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ON TOPOLOGICAL CLASSIFICATION OF FUNCTION SPACES C (X)
OF LOW BOREL COMPLEXITY

T. DOBROWOLSKI, W. MARCISZEWSKI AND J. MOGILSKI

ABSTRACT. We prove that if X is a countable nondiscrete completely regular
space such that the function space Cp(X ) is an absolute F_;-set, then Cp(X )
is homeomorphic to 6>, where ¢ = {(x;) € R*:x; = 0 for all but finitely
many i} . As an application we answer in the negative some problems of A.
V. Arhangel’skii by giving examples of countable completely regular spaces X
and Y such that X failstobea by-space and a k-space (and hence X is not
a k,-space and not a sequential space) and Y fails to be an R,-space while
the function spaces C,(X) and C,(Y) are homeomorphic to Gy (%) for the

compact metric space X = {0} U {n_l:n =1,2,...}.

1. INTRODUCTION

For a space X we define C,(X) to be the set of all continuous real valued
functions on X endowed with the topology of pointwise convergence. The
subspace of C,(x ) consisting of all bounded functions is denoted by C; (X).
This paper is devoted to the topological classification of C,(X) and C; (X) for
countable completely regular spaces X . Let us note that if X is nondiscrete,
then C p(X ) is a dense linear subspace of the countable cartesian product of real

lines R* (identified with R™), otherwise C,(X) = R® or R*. In [DGM] it
was proved that for every countable metrizable nondiscrete space X the spaces
C,(X) and C,(X) are homeomorphic to ¢, where ¢ = {(x;) € R*:x; =0
for all but finitely many i} (cf. [vM, BGvM, BGvMP])). Extending the work of
[DGM] we focus on the case when C,(X) is an absolute Borel set. The main
result of this paper is the following

1.1. Theorem. Let X be a countable nondiscrete completely regular space such
that the function space C,(X) is an absolute F,;-set. Then C,(X) and C; (X)
are homeomorphic to ¢ .

Since, for a countable metrizable space X , the space Cp(X ) is an absolute
F_s-set Theorem 1.1 generalizes the result of [DGM]. According to [DGLvM],

Cp(X ) cannot be an absolute G -set, provided that X is nondiscrete. Thus
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Theorem 1.1 gives a complete topological classification of spaces C,(X) which
are absolute Borel sets of the class not higher than 2. To the best of our knowl-
edge there is no classification result for spaces Cp(X ) of higher Borel com-
plexity. Let us mention that all multiplicative classes of Borel sets 9, where
a > 1, are represented among spaces C,(X) (see [LvMP, Ca,]). We conjecture
that the Borel class determines the topological type of a space Cp(X ).

The essential step in classifying spaces Cp(X ) is the case of countable spaces
X which have exactly one nonisolated point. Such X are precisely the spaces
Ny ={oo}uU{0, 1,2, ...} topologized by isolating the points of N = {0, 1,
2, ...} and by using the family {4 U {cc}: 4 € F} as a neighborhood base at
oo, where F is a filter on N. We recall that a family F C 2" is a filter on a set
Yif d¢gF, AnNBeF provided A, Be F and ACCCY, A€ F implies
C € F. We say that filters F onaset Y and G on a set Z are isomorphic
if there exists a bijection a: Y — Z such that 4 € F iff a(4) € G. By § we
denote the filter on N consisting of all cofinite subsets of N. Obviously, the
space Ny is homeomorphic to the space X = {0} U {n_l:n =1,2,...} CR.
The spaces C,(Ny) can have arbitrarily high Borel complexity; furthermore
they may not be Borelian (see [LvMP]). Corollary 3.6 and Theorem 8.8 seem to
be useful in classifying general spaces Cp(N r) and they are motivated by the
F_s-case.

Here, similarly as in [DGM], we employ the method of absorbing sets but
we do it in a more implicit way. We also explain basic facts on first category
filters.

