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ON TOPOLOGICAL CLASSIFICATION OF FUNCTION SPACES Cp(X)

OF LOW BOREL COMPLEXITY

T. DOBROWOLSKI, W. MARCISZEWSKI AND J. MOGILSKI

Abstract. We prove that if X is a countable nondiscrete completely regular

space such that the function space C (X) is an absolute FaS-set, then C (X)

is homeomorphic to <7°° , where a = {(x¡) e R00:*, = 0 for all but finitely

many i} . As an application we answer in the negative some problems of A.

V. Arhangel'skii by giving examples of countable completely regular spaces X

and y such that X fails to be a 6R-space and a fc-space (and hence X is not

a km-space and not a sequential space) and Y fails to be an N0-space while

the function spaces C (X) and CJY) are homeomorphic to CJX) for the

compact metric space X = {0} U {n~ : n = 1, 2, ... } .

1. Introduction

For a space X we define C' (X) to be the set of all continuous real valued

functions on X endowed with the topology of pointwise convergence. The

subspace of C (X) consisting of all bounded functions is denoted by C*(X).

This paper is devoted to the topological classification of C' (X) and C*(X) for

countable completely regular spaces X. Let us note that if X is nondiscrete,

then C (X) is a dense linear subspace of the countable cartesian product of real

lines Rx (identified with R°°), otherwise Cp(X) = R°° or Rk . In [DGM] it

was proved that for every countable metrizable nondiscrete space X the spaces

Cp(X) and C*(X) are homeomorphic to er00 , where a = {(x¡) £ R°°:xi = 0

for all but finitely many /'} (cf. [vM, BGvM, BGvMP]). Extending the work of

[DGM] we focus on the case when C (X) is an absolute Borel set. The main

result of this paper is the following

1.1. Theorem. Let X be a countable nondiscrete completely regular space such

that the function space C (X) is an absolute FaS-set. Then C (X) and C*(X)

are homeomorphic to o°° .

Since, for a countable metrizable space X, the space C (X) is an absolute

FaS-set Theorem 1.1 generalizes the result of [DGM]. According to [DGLvM],

Cp(X) cannot be an absolute Góa-set, provided that X is nondiscrete. Thus
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Theorem 1.1 gives a complete topological classification of spaces C (X) which

are absolute Borel sets of the class not higher than 2. To the best of our knowl-

edge there is no classification result for spaces C (X) of higher Borel com-

plexity. Let us mention that all multiplicative classes of Borel sets SDÎQ , where

q> 1, are represented among spaces C (X) (see [LvMP, Ca,]). We conjecture

that the Borel class determines the topological type of a space C' (X).

The essential step in classifying spaces C' (X) is the case of countable spaces

X which have exactly one nonisolated point. Such X are precisely the spaces

NF = {oo} U {0, 1, 2, ...} topologized by isolating the points of N = {0, 1,

2,...} and by using the family {A U {oo}: A £ F} as a neighborhood base at

oo, where F is a filter on N. We recall that a family F c 2¥ is a filter on a set

Y if 0 0 F, AnB £F provided A, B £F and AçC CY, A£F implies
C £ F. We say that filters F on a set Y and G on a set Z are isomorphic

if there exists a bijection a: Y -, Z such that A £ F iff a(A) £ G. By # we

denote the filter on N consisting of all cofinite subsets of N. Obviously, the

space N~ is homeomorphic to the space X = {0} U {n~ :b=1,2,...}ÇR,

The spaces Cp(NF) can have arbitrarily high Borel complexity; furthermore

they may not be Borelian (see [LvMP]). Corollary 3.6 and Theorem 8.8 seem to

be useful in classifying general spaces C (NF) and they are motivated by the

FaS-case.

Here, similarly as in [DGM], we employ the method of absorbing sets but

we do it in a more implicit way. We also explain basic facts on first category

filters.

We also discuss two examples of filters F and G such that Nf fails to be a

bR-space and a k-space (and hence NF is not a /c^-space and not a sequential

space) and NG fails to be an N0-space while the function spaces Cp(NF) and

Cp(NG) are absolute Fgi-sets and according to Theorem 1.1 are homeomorphic

to Cp(Nj), for the compact metric space N5 . This solves in the negative several

problems of A. V. Arhangel'skii from [Ar, 2].

2. First category filters

As usual 2N denotes the set of all subsets of N. If A, S £ 2N , then we write

V(A, S) = {C £ 2N: C n S = A n S} . We will consider the space 2N endowed

with the topology generated by all sets V(A, S) for finite 5. Obviously, 2

can be identified with the Cantor set {0, 1 }N.   In this notation N can be

replaced by any infinite countable set.

The following two lemmas are inspired by [LM, Theorems 4.6, 5.1, and 6.3].

Their proofs presented below are slight modifications of the reasoning from

[LM] and they do not use the language of the game theory employed there.

2.1. Lemma. Let {Gn} be a decreasing sequence of open dense subsets of 2 .

Then for each finite tuple (i{, i2, ... , ik) of elements of N we can assign a

finite subset S(il, i2, ... , ik) of N such that
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(1) the families {S(j)}°°=x and {S(ix, i2, ... , ik, j)}°l, are pairwise disjoint,

(2) for every sequence {/¿j^,  there exists C £ f)™=l Gn such that C D

N\ur=iS(''.»<2>- .**)•
Froo/. We will construct the required sequence of finite sets {S(ix, i2, ... , ik)}

inductively on k . Simultaneously, we will construct a sequence of subsets of

N, {C(z',, i2,... , ik)} . We will use the following notation:

'*

R(ix, i2,..., ik) = (J S(ix ,i2,..., it_j, /*)

and

T(ix ,i2, ... , ik) = R(ix) UR(il, i2) U • ■ • UR(ix ,i2, ... , ik).

