ON TOPOLOGICAL CLASSIFICATION OF FUNCTION SPACES $C_p(X)$ OF LOW BOREL COMPLEXITY

T. DOBROWOLSKI, W. MARCISZEWSKI AND J. MOGILSKI

ABSTRACT. We prove that if X is a countable nondiscrete completely regular space such that the function space $C_p(X)$ is an absolute $F_{\sigma\delta}$ -set, then $C_p(X)$ is homeomorphic to σ^∞ , where $\sigma=\{(x_i)\in\mathbf{R}^\infty\colon x_i=0 \text{ for all but finitely many } i\}$. As an application we answer in the negative some problems of A. V. Arhangel'skii by giving examples of countable completely regular spaces X and Y such that X fails to be a b_R -space and a k-space (and hence X is not a k_ω -space and not a sequential space) and Y fails to be an \aleph_0 -space while the function spaces $C_p(X)$ and $C_p(Y)$ are homeomorphic to $C_p(\mathfrak{X})$ for the compact metric space $\mathfrak{X}=\{0\}\cup\{n^{-1}:n=1,2,\dots\}$.

1. Introduction

For a space X we define $C_p(X)$ to be the set of all continuous real valued functions on X endowed with the topology of pointwise convergence. The subspace of $C_p(X)$ consisting of all bounded functions is denoted by $C_p^*(X)$. This paper is devoted to the topological classification of $C_p(X)$ and $C_p^*(X)$ for countable completely regular spaces X. Let us note that if X is nondiscrete, then $C_p(X)$ is a dense linear subspace of the countable cartesian product of real lines \mathbf{R}^X (identified with \mathbf{R}^∞), otherwise $C_p(X) = \mathbf{R}^\infty$ or \mathbf{R}^k . In [DGM] it was proved that for every countable metrizable nondiscrete space X the spaces $C_p(X)$ and $C_p^*(X)$ are homeomorphic to σ^∞ , where $\sigma = \{(x_i) \in \mathbf{R}^\infty : x_i = 0 \}$ for all but finitely many i (cf. [vM, BGvM, BGvMP]). Extending the work of [DGM] we focus on the case when $C_p(X)$ is an absolute Borel set. The main result of this paper is the following

1.1. **Theorem.** Let X be a countable nondiscrete completely regular space such that the function space $C_p(X)$ is an absolute $F_{\sigma\delta}$ -set. Then $C_p(X)$ and $C_p^*(X)$ are homeomorphic to σ^{∞} .

Since, for a countable metrizable space X, the space $C_p(X)$ is an absolute $F_{\sigma\delta}$ -set Theorem 1.1 generalizes the result of [DGM]. According to [DGLvM], $C_p(X)$ cannot be an absolute $G_{\delta\sigma}$ -set, provided that X is nondiscrete. Thus

Received by the editors September 15, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 57N17, 57N20, 54C35.

Key words and phrases. Function space, pointwise convergence topology, Borelian filter, k-space, k_0 -space, k_0 -space, k_0 -space.

Theorem 1.1 gives a complete topological classification of spaces $C_p(X)$ which are absolute Borel sets of the class not higher than 2. To the best of our knowledge there is no classification result for spaces $C_p(X)$ of higher Borel complexity. Let us mention that all multiplicative classes of Borel sets \mathfrak{M}_{α} , where $\alpha \geq 1$, are represented among spaces $C_p(X)$ (see [LvMP, Ca₁]). We conjecture that the Borel class determines the topological type of a space $C_p(X)$.

The essential step in classifying spaces $C_p(X)$ is the case of countable spaces X which have exactly one nonisolated point. Such X are precisely the spaces $\mathbb{N}_F = \{\infty\} \cup \{0, 1, 2, \ldots\}$ topologized by isolating the points of $\mathbb{N} = \{0, 1, 2, \ldots\}$ and by using the family $\{A \cup \{\infty\}: A \in F\}$ as a neighborhood base at ∞ , where F is a filter on \mathbb{N} . We recall that a family $F \subset 2^Y$ is a filter on a set Y if $\emptyset \not\in F$, $A \cap B \in F$ provided A, $B \in F$ and $A \subseteq C \subseteq Y$, $A \in F$ implies $C \in F$. We say that filters F on a set Y and G on a set Z are isomorphic if there exists a bijection $\alpha: Y \to Z$ such that $A \in F$ iff $\alpha(A) \in G$. By \mathfrak{F} we denote the filter on \mathbb{N} consisting of all cofinite subsets of \mathbb{N} . Obviously, the space $\mathbb{N}_{\mathfrak{F}}$ is homeomorphic to the space $\mathfrak{X} = \{0\} \cup \{n^{-1}: n = 1, 2, \ldots\} \subseteq \mathbb{R}$. The spaces $C_p(\mathbb{N}_F)$ can have arbitrarily high Borel complexity; furthermore they may not be Borelian (see [LvMP]). Corollary 3.6 and Theorem 8.8 seem to be useful in classifying general spaces $C_p(\mathbb{N}_F)$ and they are motivated by the $F_{\sigma\delta}$ -case.

Here, similarly as in [DGM], we employ the method of absorbing sets but we do it in a more implicit way. We also explain basic facts on first category filters.

We also discuss two examples of filters F and G such that \mathbf{N}_F fails to be a b_R -space and a k-space (and hence \mathbf{N}_F is not a k_ω -space and not a sequential space) and \mathbf{N}_G fails to be an \aleph_0 -space while the function spaces $C_p(\mathbf{N}_F)$ and $C_p(\mathbf{N}_G)$ are absolute $F_{\sigma\delta}$ -sets and according to Theorem 1.1 are homeomorphic to $C_p(\mathbf{N}_{\mathfrak{F}})$, for the compact metric space $\mathbf{N}_{\mathfrak{F}}$. This solves in the negative several problems of A. V. Arhangel'skii from $[A\mathbf{r}_{1-2}]$.

2. First category filters

As usual 2^N denotes the set of all subsets of N. If $A, S \in 2^N$, then we write $V(A, S) = \{C \in 2^N : C \cap S = A \cap S\}$. We will consider the space 2^N endowed with the topology generated by all sets V(A, S) for finite S. Obviously, 2^N can be identified with the Cantor set $\{0, 1\}^N$. In this notation N can be replaced by any infinite countable set.

The following two lemmas are inspired by [LM, Theorems 4.6, 5.1, and 6.3]. Their proofs presented below are slight modifications of the reasoning from [LM] and they do not use the language of the game theory employed there.

2.1. **Lemma.** Let $\{G_n\}$ be a decreasing sequence of open dense subsets of 2^N . Then for each finite tuple (i_1, i_2, \ldots, i_k) of elements of N we can assign a finite subset $S(i_1, i_2, \ldots, i_k)$ of N such that

- (1) the families $\{S(j)\}_{j=1}^{\infty}$ and $\{S(i_1, i_2, \ldots, i_k, j)\}_{j=1}^{\infty}$ are pairwise disjoint, (2) for every sequence $\{i_k\}_{k=1}^{\infty}$ there exists $C \in \bigcap_{n=1}^{\infty} G_n$ such that $C \supseteq \bigcap_{n=1}^{\infty} G_n$ $\mathbb{N}\setminus\bigcup_{k=1}^{\infty}S(i_1,i_2,\ldots,i_k).$

Proof. We will construct the required sequence of finite sets $\{S(i_1, i_2, \dots, i_k)\}$ inductively on k. Simultaneously, we will construct a sequence of subsets of N, $\{C(i_1, i_2, \ldots, i_k)\}$. We will use the following notation:

$$R(i_1, i_2, \dots, i_k) = \bigcup_{i=0}^{i_k} S(i_1, i_2, \dots, i_{k-1}, j)$$

and

$$T(i_1, i_2, \ldots, i_k) = R(i_1) \cup R(i_1, i_2) \cup \cdots \cup R(i_1, i_2, \ldots, i_k).$$

We require that the sequences $\{S(i_1, i_2, \dots, i_k)\}$, $\{R(i_1, i_2, \dots, i_k)\}$, and $\{T(i_1, i_2, \dots, i_k)\}$ together with $\{C(i_1, i_2, \dots, i_k)\}$ satisfy the following conditions indexed by k:

- (a_1) $S(0) = \emptyset$ and $C(0) = \mathbb{N}$,
- $(\underline{b}_1) \ \ V(C(i_1) \, , \, R(i_1)) \subseteq G_1 \cap V(C(0) \, , \, R(i_1-1)) \ \ \text{and} \ \ S(i_1) \cap R(i_1-1) = \varnothing$ for k = 1 and $i_1 = 1, 2, ...,$ and
- (a_k) the family $S(0), S(1), \ldots, S(i_1), S(i_1, 0), S(i_1, 1), \ldots, S(i_1, i_2),$ \dots , $S(i_1, i_2, \dots, i_{k-1}, 0)$, $S(i_1, i_2, \dots, i_{k-1}, 1)$, \dots , $S(i_1, i_2, \dots, i_k)$ is pairwise disjoint,

 (\mathbf{b}_k)

$$\begin{split} V(C(i_1\,,\,i_2\,,\,\ldots\,,\,i_{k-1}\,,\,0)\,,\,T(i_1\,,\,i_2\,,\,\ldots\,,\,i_{k-1}\,,\,0)) \\ &\subseteq G_k \cap V(C(i_1\,,\,i_2\,,\,\ldots\,,\,i_{k-1})\,,\,T(i_1\,,\,i_2\,,\,\ldots\,,\,i_{k-1}))\,, \end{split}$$

 (\mathbf{c}_k)

$$\begin{split} V(C(i_1\,,\,i_2\,,\,\ldots\,,\,i_{k-1}\,,\,i_k)\,,\,T(i_1\,,\,i_2\,,\,\ldots\,,\,i_{k-1}\,,\,i_k)) \\ &\subseteq G_k \cap V(D\,,\,T(i_1\,,\,i_2\,,\,\ldots\,,\,i_{k-1}\,,\,i_k-1))\,, \end{split}$$

where $D = C(i_1, i_2, \dots, i_{k-1}) \cup R(i_1, i_2, \dots, i_{k-1}, i_k - 1)$ if $i_k > 0$ for k > 1and for every k-tuple (i_1, i_2, \ldots, i_k) .