We also discuss two examples of filters F and G such that N fails to be a
be-space and a k-space (and hence N, is not a k -space and not a sequential
space) and N; fails to be an R,-space while the function spaces C,(N.) and
Cp(NG) are absolute F_;-sets and according to Theorem 1.1 are homeomorphic
to Cp(Ns) , for the compact metric space N, . This solves in the negative several
problems of A. V. Arhangel'skii from [Ar, ,].

2. FIRST CATEGORY FILTERS

As usual 2~ denotes the set of all subsets of N. If 4, S € N , then we write
Vd,S)={Ce N:cns=4n S} . We will consider the space 2N endowed
with the topology generated by all sets V' (4, S) for finite S. Obviously, N
can be identified with the Cantor set {0, I}N. In this notation N can be
replaced by any infinite countable set.

The following two lemmas are inspired by [LM, Theorems 4.6, 5.1, and 6.3].
Their proofs presented below are slight modifications of the reasoning from
[LM] and they do not use the language of the game theory employed there.

2.1. Lemma. Let {G,} be a decreasing sequence of open dense subsets of N,
Then for each finite tuple (i, i,, ..., I, ) of elements of N we can assign a
finite subset S(i,, i,, ..., i) of N such that
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(1) the families {S(j)};’f’__l and {S(i;, iy, ..., i, j)}}'il are pairwise disjoint,
(2) for every sequence {i,}.., there exists C € (., G, such that C 2
N\UR, Sy s by oens i) - |
Proof. We will construct the required sequence of finite sets {S(i;, i,, ..., i;)}
inductively on k. Simultaneously, we will construct a sequence of subsets of
N, {C(,, iy, ..., i)} . We will use the following notation:

I
Ry, by i) =S iy oo iy )
j=0

and
TG, iy, ..., ) =R(E)UR(,, ) U--UR(iy, iy, ..., i)

We require that the sequences {S(i,, i,, ..., i)}, {R(i;, i, ..., i)}, and
{T@,, i, ..., i)} together with {C(i,, i,, ..., i)} satisfy the following con-
ditions indexed by k:

(a;) S(0)=0 and C(0)=N,

(b)) V(C(,), R(1;)) € G,nV(C(0), R(i; — 1)) and S(i{,)NR(i, - 1)=0
fork=1and i =1,2,...,and

(a,) the family S$(0), S(1), ..., S(i), S(,,0),S3,, 1), ..., S8, ),
v SOy e G5 0), SU L Gy oo Gy 1), 83, 0y, el 8) S
pairwise disjoint,

(b)

V(C(,, by e s iy, 0), T(iy, iy, ooty iy, 0))
CGNV(CU by eees b ) Ty, by ey B y))s

(Ck)

V(CGU, s by e s By 8)s TU s s ey By B))
CGNV(D, T(y, iy, .., ifp_y, 1)),
where D = C(i,, iy, ..., i, JUR(i,, iy, ..., ip_,, i, —1) if i, >0 for k > 1
and for every k-tuple (i, iy, ..., ;).

Let us assume that our construction is completed for some k. Now we
shall describe the construction for an arbitrary (k + 1)-tuple. Fix a k-tuple
(&5 iy, ..., i;). First we choose S(i,, i,, ..., ,0) and C(i, i), ..., i, 0)
in 2V such that S(iy, Iy .-+, I, 0) is finite and the conditions (a,,,) and
(by,,) are satisfied. The S(i;, iy, ..., i, i) and C(i|, iy, ooy i, Biyy)
can be found to satisfy (a,,,) and (c,,,).

Now, for every sequence {i,},., we have

Cliyy by ey E)NT (s by vy i) = Cliysdyyevey iy )NT iy by enn s 0)
for n=1,2,... and m > n. By our construction, if

C= (N\US(il,iz,...,ik)) NS by i)NCG by, e BY)),
k=1

k=1
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then

Cn(U T(il,iz,...,ik)) = J(Cl,, iy oo )N T3y ey B)

k=1 k=1
and hence the set C satisfies condition (2).

