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ASYMPTOTIC INTEGRATIONS OF NONOSCILLATORY
SECOND ORDER DIFFERENTIAL EQUATIONS

SHAOZHU CHEN

Abstract. The linear differential equation (1) (r{t)x')' + (/(<) + q(t))x = 0

is viewed as a perturbation of the equation (2) (r(t)y ) + f(t)y = 0, where

r > 0, / and q are real-valued continuous functions. Suppose that (2) is

nonoscillatory at infinity and yx , y2 are principal, nonprincipal solutions of

(2), respectively. Adapted Riccati techniques are used to obtain an asymptotic

integration for the principal solution xx of(l). Under some mild assumptions,

we characterize that ( 1 ) has a principal solution xx satisfying xx = Vj (1+0(1)).

Sufficient (sometimes necessary) conditions under which the nonprincipal solu-

tion x2 of ( 1 ) behaves, in three different degrees, like y2 as (-»oo are also

established.

1. Introduction

Consider the second order differential equation

(1.1) (r(t)x')' + (f(t) + q(t))x = 0

as a perturbation of the equation

(1.2) (r(t)y')' + f(t)y = 0,

where r, /, q , x and y are continuous and real-valued functions on [a, oo),

r > 0. Suppose that (1.2) is nonoscillatory at infinity. It is well known [3, p.

355] that (1.2) has a principal solution yx which is essentially unique (up to a

constant factor) such that

(1.3) j°° dt I {ry\) = oo

and for any solution y2 linearly independent of yx,

(1.4) y,/y2^0,       f-»oo.

The solution y2 is called a nonprincipal solution. Without loss of generality,

we assume that yx [t) > 0 for t > a. Set

(1.5) g(t)= fds/iry2);
Ja
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then y{g is a nonprincipal solution. We will assume throughout this paper that

^(0 = y\{t)[8{t) - i(b)] for some b > a and hence y2 is eventually positive

and satisfies

(1.6) r{yxy2-y[y2)=l.

We will be interested in finding conditions on q so that solutions of ( 1.1 ) will

behave asymptotically like those of (1.2). Some remarks about known results

on this seem to be appropriate here.

In what follows, L denotes the set of all continuous functions z on [b, 00)

for some b > a such that the improper integrals ¡b°° z dt converge (at least

conditionally), z*(t) = supi>( \z(s)\ whenever z(t) is bounded for t > b and

z(t,b) = [g(t)-g(b)fi f g'zds,
Jb

the weighted average of z over [b, t]. We also write z(i) = 1{t, a) for short.

The Landau notations " O " and " 0 " refer to behavior as t -> 00 .

Hartman and Wintner considered the equation (1.1) where q may be

complex-valued and obtained

Theorem A [3, p. 379]. If

(1.7) V29£L

and

/oo g Q*dt< 00,

where Q{t) = /(°°yxqds, then (1.1) has solutions xx and x2 such that xi =

y ¡(I +o(l)) and x'i/xi-y'i/yi = o{{ryly2)~1) for i = 1, 2.

Theorem A was improved by Trench:

Theorem B [6, Theorem 2]. Suppose that

(1.9) gy2qeL

and Q* = 0{<j>), where Qx(t) = f™ gy\qds, tp(t) > 0 and <f>(t) -> 0 monoton-
ically as t —► 00. If

/CO

g\Q\<pdt <oo,

and

(1.11) limsup(0(i))_1 [°° g'\Q\<pds = A<l/3,
Í—»oo J t

then (1.1) has solutions xx and x2 such that xx = yx(l + 0{4>)), (xx/yx)' =

0(4>g'/g), x2 = y2(l + 0(0)) and (x2/y2)' = 0($g'/g).

Note that (1.9) => (1.7) but (1.7)-(1.8)=*»(1.9)-(1.11) (see [6]). Simsa [5]
proved that 1/3 can be replaced by 1 in (1.11) and obtained
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Theorem C [5, Theorem 1]. 7/(1.9) holds and

/oo g'lQiWg dt< .oo,

then (1.1) has a solution xx suchthat xx =yx[l + 0((p + jtocg'\Qx\(p/gds)] and

{xxlyx)' = 0{<pg'lg).