Let us assume that our construction is completed for some k. Now we shall describe the construction for an arbitrary (k + 1)-tuple. Fix a k-tuple (i_1, i_2, \dots, i_k) . First we choose $S(i_1, i_2, \dots, i_k, 0)$ and $C(i_1, i_2, \dots, i_k, 0)$ in 2^{N} such that $S(i_1, i_2, \ldots, i_k, 0)$ is finite and the conditions (a_{k+1}) and (b_{k+1}) are satisfied. The $S(i_1, i_2, \dots, i_k, i_{k+1})$ and $C(i_1, i_2, \dots, i_k, i_{k+1})$ can be found to satisfy (a_{k+1}) and (c_{k+1}) .

Now, for every sequence $\{i_k\}_{k=1}^{\infty}$ we have

$$C(i_1, i_2, \dots, i_n) \cap T(i_1, i_2, \dots, i_n) = C(i_1, i_2, \dots, i_m) \cap T(i_1, i_2, \dots, i_n)$$

for n = 1, 2, ... and $m \ge n$. By our construction, if

$$C = \left(\mathbf{N} \setminus \bigcup_{k=1}^{\infty} S(i_1, i_2, \dots, i_k) \right) \cap \bigcup_{k=1}^{\infty} (S(i_1, i_2, \dots, i_k) \cap C(i_1, i_2, \dots, i_k)),$$

then

$$C \cap \left(\bigcup_{k=1}^{\infty} T(i_1, i_2, \dots, i_k)\right) = \bigcup_{k=1}^{\infty} (C(i_1, i_2, \dots, i_k) \cap T(i_1, i_2, \dots, i_k))$$

and hence the set C satisfies condition (2).

- 2.2. **Lemma.** Let F be a family of subsets of \mathbb{N} with the property that $A \subseteq B$, $A \in F$ implies $B \in F$. Then the following conditions are equivalent:
 - (a) F is a first category subset of $2^{\mathbb{N}}$.
- (b) There exists a matrix $\{A(n, m): n, m = 1, 2, ...\}$ of finite subsets of \mathbb{N} such that each row $\{A(n, m): m = 1, 2, ...\}$ is pairwise disjoint and for every sequence $\{m(n): n = 1, 2, ...\}$ and every $A \in F$ we have $A \cap \bigcup_{n=1}^{\infty} A(n, m(n)) \neq \emptyset$.
- (c) There exists a matrix $\{A(n, m): n, m = 1, 2, ...\}$ of pairwise disjoint finite subsets of \mathbb{N} such that for every sequence $\{m(n): n = 1, 2, ...\}$ and every $A \in F$ we have $A \cap \bigcup_{n=1}^{\infty} A(n, m(n)) \neq \emptyset$.
- *Proof.* (a) \Rightarrow (b). Since F is a first category subset of 2^N there exists a decreasing sequence of open dense subsets $\{G_n\}_{n=1}^{\infty}$ of 2^N such that $\bigcap_{n=1}^{\infty} G_n \cap F = \emptyset$. Let $\{S(i_1, i_2, \dots, i_k)\}$ be the family of finite sets satisfying (1) and (2) of Lemma 2.1. The entries of a required matrix will be just the sets $S(i_1, i_2, \dots, i_k)$. We set A(1, m) = S(m) and let each family

$${S(i_1, i_2, \ldots, i_k, m): m = 1, 2, \ldots}$$

form a row $\{A(n,m): m=1,2,\ldots\}$. Assume that the matrix $\{A(n,m): n,m=1,2,\ldots\}$ fails to satisfy (b). Then there exists a sequence $\{i_k\}$ and $A\in F$ such that $A\cap\bigcup_{n=1}^{\infty}S(i_1,i_2,\ldots,i_k)=\varnothing$. By (2) of Lemma 2.1, there exists $C\in\bigcup_{n=1}^{\infty}G_n$ such that $\mathbb{N}\setminus\bigcup_{n=1}^{\infty}S(i_1,i_2,\ldots,i_k)\subseteq C$. Therefore $A\subseteq C$, yielding $C\in F\cap\bigcap_{n=1}^{\infty}G_n$, a contradiction.

(b) \Rightarrow (c). It is enough to find sequences $\{m(n,j): j=1,2,\ldots\}$ such that the family $\{A(n,m(n,j)): n,j=1,2,\ldots\}$ is pairwise disjoint. Set m(1,1)=1 and assume $\{m(n,j): n+j\leq p\}$ has been constructed. For $l\in \mathbb{N}$ such that $1\leq l\leq p$ we pick m(l,p+1-1) to be the first index such that A(l,m(l,p+1-l)) is disjoint with the following finite set:

$$\int \{A(n, m(n, j)): n < 1 \text{ and } n + j = p + 1\} \cup \int \{A(n, m(n, j)): n + j \le p\}.$$

(c) \Rightarrow (a). Condition (c) is equivalent to the following one: for every $A \in F$ there exists n such that $A(n, m) \cap A \neq \emptyset$ for $m = 1, 2, \ldots$. Write $X_n = \{C \in 2^{\mathbb{N}} : \forall_m A(n, m) \cap C \neq \emptyset\}$. It follows that $F \subseteq \bigcup_{n=1}^{\infty} X_n$. Moreover, each set X_n is a closed boundary subset of $2^{\mathbb{N}}$.

Let us recall that a filter F on $\mathbb N$ is said to be free if $\bigcap_{A\in F}A=\varnothing$. Obviously, a filter F is free iff F is dense in $2^{\mathbb N}$, and iff $\mathfrak F\subseteq F$.

2.3. **Lemma.** Let F be a free filter on \mathbb{N} . Then the following conditions are equivalent:

- (i) F is an element of the sigma-algebra generated by the open subsets and the first category subsets of 2^N.
 - (ii) F is a first category subset of $2^{\mathbb{N}}$.

Proof. It is enough to show the implication $(i) \Rightarrow (ii)$. By the assumption $F = (U \setminus X) \cup Y$, where U is an open subset of $2^{\mathbb{N}}$ and both X and Y are first category subsets of 2^N . Assume that F is not a first category subset of 2^N . Then $U \neq \emptyset$, and hence there exists $C \in U$ and $l \in \mathbb{N}$ such that $V(C, S) \subseteq$ U, where $S = \{1, 2, ..., l\}$. Write $\mathbf{N}_0 = \mathbf{N} \setminus S$ and let $F_0 = \{A \cap \mathbf{N}_0 : A \in F\}$. Since F is dense in 2^N , F_0 is a dense filter on N_0 . Moreover, since Fcontains a dense G_{δ} subset of U, F_0 contains a dense G_{δ} subset of 2^{N_0} . Let $\xi: 2^{N_0} \to 2^{N_0}$ be the homeomorphism assigning to each C the set $N_0 \setminus C$. By the filter property we get $\xi(F_0) \cap F_0 = \emptyset$. Consequently, 2^{N_0} contains two disjoint dense G_{δ} subsets which contradicts the Baire category theorem.

- 2.4. **Proposition.** For every filter F on N and every decomposition $N = \bigcup_{i=1}^{\infty} N_i$ of N into infinite pairwise disjoint sets N, we write $F_i = \{A \cap N_i : A \in F\}$. Then we have
 - (1) for every $A_i \in F_i$, i = 1, 2, ..., l, $\bigcup_{i=1}^l A_i \cup \bigcup_{i>l} \mathbf{N}_i \in F$, (2) F_i embeds as a closed subset of F,
- (3) if, in addition, F is a free first category filter, then there exists a decomposition $\mathbf{N} = \bigcup_{i=1}^{\infty} \mathbf{N}_i$ such that each F_i is a free filter on \mathbf{N}_i .