2.2. Lemma. Let F be a family of subsets of N with the property that AC B,
A € F implies B € F. Then the following conditions are equivalent:

(a) F is a first category subset of N,

(b) There exists a matrix {A(n, m):n,m=1,2,...} of finite subsets of N
such that eachrow {A(n, m):m =1, 2, ...} is pairwise disjoint and for every se-
quence {m(n):n=1,2,...} andevery A€ F we have AnU,_, A(n, m(n)) #
.

(c) There exists a matrix {A(n, m):n,m = 1,2, ...} of pairwise disjoint
finite subsets of N such that for every sequence {m(n):n=1,2,...} and every
A€F wehave AnU,., A(n, m(n)) # Q.

Proof. (a) = (b). Since F is a first category subset of 2" there exists a de-
creasing sequence of open dense subsets {G,}>°, of 2" such that N2, G, N

F =@. Let {S(i,,i,,..., 1)} be the family of finite sets satisfying (1)
and (2) of Lemma 2.1. The entries of a required matrix will be just the sets
Sy, 1y, ..., 1) . Weset A(1, m) = S§(m) and let each family

{SU,, i,y g, mim=1,2,...}

form a row {A(n,m):m = 1,2,...}. Assume that the matrix {A(n, m):
n,m=1,2,...} fails to satisfy (b). Then there exists a sequence {i,} and
A€ F suchthat ANU. S(i,, iy,..., 1) =3. By (2) of Lemma 2.1, there
exists C € Uyo, G, such that N\U>, S(i,, i,, ..., §;) € C. Therefore 4 C
C, yielding C € FN_, G,, a contradiction.

(b) = (c). It is enough to find sequences {m(n, j):j =1,2,...} such
that the family {A(n, m(n, j)):n,j = 1,2,...} is pairwise disjoint. Set
m(l,1) = 1 and assume {m(n, j):n + j < p} has been constructed. For
l'e N such that 1 <[ < p we pick m(/,p+1—1) to be the first index such
that A(/, m(l, p + 1 — 1)) is disjoint with the following finite set:

U{A("n,m(n,j)):n< 1 andn+j=p+1}UU{A(n,m(n,j)):n+j§p}.

(c) = (a) . Condition (c) is equivalent to the following one: for every 4 € F
there exists n such that A(n,m)NA4 # & for m=1,2,.... Write X, =
{Ce 2N:VmA(n, m) N C # &} . It follows that F C |J,, X, . Moreover, each

set X, is a closed boundary subset of N,

Let us recall that a filter F on N is said to be free if (), 4 = . Obvi-
ously, a filter F is free iff F is dense in 2N ,and iff FC F.

2.3. Lemma. Let F be a free filter on N. Then the following conditions are
equivalent:
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(i) F is an element of the sigma-algebra generated by the open subsets and
the first category subsets of 2N,

(ii) F is a first category subset of 2N,
Proof. 1t is enough to show the implication (i) = (ii). By the assumption
F = (U\X)UY, where U is an open subset of 2" and both X and Y are
first category subsets of 2N . Assume that F isnot a first category subset of N,
Then U # &, and hence there exists C € U and / € N such that V(C, S) C
U,where S={1,2,...,1}. Write Ny=N\S andlet F;={4ANN;:4€ F}.
Since F is dense in 2N, F, is a dense filter on N,. Moreover, since F
contains a dense G subset of U, F, contains a dense G; subset of 2No
Let &: 2N, 2Mo pe the homeomorphism assigning to each C the set Nj\C.

By the filter property we get ¢(F) N F, = &. Consequently, 2™ contains two
disjoint dense G subsets which contradicts the Baire category theorem.

