Z).

Proof. Note Y u Z = Y V Z , since it is the join of its points. So pl(T U Z) =

pl(7 U Z) A (Y V Z) = [pl(T U Z) A Y] V [pl(Y U Z) A Z] = pl(7) V pl(Z).

But now pl(F) c Z iff pl(r U Z) = pl(Z), and 2.5 applies (with A = Y\Z ,
X= YUZ).

Remark. Paralleling (ft), pl(T A Z) = pl(F) A pl(Z)—trivially. But Y A Z ¿
Y n Z in general.

2.9. R has 2e nonisomorphic sublocales rA(X)  (X c R).

Proof. By 2.7, pl(R) « pl((0, 1)) « pl([0, 1]). There is a map of the ternary

Cantor set C onto [0,1] whose restriction off the endpoints of intervals of the

complement is a homeomorphism to [0,1] minus the dyadic rationals. The

exceptional sets are countable, so totally imperfect; so pl(R) ~ pl(C). This is

pl(C x C) by homeomorphism. The subspaces of C x C of the form C x S,

S c C, are 2e in number and by 2.8, they all have different pointless parts in

C x C. Since a separable metrizable locale has at most c embeddings in C x C

(at most c morphisms; for the frames are countably generated and of power

c), the result follows.

There are partial results to the effect that pl(T) c X is pl(Z c X) ; at least

2.10 here. It depends on the Lavrentiev theorem:

Any isomorphism between sublocales A, B of completely metrizable locales

A~ , B~ , extends to a homeomorphism between Gs subspaces C D A of A~ ,

DdB of B~.
This was proved by Hager [H] more generally (but he notes that if his spaces

are paracompact, they must be completely metrizable).

2.10. Theorem. For spaces, X completely metrizable and E metrizable, each

sublocale P of E isomorphic with rA(X) is rA(S) for a subspace S of E

homeomorphic with a subspace of X whose complement is totally imperfect. If

P = pl(F), E\S is also totally imperfect and E\S~ is scattered.
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Proof. Let F be a metric completion of F and consider an isomorphism i

from pl(A) to a sublocale F of F c F. There is a Lavrentiev extension

h : C <-► D, C a Gô of A containing pl(A), D a Gs of F containing

F. Since pl( ) takes the largest pointless part, pl(X) = pl(C). Therefore the

homeomorphism h takes pl(A) to pl(D) = P. But every subspace of D\E

closed in D is scattered, as it is completely metrizable and if not scattered it

would contain a Cantor set H, closed in F ; this would mean that the two

open sets F and F\H have the same trace on F but not on pl(D) c F, a

contradiction. Then by 2.7, pl(DnE) = pl(D). h~x takes DDE to a subspace

of X which contains pl(A), so its complement is totally imperfect. If F is also

pl(F), E\D is similarly totally imperfect; and since pl(D n E) = P = pl(F),

(D n E)~ contains the dense-in-itself kernel of E.

2.11. Corollary. For separable completely metrizable spaces, pl(X) & pl(Y) if

and only if X and Y have homeomorphic subspaces with countable comple-

ments.

Proof. Sufficiency is evident. Conversely, if pl(X) « pl(T), this is the situation

of 2.10 with F also an absolute Gs . So DDE is Gs , and the totally imperfect

difference sets are relative FCT's, absolute Gsfs. Separable totally imperfect Gfs

are countable, so Gsfs are too.

2.12. Corollary. For X completely metrizable and E metrizable, if pl(X) «

pl(F) 7¿ 0 then E is of the second category in itself.

Proof. The proof of 2.10 gives completely metrizable D with DnE dense in E

and D\E totally imperfect (and D n E ^ 0). Any countable union of nowhere

dense sets in DnE is contained in a countable union of closed nowhere dense

sets in D, whose complement is then a dense Gs—thus not contained in D\E.

So DnE itself is not such a union, but is second category. Since F has a dense

second category subspace, E is second category.

On the other hand, pl(A) for X complete can be isomorphic with pl(F)

where E is totally imperfect; in fact, it is (for every separable completely

metrizable X, at least). For every separable metric space X has at most c

points. If fewer, X is totally imperfect. If c, then since X contains at most

c Cantor sets, each of power c, one can partition X into two subsets A, B,

each of which meets every Cantor set, so that each is totally imperfect; and by

2.7, if X is complete, pl(A) = pl(A) = pl(B) c X.
The countable complements in 2.11 are zero-dimensional, so they add 0 or

1 to the dimension of the subspace. But this generalizes, to perfectly normal

spaces and a bit further to Dowker's totally normal spaces, or to any other class

of normal spaces X whose subspaces have covering dimension no greater than

dim A. [D]

2.13. For totally normal spaces X, dimpl(A) is dim A or dim A- 1.

Proof. Since dim is monotone on subspaces it is monotone on sublocales, as

follows.  If A is a sublocale of X, it is dense in A~, which is a subspace.
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Any finite open covering {£/,-} of A extends to {A~\(A\U¡)~} , a finite open

(in A~) covering of whatever it covers: a relatively open set A* between A

and A~ . So there is a finite open refinement covering A* of order at most

1 + dim.4* < 1 + dimX, and its trace on A refines {U¡} .