Proof. To verify (1), observe that $\bigcap_{i=1}^{l} \widetilde{A}_i \subseteq \bigcup_{i=1}^{l} A_i \cup \bigcup_{i>l} \mathbf{N}_i$, where $\widetilde{A}_i \in F$ and $\widetilde{A}_i \cap \mathbf{N}_i = A_i$. The map which assigns to each $A \in F_i$ the set $A \cup (\mathbf{N} \setminus \mathbf{N}_i)$ is a closed embedding of F_i into F. To prove the last assertion, pick from Lemma 2.2(c) a matrix $\{A(n, m): n, m = 1, 2, ...\}$ of pairwise disjoint finite sets such that $\bigcup \{A(n, m): n = 1, 2, ...\} \cap A \neq \emptyset$ for $A \in F$ and m = 1, 2, ... We let $\mathbf{N}_i = \bigcup_{m=1}^{\infty} A(m, i)$ for $i \ge 2$ and $\mathbf{N}_1 = \mathbf{N} \setminus \bigcup_{i=2}^{\infty} \mathbf{N}_i$.

3. Z_{σ} -property of function spaces $C_{n}(X)$

We recall that a closed subset X of an absolute neighborhood retract M is a Z-set if every map $f: K \to M$ of a compactum K into M can be approximated by maps $f: K \to M \setminus X$. A space which is a countable union of its own Z-sets is called a Z_{σ} -space. In this section we prove that some spaces $C_{n}(X)$ (and their subspaces) are Z_{σ} -spaces. We will need the following well-known fact about Z_{σ} -spaces.

- 3.1. **Fact.** Let X and Y be dense linear subspaces of \mathbb{R}^{∞} such that $X \subseteq Y$ and Y is a Z_{σ} -space. Then X is a Z_{σ} -space.
- 3.2. **Lemma.** For every completely regular infinite countable space X the function space $C_n^*(X)$ is a Z_a -space.

Proof. We identify X with N. Then $C_n^*(X)$ is a dense linear subspace of \mathbf{R}^{∞} which is contained in the subspace $\mathbf{R}_{\mathrm{bd}}^{\infty} = \{(x_n) \in \mathbf{R}^{\infty} : \sup |x_n| < \infty\}$. The space $\mathbf{R}_{\mathrm{bd}}^{\infty}$ is a Z_{σ} -space. By 3.1 the space $C_{p}^{*}(X)$ is a Z_{σ} -space.

Throughout the paper we use the following subspaces of \mathbf{R}^{∞} . If $F \subseteq 2^{\mathbf{N}}$, then

$$\begin{split} c_F &= \left\{ (x_n) \in \mathbf{R}^\infty \colon \forall_{\varepsilon > 0} \exists_{A \in F} |x_n| \le \varepsilon \text{ for all } n \in A \right\}, \\ c_F^* &= \left\{ (x_n) \in c_F \colon \sup_{n \ge 1} |x_n| < \infty \right\}, \text{ and } \\ B_F(r) &= \left\{ (x_n) \in c_F \colon \sup_{n \ge 1} |x_n| \le r \right\}, \text{ where } r > 0. \end{split}$$

3.3. **Proposition.** Let F be a family of subsets of \mathbb{N} such that $\mathfrak{F} \subseteq F$ and $A \subseteq B$, $A \in F$ implies $B \in F$. If F as a subset of $2^{\mathbb{N}}$ is of the first category, then the sequence spaces c_F , c_F^* , and $B_F(r)$ are Z_g -spaces.

Proof. By (b) of Lemma 2.2 there exists a matrix $\{A(n, m): n, m = 1, 2, \ldots\}$ of pairwise disjoint finite subsets of $\mathbb N$ so that for every $A \in F$ there exists n such that $A(n, m) \cap A \neq \emptyset$ for all m. Fix r > 0. Let $X_n(r) = \{(x_i) \in c_F : \forall_m \exists_{k \in A(n,m)} | x_k| \leq r/2\}$ for $n = 1, 2, \ldots$. Clearly, each $X_n(r)$ is a closed subset of c_F and $c_F = \bigcup_{n=1}^{\infty} X_n(r)$, $c_F^* = \bigcup_{n=1}^{\infty} X_n(r) \cap c_F^*$ and $B_F(r) = \bigcup_{n=1}^{\infty} X_n(r) \cap B_F(r)$. Fix $n \in \mathbb N$. We shall show that the sets $X_n(r)$, $X_n(r) \cap c_F^*$, and $X_n(r) \cap B_F(r)$ are Z-sets in the suitable spaces. Let $f: K \to c_F$ be a map of a compactum K. Let, for $m = 1, 2, \ldots, g_m : \mathbb R^\infty \to \mathbb R^\infty$ be the map defined by $g_m((x_i)) = (y_i)$, where $y_i = 0$ for $i > \max A(n, m)$, $y_i = r$ for $i \in A(n, m)$, and $y_i = x_i$ otherwise. If m is sufficiently large then the map $\overline{f} = g_m f: K \to \mathbb R^\infty$ closely approximates f and satisfies $\overline{f}(K) \cap X_n(r) = \emptyset$. Since $\mathfrak{F} \subseteq F$ we additionally have $\overline{f}(K) \subseteq c_F$; moreover, if $f(K) \subseteq c_F^*$ or $f(K) \subseteq B_F(r)$ then also $\overline{f}(K) \subseteq c_F^*$ or $\overline{f}(K) \subseteq B_F(r)$, respectively. The proof is complete.

3.4. Corollary. For every free Borelian filter on N the spaces c_F , c_F^* , and $B_F(r)$, r > 0, are Z_{σ} -spaces.

Proof. Follows immediately from 2.3 and 3.3.

It is standard that for every filter F the spaces $C_p(\mathbf{N}_F)$ and $C_p^*(\mathbf{N}_F)$ are linearly isomorphic to the products $\mathbf{R} \times c_F$ and $\mathbf{R} \times c_F^*$, respectively.

3.5. Corollary. For every free first category filter F on N the space $C_p(N_F)$ is a Z_{σ} -space.

Proof. By Proposition 3.3 the space c_F and consequently the product $\mathbf{R} \times c_F$ are Z_σ -spaces. Thus $C_p(\mathbf{N}_F)$, being homeomorphic to $\mathbf{R} \times c_F$, is a Z_σ -space.

3.6. Corollary. Let X be a countable nondiscrete completely regular space such that the space $C_p(X)$ is analytic (i.e., a continuous image of the space of irrationals). Then $C_p(X)$ is a Z_{σ} -space.

Proof. Let $a \in X$ be an accumulation point, $Y = X \setminus \{a\}$, and $F = \{A \subseteq Y : a \text{ is an interior point of } A \cup \{a\}\}$. Then F is a free filter on Y. We shall prove that F is an analytic subset of 2^Y . Let us recall that a set which is simultaneously closed and open is called clopen. First observe that the set $G = \{B \subseteq X : B \text{ is clopen in } X \text{ and } a \in B\}$ is analytic in 2^X since it can be identified with a closed subset $\{f \in C_n(X) : f(X) \subseteq \{0, 1\} \text{ and } f(a) = 0\}$ of

 $C_p(X)$. The set $\overline{G}=\{(A,B)\in 2^Y\times 2^X\colon B\in G \text{ and } B\subseteq A\cup\{a\}\}$ is analytic in $2^Y\times 2^X$ and because X is zero-dimensional F is an image of \overline{G} by the projection onto the first axis. Thus F is analytic in 2^Y .

Now, by [Ku, §39] and Lemma 2.3, F is the first category subset of 2^Y . Obviously, $C_n(X) \subseteq E$, where

$$E = \{ f \in \mathbf{R}^X : \forall_{\varepsilon > 0} \exists_{A \in F} \forall_{x \in A} |f(a) - f(x)| < \varepsilon \}.$$

The space E can be identified with $C_p(\mathbf{N}_F)$. Hence, by Corollary 3.5, the space E is a Z_σ -space. By 3.1 the space $C_p(X)$ is a Z_σ -space.

4. Borel complexity of function spaces $C_p(X)$

For a countable ordinal α , \mathfrak{M}_{α} and \mathfrak{A}_{α} denote the class of all absolute Borel sets of the multiplicative and additive class α , respectively. If $\alpha \geq 2$, then there exists a filter on N which belongs to $\mathfrak{M}_{\alpha}\backslash\mathfrak{A}_{\alpha}$ (see [LvMP], cf. [Ca₂]). The filter \mathfrak{F} is in the class $\mathfrak{A}_{1}\backslash\mathfrak{M}_{1}$. It is an easy observation that there exist no filters in the class $\mathfrak{M}_{1}\backslash\mathfrak{A}_{1}$ (see [Ca₁]). For every nonempty subset $A\subseteq \mathbb{N}$ the filter $F(A)=\{B\subseteq\mathbb{N}:A\subseteq B\}$ is a compact set in $2^{\mathbb{N}}$ and hence $F(A)\in\mathfrak{M}_{0}$. Moreover, every compact filter is of the form F(A) for $\varnothing\neq A\subseteq\mathbb{N}$.