2.4. Proposition. For every filter F on N and every decomposition N = U?:n N,
of N into infinite pairwise disjoint sets N; we write F, = {ANN;: A € F}. Then
we have

(1) forevery A, € F,, i=1,2,...,1, U_ 4,0UU,,N,€F,

(2) F; embeds as a closed subset of F,

(3) if, in addition, F is a free first category filter, then there exists a decom-
position N = U‘i’il N, such that each F, is a free filter on N, .
Proof. To verify (1), observe that ﬂizl /Il C ULI A; U5, N; , where ,;1: e F
and /f,ﬂN,. = A; . The map which assigns to each 4 € F; the set AU(N\N,) isa
closed embedding of F; into F . To prove the last assertion, pick from Lemma
2.2(c) amatrix {A(n, m):n, m=1, 2, ...} of pairwise disjoint finite sets such
that J{A(n,m):n=1,2,...}NA# O for Ac F and m=1,2,.... We
let N,=U,>_,4(m, i) for i>2 and N, =N\U,N,.

3. Z,-PROPERTY OF FUNCTION SPACES C,(X)

We recall that a closed subset X of an absolute neighborhood retract M is a
Z-setif everymap f:K — M of acompactum K into M can be approximated
by maps f:K — M\X . A space which is a countable union of its own Z-sets is
called a Z -space. In this section we prove that some spaces C,(X) (and their
subspaces) are Z _-spaces. We will need the following well-known fact about
Z -spaces.

3.1. Fact. Let X and Y be dense linear subspaces of R™ such that X C Y
and Y isa Z -space. Then X isa Z_ -space.

3.2. Lemma. For every completely regular infinite countable space X the func-
tion space C; (X) isa Z_ -space.

Proof. We identify X with N. Then C;(X ) is a dense linear subspace of R™
which is contained in the subspace Rpy = {(x,) € R™:sup|x,| < oo}. The
space R;j isa Z_-space. By 3.1 the space C; (X) is a Z_-space.
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Throughout the paper we use the following subspaces of R™. If F C 2N,
then
cp ={(x,) ER™:V, 3, plx,| <& forall ne A},
={(x,) € cpisup,, |x,| < oo}, and
B(r) ={(x,) € cgisup,, |x,| < r}, where r > 0.

3.3. Proposition. Let F be a family of subsets of N such that § C F and
ACB, A€ F implies Be F. If F as a subset of 2N s of the first category,
then the sequence spaces c., cy., and Bg(r) are Z_-spaces.

Proof. By (b) of Lemma 2.2 there exists a matrix {A(n,m):n,m=1,2,...}
of pairwise disjoint finite subsets of N so that for every 4 € F there ex-
ists n such that A(n,m)N A # @ forall m. Fix r > 0. Let X,(r) =
{(x,) € 'Y e uin, m) |xk| < r/2} for n =1,2,.... Clearly, each X, (r)
is a closed subset of ¢, and ¢, = U, X,(r), ¢ = Ujo, X,(r) Ny and
Bp(r) = Uy, X,(r) N Bg(r). Fix n € N. We shall show that the sets X (r),
Xn(r)nc; ,and X, (r)NBg(r) are Z-sets in the suitable spaces. Let f:K — ¢,
be a map of a compactum K. Let, for m=1,2,..., g,:R*” — R” be the
map defined by g, ((x;)) = (v,), where y, = 0 for i > maxA(n,m), y,=r
for i € A(n, m), and y, = x; otherwise. If m is sufficiently large then the map
f= g, /K — R closely approximates f and satisfies f(K)nX L(r) =
Since § C F we additionally have f (K) € cg; moreover, if f (K) C cF or
Sf(K) € Bg(r) then also f(K)C c} or f(K)C Bp(r), respectively. The proof
is complete.

3.4. Corollary. For every free Borelian filter on N the spaces c, c;. , and
Bg(r), r>0, are Z_-spaces.
Proof. Follows immediately from 2.3 and 3.3.

It is standard that for every filter F the spaces C,(N) and C (Ng) are
linearly isomorphic to the products R x ¢, and R x c;. R respectlvely

3.5. Corollary. For every free first category filter F on N the space C,(Ng)
isa Z -space.

Proof. By Proposition 3.3 the space ¢, and consequently the product R x ¢,
are Z_-spaces. Thus Cp(N r) > being homeomorphic to R x ¢, is a Z_-space.