We require that the sequences {S(ix, i2, ... , ik)} , {R(ix, i2, ... , ik)}, and

{r(/,, i2, ... , ik)} together with {C(il ,i2, ... , ik)} satisfy the following con-

ditions indexed by k :

(a,)  5(0) = 0 and C(0) = N,

(b,) V(C(i{), R(i{)) cGxnV(C(0),R(ix-l)) andS(/1)nA(i1-l) = 0
for k = 1 and /', = 1, 2, ... , and

(ak) the family 5(0) ,S(l),..., S(ix), S(i{, 0), S(ix, 1),..., S(i{, i2),

... , 5(i,, i2, ... , ik_x, 0),    o(/[, i2, ... , ik_i ) 1)> • • ■ , S(i\, i2, ... , ik)   is
pairwise disjoint,

0»*)
f(C(i, , /2,..., ifc_,, o), r(j,, t2,..., ik_l, o))

c Gk n K(C(/,, i2.¿t_,), r(í,, i2,..., ik_t)),

F(C(/,, i2, ... , ifc.,, ik), T(i{ ,i2,..., ik_{, ik))

QGknV(D,T(il,i2,...,ik_l,ik-l)),

where D = C(ix ,i2, ... , ik_l)UR(il ,i2, ... , ik_x, ik-Y) if ik > 0 for k> 1

and for every fc-tuple (/,, i2, ... , ik).

Let us assume that our construction is completed for some k. Now we

shall describe the construction for an arbitrary (k + 1)-tuple. Fix a fc-tuple

(/,, i2, ... , ik). First we choose S(i{, i2, ... , ik,0) and C(ix, i2, ... , ik,0)

in 2N such that S(il, i2, ... , ik, 0) is finite and the conditions (afc+1) and

(bk+l) are satisfied. The 5(/', ,i2, ... ,ik, ik+1) and C(ix ,i2, ... ,ik, ik+l)

can be found to satisfy (ak+x) and (ck+l).

Now, for every sequence {¿¿J^l, we have

C(ix ,i2,..., /„) n T(ix ,i2,..., in) = C(/, ,i2,..., im) n r(/,, i2./„)

for n = 1, 2, ...  and m> n . By our construction, if

(oo \ oo

n\ (J5(i,, /2,..., ik)\ n L)(S(i,, i2,..., ync(i,, i2,..., ik)),
fe=I /      k=i
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then
(oo \ oo

U T(i{, i2,..., ik) j = (J (C(/, ,i2,..., ik) n r(i, ,i2,..., ik))
k=\ J      k=\

and hence the set C satisfies condition (2).

2.2. Lemma. Let F be a family of subsets of N with the property that Ac B,

A £ F implies B £ F. Then the following conditions are equivalent:

(a) F is a first category subset of 2N .

(b) There exists a matrix {A(n, m): n, m = 1, 2, ...} of finite subsets of N

such that each row {A(n, m): m = 1, 2, ...} is pairwise disjoint and for every se-

quence {m(n):n = 1,2,...} and every A £ F we have An\J%ix A(n, m(n)) ^

0.

(c) There exists a matrix {A(n, m): n, m = 1,2,...} of pairwise disjoint

finite subsets of N such that for every sequence {m(n):n = 1, 2, ...} and every

A £ F we have A n U~1 A(n, m(n)) ^ 0.

Proof, (a) => (b). Since F is a first category subset of 2 there exists a de-

creasing sequence of open dense subsets {Gn}^=l of 2 such that fl^li G„ n

F = 0. Let {S(ix, i2, ... , ik)} be the family of finite sets satisfying (1)

and (2) of Lemma 2.1. The entries of a required matrix will be just the sets

S(ix, i2, ... , ik). We set A(l, m) = S(m) and let each family

{S(ix, i2, ... , ik, m):m= 1, 2, ...}

form a row {A(n, m): m = 1,2,...}. Assume that the matrix {A(n, m):

n, m = 1,2,...} fails to satisfy (b). Then there exists a sequence {ik} and

A £ F such that A n \J™=X S(ix, i2, ... , ik) = 0. By (2) of Lemma 2.1, there

exists C £ U~, Gn such that N\(J™=X S(ix, i2, ... , ik) ç C. Therefore A C

C, yielding C £ F n CÇ=X Gn , a contradiction.

(b) => (c). It is enough to find sequences {m(n, j):j = 1,2,...} such

that the family {A(n, m(n, j)): n, j = 1,2,...} is pairwise disjoint. Set

m(l, 1) = 1 and assume {m(n,j):n + j < p} has been constructed. For

/'€ N such that 1 < / < p we pick m(l, p + 1 - 1) to be the first index such

that A(l, m(l, p + 1 - /)) is disjoint with the following finite set:

\J{A(n, m(n,j)):n < 1 and n +j = p + l}u{J{A(n, m(n, j)):n + j < p}.

(c) => (a). Condition (c) is equivalent to the following one: for every A £ F

there exists n such that A(n, m) n A ^ 0 for m = 1,2,.... Write Xn =

{C £ 2N:VmA(n ,m)nC/0}. It follows that F C (J~ , Xn. Moreover, each

set Xn is a closed boundary subset of 2N .

Let us recall that a filter F on N is said to be free if Ç)a&f A = & ■ Obvi-

ously, a filter F is free iff F is dense in 2   , and iff 5 ^ F .

2.3. Lemma. Let F be a free filter on N. Then the following conditions are

equivalent:
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(i) F is an element of the sigma-algebra generated by the open subsets and

the first category subsets of 2   .

(ii) F is a first category subset of 2 .

Proof. It is enough to show the implication (i) => (ii). By the assumption

F = (U\X) U Y, where U is an open subset of 2N and both X and Y are

first category subsets of 2 . Assume that F is not a first category subset of 2N .