For the converse, observe that pl(X)~ is the complement of a scattered open

set. Hence dim A = dimpl(A)- (unless pl(A) is empty, which makes dim A

zero).   Put X' = pl(A)~.   Now for any finite open covering {F}  of X',

by normality there is a shrinking {Wj} with W~ c F. The trace of {JF}

on pl(A) has a finite open refinement {Uk} of order at most 1 + dimpl(A).

As before, {X'\(pl(X)\Uk)~} is a finite open covering %? of an open set F

between pl(A) and X'. Since pl(A) is dense in X', any subset of W having

a nonempty intersection has a nonempty intersection in pl(A), i.e. those Uks

meet; so we have not increased the order. W refines the trace of {F} on P.

X'\P is scattered, so the trace of {F} on it can be refined to a partition into

relatively open-closed sets Zm . Since X'\P is closed, the Zm are closed and

can be extended to disjoint open sets still each contained in one F . This gives

an open refinement {V,} of order at most 2 + dim pl(X), completing the proof.

We speak, above, of the dimension of the ghostly space pl(A), but not of

its category: only, as in 2.12, of the category of another space E with pl(F) «

pl(A). Why? It seems clear how second category locales A should be defined:

in the complete lattice of sublocales, A is not a countable join of nowhere

dense sublocales. This is easily seen to agree with Baire category for sober Tx

spaces. A non-F, space with a dense point is always a second category space

but sometimes a first category locale, since nonsober spaces are not sublocales.

This imperfection is not a serious drawback (how much Baire category theory is

there outside F, spaces?), and I shall use this definition of category. However,

for all I know, every nonzero pl(A) may be second category. At least:

2.14. If X is metrizable and pl(A) ^ 0 then pl(A) is second category.

Proof. Since pl(A) is contained in the dense-in-itself kernel D and is pl(D),

we may assume X is dense in itself. Given countably many nowhere dense

parts K¡ (i > 1) of pl(A), we have closed nowhere dense subspaces L( = K~

of X. We now prove

(\) For any sequence of closed nowhere dense sets Li in a dense-in-itself

metric space X and any dense subset P of X, there is a closed dense-in-itself

subset H of X such that each H n L¡ is finite and H n P is dense in H.

The dense set F has nothing to do with 2.14; we want it for 2.18.b.

Proof of (t). Choose x0 £ P. Choose a surjective oc-to-1 function / : cu\{0} -*

eu satisfying f(n) < n. We shall successively choose xn within a small dis-

tance en of Xf,n), in (dense) P but not in (nowhere dense) Lx U ■ • ■ U Ln . In

fact we require (1) en < d(xn_x, Xy(n_1})/3.   (e, = 1, say.)  Also, for each
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i < f(n), (2) en < d(Xj-,n,, F;)/3. (That is > 0, as x~ , was chosen out-

side these F's.) Finally S is the set of x., H = S~. Clearly H is closed

dense-in-itself, H n F D S is dense in it, and each S n Li is finite.

I claim S~ n Li = S n Li. Consider the natural numbers partially ordered

by /: the ancestors of n are f(n), f (n), ... , 0, and it is their descendant.

Consider any convergent sequence of distinct elements xn . Infinitely many

nk , in fact all of them, are descendants of 0. Either there is a genetic sequence

0 —> m, -> m2 -» • • • of natural numbers all of which have infinitely many

descendants nk , or there is a maximal such m . In the latter case, the next

generation f~ (m) has infinitely many members ri such that ri or one of

its descendants is an nk . But observe, first, d(xr , xm) —► 0 ; and because of

(1), any descendants y¡ of xr also converge to xm . For the other case, first,

for each i, almost all m are > /, so xm is not in Li ; and because of (2),

when m > i, all descendants of xm are at least half as far from Li. Thus

in neither case is there a limit in L¡\S. So ({) holds, and 2.14 holds since

\JKi < pl(A - H), which is not pl(A) since pl(H) ¿ 0.