3.6. Corollary. Let X be a countable nondiscrete completely regular space such
that the space C,(X) is analytic (i.e., a continuous image of the space of irra-
tionals). Then C(X) isa Z -space.

Proof. Let a € X be an accumulation point, ¥ = X\{a},and F={4ACY:a
is an interior point of AU {a}}. Then F is a free filter on Y. We shall
prove that F 1is an analytic subset of 2¥. Let us recall that a set which is

simultaneously closed and open is called clopen. First observe that the set
G={BC X:B isclopen in X and a € B} is analytic in 2% since it can be
identified with a closed subset {f € C,(X): f(X) C {0, 1} and f(a) = 0} of
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C,(X). Theset G={(4,B)e2" x2":B€ G and B C AU{a}} is analytic
in 2¥ x 2* and because X is zero-dimensional F is an image of G by the
projection onto the first axis. Thus F is analytic in 2r.

Now, by [Ku, §39] and Lemma 2.3, F is the first category subset of 2r.
Obviously, Cp(X ) C E, where

E={feR"Y, o3, V. ,lf(@) - fx) <e}.

The space E can be identified with Cp(NF). Hence, by Corollary 3.5, the
space E isa Z_ -space. By 3.1 the space Cp(X ) isa Z_-space.

4. BOREL COMPLEXITY OF FUNCTION SPACES Cp(X )

For a countable ordinal o, 9t  and 2, denote the class of all absolute
Borel sets of the multiplicative and additive class «, respectively. If a > 2,
then there exists a filter on N which belongs to 9\ (see [LvMP], cf. [Ca,]).
The filter § is in the class 2,\9, . It is an easy observation that there exist no
filters in the class 9M,\2, (see [Ca,]). For every nonempty subset 4 C N the
filter F(A4) = {B C N:4 C B} is a compact set in 2V and hence F (4) € M.
Moreover, every compact filter is of the form F(A4) for @ # A CN.

A filter F is an absolute Borel set (shortly a Borelian filter) iff the space ¢,
is an absolute Borel set. Moreover, Borel complexity of ¢, heavily depends on
F and vice versa. Namely, we have

4.1. Lemma. For every filter F there exists a closed embedding of F into the
space cg .

Proof. The map sending each 4 € F onto k, € ¢, where k ,(i) =0 for i € 4
and k(i) =1 for i ¢ 4, is a required closed embedding.

42. Lemma. Let F be a filter on N and let o be a countable ordinal, o > 1.
Then:

(1) if FeM_, then c,. € M_,

(2) if FeMm\A_, then c, €M\,

(3) f Fem nNA\Up (Ag UMy), then cp € M\A_,

(4) if FeA\M , then c, €M \A ., .
Proof. The assertions of this lemma (except for (3)) were proved in [Ca, ,].
For the sake of completeness we include our proof of Lemma 4.2.

(1) We will present here a slight simplification of the original proof of (1).
Suppose F € M for some countable ordinal o. Write

(gt )

n=1 —n=1

and let f: T°° — 2N be defined by fi((x;)) = {i € N:|x;| < 1/k} for (x;) €
T and k = 1,2,.... Then the maps f, are continuous and T N¢, =
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N2, £ (F). Thus T Nc, € M. Let g:T — R be a linear extension of
the map sending £ —47",1+47" onto L for n=1,2,...,and 1-4",
1+4" onto 1 for —n=1,2,.... Then the map g=: T — R™ defined by
£°((x,)) = (g(x,)) is a proper surjection with (g*)™'(c;) = T™ n cp (let us
recall that amap f: X — Y is proper if f _I(K ) is compact whenever K is a
compact subset in Y). Now, the result of [SR] implies that ¢, € M .

(2) This is a consequence of (1) and Lemma 4.1.