Then U ¿ 0, and hence there exists C e U and / € N such that V(C, S) ç

U, where S = {1, 2, ... , /} . Write N0 = N\5 and let F0 = {AnN0:A £ F} .

Since F is dense in 2 , FQ is a dense filter on N0. Moreover, since F

contains a dense Gs subset of <7, F0 contains a dense Gs subset of 2 °.

Let c¡: 2 ° -> 2 ° be the homeomorphism assigning to each C the set N0\C

By the filter property we get ¿¡(F0) n F0 = 0. Consequently, 2N° contains two

disjoint dense Gô subsets which contradicts the Baire category theorem.

2.4. Proposition. For every filter F on N and every decomposition N = \J°ZX N-

o/N into infinite pairwise disjoint sets N¿ we write F¡ = {Ar\Nf.A£ F}. Then

we have

(1) for every A^F^ i=l,2,...,l, U¡=1 A, U U¿>/ N, € F,
(2) Fi embeds as a closed subset of F,

(3) if, in addition, F is a free first category filter, then there exists a decom-

position N = \J*LX N(. such that each Fi is a free filter on N¡.

Proof To verify (1), observe that f\'i=i ¿i = U'=i Ai u U,->/N,. where Â 6 F

and ^4(nN( = Ai. The map which assigns to each A £ Fi the set ;4U(N\N;) is a

closed embedding of F¿ into F . To prove the last assertion, pick from Lemma

2.2(c) a matrix {A(n, m): n, m = 1,2, ...} of pairwise disjoint finite sets such

that \J{A(n, m): n = 1, 2, ...} n A ¿ 0 for A £ F and m = 1, 2,... . We

let N;. = (J~=1 A(m, i) for i > 2 and N, = N\U~2N¿.

3.   Za-PROPERTY OF FUNCTION SPACES   Cp(X)

We recall that a closed subset X of an absolute neighborhood retract Ai is a

Z-set if every map f:K -, M of acompactum K into M can be approximated

by maps f:K -, M\X. A space which is a countable union of its own Z-sets is

called a Za-space. In this section we prove that some spaces C (X) (and their

subspaces) are Za -spaces. We will need the following well-known fact about

Za -spaces.

3.1. Fact. Let X and Y be dense linear subspaces of R°° such that X ç Y

and Y is a Za-space. Then X is a Za-space.

3.2. Lemma. For every completely regular infinite countable space X the func-

tion space C*(X) isa Za-space.

Proof. We identify X with N. Then C*(X) is a dense linear subspace of R°°

which is contained in the subspace R^ = {(xn) £ R°°:sup|xn| < oo}. The

space R^ is a Za-space. By 3.1 the space C*(X) is a Za-space.
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Throughout the paper we use the following subspaces of R°° . If F ç 2   ,

then

CF = {(**) £ R°°^e>03A€F\Xn\ ^ £  f°r a11  » e A) >

4 = {(*«) € CF: SUP«>1 lXJ < °°} ' and

BP{r) = {(xn) £ cF: sup„>, \xn\ < r} , where r > 0.

3.3. Proposition. Let F be a family of subsets of N such that $ ç F anrf

v4 ç 5, A £ F implies B e F. //"F «5 a SMfoeí o/ 2 ¿s of the first category,

then the sequence spaces cF, c*F, and BF(r) are Za-spaces.

Proof. By (b) of Lemma 2.2 there exists a matrix {A(n, m): n, m = 1, 2, ...}

of pairwise disjoint finite subsets of N so that for every A £ F there ex-

ists n such that A(n, m) n A ^ 0 for all m. Fix r > 0. Let ^"„(r) =

{(*,.) £ <>:VM3keil(ll>lfl)|jcfc| < r/2}  for n = 1,2,... .   Clearly, each Xn(r)

is a closed subset of cF and cF = U^=i^r„(r)> cjp = U^Li^„(r) n 4 anc>

Äf (r) = IJ^i ^„(r) n BF(r). Fix n e N. We shall show that the sets Xn(r),

Xn(r)r\c*F , and Xn(r)nBF(r) are Z-sets in the suitable spaces. Let f:K —> cF

be a map of a compactum K. Let, for m = 1,2, ... , gm: R°° —> R°° be the

map defined by gm((x¡)) = (y¡), where yi = 0 for i > maxv4(«, m), y¡ = r

for i £ A(n, m), and yi = x¿ otherwise. If m is sufficiently large then the map

/ = 8mf'-K -* R°° closely approximates / and satisfies f(K) n Xn(r) = 0.

Since 5 ç F we additionally have /(#) ç cF ; moreover, if f(K) ç c*F or

/(^) ç BF(r) then also /(ÜT) ç c*F or /(Ä") ç y5F(r), respectively. The proof

is complete.

3.4. Corollary. For every free Borelian filter on N the spaces cF, c*F, and

BF(r), r > 0, are Za-spaces.

Proof. Follows immediately from 2.3 and 3.3.

It is standard that for every filter F the spaces C (Nf) and C*(NF) are

linearly isomorphic to the products R x cF and Rxc^ respectively.

3.5. Corollary. For every free first category filter F on N the space C (NF)

is a Za-space.

Proof. By Proposition 3.3 the space cF and consequently the product Rx cF

are Za -spaces. Thus C (Nf ), being homeomorphic to R x cF , is a Zff-space.

3.6. Corollary. Let X be a countable nondiscrete completely regular space such

that the space C (X) is analytic (i.e., a continuous image of the space of irra-

tionals). Then C (X) is a Za-space.

Proof. Let a £ X be an accumulation point, Y = X\{a} , and F = {A ç Y: a

is an interior point of A u {a}}.   Then F is a free filter on Y.   We shall
y

prove that F is an analytic subset of 2 . Let us recall that a set which is

simultaneously closed and open is called clopen.   First observe that the set
Y

G = {B ç X:B is clopen in X and a £ B} is analytic in 2 since it can be

identified with a closed subset {/ £ Cp(X):f(X) ç {0, 1} and f(a) = 0} of
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Cp(X). The set G = {(A, B) £ 2Y x 2X: B £ G and B C A U {a}} is analytic
y y -

in 2   x 2    and because X is zero-dimensional F is an image of G by the

projection onto the first axis. Thus F is analytic in 2   .