The approach to proving Theorems B and C in [6,5] is mainly based on

finding the principal solutions xx of (1.1) by a fixed point theorem. Instead

a different method, the Riccati transformation, will be used here in the case

where q is assumed to be real-valued; this method seems to be advantageous

to establishing a rather accurate asymptotic integration for the principal solu-

tion xx of (1.1) which is asymptotic to yx. For the nonprincipal solutions,

more asymptotic properties, of interest in their own right, should be specified

as follows:

(1.13) x2=y2{\+o{\)),

(1.14) x'2/x2-y'2/y2=A = o{(ryxy2yl)   and   AeL,

(1.15) x2-y2=yx(C + o(l)),

where C is a constant. Among them, (1.13) is obviously the weakest but (1.14)

and (1.15) are independent of each other (Example 4.2). Motivations of in-

vestigating asymptotic properties of nonprincipal solutions in greater detail as

above can also be found in [1, 2], where other kinds of differential equations

were discussed.

In this paper, we will obtain sufficient (sometimes necessary) conditions on q

under which (1.1) has a principal solution xx satisfying xx = y^l + o(l)) and

a nonprincipal solution x2 satisfying each of the three asymptotic properties

(1.13)-(1.15).

2. Generalized Riccati equations and nonoscillation

Let x be a nonoscillatory solution of (1.1), x(t) ^ 0 for / > b for some

b > a. Let u = rx ¡x . Then u satisfies

u' + u2/r + f + q = 0,        t > b.

Set u = r\ + v , where n = ry'x/yx. Then v satisfies

v + 2nv/r + v /r + q = 0

or

(2.1) (y2v)'+y2v2/r + y2q = 0,        t>b.

Equation (2.1 ) is called the generalized Riccati equation for ( 1.1 ) with respect

to (1.2). Where / = 0 and yx = 1, as in [3, pp. 331-332; 7, 8] (2.1) reduces to

the ordinary Riccati equation. It is clear that (1.1) is nonoscillatory at infinity

if and only if (2.1) has a solution v(t) fort>b for some b > a. Moreover,

we can establish the following result involving a generalized Riccati integral

equation for (1.1) with respect to (1.2).
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Lemma 2.1. If

(2.2) liminfteWr1 / g'{s)(     y\qda\ ds > -oo,

then (1.1) is nonoscillatory if and only if for some b>a, the limit

(2.3) \im[g(t) - g(b)fl j'b g\s) (f'y^dtJ^ ds = Cb

exists (finite) and there exists a continuous function v(t) for t > b such that

y2v2/r g L and

(2.4) y2v = Q(t) + J°°y2xv2/rds,

where

(2.5) Q(t) = Cb- i'y2qds.
J b

Note that yxq e L => (2.3) =*> (2.2), but in general the converses are not

true. However, if (1.1) is nonoscillatory, then (2.2) «• (2.3). We also observe

that if (2.3) holds for some b0 > a then it holds for all b > a . Letting t -> oo

in the following identity

[g(t)-g(b)f{ fl g\s)j\\qdads

- [*(0 - g(b)fl I fa g\s) fa y\q da ds

-      g\s)      y\qdads-\  g'dsj   y\qda\

gives Cb = Ca - Ja yxqds. Therefore, the function Q(t) given by (2.5) is

independent of the values of b . Thus in the sequel, by saying that Q(t) exists

(finite) we mean that (2.3) holds and Q(t) is defined by (2.5) for b > a. In

particular, if yxq e L then Q(t) = f™y2qds.
We next introduce a generaltized Riccati equation of the second level. Sup-

pose that (2.2) holds and (1.1) is nonoscillatory. Then Q(t) exists (finite) and
2     2

yx v /r e L. Hence, if we let

f°°    2   2
(2.6) w(t)=       yxv/rds,        t>b,

then w satisfies

(2.7) w' + 2g'Qw + g'(w2 + Q2) = 0,        t>b.