(3) We shall use Calbrix’s argument of [Ca; ,]. Let F bea filter on N
such that F e Mm_ n2A \U 8 <a(91ﬂ U zmﬂ). Express N as a union of pairwise
disjoint families of infinite sets N, = {n; |, n;, ,,...}. Define a new filter
F* consisting of all sets of the form U;’:l A;, where 4, € F, and F; is an
isomorphic copy of F on N,. First we show that F™ € 9 _\2_. It is enough
to observe that for every C C 2N such that C € 9 there exists a continuous
map f:2% — I, 2% = 2% with f7'(F®) = C. Let C = N, C,, where
C e Uﬁmﬁlﬂ for i=1,2,.... Fix i > 1. By the “Wadge lemma” either
there exists a continuous map f;: 2N - 2N such that f,._l(Fl.) = C; or there
exists a continuous map g;: 2N - 2N such that g,._l(ZN\Ci) = F,. Since
Foem N\ Uﬂ<a(mﬂumﬂ) and C; € Uﬂ<a A, the map g; cannot exist. Let
2N o 132, 2V be the map defined by f(x) = (fi(x), f,(x),...), where
fi 2N 2N satisfies fi_l(Fi) =C, for i =1,2,.... Now, by (2), we get
Cpeo € M \A, . The map ¢: R* — R™ given by the formula #((x,, j)) =
> 2_'._1|xn‘_,j|(1+|xni‘j|)_1);":’l has the property that ¢—I(CF) = cp« . Hence
cp €9, .By (1), c,em, .

(4) We can repeat the proof of (3) (cf., [Ca, ,]).

Let X be a countable completely regular space and let a be an accumulation
point of X . Then

X\{a}, . o tar :
F,={A€2 :a is an interior point of AU {a}}
is a free filter on X\{a}.

4.3. Lemma. Let X be a countable completely regular space such that for every
accumulation point a € X the filter F, € M. Then C (X) €M, .

Proof. Let a be an accumulation point of X and let X denote the space X
topologized by isolating points of X\{a} and by using the family {AU{a}: 4 €
F,} as a neighborhood base at a. The spaces C,(X) and C, (X ) are linear

dense subspaces of R* . By Lemma 4.2 C,(Xp) €M, . Since

C,(X) = ﬂ{Cp(XFa): a is an accumulation point of X'}

we have C (X) €M, .
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5. SEQUENCE SPACES RELATED TO F oo FILTERS

In this section we give a complete topological classification of sequence spaces
¢p which are absolute F_;-sets (i.e., ¢, € M,). Since for a compact filter F(C),
CCN, cpey={lx) € R”:x, =0 for i € C} and for an arbitrary filter F,
cg € {(x;) € R”:x; =0 for i € N, A} we can reduce our classification to
the case when the filter F is free. Obviously, a filter F is free iff the space N
is completely regular.

5.1. Proposition. Let F be a free filter which is an absolute F_;-set. Then the
sequence space cp is homeomorphic to a”.

To prove Proposition 5.1 it is enough to verify that the space ¢, satisfies the
assumptions of the following lemma:

5.2. Lemma. Let {X;} beasequence of F_s-absolute retracts such that, for each
i, ¢ is embeddable onto a closed subset of X,. FixpeX,, i=1,2,....
Then every F_;-space X which is a Z -space and satisfies

W(X,,p)= {(xi) € HXi:xi = p; for all but finitely many i} cCXcC HX,.
i=1

i=1
is homeomorphic to ¢ .

Proof. Lemma 5.2 is a slight modification of the characterization of ¢, used
in [DGM, DM], which follows easily from Lemma 2.3 of [DM] and Theorem
6.5 of [BM].

We will also need the following fact proved in [DM, Corollary 2.5]:

5.3. Lemma. Let X, for i = 1,2,..., be an absolute retract which is a
Z -space. Then the product [, X; contains a closed copy of ¢*° .

Below we present a new, more elementary, proof of Lemma 5.3 which is a
consequence of the following general observation:

5.4. Lemma. If X is an absolute retract which is a Z -space, then for each
ag-compact space A there exists a proper map f- A — X .