Now, by [Ku, §39] and Lemma 2.3, F is the first category subset of 2 .

Obviously, C (X) ç E, where

E = {f£ RX:\>03A€FVxeA\f(a) - f(x)\ < e}.

The space F can be identified with C (Nf).   Hence, by Corollary 3.5, the

space F is a Za-space. By 3.1 the space CAX) is a Za-space.

4.  BOREL COMPLEXITY OF FUNCTION SPACES   C (X)

For a countable ordinal a, 9H and 21 denote the class of all absolute

Borel sets of the multiplicative and additive class a, respectively. If a > 2,

then there exists a filter on N which belongs to 9JtQ\2la (see [LvMP], cf. [Ca2]).

The filter # is in the class 21^9)1,. It is an easy observation that there exist no

filters in the class SDÎ^Sl, (see [Ca,]). For every nonempty subset A ç N the

filter F (A) = {B ç N:A ç B} is a compact set in 2N and hence F (A) £ 9Jt0.

Moreover, every compact filter is of the form F (A) for 0^cN.

A filter F is an absolute Borel set (shortly a Borelian filter) iff the space cF

is an absolute Borel set. Moreover, Borel complexity of cF heavily depends on

F and vice versa. Namely, we have

4.1. Lemma. For every filter F there exists a closed embedding of F into the

space cF .

Proof. The map sending each A £ F onto ka £ cF , where KA(i) = 0 for / £ A

and KA(i) =1 for /' 0 A , is a required closed embedding.

4.2. Lemma. Let F be a filter on N and let a be a countable ordinal, a > 1.

Then:

(1) if F £VJla, then cF£ma,

(2) if F £ 9Ha\2la, then cF I SDta\aa,

(3) if F £ Wla n 2ta\ Vfi<a(*ß U Wß), then cF £ OTa\2ta,

(4) ifF£ 2ta\9Jla, then cF £ Ma+X\*a+X ■

Proof. The assertions of this lemma (except for (3)) were proved in [Ca, 2].

For the sake of completeness we include our proof of Lemma 4.2.

(1) We will present here a slight simplification of the original proof of (1).

Suppose F e 9HQ for some countable ordinal a. Write

r=RX(9,(«"4""-"+4"")u-Q,(«"4"'«+4"))

and let fk: T°° -, 2N be defined by fk((x()) = {i £ N: \x¡\ < l/k} for (jc,) e
T°° and k = 1,2,... . Then the maps fk are continuous and T°° n cF =
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n^li fk (P) ■ Thus T°° P\cF £ S0ÎQ . Let g: F -► R be a linear extension of

the map sending \ - 4~", ± + 4~~n onto ± for n = 1,2,..., and ¿ - 4" ,

\ + 4" onto j¡ for —n = 1, 2,... . Then the map g°°: r°° —► R°° defined by

8°°{{xi)) — (8(Xj)) is a proper surjection with (g°°)~\cF) = T°° n cF (let us

recall that a map f: X -, Y is proper if f~ (K) is compact whenever K is a

compact subset in Y). Now, the result of [SR] implies that cF £ 9Jla .

(2) This is a consequence of (1) and Lemma 4.1.

(3) We shall use Calbrix's argument of [Ca, 2]. Let F be a filter on N

such that F e 9JÎQ n 2tQ\U«<a(2l« u ®l«) • Express N as a union of pairwise

disjoint families of infinite sets N( = {«. x,n¿ 2, ...}. Define a new filter

F°° consisting of all sets of the form \J™X Ai, where Ai £ Fi and F; is an

isomorphic copy of F on N;. First we show that F°° £ 9Ka\2lQ . It is enough

to observe that for every C ç 2 such that C £ 9Jla there exists a continuous

map /: 2N -, Y\°°=x 2N< = 2N with /"'(F00) = C. Let C = fl~i C¡, where

C, e U^<Q %ß for i=l,2,.... Fix i > 1. By the "Wadge lemma" either

there exists a continuous map ./j: 2 -» 2 ' such that f~ (F¿) = C( or there

exists a continuous map g¡: 2 ' -, 2 such that g~ (2 \C¡) = F(. Since

F. £man\\[Jß<a(^ßumß) and qeU^a^ the map g,. cannot exist. Let

/: 2N -♦ n"i 2N' be the maP defined by f(x) = (fx(x), f2(x), ...), where

f- 2N _♦ 2N' satisfies f~\Ft) = C, for i = 1, 2, ... . Now, by (2), we get

cFoo £ 9Jla\2la.   The map <p: R°° —> R°° given by the formula 4>((xn   )) =

(¿ZZ\2~'~l\xn \(l+\xn. J)_1)y=i has the property that (f>~l(cF) = cF°°. Hence

cf £*0. By(lY, cf €^.
(4) We can repeat the proof of (3) (cf., [Ca, 2]).

Let X be a countable completely regular space and let a be an accumulation

point of X . Then

Fa = {A £ 2   {a':a is an interior point of A U {a}}

is a free filter on X\{a} .

4.3. Lemma. Let X be a countable completely regular space such that for every

accumulation point a £ X the filter Fa £ 9Jla . Then C (X) £ 9Jla.