A filter F is an absolute Borel set (shortly a Borelian filter) iff the space c_F is an absolute Borel set. Moreover, Borel complexity of c_F heavily depends on F and vice versa. Namely, we have

4.1. Lemma. For every filter F there exists a closed embedding of F into the space c_F .

Proof. The map sending each $A \in F$ onto $\kappa_A \in c_F$, where $\kappa_A(i) = 0$ for $i \in A$ and $\kappa_A(i) = 1$ for $i \notin A$, is a required closed embedding.

- 4.2. **Lemma.** Let F be a filter on \mathbb{N} and let α be a countable ordinal, $\alpha \geq 1$. Then:
 - (1) if $F \in \mathfrak{M}_{\alpha}$, then $c_F \in \mathfrak{M}_{\alpha}$,
 - (2) if $F \in \mathfrak{M}_{\alpha} \backslash \mathfrak{A}_{\alpha}$, then $c_F \in \mathfrak{M}_{\alpha} \backslash \mathfrak{A}_{\alpha}$,
 - $(3) \ \ \textit{if} \ \ F \in \mathfrak{M}_{\alpha} \cap \mathfrak{A}_{\alpha} \setminus \bigcup_{\beta < \alpha} (\mathfrak{A}_{\beta} \cup \mathfrak{M}_{\beta}), \ \textit{then} \ \ c_{F} \in \mathfrak{M}_{\alpha} \setminus \mathfrak{A}_{\alpha},$
 - (4) if $F \in \mathfrak{A}_{\alpha} \backslash \mathfrak{M}_{\alpha}$, then $c_F \in \mathfrak{M}_{\alpha+1} \backslash \mathfrak{A}_{\alpha+1}$.

Proof. The assertions of this lemma (except for (3)) were proved in $[Ca_{1,2}]$. For the sake of completeness we include our proof of Lemma 4.2.

(1) We will present here a slight simplification of the original proof of (1). Suppose $F \in \mathfrak{M}_{\alpha}$ for some countable ordinal α . Write

$$T = \mathbf{R} \setminus \left(\bigcup_{n=1}^{\infty} \left(\frac{1}{n} - 4^{-n}, \frac{1}{n} + 4^{-n} \right) \cup \bigcup_{n=1}^{\infty} \left(\frac{1}{n} - 4^{n}, \frac{1}{n} + 4^{n} \right) \right)$$

and let $f_k \colon T^\infty \to 2^N$ be defined by $f_k((x_i)) = \{i \in \mathbb{N}: |x_i| < 1/k\}$ for $(x_i) \in T^\infty$ and $k = 1, 2, \ldots$. Then the maps f_k are continuous and $T^\infty \cap c_F = 1$

 $\bigcap_{k=1}^{\infty} f_k^{-1}(F)$. Thus $T^{\infty} \cap c_F \in \mathfrak{M}_{\alpha}$. Let $g: T \to \mathbf{R}$ be a linear extension of the map sending $\frac{1}{n} - 4^{-n}$, $\frac{1}{n} + 4^{-n}$ onto $\frac{1}{n}$ for $n = 1, 2, \ldots$, and $\frac{1}{n} - 4^{n}$, $\frac{1}{n} + 4^{n}$ onto $\frac{1}{n}$ for $-n = 1, 2, \ldots$. Then the map $g^{\infty}: T^{\infty} \to \mathbf{R}^{\infty}$ defined by $g^{\infty}((x_i)) = (g(x_i))$ is a proper surjection with $(g^{\infty})^{-1}(c_F) = T^{\infty} \cap c_F$ (let us recall that a map $f: X \to Y$ is proper if $f^{-1}(K)$ is compact whenever K is a compact subset in Y). Now, the result of [SR] implies that $c_F \in \mathfrak{M}_{\alpha}$.

- (2) This is a consequence of (1) and Lemma 4.1.
- (3) We shall use Calbrix's argument of $[Ca_{1,2}]$. Let F be a filter on $\mathbb N$ such that $F\in \mathfrak M_\alpha\cap \mathfrak A_\alpha\backslash \bigcup_{\beta<\alpha}(\mathfrak A_\beta\cup \mathfrak M_\beta)$. Express $\mathbb N$ as a union of pairwise disjoint families of infinite sets $\mathbb N_i=\{n_{i,1},n_{i,2},\ldots\}$. Define a new filter F^∞ consisting of all sets of the form $\bigcup_{i=1}^\infty A_i$, where $A_i\in F_i$ and F_i is an isomorphic copy of F on $\mathbb N_i$. First we show that $F^\infty\in \mathfrak M_\alpha\backslash \mathfrak A_\alpha$. It is enough to observe that for every $C\subseteq 2^{\mathbb N}$ such that $C\in \mathfrak M_\alpha$ there exists a continuous map $f\colon 2^{\mathbb N}\to \prod_{i=1}^\infty 2^{\mathbb N_i}=2^{\mathbb N}$ with $f^{-1}(F^\infty)=C$. Let $C=\bigcap_{i=1}^\infty C_i$, where $C_i\in \bigcup_{\beta<\alpha}\mathfrak A_\beta$ for $i=1,2,\ldots$. Fix $i\geq 1$. By the "Wadge lemma" either there exists a continuous map $f_i\colon 2^{\mathbb N}\to 2^{\mathbb N_i}$ such that $f_i^{-1}(F_i)=C_i$ or there exists a continuous map $f_i\colon 2^{\mathbb N}\to 2^{\mathbb N_i}$ such that $f_i^{-1}(F_i)=C_i$ or there exists a continuous map $f_i\colon 2^{\mathbb N}\to 2^{\mathbb N_i}$ such that $f_i^{-1}(F_i)=C_i$ or there exists a continuous map $f_i\colon 2^{\mathbb N_i}\to 2^{\mathbb N_i}$ such that $f_i^{-1}(F_i)=C_i$ or there exists a continuous map $f_i\colon 2^{\mathbb N_i}\to 2^{\mathbb N_i}$ such that $f_i^{-1}(F_i)=C_i$ or there exists a continuous map $f_i\colon 2^{\mathbb N_i}\to 2^{\mathbb N_i}$ such that $f_i^{-1}(F_i)=C_i$ or there exists a continuous map $f_i\colon 2^{\mathbb N_i}\to 2^{\mathbb N_i}$ such that $f_i^{-1}(F_i)=C_i$ or there exists a continuous map $f_i\colon 2^{\mathbb N_i}\to 2^{\mathbb N_i}$ such that $f_i^{-1}(F_i)=F_i$. Since $f_i\in \mathfrak M_\alpha\cap \mathfrak A_\alpha\setminus \bigcup_{\beta<\alpha}(\mathfrak A_\beta\cup \mathfrak M_\beta)$ and $f_i\in \mathfrak M_\alpha\cap \mathfrak A_\alpha$ the map $f_i\in \mathfrak M_\alpha\cap \mathfrak A_\alpha$ be the map defined by $f_i(\mathbb N_i)=f_i(\mathbb N_i)$, where $f_i\colon 2^{\mathbb N_i}\to 2^{\mathbb N_i}$ satisfies $f_i^{-1}(F_i)=C_i$ for $i=1,2,\ldots$. Now, by (2), we get $f_i\in \mathfrak M_\alpha\cap \mathfrak A_\alpha\setminus \mathfrak A_\alpha$. The map $f_i\in \mathfrak M_\alpha\cap \mathfrak A_\alpha\setminus \mathfrak A_\alpha$ given by the formula $f_i(\mathbb N_i)=f_i(\mathbb N_i)$ be the map $f_i(\mathbb N_i)=f_i(\mathbb N_i)=f_$

(4) We can repeat the proof of (3) (cf., $[Ca_{1,2}]$).

Let X be a countable completely regular space and let a be an accumulation point of X. Then

$$F_a = \{A \in 2^{X \setminus \{a\}} : a \text{ is an interior point of } A \cup \{a\}\}$$

is a free filter on $X \setminus \{a\}$.

4.3. **Lemma.** Let X be a countable completely regular space such that for every accumulation point $a \in X$ the filter $F_a \in \mathfrak{M}_{\alpha}$. Then $C_p(X) \in \mathfrak{M}_{\alpha}$.

Proof. Let a be an accumulation point of X and let X_{F_a} denote the space X topologized by isolating points of $X\setminus\{a\}$ and by using the family $\{A\cup\{a\}:A\in F_a\}$ as a neighborhood base at a. The spaces $C_p(X)$ and $C_p(X_{F_a})$ are linear dense subspaces of \mathbf{R}^X . By Lemma 4.2 $C_p(X_{F_a})\in\mathfrak{M}_{\alpha}$. Since

$$C_p(X) = \bigcap \{C_p(X_{F_a}): a \text{ is an accumulation point of } X\}$$

we have $C_p(X) \in \mathfrak{M}_{\alpha}$.