The result 2.16 below seems feeble compared with 2.14; but metrizability is

hard to do without, and 2.16 seems worth mentioning. First:

2.15. A space X which is a Gs in a compact Hausdorff space and is not scattered

has a compact dense-in-itself subspace.

Proof. Let X c Y be the countable intersection of open sets U¡ in compact

Hausdorff Y. Let A(0) and ,4(1) be disjoint regular closed sets contained in

Ux, whose interiors meet the dense-in-itself part of X. Inductively, having 2"

disjoint regular closed sets A(a), indexed by all sequences a of n terms 0

or 1, whose interiors meet the dense-in-itself part of X, take two such sets

A(o,0) and A(o, 1) interior to A(a) and contained in Un+X (for each a);

this is always possible and yields nested sets A(a) for all finite 0 - 1 sequences

a. For every point n £ 2W, the intersection A(n) of A(o) over all initial

segments a of n is nonempty by compactness and contained in the Gs set

X. The union A of all A(n) is compact (as an intersection of compact unions

.4(0) U A(l) etc.). The map / : A —► 2W taking each A(n) to n is continuous

by construction. Therefore [R] A is not scattered, and its dense-in-itself part

proves the assertion.

2.16. If X is a dense-in-itself Gs in a compact Hausdorff space, pl(A) is second

category.

Proof. X is a dense Ga in a compact dense-in-itself space Y (take its closure).

So Y\X is a countable union of nowhere dense closed sets. Suppose pl(A) is

the join of nowhere dense At]c p\(X) ; then (7\A)U(IJ^~) is an Fa subspace

S of Y containing Y\X and pl(A). Moreover, the subspace intersection /

of S and X contains pl(A), since each ^cln A~ , which is closed in X

and therefore a subspace.  Then by 2.7, every subspace of X\I closed in X
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is scattered. But X\I = Y\S, a Gs , so by 2.15 it is scattered. In particular,

Y\S is empty or has an isolated point. Y\S empty would mean Y is first

category; an isolated point p of Y\S would have an open neighborhood U

containing no other point of Y\S, so the locally compact dense-in-itself space

U\{p} would be first category; both impossible.

Now, all I know about pl(ß), the pointless part of the rationals. First,

2.17.a. If X is metrizable and pl(A) « pl(Q) then X is totally imperfect.

Proof. If X is not totally imperfect it contains a Cantor set C, pl(C) c pl(A)

is isomorphic with a sublocale F of pl(ß), and by 2.10, F is pl(F) for some

subspace F of Q. But pl(F) is 0 or isomorphic with pl(Q), unlike pl(C)

(2.12).

Second:

2.17.b. A (complete) metric space X can have a sublocale P « pl(ô) which is

not pl(S) for any subspace S of X.

Proof. As noted in [I,] (and easily seen from 2.4), in the real line R the space

of irrationals R\Q contains the sublocale pl(Q) • But R has no subspace S

disjoint from Q with pl(S) = pl(Q). For, if S d pl(Q) then S is dense in R.

But we can list the elements x¡ of Q and enclose them in open intervals I. of

length e¡, whose union will be an open set U of measure < 1 ; let us see what

else the construction requires. R\£/ will be closed and (R\U)nQ scattered, in

fact empty; if (R\U)nS is dense in itself, this will show Q does not contain

pl(S). For this, clearly, no two I¿ can abut, leaving an isolated point of S

between them. Further, we list the elements F of a basis of open intervals of

R and, in attending alternately to x,, F,, x2, F2, ... , when attending to F ,

if it is not already covered by U, mark two points of 5 n F. to be left out

of U. The finite union of nonabutting intervals already put in U has regular

closed complement, so the construction is possible.

Recall (from several pages ago) the first pullback lemma, 1.9. It is about

open/closed/locally closed/ Os sublocales. Nothing like it holds for Ffs. Q is

Fa in R (or anywhere); but pl(ß) is not only not a countable join of closed

parts of pl(R), it is not a join of them at all. Nor of Os parts; moreover,

2.18.a. If Q' has pi and pl(R) cannot be embedded in pl(ß'), then for any
absolute Gs space X, a sublocale of pl(X) isomorphic with pl(Q') contains no

nonzero Os.

For the 0/s of pl(A) are p\(S), S a Gs in X ; if pl(5) is nonzero, 51

contains C and pl(5) contains pl(C) « pl(R).