Set G{s, t) = exp(2// g'Qda) and

/oo g'Q2G(s,t)ds

whenever the integrands make sense and the integrals converge. We now have



ASYMPTOTIC INTEGRATIONS 857

Lemma 2.2. Let (2.2) hold. Then (1.1) is nonoscillatory if and only if Q(t) and

P(t) exist (finite) and there exists a continuous function w(t), t > b for some

b>a, such that

/°°
g'w2G(s,t)ds,       t>b.

Remark. If (2.2) holds and x is a nonoscillatory solution of (1.1), then the

function w = yxv - Q must satisfy (2.9), where v = rx ¡x - n .

The proofs of Lemmas 2.1 and 2.2 are omitted because they can be obtained

either by employing the same arguments used in [7, 8] for ordinary Riccati

equations or by letting x = yxz, g(t) = s and then applying the known results

on ordinary Riccati equations to the equation

d z/ds + ryxqz = 0.

The integral equation (2.9) has the advantage of involving the nonnegative

functions P and w but no individual values of q . One can easily make use

of (2.9) to estimate the function w and hence the nonoscillatory solution x of

(1.1). This thought will partially be embodied in the next nonoscillation result

(Theorem 2.4). Before giving this result, we introduce a lemma first.

Lemma 2.3. Suppose that Q(t) exists (finite) and g Q e L. Then

gg'Q ds < oo

if and only if P(t) exists (finite) and g'P e L.

Proof. Since g'Qe L, there is an M > 1 such that

(2.10) AT1 <G(s, t)< M,        t,s>a.

For any T > t, we have

/T rT roo
g'Pds = J   g'(s) j    g'Q2G(a, s) da ds

/T roo
g'(s)j    gQ2 dads

= M (figis) - g(t))g'(s)Q2(s)ds + (g(T) - g(t)) j™ g'Q2ds)

/CO

gg'Q ds,<

and

j  g'Pds>M l Í  g'(s) H g Q2dads

UTgg'Q2ds-g(t)pg'Q2ds>M '

Then Lemma 2.3 follows immediately.
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Theorem 2.4. If Q(t) exists (finite), g'Q € L and (Ax) holds, then (1.1) is
nonoscillatory.

Proof. Our proof proceeds on the basis of constructing a solution of (2.9).

By Lemma 2.3, (A ¡) implies that P exists and g'P e L. Let b > a be so

large that for all t > b,

/OO I

g'Pds < ^M~\

Let X be the Banach space of all bounded, continuous functions on [b, oo)

equipped with the norm given by ||z|| = supi>è{|z(i)|} , z e X. Let S = {z e

X: P(t) < z(t) < 2P(t), t > b}. Then S Is a closed convex subset of X.

Define an operator T: S —► X by

/OO

g'z2G(s,t)ds

for any z e S. Since g'Q e L, from (2.10), we have for s >t,

g'Q2G(a,s)da<M J    g'Q2 da
IS

fOO(2.13)
< M /    g'Q ¿a < M2 /    i'^Gfj, ?)¿í = M2P(t).

From (2.12), (2.13) and (2.11),
, /-oo

P(t)<(Tz)(t)<P(t) + 4MiP(t)       g'Pds<2P(t),        t>b.

Thus, T: S —> S. On the other hand, for every t > b , zx, z2 g S, we have

{Tzx)(t)-(Tz2)(t)\ =
/OO

g'(zx + z2)(zx -z2)G(s, t)ds

/oo g'Pds<M   ||z, -z

which shows that T is a contraction. Hence, there exists a unique fixed point

w of T in 5, which is a solution of (2.9) on [b, oo). This completes the

proof of Theorem 2.4.

It should particularly be noted at this point that under the hypotheses of

Theorem 2.4, (2.9) has a unique solution w on [b, oo) satisfying

(2.14) P(t) < w(t) < 2P(t).

Solving rx ¡x - ry\jyx + (Q + w)/yx for x we get a solution of (1.1)

(2.15) xx(t)=yx(t)exp(-H(t)-W(t)),

where W(t) = /,°° g'wds and

/CO

g'Qds.
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Obviously, xx is a principal solution of (1.1). The asymptotic integration (2.15)

of xx with w satisfying (2.14) will play a critical role in §3.