Proof. Assume that A4 is a subset of the Hilbert cube I and 4 =J,., 4,,,
where A, is compact and 4, C A, for n=1,2,.... Let Y be a complete
absolute retract such that X C Y and Y\ X islocally homotopy negligible in Y,
i.e., for every open family 4 of Y and for every map f: I> — Y there exists
amap g:I® — Y which is $i-close to f and such that g(f~'(UW)) C X,
see [T]. We shall construct a map f: I — Y with f _I(X ) = A. Then the
restricted map f|4 is a proper map of 4 into X . Since X isa Z_-space, we
can find Z-sets X, in Y for n =1, 2, ... such that ch:U:‘;an and
X, € X, C---. Fix a complete metric d on Y which is bounded by 1. Let
Jo: I7 - Y\)? be a map and let 4, = X, = @. We will inductively construct
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a sequence of maps f: 1 ® Y satisfying for n = 1,2, ... the following
conditions:

(i f,4,)cXx, ~

(ii) f,(I7\4,) CcY\X,

(lll) f;,lA,,_| = n—llAn—l ’

(iv) d(f,(x), f,_,(x)) <47"d(f,_ (%), X,_)).
Assume that the maps f: I — Y satisfying the conditions (i)-(iv) have
been already constructed for 0 < i < n. By the local homotopy negligi-
bility of Y\X there exists a map g: /> — X such that g|4, = f,|4, and
d(g(x), f,(x)) < 4'"'2d(fn(x), X,) . Since X is a countable union of Z-sets
in a complete absolute retract Y there exists a homotopy 4,: Y — Y such that
hy = idy, h|X, =id, for 0 << 1, h(Y\X,) C Y\X for ¢ >0, and
diam{A,(y): 0<t<1} < 4_"_2d(y, X,) . Welet f (x)= hyx)(8(x)) , where
A: 1% = [0, 1] is a continuous function with A~'(0) = wr1- X €A,
then A(x) = 0 and consequently f _,(x) = hy(g(x)) = g(x); in particular,
S (x) = g(x) = f,(x) for x € 4,. If x € I"\4,,,, then g(x) ¢ X and
A,(x) > 0; hence f, ,(x)= hl(x)(g(x)) € Y\X. Thus f,41 satisfies the condi-
tions (i)-(iii). To show (iv) we use the following inequalities:

d(£,(%), £, (%) S d(f(x), 8(x)) +d(g(x), hyp(8(X))
<47 zd(f (x) ) +47"d(g(x), X,)
<@ P Ha" A+ 47ThAS (0, X))
< 4‘”“d(f,,(x), X,).

Now, by (iv), the sequence {f,} uniformly converges to a map f: I Y. By
(i) and (iii) we get f(A4) C X . To show that f(I°°\4) C Y\X, we first observe
that for n > k,

d(f,(x), X,) > (1-4"Nd(f,_,, X;)
> 2 (1 —4‘")(1—4‘"*'>~~(1 — 47 Nd(f(x), Xp).
Hence, we have d(f(x), X;) > [T~ k+1( Nd(f(x), X,). If x € I™\4
then d(f,(x), X,) > 0. Since ], ( 4'") > 0, k > 0, we obtain

d(f(x), X,) >0 for x € I”\4 and k = 1,2,... ; consequently f(x) ¢ X,
for k=1,2,....

Proof of 5.3. We write N = |J_,N;, where the N; are infinite and pairwise
disjoint for i =1, 2, ... . Since
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it is enough to show that for i = 1, 2, ... there exists a closed embedding
Vo — ]'[msNﬂ_1 X, x HneNz,. X, . First let us observe that each nontrivial

absolute retract contains the interval [0, 1] and the infinite product of such
absolute retracts contains the Hilbert cube 7°°. To obtain v; we choose any
embedding u;: 0 — HneNz_ an and a proper map from Lemma 5.4 f: 0 —

Hnesz X, and set v, =u; x f;.
We will also employ the following

5.6. Lemma. For any filter F on N, any decomposition N = Uf.’:l N, into
pairwise disjoint infinite sets N,, and for the natural isomorphism h: RY -
12, RN we have

(1) Wi(cg,0) Chlcp) CITZ ¢

(2) W(Bg(r),0)C h(Bg(r)) c [T, bg(r), for r>0, and

(3) TIZ, Br(3) C h(Bg(1)),
where F,={ANN;: A€ F}.
Proof. The inclusions are easy consequences of the observation that 4, U 4, U

-UA, UN,  UN, ,U--- belongs to F forevery 4, € F; and for arbitrary
k ; cf. Proposition 2.4.