5. Sequence spaces related to $F_{\sigma\delta}$ -filters

In this section we give a complete topological classification of sequence spaces c_F which are absolute $F_{\sigma\delta}$ -sets (i.e., $c_F \in \mathfrak{M}_2$). Since for a compact filter F(C), $C \subseteq \mathbf{N}$, $c_{F(C)} = \{(x_i) \in \mathbf{R}^\infty : x_i = 0 \text{ for } i \in C\}$ and for an arbitrary filter F, $c_F \subseteq \{(x_i) \in \mathbf{R}^\infty : x_i = 0 \text{ for } i \in \bigcap_{A \in F} A\}$ we can reduce our classification to the case when the filter F is free. Obviously, a filter F is free iff the space \mathbf{N}_F is completely regular.

5.1. **Proposition.** Let F be a free filter which is an absolute $F_{\sigma\delta}$ -set. Then the sequence space c_F is homeomorphic to σ^{∞} .

To prove Proposition 5.1 it is enough to verify that the space c_F satisfies the assumptions of the following lemma:

5.2. **Lemma.** Let $\{X_i\}$ be a sequence of $F_{\sigma\delta}$ -absolute retracts such that, for each i, σ^{∞} is embeddable onto a closed subset of X_i . Fix $p_i \in X_i$, $i = 1, 2, \ldots$. Then every $F_{\sigma\delta}$ -space X which is a Z_{σ} -space and satisfies

$$W(X_i, p_i) = \left\{ (x_i) \in \prod_{i=1}^{\infty} X_i : x_i = p_i \text{ for all but finitely many } i \right\} \subseteq X \subseteq \prod_{i=1}^{\infty} X_i$$

is homeomorphic to σ^{∞} .

Proof. Lemma 5.2 is a slight modification of the characterization of σ^{∞} , used in [DGM, DM], which follows easily from Lemma 2.3 of [DM] and Theorem 6.5 of [BM].

We will also need the following fact proved in [DM, Corollary 2.5]:

5.3. **Lemma.** Let X_i , for $i=1,2,\ldots$, be an absolute retract which is a Z_{σ} -space. Then the product $\prod_{i=1}^{\infty} X_i$ contains a closed copy of σ^{∞} .

Below we present a new, more elementary, proof of Lemma 5.3 which is a consequence of the following general observation:

5.4. **Lemma.** If X is an absolute retract which is a Z_{σ} -space, then for each σ -compact space A there exists a proper map $f: A \to X$.

Proof. Assume that A is a subset of the Hilbert cube I^{∞} and $A = \bigcup_{n=1}^{\infty} A_n$, where A_n is compact and $A_n \subseteq A_{n+1}$ for $n=1,2,\ldots$. Let Y be a complete absolute retract such that $X \subset Y$ and $Y \setminus X$ is locally homotopy negligible in Y, i.e., for every open family $\mathfrak U$ of Y and for every map $f \colon I^{\infty} \to Y$ there exists a map $g \colon I^{\infty} \to Y$ which is $\mathfrak U$ -close to f and such that $g(f^{-1}(\bigcup \mathfrak U)) \subseteq X$, see [T]. We shall construct a map $f \colon I^{\infty} \to Y$ with $f^{-1}(X) = A$. Then the restricted map $f \mid A$ is a proper map of A into X. Since X is a Z_{σ} -space, we can find Z-sets X_n in Y for $n=1,2,\ldots$ such that $X \subset \widetilde{X} = \bigcup_{n=1}^{\infty} X_n$ and $X_1 \subseteq X_2 \subseteq \cdots$. Fix a complete metric G on G which is bounded by 1. Let $G \colon I^{\infty} \to Y \setminus \widetilde{X}$ be a map and let $G \colon I^{\infty} \to X_0 = \emptyset$. We will inductively construct

a sequence of maps $f_n: I^{\infty} \to Y$ satisfying for n = 1, 2, ... the following conditions:

- (i) $f_n(A_n) \subset X$,
- (ii) $f_n(I^{\infty}\backslash A_n) \subset Y\backslash \widetilde{X}$,
- (iii) $f_n|A_{n-1} = f_{n-1}|A_{n-1}$,
- (iv) $d(f_n(x), f_{n-1}(x)) \le 4^{-n} d(f_{n-1}(x), X_{n-1})$.

Assume that the maps $f_i\colon I^\infty\to Y$ satisfying the conditions (i)–(iv) have been already constructed for $0\le i\le n$. By the local homotopy negligibility of $Y\backslash X$ there exists a map $g\colon I^\infty\to X$ such that $g|A_n=f_n|A_n$ and $d(g(x),\,f_n(x))\le 4^{-n-2}d(f_n(x),\,X_n)$. Since $\widetilde X$ is a countable union of Z-sets in a complete absolute retract Y there exists a homotopy $h_i\colon Y\to Y$ such that $h_0=\operatorname{id}_Y,\,h_i|X_n=\operatorname{id}_{X_n}$ for $0\le t\le 1$, $h_i(Y\backslash X_n)\subset Y\backslash \widetilde X$ for t>0, and $\operatorname{diam}\{h_i(y)\colon 0\le t\le 1\}\le 4^{-n-2}d(y,\,X_n)$. We let $f_{n+1}(x)=h_{\lambda(x)}(g(x))$, where $\lambda\colon I^\infty\to [0,\,1]$ is a continuous function with $\lambda^{-1}(0)=A_{n+1}$. If $x\in A_{n+1}$, then $\lambda(x)=0$ and consequently $f_{n+1}(x)=h_0(g(x))=g(x)$; in particular, $f_{n+1}(x)=g(x)=f_n(x)$ for $x\in A_n$. If $x\in I^\infty\backslash A_{n+1}$, then $g(x)\not\in X$ and $\lambda_n(x)>0$; hence $f_{n+1}(x)=h_{\lambda(x)}(g(x))\in Y\backslash \widetilde X$. Thus f_{n+1} satisfies the conditions (i)–(iii). To show (iv) we use the following inequalities:

$$\begin{split} d(f_n(x)\,,\,f_{n+1}(x)) & \leq d(f_n(x)\,,\,g(x)) + d(g(x)\,,\,h_{\lambda(x)}(g(x))) \\ & \leq 4^{-n-2} d(f_n(x)\,,\,X_n) + 4^{-n-2} d(g(x)\,,\,X_n) \\ & \leq (4^{-n-2} + 4^{-n-2}(1+4^{-n-2})) d(f_n(x)\,,\,X_n) \\ & \leq 4^{-n-1} d(f_n(x)\,,\,X_n). \end{split}$$

Now, by (iv), the sequence $\{f_n\}$ uniformly converges to a map $f\colon I^\infty\to Y$. By (i) and (iii) we get $f(A)\subset X$. To show that $f(I^\infty\backslash A)\subset Y\backslash \widetilde{X}$, we first observe that for n>k,

$$d(f_n(x), X_k) \ge (1 - 4^{-n})d(f_{n-1}, X_k)$$

$$\ge \dots \ge (1 - 4^{-n})(1 - 4^{-n+1}) \dots (1 - 4^{-k-1})d(f_k(x), X_k).$$

Hence, we have $d(f(x), X_k) \ge \prod_{n=k+1}^{\infty} (1-4^{-n}) d(f_k(x), X_k)$. If $x \in I^{\infty} \setminus A$ then $d(f_k(x), X_k) > 0$. Since $\prod_{n=k+1}^{\infty} (1-4^{-n}) > 0$, $k \ge 0$, we obtain $d(f(x), X_k) > 0$ for $x \in I^{\infty} \setminus A$ and $k = 1, 2, \ldots$; consequently $f(x) \notin X_k$ for $k = 1, 2, \ldots$.

Proof of 5.3. We write $N = \bigcup_{i=0}^{\infty} N_i$, where the N_i are infinite and pairwise disjoint for $i = 1, 2, \ldots$. Since

$$\prod_{i=1}^{\infty} X_i = \prod_{i=1}^{\infty} \left(\prod_{n \in \mathbb{N}_{2i-1}} X_n \times \prod_{n \in \mathbb{N}_{2i}} X_n \right)$$

it is enough to show that for i = 1, 2, ... there exists a closed embedding $v_i: \sigma \to \prod_{n \in \mathbb{N}_{2i-1}} X_n \times \prod_{n \in \mathbb{N}_{2i}} X_n$. First let us observe that each nontrivial absolute retract contains the interval [0, 1] and the infinite product of such absolute retracts contains the Hilbert cube I^{∞} . To obtain v_i we choose any embedding $u_i: \sigma \to \prod_{n \in \mathbb{N}_{2i-1}} X_n$ and a proper map from Lemma 5.4 $f_i: \sigma \to \mathbb{N}_{2i-1}$ $\prod_{n \in \mathbb{N}_{2i}} X_n$ and set $v_i = u_i \times f_i$.