Turning from non-O^'s to non-Fafs, we have

2.18.b. If T is a dense subspace of a completely metrizable space X, then

pl(F) c pl(A) either contains a dense Os or is not FaS .
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Proof. The core is

(XX) A dense embedding of metrizable T in completely metrizable X induces

an embedding of pl(T) in pl(A) such that every Fa sublocale containing pl(T)

contains a dense open sublocale.

Proof. We may assume X is dense in itself. For any Fa sublocale y/pK^,-) of

pl(A) that contains pl(F), X\\JJ¡ is nowhere dense; for if it were dense in

nonempty open U, the closed sets Li = J. n U~ would be nowhere dense and

subject to (X) : U~ would have a closed dense-in-itself subset H = (H n T)~

with all HnL¿ finite. This means pl(X\H) contains all pl(J¡) but not pl(F),

a contradiction. So the closure of A\ IJ Ji has void interior, i.e. W — (|J /;.)°

is dense. Next we show that a symmetric difference UAV of two open sets of

X which meets pl(W) meets some pl(/.). For if the absolute Gs set UAV

has nonscattered intersection with absolute Gg W, the intersection contains

a Cantor set C, which is not a countable union of scattered (hence nowhere

dense) subsets C n F ; some C n Ji has nonzero pl(C n J¡) c (UAV) n pl(/¿).

But this means \Jpl(J¡) contains pl(IF), as claimed.

2.18.b is immediate; Ffs containing pl(F) contain dense opens, so Fafs

containing it contain dense Ofs pl(f] W¡).

Remark. (XX) can be restated: in these pl(A), an Fa containing a dense pl(F)

has dense interior. These pl(A) (to anticipate 2.19) are the pointless metrizable

absolute Ofs. pl(F) is essential; the Fa cannot be merely dense. (Proof,

imitate a countable dense set in A using a little Cantor set for each point.) But

I do not know if pl(F) ends up in the interior.

2.18.a, or 2.18.b, shows that the first sentence of 1.9 fails for FCT's. As for

the second:

2.18.C. There exists an Fa sublocale of pl(Q) which is not pl(S) for any sub-

space (= Fa sublocale) S of Q.

Proof. Observe, Q is homeomorphic with Q x Q. That's a union of eu vertical

sections, which are closed. The pointless parts of the vertical sections are closed

in pl(ß x Q)—which is just pl(ß) ; take their union, an Fa in pl(Q). If it

were the trace of an Fa in Q (= Q x Q), it would be second category in itself

by 2.14, which it plainly is not.

A further detail:

2.18.d. There is an Fa in pl(R) which is not pl(S) for any subspace S (Fa or

not) of R.

For there is an ascending sequence of closed parts whose join is first category

in itself.

2.19. Theorem. For a completely metrizable space X, pl(A) is an 06 sublo-

cale of every pointless metrizable locale containing it.   A pointless metrizable
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locale which is an Oö in every pointless metrizable extension is pl(A) for some

completely metrizable space X.

Proof. If pl(A) is isomorphic with P c E , E pointless metrizable, let F be a

metric completion of E. There is a Lavrentiev extension of / : pl(A) »? toa

homeomorphism h of containing G^'s C in X, D in F . P = pl(A) = pl(C),

so h takes F isomorphically to pl(D). pl(D) is Os in pl(F), hence also in

E c pl(F). Now suppose merely that F is an Os in pl(F) for a metric

completion F; then by 1.9, P = pl(D) for some Os sublocale D of F, but

D is spatial and completely metrizable.

2.20. For every Gs part X ofR, pl(A) is 0 or isomorphic with pl(R).

Proof. Since the dense-in-itself kernel K of X is a Gs, it suffices to show

that every dense-in-itself Gs part K has pl(F) « pl(R), or equivalently,

« pl(R\(2). But F minus a countable dense subset S of F is homeomor-

phic with R\ß- This will suffice, since pl(F\5) = pl(F) by 2.7. It is true

by the Alexandroff-Urysohn characterization [AU] of R\Q : a separable met-

ric 0-dimensional absolute Gs (obvious for K\S), which is nowhere locally

compact. K\S is nowhere locally compact because S is dense in K .

2.21. pl(R) is characterized, up to isomorphism, as a nonzero pointless zero-

dimensional separable metrizable locale which is Oô in every pointless metrizable

extension.

Proof. Given such a locale F, it has a zero-dimensional metrizable compact-

ification [I3], so it is embeddable in R. Being pointless, it goes into pl(R),

where it is Os ; so it is pl(A) for some Gs subspace X of R, and by 2.20 it

is « pl(R).

Among spaces, a metrizable absolute Gô is a Gs in any completely regular

space in which it is dense. Not among pointless locales.