3. Main results

Under some mild assumptions, we first give a necessary and sufficient condi-

tion for (1.1) to have a principal solution xx = yx(l +o(l)) and a nonprincipal

solution x2 satisfying (1.13).

Theorem 3.1. Let Q(t) exist (finite) and g'Q e L.

(i) If (Ax) holds, then (1.1) has a principal solution xx satisfying

(3.1) xx=yx[l-H + 0(H2 + <p)],

(3.2) (xx/yx)' = g'Q[l -H + 0(H2 + y/)] + O(g'P)

and a nonprincipal solution x2 satisfying

(3.3) x2=y2[l + 0(Jr + y7)],

for some nonprincipal solution y2 of(\.2).

(ii) Conversely, if there are solutions x o/(l.l) and y of (1.2) such that

x/y —► 1 as t —> oo, then (A,) holds.

Proof, (i) If (Aj) holds, then by Theorem 2.4, (1.1) is nonoscillatory and (2.9)

has a solution w satisfying (2.14) for t > b for some b > a. Lemma 2.3

implies that g'P e L and, consequently, g'w e L. Let xx be defined as in

(2.15). It is then easy to verify that xx is a positive solution of ( 1.1 ) on [b, oo).

From (2.10) and (2.14),

/CO /»OO /»OO /»OO

g'wds<2       g'Pds<2M       g'(s)       g'Q dads

/oo gg'Q ds = 2M\p(t).

Thus, (3.1) follows from (2.15) and (3.4). Since

(3.5) (xx/yx)' = (xx/yx)g'(Q + w),

(3.2) follows from (3.5), (3.1) and (2.14).
2

Ci )   —   00 ,    Xi     IS  ä priIlCx¿/tti   juiuuuh   ui   ^¿.¿y.    ii    wv   avi    -A.^

(3.4)

Since /°° dt/(rxx) = oo, x¡ is a principal solution of (1.1). If we set x2 -

xx fb ds/(rxx ) and y2 = yx[g(t)-g(b)], then x2, y2 are nonprincipal solutions

of (1.1), (1.2), respectively. We note that y/(t, b) = 0(y/(t)) and ip <W ■ From

(2.15) and (3.1),

x2ly1 = (xxlyx)[g(t)-g(b)]~x / ¿(yjxtfds
Jb

(3-6)        = (v^teo - swr1 f g'v+2//(i+0(i)) + o(^)]¿s

= (xx/yx)[l + 0(LT + W)].

We then get (3.3) from (3.6) and (3.1).
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(ii) Let xx and x2 be principal and nonprincipal solutions of (1.1), respec-

tively. Suppose that x = Axx + Bx2, y — Cyx + Dy2 and x/y -* 1. Since

neither xx/y2 nor x2/yx can tend to a nonzero number, we may assume that

either B - D ¿0 or B = D = 0 and A - C # 0, and hence either x2/y2 -> 1

or xx/yx -> 1. If x2/y2 -» 1, then
-i-i

Hm xx/yx = lim(x2/y2) I    ds/(rx¡)   I    ds/(ry = 1.

Thus, the assumption of (ii) is reduced to the case xx/yx -* 1.

Assume that xx(t) > 0, t > b > a. Let it; = y,v - Q, where t> =

rx[/xx - ry'x/yx. Since (1.1) is nonoscillatory, by the remark after Lemma

2.2, w satisfies (2.9) and hence 0 < P < w . Furthermore,

g'w = v/r-g'Q = x'x/xx -y'x/yx - g'Q = [ln(xx/yx)]' - g'Q.

Since g'Q e L and xx/yx —> 1, we have g'w e L. As a result, g'P e L. Thus

(A x ) holds by the virtue of Lemma 2.3. The proof of Theorem 3.1 is complete.

Remark. In Theorem 3.1 (i), x2 and y2 have the same value zero at t = b . In

case y2 = yx[g(t) - g(c)] for some c ^ b , we still have

(3.7) x2 = y2[l+0(g-l+W + W)l

Next, we give necessary and sufficient conditions for the nonprincipal solu-

tions of (1.1) and (1.2) to have the property (1.14).