We will also employ the following

- 5.6. **Lemma.** For any filter F on N, any decomposition $N = \bigcup_{i=1}^{\infty} N_i$ into pairwise disjoint infinite sets N_i , and for the natural isomorphism $h: \mathbb{R}^N \to \mathbb{R}^N$ $\prod_{i=1}^{\infty} \mathbf{R}^{\mathbf{N}_i}$ we have

 - $\begin{array}{ll} (1) & W(c_{F_i}\,,\,0) \subset h(c_F) \subset \prod_{i=1}^\infty c_{F_i}\,, \\ (2) & W(B_{F_i}(r)\,,\,0) \subset h(B_F(r)) \subset \prod_{i=1}^\infty b_{F_i}(r)\,,\, for \ r>0\,, \ and \end{array}$
 - (3) $\prod_{i=1}^{\infty} B_F(\frac{1}{i}) \subset h(B_F(1)),$

where $F_i = \{A \cap \mathbf{N}_i : A \in F\}$.

Proof. The inclusions are easy consequences of the observation that $A_1 \cup A_2 \cup A_3 \cup A_4 \cup A_5 \cup$ $\cdots \cup A_k \cup \mathbf{N}_{k+1} \cup \mathbf{N}_{k+2} \cup \cdots$ belongs to F for every $A_i \in F_i$ and for arbitrary k; cf. Proposition 2.4.

Proof of Proposition 5.1. By Lemma 4.2 the space c_F is an absolute $F_{\sigma\delta}$ -set. Corollary 3.4 implies that c_F is a Z_{σ} -space. Since F is free on \mathbb{N} , by (3) of Proposition 2.4, there exists a decomposition $N = \bigcup_{i=1}^{\infty} N_i$ such that each $F_i = \{A \cap \mathbf{N}_i : A \in F\}$ is a free $F_{\sigma\delta}$ -filter on \mathbf{N}_i . Now, by (1) of 5.6 and 5.2, it is enough to show that c_F (equivalently, c_F) contains σ^{∞} as a closed subset. The last follows from (3) of Lemma 5.6, Lemma 5.3, and Corollary 3.4.

Similarly we can prove the following

- 5.7. **Proposition.** For every noncompact $F_{\sigma\delta}$ -filter F on N the spaces c_F^* and $B_F(r)$, r > 0, are homeomorphic to σ^{∞} .
 - 6. Topological classification of function spaces $C_n(X)$ OF TYPE $F_{\sigma\delta}$

In this section we prove Theorem 1.1. We start with the following general fact.

- 6.1. **Proposition.** Let X be a countable nondiscrete completely regular space. Then one of the following conditions holds:
 - (i) there exists a clopen subset Y of X with exactly one accumulation point.
 - (ii) there exists a decomposition $X = \bigcup_{n=1}^{\infty} X_n$, where $\{X_n\}_{n=1}^{\infty}$ is a pairwise disjoint sequence of nondiscrete clopen sets.

Proof. Suppose that (i) does not hold. Then by induction, we construct the decomposition $X = \bigcup_{n=1}^{\infty} X_n$ of (ii). Let $X = \{x_1, x_2, \dots\}$ and $X_0 = \emptyset$. Assume that we have constructed pairwise disjoint nondiscrete clopen subsets X_1, X_2, \ldots, X_n of X such that $Y_n = X \setminus \bigcup_{i=1}^n X_i$ is also nondiscrete and $\{x_1, x_2, \ldots, x_n\} \subseteq \bigcup_{i=1}^n X_i$. By our assumption Y_n contains at least two accumulation points. Using the fact that X is zero-dimensional, we can divide Y_n into two nondiscrete clopen sets. We choose one of them as X_{n+1} in such a way that $\{x_1, x_2, \ldots, x_{n+1}\}$ is contained in $\bigcup_{i=1}^{n+1} X_i$.

The next proposition summarizes the results of the previous section.

- 6.2. **Proposition.** Let F be a filter on N. Then the following conditions are equivalent:
 - (a) $C_n(\mathbf{N}_F)$ is homeomorphic to σ^{∞} ,
 - (b) $C_p(\mathbf{N}_F)$ is an absolute $F_{\sigma\delta}$ -set and not a G_{δ} -set,
 - (c) The filter F is a noncompact $F_{\sigma\delta}$ -subset of $2^{\mathbb{N}}$.

The same is true for the space $C_n^*(\mathbf{N}_F)$.

Proof. The implication (a) \Rightarrow (b) is well known. (b) \Rightarrow (c) follows from Lemma 4.1. Finally (c) \Rightarrow (a) follows from Proposition 5.1 and the fact that $C_p(\mathbf{N}_F)$ is linearly isomorphic to $\mathbf{R} \times c_F$.

Proof of Theorem 1.1. We only present a proof for the space $C_p(X)$ (the proof for the space $C_p^*(X)$ is the same). We shall consider two cases:

- (1) The space X satisfies (i) of Proposition 6.1. Let Y be a clopen subset of X with exactly one accumulation point. The space Y is homeomorphic to \mathbf{N}_F , where F is a noncompact filter on \mathbf{N} . Moreover, the space $C_p(X)$ is linearly homeomorphic to $C_p(Y) \times C_p(X \setminus Y)$. By Proposition 6.2, $C_p(Y)$ is homeomorphic to σ^∞ . Hence, by Corollary 5.4 of [BM], it follows that $C_p(X)$ is homeomorphic to σ^∞ .
- (2) The space X satisfies (ii) of Proposition 6.1. Let $X=\bigcup_{n=1}^\infty X_n$ be a decomposition of X into pairwise disjoint nondiscrete clopen sets. Now, the space $C_p(X)$ is homeomorphic to the product $\prod_{n=1}^\infty C_p(X_n)$, where all spaces $C_p(X_n)$ and $C_p(X)$ are $F_{\sigma\delta}$ -absolute retracts which, according to Corollary 3.6, are Z_σ -spaces. From Lemmas 5.2 and 5.3 it follows that $C_p(X)$ is homeomorphic to σ^∞ .

7. Examples of special $F_{\sigma\delta}$ -filters

In this section we apply Theorem 1.1 to answer in the negative several questions posed by A. V. Arhangel'skiĭ and related to the following general problem: how close do the properties of the spaces X and Y have to be if $C_p(X)$ and $C_p(Y)$ are homeomorphic? We will discuss the properties of the spaces X and Y listed below. A Hausdorff space X is a k-space if for each $A \subseteq X$, the set A is closed in X provided that the intersection of A with any compact subspace K of X is closed in K. A k-space X is a k_{ω} -space if there exists a countable family $\mathfrak R$ of compact subsets of X such that $\bigcup \mathfrak R = X$ and for every

compact subspace K of X there exists $L \in \mathfrak{K}$ such that $K \subseteq L$. A topological space X is called a sequential space if a set $A \subseteq X$ is closed iff together with any sequence it contains all its limits. A space X is called an \aleph_0 -space if there exists a countable family $\mathfrak S$ of subsets of X such that for every compact subset $K \subseteq X$ and for every neighborhood V of K in X one can find $P \in \mathfrak S$ with $K \subseteq P \subseteq V$. A subset A of a space X will be called R-bounded in X, if every function $f \in C_p(X)$ is bounded on A. A function $f \colon X \to \mathbf R$ is called strictly b-continuous if for every R-bounded subset $A \subseteq X$ there exists a map $g \in C_p(X)$ such that f|A = g|A. A space X is said to be a b_R -space if every strictly b-continuous function $f \colon X \to \mathbf R$ is continuous.

Recall that $\mathfrak{X} = \{0\} \cup \{n^{-1}: n = 1, 2, ...\}$ and that \mathfrak{X} can be identified with the space $N_{\mathfrak{X}}$.

- 7.1. **Example.** There exists a free $F_{\alpha\delta}$ -filter F on N such that:
 - (a) the space N_F is countable and completely regular,
 - (b) the function spaces $C_p(\mathbf{N}_F)$ and $C_p(\mathfrak{X})$ are homeomorphic,
 - (c) the space N_F is not a k-space, while \mathfrak{X} is compact metric,
 - (d) the space N_F is not a k_{ω} -space,
 - (e) the space N_F is not a sequential space,
 - (f) the space N_F is not a b_R -space.

Proof. Let F be a filter of sets of density 1, i.e.,

$$F = \left\{ A \subseteq \mathbb{N}: \lim_{n \to \infty} n^{-1} \operatorname{card}(A \cap \{1, 2, ..., n\}) = 1 \right\},$$

where card(B) denotes the cardinality of a set B (cf. [AU, p. 119; V, p. 98]). Since $F = \bigcap_{n=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{k=m}^{\infty} \{A \subseteq \mathbb{N}: k^{-1} \mathrm{card}(A \cap \{1, 2, \dots, k\}) \geq 1 - n^{-1}\}$, F is a free $F_{\sigma\delta}$ -filter on \mathbb{N} . The assertion (a) is obvious and (b) follows from Lemma 4.2 and Theorem 1.1. Since for every infinite $M \subseteq \mathbb{N}$ there is $A \in F$ such that $M \setminus A$ is infinite the space \mathbb{N}_F does not contain any nontrivial convergent sequence. Moreover, all compact subspaces of \mathbb{N}_F are finite. Hence \mathbb{N}_F is not a k-space and (c) holds. The assertions (d) and (e) are immediate consequences of (c). One can easily observe that all R-bounded subsets of \mathbb{N}_F are finite. Hence every function from \mathbb{N}_F into \mathbb{R} is strictly b-continuous. Consequently \mathbb{N}_F is not a b_R -space.