Proof. Let a be an accumulation point of X and let XF  denote the space X
a

topologized by isolating points of X\{a} and by using the family {A U {a}: A £

Fa} as a neighborhood base at a. The spaces C (X) and Cp(XF ) are linear

dense subspaces of R   .By Lemma 4.2 C (XF) e Wla . Since
" a

CAX) = f"){Cp(XF ):a is an accumulation point of X}

we have Cp(X)£Ma.
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5. Sequence spaces related to Faô -filters

In this section we give a complete topological classification of sequence spaces

cF which are absolute F^-sets (i.e., cF £ ffl2). Since for a compact filter F(C),

CçN, cFtc) = {(x¡) e R°°'-xi = 0 for / £ C} and for an arbitrary filter F,

cF Ç, {(*,-) £ R°°:xi = 0 for i £ f]AeFA} we can reduce our classification to

the case when the filter F is free. Obviously, a filter F is free iff the space Nf

is completely regular.

5.1. Proposition. Let F be a free filter which is an absolute FaS-set. Then the

sequence space cF is homeomorphic to a°° .

To prove Proposition 5.1 it is enough to verify that the space cF satisfies the

assumptions of the following lemma:

5.2. Lemma. Let {JfJ be a sequenceofF^-absoluteretracts such that, foreach

i, a°° is embeddable onto a closed subset of Xi. Fix p¡■ £ Xx■, i = 1, 2, ... .

Then every FaS-space X which is a Za-space and satisfies

{oo ") oo

(x¿) £ YI X{- x, = p¿ for all but finitely many i > ç X ç J| Xi
i=i J ¿=i

is homeomorphic to o°° .

Proof. Lemma 5.2 is a slight modification of the characterization of o°° , used

in [DGM, DM], which follows easily from Lemma 2.3 of [DM] and Theorem

6.5 of [BM].

We will also need the following fact proved in [DM, Corollary 2.5]:

5.3. Lemma. Let X¡t for i = 1, 2, ... , be an absolute retract which is a

Za-space. Then the product \XiLx X¡ contains a closed copy of o°° .

Below we present a new, more elementary, proof of Lemma 5.3 which is a

consequence of the following general observation:

5.4. Lemma. If X is an absolute retract which is a Zg-space, then for each

o-compact space A there exists a proper map f:A—*X.

Proof. Assume that A is a subset of the Hubert cube 7°° and A = (J^, An ,

where An is compact and An ç An+X for «=1,2,.... Let F be a complete

absolute retract such that X c Y and Y\X is locally homotopy negligible in Y,

i.e., for every open family U of Y and for every map /: 7°° —> 7 there exists

a map g: 7°° -, Y which is it-close to / and such that ^(/~'(U^)) Q X,

see [T]. We shall construct a map /: 7°° —> Y with f~ (X) = A. Then the

restricted map f\A is a proper map of A into X. Since X is a ZCT-space, we

can find Z-sets Xn in Y for «=1,2,... such that X c X = \J^=X Xn and

Xx Ç X2 Ç ■ ■ ■ . Fix a complete metric d on Y which is bounded by 1. Let

f0: 7°° —> Y\X be a map and let A0 = XQ = 0. We will inductively construct
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a sequence of maps fn: I°° -, Y satisfying for n = 1, 2, ... the following

conditions:

(i) /„(4)cl,

(ii) fn(I°°\An)cY\X,

(iii) fn\An_x = fn_x\An_x,

(iv) d(fn(x),fn_x(x)) < 4-nd(fn_x(x),Xn_x).

Assume that the maps f: 7°° -, Y satisfying the conditions (i)-(iv) have

been already constructed for 0 < i < «. By the local homotopy negligi-

bility of Y\X there exists a map g: 7°° -, X such that g\An = fn\An and

d(g(x), f„(x)) < 4~n~2d(fn(x), Xn). Since X is a countable union of Z-sets

in a complete absolute retract Y there exists a homotopy «(: Y -, Y such that

«0 = idy, ht\Xn = idx   for 0 < t < 1, ht(Y\Xn) c Y\X for í > 0, and

diam{«((>>): 0 < t < 1} < 4-"-2¿(>;, *„) . We let /n+1(x) = A^ (*(*)), where

A: 7°° —> [0, 1] is a continuous function with A" (0) = ^ln+1. If x £ An+X,

then A(x) = 0 and consequently fn+x(x) = h0(g(x)) = g(x); in particular,

fn+x(x) = g(x) = fn(x) for x £ An . If x £ I°°\An+x , then g(x) ¿ X and

An(x) > 0; hence f„+x(x) = hk,x)(g(x)) £ Y\X. Thus fn+x satisfies the condi-

tions (i)-(iii). To show (iv) we use the following inequalities:

d(fn(x),fn+x(x)) < d(fn(x),g(x)) + d(g(x),hÁ{x)(g(x)))

< 4~"~2d(fn(x), Xn) + 4-"-2d(g(x), Xn)

< (4-"-2 + 4-""2(l + 4-n-2))d(fn(x), Xn)

<4-"-ld(fn(x),Xn).

Now, by (iv), the sequence {fn} uniformly converges to a map /: 7°° —> Y. By

(i) and (iii) we get f(A) c X. To show that f(I°°\A) c Y\X, we first observe

that for « > k,

d(fn(x),Xk)>(l-4-")d(fn_x,Xk)

>...>(l-4-")(l-4-n+i).-.(l-4-k-l)d(fk(x),Xk).

Hence, we have d(f(x),Xk) > UZk+i(l " ^n)d(fk(x), Xk). If x £ I°°\A

then d(fk(x),Xk) > 0. Since Yl7=k+\(l ~ 4~") > 0, k > 0, we obtain
d(f(x), Xk) > 0 for x £ I°°\A and k = 1, 2,... ; consequently /(x) £ ^

for fc = 1, 2,... .