Theorem 3.2. Suppose that Q(t) exists (finite) and g'Q e L.

(i) If(Ax) holds, and

(A 2 ) gQ -+ 0 as t -»■ oo,

then (1.1) has a nonprincipal solution x2 satisfying x'2/x2 -y'2/y2 € L and

(3.8) x'2/x2- y'2/y2 = (ryxy2)~l[(y2/yx)Q + 0(W + yl)}

for some nonprincipal solution y2 0/(1.2).

(ii) Conversely, i/(l.l) has a solution x such that x jx -y'2/y2 e L,

(3.9) x/x-y'2ly2 = o((ryxy2)~x),

where y2 is a nonprincipal solution of (1.2), then (A ,) and(A2) hold.

Proof, (i) By Theorem 3.1, (1.1) has a solution xx satisfying (3.1) and (3.2)

and a solution x2 = xx fbds/(rxx) satisfying (3.3) for y2 = yx[g(t) - g(b)].

Let A = x2/jc2 - y'2/y2 ■ Then A € L because of (3.1). Moreover, from (3.5),

(3.1) and (3.3) we have

A = x'x/xx + (rxxx2)~l -y[/yx -(ryxy2)~[

(3 10) = ^i/^'^i/^r' + \.{yjxx){y2lx2) - l](ryxy2)~]

= g'(Q + w) + (ryxy2)-lO(W + W)

= {ryxy2)-\(g(t) - g(b))(Q + w) + 0(W + yT)].
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00.

Since

/OO /-COg'Q2ds <2M       gg'Qds = 2My/,

we obtain (3.8) from (3.10).

(ii) Since x'/x -y'2/y2 = [ln(|jc|/y2)]' e L, integrating from o to oo gives

that \x(t)\/y2(t) tends to a positive number as (-> oc. Then (A,) holds by

Theorem 3.1 (ii). Let x = Axx +Bx2, where xx, x2 are defined as in Theorem

3.1(i). From (3.9),

(3 12) X'2^2 ~ y'2^2 = ^* " y'2^y^ + ^Xl ~ *'^

= o((ryxy2YX) + A[rx2(Axl + Bx2)fl.

If B = 0, then (3.1), (3.3) an (3.12) lead us to

x'2/x2-y'2/y2 = o((ryxy2)~l) + (rxxx2)~l

(3-13) =(ryxy2)-l[(yx/Xl)(y2/x2) + o(l)]

= (ry1y2)"1[l+ö(l)].

Comparing (3.13) and (3.10) yields that gQ -» 1. Consequently,

/OO /-oo
gg'Q2dt = J   (gQ)2g'/gdt =

This contradicts (A x), and hence B ^ 0. It then follows from (3.12) that

(3.14) x'2/x2-y2/y2 = (ryxy2)-l[o(l) + 0(g-1)].

A closer comparison between (3.14) and (3.10) gives that gQ -> 0, i.e. (A2)

holds. This completes the proof.

Remarks, (i) In the case where r = 1 and / = 0, Theorems 3.1 and 3.2

improve a result of Hartman and Wintner in [4] where a different method was

used. The latter result was extended to a selfadjoint system of second order

differential equations by the author in [2] using Riccati techniques.

(ii) The following lemma will show that our conditions used in Theorems

3.1 and 3.2 are weaker than the conditions (1.9), (1.10) used in Theorem B or

(1.9), (1.12) used in Theorem C, provided that q is real-valued.

Lemma 3.3.

(i) gy\q e L & y\q, g'Q EL and(A2);

(ii) g'QQx€L^ (A,);
(iii) g'QÍ/geL=* (A,).

Proof. Suppose that gy\q 6 L. As was indicated in [6], gy\q € L => y\q e L

and hence Q(t) = ¡t°° y2qds . Consequently,

/OO /»OOQ[/gds = Qx + g(t)J    Qxd((g(s))-l)^0   así 00.
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Integration by parts produces

j   gy]qds = g(t)Q(t)-g(T)Q(T) +j   gQds.

Letting T —► oo, we then have

(3.15) Q,=gQ + H,

that is, g'Q e L. The sufficiency of the part (i) is clear. Therefore, the proof

of (i) is complete.