Example 7.1 answers the problems 12, 24, 25, 26 of $[Ar_1]$ and 6, 7, 26 of $[Ar_2]$.

- 7.2. **Example.** There exists a free $F_{\sigma\delta}$ -filter G on N such that:
 - (a) the space N_G is countable and completely regular,
 - (b) the function spaces $C_p(\mathbf{N}_G)$ and $C_p(\mathfrak{X})$ are homeomorphic,
 - (c) the space N_G is not an \aleph_0 -space while $\mathfrak X$ is compact metric.

Proof. As a filter G we take one of the filters described in [LvMP]. Let 2^n be the set of all functions from $\{0, 1, ..., n-1\}$ into $\{0, 1\}$ for n = 1, 2, ... Let

us put $T = \bigcup_{n=1}^{\infty} 2^n$. For each function $x: \mathbb{N} \to \{0, 1\}$ we define $B_x = \{x | n \in \mathbb{N} \}$ 2^n : n = 1, 2, ... to be a branch in T, where $x \mid n$ denotes the restriction of the function x to the set $\{0, 1, \dots, n-1\}$. The filter G on the countable set T is generated by the family $\{T \setminus (B_{x_1} \cup B_{x_2} \cup \cdots \cup B_{x_n} \cup S): n \geq 1, x_i \in \{0, 1\}^N$ and S is a finite subset of T. We identify T with N and consider G as a filter on N. Obviously, the filter G is free. By $[Ca_1]$ G is an F_{σ} -subset of 2^N. The assertion (b) follows from Lemma 4.2 and Theorem 1.1. Now we shall verify (c). We identify N_G with $T \cup \{\infty\}$. Let $\mathfrak{S} = \{P_n : n = 1, 2, ...\}$ be a family of subsets of $T \cup \{\infty\}$. We will construct a compact set K and an open set V in $T \cup \{\infty\}$ such that $K \subseteq V$ and for every n the set K is not contained in P_n or the set P_n is not contained in V. By induction one can easily define a sequence $\{t_n\}_{n=1}^{\infty}$, where $t_n \in 2^n$ and such that (*) $t_n | \{0, 1, \ldots, n-2\} = t_{n-1}$, if n > 1,

- (**) $t_n \in P_n$ or $s_n \notin P_n$, where $s_n \in 2^n$ is defined by $s_n | \{0, 1, ..., n-2\} =$ $t_n | \{0, 1, \dots, n-2\}$, if n > 1, and $s_n(n-1) \neq t_n(n-1)$ if $n \ge 1$. Now, let $x \in \{0, 1\}^{N}$ be such that $x | \{0, 1, ..., n-1\} = t_n$. We set V = 1 $(T \cup \{\infty\}) \setminus B_x$ and $K = \{s_n : n = 1, 2, ...\} \cup \{\infty\}$. Let us observe that $B_x \cap K = \emptyset$ and for every $y \in \{0, 1\}^N$, $y \neq x$, $B_y \cap K$ is finite (if n is such that $x|n \neq y|n$, then $s_k \notin B_y$ for $k \geq n+1$). Hence the set $K \subseteq V$ is compact and, by (**), the set P_n is not contained in V or the set K is not contained in P_n for every $n = 1, 2, \ldots$

Example 7.2 answers the problem 34 of $[Ar_1]$ (cf. also problem 36 of $[Ar_2]$).

8. SEQUENCE SPACES OF HIGHER BOREL COMPLEXITY

According to [LvMP, Ca₂] and Lemma 4.2 for every countable ordinal $\alpha \ge$ 2 there exists a filter F on N such that $c_F \in \mathfrak{M}_{\alpha} \backslash \mathfrak{A}_{\alpha}$. In [BM] it was shown that in each class \mathfrak{M}_{α} there exists a maximal object Ω_{α} which can be characterized as follows:

- 8.1. **Proposition.** A space X is homeomorphic to Ω_{α} iff X satisfies the following conditions:
 - (1) X is an absolute retract,
 - $(2) X \in \mathfrak{M}_{\alpha}$,
 - (3) X is a Z_{σ} -space,
 - (4) X is homeomorphic to X^{∞} .
- (5) X is \mathfrak{M}_{α} -universal, i.e., each $Y \in \mathfrak{M}_{\alpha}$ is embeddable onto a closed subset of Ω_{α} .

Let us note that Ω_2 is just σ^{∞} and in §6 we have proved that if X is a countable completely regular space such that $C_p(X) \in \mathfrak{M}_2 \setminus \mathfrak{A}_2$, then $C_p(X)$ is homeomorphic to σ^{∞} . It suggests the following

8.2. Conjecture. For every countable completely regular space X such that $C_n(X) \in \mathfrak{M}_{\alpha} \setminus \mathfrak{A}_{\alpha}$, $C_n(X)$ is homeomorphic to Ω_{α} .

Now, we focus on the spaces c_F for Borelian filters F on \mathbb{N} . For spaces c_F the condition (1) is clear. According to $[\mathrm{Ca}_1]$ (see Lemma 4.2) $c_F \in \mathfrak{M}_\alpha$ provided $F \in \mathfrak{M}_\alpha$. The condition (3) is a consequence of Corollary 3.4. The conditions (4) and (5) are the major obstacles in order to confirm Conjecture 8.2 for higher Borelian classes.

- 8.3. **Problem.** Let F be a filter on \mathbb{N} such that $F \in \mathfrak{A}_{\alpha} \cup \mathfrak{M}_{\alpha}$, where $\alpha > 1$. Is c_F homeomorphic to $(c_F)^{\infty}$?
- 8.4. **Problem.** Let for a filter F on \mathbb{N} the space $c_F \in \mathfrak{M}_{\alpha} \backslash \mathfrak{A}_{\alpha}$. Can every $X \in \mathfrak{M}_{\alpha}$ be embeddable onto a closed subset of c_F ?

For $\alpha=2$ the condition (5) is a consequence of the remaining four conditions. For higher α , we ask

- 8.5. **Problem.** Let X satisfy the following conditions:
 - (1') X is an absolute retract,
 - (2') $X \in \mathfrak{M}_{\alpha} \backslash \mathfrak{A}_{\alpha}$,
 - (3') X is a Z_{σ} -space,
 - (4') X is homeomorphic to X^{∞} .
- Is X homeomorphic to Ω_{α} ?
- 8.6. Remark. We say that a set X in a compact space M is Wadge \mathfrak{M}_{α} -maximal in M if $X \in \mathfrak{M}_{\alpha}$ and for a subset Y of M, with $Y \in \mathfrak{M}_{\alpha}$, there exists a map $f \colon M \to M$ such that $f^{-1}(X) = Y$. An inspection of the proof of Lemma 5.3 yields the fact that a space X satisfying the conditions (1)-(4) is Wadge \mathfrak{M}_2 -maximal in a topological copy of the Hilbert cube I^{∞} . The last result can be considered as a Hilbert cube counterpart of the fact that in the Cantor set each set $A \in \mathfrak{M}_{\alpha} \setminus \mathfrak{A}_{\alpha}$ is Wadge \mathfrak{M}_{α} -maximal (see [W]). To answer 8.5 in the positive, it is enough to show that a space X satisfying (1')-(4') is Wadge \mathfrak{M}_{α} -maximal in a topological copy of the Hilbert cube.

The condition (4) for spaces c_F is closely related to decomposability of filters F described in Proposition 2.4. If a space $c_F \in \mathfrak{M}_2 \backslash \mathfrak{A}_2$, then the restrictions F_i of the filter F of Proposition 2.4 are in the class $(\mathfrak{M}_2 \backslash \mathfrak{A}_2) \cup (\mathfrak{A}_1 \backslash \mathfrak{M}_1)$ and consequently $c_{F_i} \in \mathfrak{M}_2 \backslash \mathfrak{A}_2$. This was the crucial step in verifying the condition (4). For higher α the Borel type of spaces c_{F_i} for restricted filters F_i can be essentially lowered. That is why we introduce the following definition. A filter F on \mathbf{N} is decomposable if there exist infinite, disjoint sets \mathbf{N}_1 and \mathbf{N}_2 such that $\mathbf{N} = \mathbf{N}_1 \cup \mathbf{N}_2$ and $F_i = \{A \cap \mathbf{N}_i : a \in F\}$ is a filter on \mathbf{N}_i which is isomorphic to F for i = 1, 2. Then we have $F = \{A_1 \cup A_2 : A_1 \in F_1 \text{ and } A_2 \in F_2\}$ and we write $F = F_1 \times F_2$. By an easy induction we obtain

8.7. **Lemma.** If F is a decomposable filter on \mathbb{N} , then there exists a sequence $\{\mathbb{N}_i\}$ of infinite pairwise disjoint subsets of \mathbb{N} with $\mathbb{N} = \bigcup_{i=1}^{\infty} \mathbb{N}_i$, and such that each $F_i = \{A \cap \mathbb{N}_i : a \in F\}$ is a filter on \mathbb{N}_i which is isomorphic to F.