Proof of 5.3. We write N = U/^o^¡ > wnere the N¿ are infinite and pairwise

disjoint for i = 1,2,... . Since

oo oo    / \

iK=n n ^n^J
,= 1 i=l   \n€N2,_, n6N2,       J
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it is enough to show that for i = 1,2,... there exists a closed embedding

vi-a -* n„gN Xn x n„eN %n ■ First let us observe that each nontrivial

absolute retract contains the interval [0,1] and the infinite product of such

absolute retracts contains the Hubert cube 7°° . To obtain v¡ we choose any

embedding u¿: a -, \[nefi     Xn and a proper map from Lemma 5.4 f: a -,

n„€N2i xn and set v, = ui * fi ■

We will also employ the following

5.6. Lemma. For any filter F on N, any decomposition N = U°!, N;. into

pairwise disjoint infinite sets N., and for the natural isomorphism h: RN -,

n^,RN' we have

(1) W(cF,0)ch(cF)cY[Z^F,'

(2) W(BF(r),0) c h(BF(r)) c fl°!, bF(r),for r > 0, and

(3) TlZiBF¡(7)ch(BF(l)),

where F¡ = {Af) N¿: A e F} .

Proof. The inclusions are easy consequences of the observation that Ax U A2 U

•■■U AkU Nfc+1 U Nfc+2 U • • • belongs to F for every Ai e F; and for arbitrary

k ; cf. Proposition 2.4.

Proof of Proposition 5.1. By Lemma 4.2 the space cF is an absolute FCTá-set.

Corollary 3.4 implies that cF is a Za-space. Since F is free on N, by (3)

of Proposition 2.4, there exists a decomposition N = |J^, N( such that each

F. = {A n N-: A £ F} is a free F^-filter on N(.. Now, by (1) of 5.6 and 5.2, it

is enough to show that cF (equivalently, cF) contains ct°° as a closed subset.

The last follows from (3) of Lemma 5.6, Lemma 5.3, and Corollary 3.4.

Similarly we can prove the following

5.7. Proposition. For every noncompact Fa&-filter F on N the spaces c*F and

BF(r), r > 0, are homeomorphic to a°° .

6. TOPOLOGICAL CLASSIFICATION OF FUNCTION SPACES   Cp(X)

OF TYPE  FaS

In this section we prove Theorem 1.1. We start with the following general

fact.

6.1. Proposition. Let X be a countable nondiscrete completely regular space.

Then one of the following conditions holds:

(i) there exists a clopen subset Y of X with exactly one accumulation point.

(ii) there exists a decomposition X = U^l, Xn , where {X^=i is a pairwise

disjoint sequence of nondiscrete clopen sets.

Proof. Suppose that (i) does not hold. Then by induction, we construct the

decomposition X = \J™=i Xn  of (ii).   Let X = {xx,x2, ...} and X0 = 0.
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Assume that we have constructed pairwise disjoint nondiscrete clopen subsets

Xx, X2, ... , Xn of X such that Yn = ^\U"=i^, is also nondiscrete and

{xx, x2, ... , xn} ç U"=i %i ■ ßy our assumption Yn contains at least two ac-

cumulation points. Using the fact that X is zero-dimensional, we can divide

Yn into two nondiscrete clopen sets. We choose one of them as Xn+X in such

a way that {xx, x2, ... , xn+x} is contained in U"=i X¡.

The next proposition summarizes the results of the previous section.

6.2. Proposition. Let F be a filter on N. Then the following conditions are

equivalent:

(a) C(Nf ) is homeomorphic to o°° ,

(b) C (Nf ) is an absolute FaS-set and not a Gs-set,

(c) The filter F is a noncompact FaS-subset of 2   .

The same is true for the space C*(NF).

Proof. The implication (a) => (b) is well known, (b) => (c) follows from

Lemma 4.1. Finally (c) => (a) follows from Proposition 5.1 and the fact that

C (NF) is linearly isomorphic to R x cF .

Proof of Theorem 1.1. We only present a proof for the space C (X) (the proof

for the space C*(X) is the same). We shall consider two cases:

(1) The space X satisfies (i) of Proposition 6.1. Let Y be a clopen subset

of X with exactly one accumulation point. The space Y is homeomorphic to

Nf, where F is a noncompact filter on N. Moreover, the space C (X) is

linearly homeomorphic to CAY) x C (X\Y). By Proposition 6.2, CAY) is

homeomorphic to a°° . Hence, by Corollary 5.4 of [BM], it follows that CAX)

is homeomorphic to er00 .

(2) The space X satisfies (ii) of Proposition 6.1. Let X = \J^LX Xn be a

decomposition of X into pairwise disjoint nondiscrete clopen sets. Now, the

space CAX) is homeomorphic to the product T\™=1 Cp(Xn), where all spaces

C (Xn) and C (X) are FaS-absolute retracts which, according to Corollary 3.6,

are ZCT-spaces. From Lemmas 5.2 and 5.3 it follows that CAX) is homeomor-

phic to a°°.

7. Examples of special FCT(5-filters

In this section we apply Theorem 1.1 to answer in the negative several ques-

tions posed by A. V. Arhangel'skii and related to the following general problem:

how close do the properties of the spaces X and Y have to be if CAX) and

CAY) are homeomorphic? We will discuss the properties of the spaces X and

Y listed below. A Hausdorff space X is a fc-space if for each A ç X, the

set A is closed in X provided that the intersection of A with any compact

subspace K of X is closed in K. A &>space X is a fc^-space if there exists a

countable family 8. of compact subsets of X such that \J 8. = X and for every
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compact subspace K of X there exists L £ 8 such that K ç L. A topological

space X is called a sequential space if a set AC X is closed iff together with

any sequence it contains all its limits. A space X is called an K0-space if there

exists a countable family 6 of subsets of X such that for every compact subset

K ç X and for every neighborhood V of K in X one can find P £ & with

K c P c V. A subset A of a space X will be called 7?-bounded in X, if

every function / e C (X) is bounded on A. A function /: X —> R is called

strictly ¿-continuous if for every 7?-bounded subset AC X there exists a map

g £ CAX) such that f\A = g\A . A space X is said to be a ¿>R-space if every

strictly ¿-continuous function /: X —> R is continuous.