It follows from (3.15) that

g'QQxds = J    gg'Q2ds + ̂ H2,

g'Q2/gds = J    gg'Q2ds + H2 + J    g'H2/gds.

We then get (ii) and (iii) in view of (3.16) and (3.17), respectively.

For (1.1) to have a solution x2 satisfying the property (1.15), more assump-

tions are required.

(A3) gg'Q EL.

/oo g2g'Q2ds < oo.

The following result is similar to Lemma 3.3(i) and hence its proof is omitted.

Lemma 3.4. If Q(t) exists, then (A3) holds if and only if g'Q e L, g H e L
and g H —> 0 as t -» oo, in which case

/•oo

(3.18) /    gg'Qds = gH + R,

where R(t) = /(°° g'Hds.

It is evidently true that (A4) =>■ (A,). Meanwhile, we have more implications

of (A4).

Lemma 3.5. If Q(t) exists and (A4) holds, then for any y, 0 < y < \, we have

/CO

*Y|ß|d/ < OO.

Proof. By Schwarz's inequality, from (A4) we have

(/•o° \ 2 /"OO     „      „ /-oo

/    g7g'\Q\dt)   <f   g2y-2g'dtj   g2g'Q2dt< 00

for y < \ . This completes the proof.

Lemma 3.6. If Q(t) exists and g'Q e L, then (A 4) holds if and only if gg'P €
L.

The proof of Lemma 3.6 follows the steps of that of Lemma 2.3 and is

therefore omitted.
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Theorem 3.7. Let Q(t) exist (finite). 7/(A3) and (A4) hold, then (1.1) has a
principal solution xx satisfying (3.1) and a nonprincipal solution x2 suchthat

(3.20) x2-y2=yx[C-2R-gH + 0(H*+V)]

for some nonprincipal solution y2 of (1.2) and some constant C.

Proof. Since (A4) =>■ (A,) and (A3) =*• g'Q € L (Lemma 3.4), Theorem

3.1 provides a principal solution xx of (1.1) satisfying (2.15) and (3.1) for

t>b>a. Set x2 = xx ¡bds/(rx2) and y2 = yx[g(t) - g(b)]. From (2.15),

-H-W   f'    i   2H+2W j
x2 = yxe Ige ds

J b

and hence

„ »n      , w ,   -H-W      1X   f'    i,     ,     -H-W   ['    i.   2H+2W      1W(3.21) (x2-y2)/yx=(e - 1)      gds + e g (e - l)ds.
Jb J b

From (3.4) and gW < 2Mg\p < 2MX¥, we have

(3.22) (e~H~W - 1) /" g'ds = -gH + 0(gH2 + ¥) + 0(|77|).

We claim that g'(e2H+2W - 1) G L. To this end, let e2H = 1 + 277 + 2Hh.

Then A = 0(77) and

(3.23) g'(e2H+2W - 1) = 2/77 + 2^'77Ä + g'0(y/).

By Lemma 3.4, (A3) =t> g H e L and #77 -» 0. Also, (A4) => gV € £ and

ff° g'ipds = 0(*¥(t)). It then remains to show that g Hh e L. In fact, since

(77/z)' = -2g'QH(\ +h), gH -» 0 and s'|ß| e L (Lemma 3.5), it follows
after some manipulation that

(3.24)

/oo roo /»oo

s'///í¿.s = -gHh + 2 1    gg'QHds + 2 /    g'QgHhds

/oo
s'7/2¿5 + o(g7/2) = 0(^77*2).

This asserts our claim.  Now, if we let C = ¡b°° g'(e2H+2W - \)ds, then by

(3.21)-(3.24) we are led to

(x2 - y2)/yx = - gH + 0(gH2 + T) + e_i/_,r[C - 27? + 0(gH*2 + ¥)]

+ 0(|tf|)

- - gH + 0(^772 + ¥) + C - C77 + 0(772 + V)

-2R + 0(gH*2) + 0(\H\)
= C-gH-2R + 0(77* + V),

which proves (3.20) and completes the proof.