(§) Every nonzero pointless metrizable locale is dense but not Os  in some

completely regular pointless locale.

Proof. We may assume the given locale A is pl(M) for some dense-in-itself

completely metrizable space M. For each finite subset F of M, let MF be the

subset of ß(M\F) which maps to M under the natural map ß(M\F) -* ßM.

Let L be the inverse limit of the MF (mapping MQ —► MF , for G D F, by

restriction of ß of M\G c M\F) ; let B = pl(ßL). A c M is contained

in each M\F, so naturally embedded in MF and in L c ßL. Since A is

pointless it is contained in B . If it were 0& there, it would be the trace on B

of a G¿ set D of L. Then ßL\D would be a countable union of closed sets

Hi, all disjoint from A . But if closed H a ßL is disjoint from A, the natural

map / : ßL -» ßM cannot take H to a set containing a Cantor set C c M.

For K = Hn f~x(C) would be compact with C as a quotient, so nonscattered

[R]; and in the inverse mapping system we have pl(C) c pl(Af) = A mapping
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isomorphically throughout, and pl(F) projecting into it at every stage, so into

pl(C) in the limit, i.e. 0 ^ pl(F) c A , a contradiction. We conclude that each

f(Hj) n M is scattered. But then they are nowhere dense; the union misses

/" (p) for some point p of M, D contains f~ (p), and D A B = pl(.D) d

plf-x(p)),so DAB ¿A.

2.22. There are c nonisomorphic connected dense Os  sublocales pl(AQ)  of

pl(R2).

Proof. The indices a will be the subsets of eu0\{0}. We first describe non-

homeomorphic compact sets Ba. B0 (0 for the null set) is (œœ + 1) x I,

where eu = eu0, of + 1 has the order topology, and / is a closed interval.

of + 1 can be embedded in R, and B0 can be embedded in R2. For a general

set a of positive integers, modify B0 to Ba by lengthening its cu"th interval

{eu"} x / for each n £ a. (So the limit of {/?} x / as ß -» eu" is a proper subin-

terval. For compactness, either do not lengthen them very much or lengthen

{of} x I too.) Evidently the B are topologically distinct and embeddable in

R2.

Let F be a countable discrete set in R2\Bn whose derived set is B ; but that

is just to mark where to put Wa , which is a topological sum of eu Cantor sets in

R2\F   with W~\W = B . This makes X = R2\W  a dense G., so pl(A )

is dense Gs in pl(R2). If we also choose Wa to approach Ba (locally) only

from one side, then Xa will be a union of closed 2-cells and pl(AQ) connected.

(pl(AQ) would be connected without this precaution, but it is harder to see.)

By 2.11, pl(AQ) « pl(Ao) iff they have homeomorphic subspaces Sa, Sß

with countable complements. Now Sa and 5„ are each 5 minus a zero-

dimensional subspace. So their Freudenthal compactifications are S ; and S

(y = a, ß) determines the remainder Ry = S2\Sy as a subspace of S2. But the

set of accumulation points of Ry (points at which Ry is not locally countable)

is W~ , the nondegenerate components constitute B , so Sa and Sß are not

homeomorphic.

2.23. For each connected dense open subset X ofR2, pl(A) is isomorphic with

pl(R2) or with pl(R2\C).

Proof sketch. The Freudenthal compactification of X, or of X minus a count-

able set, is S . For clearly the countable set does not affect it, and the point

is that S \X (closed nowhere dense nonseparating) is the intersection of a

shrinking sequence of nice neighborhoods: all X knows is how many compo-
2

nents S \X has. With the floating countable set, all pl(A) knows is whether

52\A has uncountably many components.

There is nothing like 2.23 in R3 ; one can remove a sequence of different

knots in c ways.
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2.24. No nonzero pointless metrizable locale is an Fa in every pointless metriz-

able extension.

Proof. Consider A ^ 0 embedded in a completely metrizable space X. If A is

Fa in pl(A), it contains pl(H) for some nonscattered H closed in X ; hence

A has a closed sublocale B = pl(C), C c X. Now pl(C) = pl(C\ß), and

C\ß is homeomorphic with its square ScC . Let Y be the metrizable space

X\Q—the copy of ß in C that we are using—and letZ be the union of Y

and C2 with the two copies of C\ß identified. This is a metrizable space; it

is easy to construct it via an embedding of C2 in an absolute retract and

C\ß -► C2

X

The closure of fi in Z is C2.   B is not an Fa in pl(C2) ; for B is second

category, and a closed set of C   which is not nowhere dense has a perfect subset

disjoint from the dense subset S. Hence A is not Fa in pl(Z).
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