Recall that X = {0} U {«"' : « = 1, 2, ...} and that X can be identified with

the space N5.

7.1. Example. There exists a free Faö -filter F on N suchthat:

(a) the space Nf is countable and completely regular,

(b) the function spaces C (NF) and C (X) are homeomorphic,

(c) the space Nf is not a /c-space, while X is compact metric,

(d) the space NF is not a fc^-space,

(e) the space Nf is not a sequential space,

(f) the space Nf is not a bR-space.

Proof. Let F be a filter of sets of density 1, i.e.,

F = {acN: lim «_1card(^ n {1, 2, ...,«}) = lj ,

where card(73) denotes the cardinality of a set B (cf. [AU, p. 119; V, p. 98]).

Since F = fCi Id IT-«^ £ N: ̂ 'card(,4 n {1, 2, ... , fc}) > 1 - «"'} ,
F is a free F^-filter on N. The assertion (a) is obvious and (b) follows

from Lemma 4.2 and Theorem 1.1. Since for every infinite M ç N there is

A £ F such that M\A is infinite the space NF does not contain any nontrivial

convergent sequence. Moreover, all compact subspaces of Nf are finite. Hence

Nf is not a fc-space and (c) holds. The assertions (d) and (e) are immediate

consequences of (c). One can easily observe that all 7?-bounded subsets of Nf

are finite. Hence every function from Nf into R is strictly ¿»-continuous.

Consequently NF is not a ¿>R-space.

Example 7.1 answers the problems 12, 24, 25, 26 of [Ar,] and 6, 7, 26 of

[Ar2].

7.2. Example. There exists a free Faô-filter G on N such that:

(a) the space NG is countable and completely regular,

(b) the function spaces C (NG) and CAX) are homeomorphic,

(c) the space NG is not an K0-space while X is compact metric.

Proof. As a filter G we take one of the filters described in [LvMP]. Let 2" be the

set of all functions from {0, 1,...,« --1} into {0, 1} for « = 1, 2, ... . Let
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us put T = U~ , 2" . For each function x: N -» {0, 1} we define Bx = {x\n £

2": n = 1, 2, ... } to be a branch in T, where x\n denotes the restriction of

the function x to the set {0, 1,...,«- 1} . The filter G on the countable set

T is generated by the family {T\(Bx uBx U • • • UBx US): « > 1, x¡ £ {0, 1}N

and S is a finite subset of T}. We identify T with N and consider G as

a filter on N. Obviously, the filter G is free. By [Ca,] G is an Fa-subset

of 2 . The assertion (b) follows from Lemma 4.2 and Theorem 1.1. Now we

shall verify (c). We identify NG with TU {oo} . Let S = {Pn: n = 1, 2, ...}

be a family of subsets of Fu {oo} . We will construct a compact set K and an

open set V in F U {oo} such that K ç V and for every « the set K is not

contained in F or the set P„ is not contained in V . By induction one can

easily define a sequence {tn}™=x > where tn £ 2" and such that

(*)  tn\{0,l,...,n-2}=\_x,if n>l,

(**) tn £ Pn or sn£ Pn, where $n e 2" is defined by sn\{0, I, ... , n-2} =

tn\{0, 1, ... , «-2},if «> l,and sn(n - l)¿tn(n- 1) if « > 1.

Now, let x £ {0, 1}N be such that x|{0, I, ... , n - 1} = tn. We set V =

(Tl){oc})\Bx and A" = {s„: « = 1,2, ...}u{oo}. Let us observe that BxnK =

0 and for every y £ {0, 1} , y ^ jc , Ä n Í is finite (if « is such that

x\n t¿ y\n, then sk & By for fc > « + 1). Hence the set .K ç V is compact

and, by (**), the set Pn is not contained in V or the set K is not contained

in Pn for every « = 1,2,....

Example 7.2 answers the problem 34 of [Ar,] (cf. also problem 36 of [Ar2]).

8. Sequence spaces of higher Borel complexity

According to [LvMP, Ca2] and Lemma 4.2 for every countable ordinal a >

2 there exists a filter F on N such that cF £ 9Ka\2la . In [BM] it was shown that

in each class Wla there exists a maximal object Qa which can be characterized

as follows:

8.1. Proposition. A space X is homeomorphic to Qa iff X satisfies the fol-

lowing conditions:

( 1 )  X is an absolute retract,

(2)-X£Wla,

(3) X is a Za-space,

(4) X is homeomorphic to X°° .

(5) X is 9Jla-universal, i.e., each Y £ ffla is embeddable onto a closed subset

ofQ .J        a

Let us note that £22 is just er°° and in §6 we have proved that if X is a

countable completely regular space such that CAX) £ 9K2\2l2, then CAX) is

homeomorphic to a°° . It suggests the following

8.2. Conjecture. For every countable completely regular space X such that

Cp(X) £ OTQ\2la , Cp(X) is homeomorphic to QQ .
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Now, we focus on the spaces cF for Borelian filters F on N. For spaces

cF the condition (1) is clear. According to [Ca,] (see Lemma 4.2) cF £ UJÏa

provided F £ 9JtQ . The condition (3) is a consequence of Corollary 3.4. The

conditions (4) and (5) are the major obstacles in order to confirm Conjecture

8.2 for higher Borelian classes.

8.3. Problem. Let F be a filter on N such that F £ 21 u SDÎ , where a > 1.

Is cF homeomorphic to (cF)°°1

8.4. Problem. Let for a filter F on N the space cF £ 9fta\2la. Can every

X £ Wl   be embeddable onto a closed subset of cv ?
a t

For a = 2 the condition (5) is a consequence of the remaining four condi-

tions. For higher a, we ask

8.5. Problem. Let X satisfy the following conditions:

(l')   X is an absolute retract,

(2') X£tma\%a,

(3')   X is a Zff-space,

(4')   X is homeomorphic to X°° .