In view of Theorem 3.7, if (A 3) and (A 4) hold, then for any solution x of

(1.1) there is a unique solution y of (1.2) for which x - y = o(yx). In fact, if
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x = Axx + bx2, then y - (A + BC)yx + By2, where C is the constant in (3.20).

Even so, in case yx is unbounded, x is still in the usual sense not asymptotic to

y. In general, if yx is unbounded, stronger conditions than (A3) and (A4) are

required so that for any given solution x of (1.1), (1.2) has a solution y such

that x - y = o(l). But we will not discuss this problem here. Another thing

that should be mentioned is that we have not assumed (A2) in Theorem 3.7

and therefore we are not able to ascertain the property (1.14) of the derivatives

of nonprincipal solutions. However, this property can be obtained by assuming

(A2) additionally (see Example 4.2).

4. Examples

To indicate the scope of our results in §3, we give two examples in this section.

Example 4.1. Trench [6] and Simsa [5] have considered the equation

(4.1) x"+ K[rß (In t)~a sin t]x = 0

as a perturbation of y" - 0, where K, a, ß ^ 0, y, = 1 and y2 = g = t.

Here we assume that K is a real constant. If ß = 1, then Theorem B does

not apply unless a > 1 and Theorem C implies that (4.1) has a solution xx

satisfying xl = 1 + 0((\nt)~a + (lni)1-2"), x'x = 0(r\\nt)~a), provided a >

\ . For a > \ ,

ß(0 = Kt~\\nt)~a[cost + 0(t~1)],

77(0 = -Kt~l (lnt)~a[sint + 0(t~1)],

P(t) = 0(C\\nt)-2a),

ip(t) = 0((lnt)i-2a) = y7(t),HT = om,

and (A.), (A2) hold if and only if a > \ . Then Theorems 3.1 and 3.2 imply

that if and only if a > \, the equation (4.1 ) has two solutions xx and x2

satisfying

xx = l+7Cr1(lní)"asiní + O((ln01_2a),

x[ = Kt'1 (In t)~a cost + 0(t'1 (In t)~2a),

x2 = t[l + 0((lnt)l-2a)],

x2 = l+7C(ln0"acosi + O((ln01-2a).

If ß = \, a > \, then (A4) holds, ¥(0 = O((ln0'"2a), #7/ = o(T) and
R = o(W). Thus, Theorem 3.7 implies that

x2-i = C + O((ln01-2a),

where C is a constant. Finally, if ß = 3 and a is an arbitrary number, then

W(t) = 0(t~3(lnt)~2a), 77* = O(r3(ln0~Q) and so

x2 - t = C + 7Cr2(lnO~a[sini + 2t~l cost] + 0(r\lnt)~y),

where y = min{a, 1 - 2a} .
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Example4.2. Let œn(t) = 4(-l)"sin(n7r0 for n < t < n + (l/n) and œn(t) = 0

otherwise, n = 1,2,.... Let Q(t) = t~ß(\nt)~aY^=xo)n(t), ß > 0 and

q = -Q'. Consider the equation

(4.2) x" + q(t)x = 0.

Observing that ¡x°° œ2ndt = 6/n , tQ2(t) = t]~2ß(ln t)~2a £ wß), we can easily

see that (A x) holds if ß > \, in which case Theorem 3.1 says that (4.2) has

solutions xx = 1 + o(l), x2 - t + o(t). But (A2) does not hold unless ß > 1

or ß - 1, a > 0. Thus, either of Theorems B and C does not apply for ß < 1,

because tq £ L by Lemma 3.3(i). If ß > 1 or ß = 1 and a > \, then (A4)

and (A 2) hold and so x2 -1 —> constant and x2 —> 1 as i->oo.

However if we choose ß(0 = í~^ X^, ßyW instead, then (A4) holds

for j? > j while (A2) does not hold unless ß > 1. In other words, for

\ < ß < 1, although every solution x of (4.2) is asymptotic to a certain

straight line A + Bt(x(t) = A + Bt + o(l)), the derivative of * diverges as

t —► oo . This example supports such a fact that the asymptotic property (1.14)

does not have to do with the property (1.15) and therefore both of them should

be classified.
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