The main result of this section is the following:

8.8. **Theorem.** Let F be a first category filter on N which is free and decomposable. Then the sequence space c_F is homeomorphic to $(c_F)^{\infty}$.

The proof of Theorem 8.8 is based on the following lemma which is a standard fact about absorbing sets (see [BM]):

8.9. **Lemma.** Let X and Y be absolute retracts which are Z_{σ} -spaces. Assume that there are noncompact absolute retracts M and N and $p \in M$, $q \in N$ satisfying $W(M, p) \subseteq X \subseteq M^{\infty}$ and $W(N, q) \subseteq Y \subseteq N^{\infty}$, where for a space Z and $z \in Z$ we write

$$W(Z, z) = \{(z_i) \in Z^{\infty}: z_i = z \text{ for all but finitely many } i\}.$$

If $X = \bigcup_{i=1}^{\infty} X_i$ and $Y = \bigcup_{i=1}^{\infty} Y_i$, where X_i is closed in X and Y_i is closed in Y for i = 1, 2, ... and moreover each X_i embeds onto a closed subset of N and each Y_i embeds onto a closed subset of M, then X and Y are homeomorphic.

Proof of Theorem 8.8. In the proof we will use the spaces c_F , $B_F(1)$, and c_F^* and their products. These spaces are noncompact absolute retracts. Since F is a first category filter, Proposition 3.3 implies that c_F , $B_F(1)$, and c_F^* are Z_{σ} spaces. Consider a decomposition $N = \bigcup_{i=1}^{\infty} N_i$ into infinite pairwise disjoint sets N_i so that the restricted filters F_i are isomorphic to F (see Lemma 8.7). Thus the spaces c_{F_i} , $B_{F_i}(1)$, and $c_{F_i}^*$ are linearly isomorphic to c_F , $B_F(1)$, and c_F^* , respectively. This together with Lemma 5.6 gives a homeomorphism $h: \mathbf{R}^{\infty} \to \mathbf{R}^{\infty}$ satisfying:

$$\begin{split} W(c_F\,,\,0) &\subseteq h(c_F) \subseteq (c_F)^\infty\,,\\ \prod_{i=1}^\infty B_F\left(\frac{1}{i}\right) \cup W(B_F(1)\,,\,0) &\subseteq h(B_F(1)) \subseteq \left(B_F(1)\right)^\infty\,,\\ W(c_F^*\,,\,0) &\subseteq h(c_F^*) \subseteq \left(c_F^*\right)^\infty. \end{split}$$

Now, Theorem 8.8 follows from Lemma 8.9 applied for $M = N = c_F$, $X = h(c_F)$, and $Y = (c_F)^{\infty}$ and from the following fact:

(i) $(c_F)^{\infty}$ embeds onto a closed subset of c_F .

The last is a consequence of (ii)-(iv) below.

(ii) $B_F(1)$ is homeomorphic to $(B_F(1))^{\infty}$.

By the obvious fact that $B_F(r)$ is homeomorphic to $B_F(1)$, for r > 0, and by Lemma 5.6(3), the product $(B_F(1))^{\infty}$ embeds as a closed subset of $B_F(1)$. Now, we apply Lemma 8.9, with $M = N = B_F(1)$, $X = h(B_F(1))$, and Y = $(B_F(1))^{\infty}$.

(iii) c_F^* is homeomorphic to $B_F(1)$. First let us observe that $c_F^* = \bigcup_{n=1}^{\infty} B_F(n)$. Now, (iii) follows from Lemma 8.9 applied for $M = c_F^*$, $N = B_F(1)$, $X = h(c_F^*)$, and $Y = h(B_F(1))$.

(iv) c_F embeds onto a closed subset of $(c_F^*)^{\infty}$.

Let $r: \mathbf{R} \to [-1, 1]$ be the retraction defined by

$$r(x) = (\operatorname{sgn} x) \min(|x|, 1).$$

Write for $(x_i) \in \mathbf{R}^{\infty}$,

$$f_n(x_1, x_2, \dots) = (x_1, x_2, \dots, x_n, r(x_{n+1}), r(x_{n+2}), \dots).$$

Then $f=(f_1\,,\,f_2\,,\,\dots)$ defines a closed embedding of \mathbf{R}^∞ into $(\mathbf{R}_\mathrm{bd}^\infty)^\infty$ (recall that $\mathbf{R}_\mathrm{bd}^\infty=\{(x_n)\in\mathbf{R}^\infty\colon\sup|x_n|<\infty\})$. Moreover, we have $f^{-1}((c_F^*)^\infty)=c_F$. Thus $f|c_F$ is an embedding of c_F onto a closed subset of $(c_F^*)^\infty$.

8.10. Remark. For every countable ordinal $\alpha \geq 2$ there exists a filter F such that $c_F \in \mathfrak{M}_{\alpha} \backslash \mathfrak{A}_{\alpha}$ and c_F is homeomorphic to $(c_F)^{\infty}$.

Proof. Let $F \in \mathfrak{M}_{\alpha} \backslash \mathfrak{A}_{\alpha}$ be a filter on N and let F^{∞} be a filter defined in the proof of Lemma 4.2(3). Obviously, the space $c_{F^{\infty}}$ is homeomorphic to $(c_F)^{\infty}$ and consequently to $(c_{F^{\infty}})^{\infty}$.

Added in proof. The authors have just learned that an equivalent version of Lemma 2.2 for filters is contained in Theorem 21 of [Ta].

REFERENCES

- [AU] P. S. Aleksandrov and P. S. Urysohn, Memuar o kompaktnych topologičeskich prostranstvach, 3rd ed., Moscow, 1971.
- [Ar₁] A. V. Arhangel'skii, A survey of C_p-theory, Q & A in General Topology 5 (1987), special issue
- [Ar₂] _____, Some results and problems in $C_p(X)$ -theory, Proc. Sixth Prague Topological Sympos., 1988, pp. 11-31.
- [BGvM] J. Baars, J. de Groot and J. van Mill, Topological equivalence of certain function spaces. II, VU (Amsterdam) rapportur. 321, December 1986.
- [BGvMP] J. Baars, J. de Groot, J. van Mill, and J. Pelant, On topological and linear homeomorphisms of certain function spaces, Topology Appl. 32 (1989), 267-277.
- [BM] M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite-dimensional absolute retracts, Michigan Math. J. 33 (1986), 291-313.
- [Ca₁] J. Calbrix, Classes de Baire et espaces d'applications continues, C. R. Acad. Sci. Paris 301 (1985), 759-762.
- [Ca₂] ____, Filtres boréliens sur l'ensemble des entiers et espaces des applications continues, Rev. Roumaine Math. Pures Appl. 33 (1988), 655-661.
- [DGLvM] J. Dijkstra, T. Grilliot, D. Lutzer, and J. van Mill, Function spaces of low Borel complexity, Proc. Amer. Math. Soc. 94 (1985), 703-710.
- [DGM] T. Dobrowolski, S. P. Gulko and J. Mogilski, Function spaces homeomorphic to the countable product of l_2^f , Topology Appl. 34 (1990), 153-160.
- [DM] T. Dobrowolski and J. Mogilski, Certain sequence and function spaces homeomorphic to the countable product of l_2^f , J. London Math. Soc. (to appear).
- [Ku] K. Kuratowski, Topology, vol. I, Academic Press, New York, 1966.
- [LM] D. Lutzer and R. McCoy, Category in function spaces. I, Pacific J. Math. 90 (1980), 145– 168.
- [LvMP] D. Lutzer, J. van Mill, and R. Pol, Descriptive complexity of function spaces, Trans. Amer. Math. Soc. 291 (1985), 121-128.
- [vM] J. van Mill, Topological equivalence of certain function spaces, Comp. Math. 63 (1987), 159-188.
- [SR] J. Saint Raymond, Fonctions boréliennes sur quotient, Bull. Sci. Math. (2) 100 (1976), 141– 147.

- [Ta] M. Talagrand, Compacts de fonctions mesurables et filtres non mesurables, Studia Math. 67 (1980), 13-43.
- [T] H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of l₂-manifolds, Fund. Math. 101 (1978), 93-110.
- [V] V. S. Varadarajan, Measures on topological spaces, Mat. Sb. 55 (97) (1961), 35–100; English transl., Amer. Math. Soc. Transl. (2) 48 (1965), 161–228.
- [W] W. W. Wadge, Degrees of complexity of subsets of the Baire space, Notices Amer. Math. Soc. 1972, A-714.

Institute of Mathematics, Warsaw University, PKIN IX p, 00-091 Warsaw, Poland Department of Mathematics, The University of Kansas, Lawrence, Kansas 66045 Department of Mathematics, University of Alabama, Tuscaloosa, Alabama 35486 Current address: Department of Mathematics, Bradley University, Peoria, Illinois 61625