Is X homeomorphic to Qa ?

8.6. Remark. We say that a set I in a compact space M is Wadge ffla-

maximal in M if X £ 9DÎ and for a subset Y of M, with Y e 9JÍ , there

exists a map /: M —► M such that f~ (X) = Y. An inspection of the proof

of Lemma 5.3 yields the fact that a space X satisfying the conditions (l)-(4)

is Wadge 9Jl2-maximal in a topological copy of the Hubert cube 7°° . The last

result can be considered as a Hubert cube counterpart of the fact that in the

Cantor set each set A £ 9tta\2la is Wadge 9Jla-maximal (see [W]). To answer

8.5 in the positive, it is enough to show that a space X satisfying (l')- (4') is

Wadge 9Jla-maximal in a topological copy of the Hubert cube.

The condition (4) for spaces cF is closely related to decomposability of filters

F described in Proposition 2.4. If a space cF £ 9Jt2\2l2 , then the restrictions

F¡ of the filter F of Proposition 2.4 are in the class (97t2\2l2) U (2l,\9Jt,) and

consequently cF £ 9Jl2\2l2 . This was the crucial step in verifying the condition

(4). For higher a the Borel type of spaces cF for restricted filters Fi can

be essentially lowered. That is why we introduce the following definition. A

filter F on N is decomposable if there exist infinite, disjoint sets N, and N2

such that N = N, U N2 and F. = {A n N;: a £ F} is a filter on N- which is

isomorphic to F for /' = 1, 2. Then we have F = {Ax U A2: Ax £ F, and

A2£ F2} and we write F = F, x F2. By an easy induction we obtain

8.7. Lemma. If F is a decomposable filter on N, then there exists a sequence

{NJ of infinite pairwise disjoint subsets of N with N = |J°^, N(, and such that

each Ft = {AnNf. a £ F} is a filter on N; which is isomorphic to F.

The main result of this section is the following:
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8.8. Theorem. Let F be a first category filter on N which is free and decom-

posable. Then the sequence space cF is homeomorphic to (cF)°° .

The proof of Theorem 8.8 is based on the following lemma which is a stan-

dard fact about absorbing sets (see [BM]):

8.9. Lemma. Let X and Y be absolute retracts which are Za-spaces. Assume

that there are noncompact absolute retracts M and N and p £ M, q e N

satisfying W(M, p) C X C M°° and W(N, q) ç Y ç N°° , where for a space

Z and z £ Z we write

W(Z, z) = {(z;.) e Z°°: zi = z for all but finitely many i}.

If X = U~i Xi and Y = U~, Yi - where Xi is closed in X and Yi is closed
in Y for i = 1,2,... and moreover each Xi embeds onto a closed subset

of N and each Y¡ embeds onto a closed subset of M, then X and Y are

homeomorphic.

Proof of Theorem 8.8. In the proof we will use the spaces cF , BF(l), and c*F

and their products. These spaces are noncompact absolute retracts. Since F is

a first category filter, Proposition 3.3 implies that cF , BF(l), and c*F are Za-

spaces. Consider a decomposition N = \f°=\ N- into infinite pairwise disjoint

sets N. so that the restricted filters F. are isomorphic to F (see Lemma 8.7).

Thus the spaces cF , BF(l), and c*F  are linearly isomorphic to cF, BF(l),

and cF, respectively. This together with Lemma 5.6 gives a homeomorphism

«: R°° —> R°° satisfying:

\'^C

8*G)
W(cF,Q)çh(cF)ç(cFt

UW(BF(l),0)çh(BF(l))C(BF(l))c

i=i

W(cF,Q)çh(cF)ç(cF)°°.

Now, Theorem 8.8 follows from Lemma 8.9 applied for M = N = cF,

X = h(cF), and Y = (cF)°° and from the following fact:

(i) (cF)°° embeds onto a closed subset of cF .

The last is a consequence of (ii)-(iv) below.

(ii) BF(l) is homeomorphic to (2^(1))°°.

By the obvious fact that BF(r) is homeomorphic to BF(l), for r > 0, and

by Lemma 5.6(3), the product (5^.(1))°° embeds as a closed subset of 2?F(1).

Now, we apply Lemma 8.9, with M = N = BF(1), X = h(BF(1)), and Y =

(iii) c*F is homeomorphic to BF(l).

First let us observe that cF = \J™=\ ̂f(w) • Now, (iii) follows from Lemma 8.9

applied for M = cF , N = BF(l), X = h(cF), and Y = h(BF(l)).

(iv) cF embeds onto a closed subset of (c*F)°° .

Let r: R -, [-1, 1] be the retraction defined by

r(x) = (sgnx)min(|x|, 1).
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Write for (xt) £ R°° ,

Jn\XX ' X2 ' - ' ■ / = \xl ' X2 ' "- " ' ^n ' ^{Xn+l ' ' '"v*"/!-^' ' •••)•

Then f = (fx, f2, ...) defines a closed embedding of R°° into (R^)°° (recall

that R^ = {(xn) £ R°°: sup|xn| < oo}). Moreover, we have f~ ((cF)°°) = cF .

Thus f\cF is an embedding of cF onto a closed subset of (cF)°° .

8.10. Remark. For every countable ordinal a > 2 there exists a filter F such

that cF £ 9ttQ\2lQ and cF is homeomorphic to (c^.)00 .

Proof. Let F G 2Ka\2la be a filter on N and let F°° be a filter defined in the

proof of Lemma 4.2(3). Obviously, the space cFoo is homeomorphic to (cF)°°

and consequently to (c^oo)00 .

Added in proof. The authors have just learned that an equivalent version of

Lemma 2.2 for filters is contained in Theorem 21 of [Ta].
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