Proof of Proposition 5.1. By Lemma 4.2 the space ¢, is an absolute F_;-set.
Corollary 3.4 implies that ¢, is a Z -space. Since F is free on N, by (3)
of Proposition 2.4, there exists a decomposition N = U(i’:l N, such that each
F,={ANN;: A€ F} is afree F_ g-filter on N,. Now, by (1) of 5.6 and 5.2, it
is enough to show that ¢, (equivalently, c.) contains ¢> as a closed subset.
The last follows from (3) of Lemma 5.6, Lemma 5.3, and Corollary 3.4.

Similarly we can prove the following

5.7. Proposition. For every noncompact F_s-filter F on N the spaces c} and
Bg(r), r> 0, are homeomorphic to ¢ .

6. TOPOLOGICAL CLASSIFICATION OF FUNCTION SPACES Cp(X )
OF TYPE F

In this section we prove Theorem 1.1. We start with the following general
fact.

6.1. Proposition. Let X be a countable nondiscrete completely regular space.
Then one of the following conditions holds:

(i) there exists a clopen subset Y of X with exactly one accumulation point.
(ii) there exists a decomposition X =\J,-, X, , where {X,} | is a pairwise
disjoint sequence of nondiscrete clopen sets.

Proof. Suppose that (i) does not hold. Then by induction, we construct the
decomposition X = ., X, of (ii). Let X = {x,, x,,...} and X, = @.
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Assume that we have constructed pairwise disjoint nondiscrete clopen subsets
X, X,,..., X, of X such that Y, = X\ U;'zl X, is also nondiscrete and
{x,%,...,x,} C U?=1 X;. By our assumption Y, contains at least two ac-
cumulation points. Using the fact that X is zero-dimensional, we can divide
Y, into two nondiscrete clopen sets. We choose one of them as X, , in such

. . . 1
a way that {x, x,,..., X, } is contained in U;’:l X;.

The next proposition summarizes the results of the previous section.

6.2. Proposition. Let F be a filter on N. Then the following conditions are
equivalent:
(@) C,(Ng) is homeomorphic to o™,

(b) C,(Ng) is an absolute F,s-set and not a Gy-set,

(c) The filter F is a noncompact F_;-subset of 2N,
The same is true for the space C; (Ng).

Proof. The implication (a) = (b) is well known. (b) = (c) follows from
Lemma 4.1. Finally (c) = (a) follows from Proposition 5.1 and the fact that
Cp(N r) 1s linearly isomorphic to R x ¢ .

Proof of Theorem 1.1. We only present a proof for the space Cp(X ) (the proof
for the space C; (X) is the same). We shall consider two cases:

(1) The space X satisfies (1) of Proposition 6.1. Let Y be a clopen subset
of X with exactly one accumulation point. The space Y is homeomorphic to
Ny, where F is a noncompact filter on N. Moreover, the space Cp(X ) is
linearly homeomorphic to C (Y) x C (X\Y). By Proposition 6.2, C,(Y) is
homeomorphic to ¢ . Hence, by Corollary 5.4 of [BM], it follows that C,(X)
is homeomorphic to ¢~ .

(2) The space X satisfies (ii) of Proposition 6.1. Let X = U:‘;l X, bea
decomposition of X into pairwise disjoint nondiscrete clopen sets. Now, the
space Cp(X ) is homeomorphic to the product ]'[:o=1 Cp(Xn) , where all spaces
Cp(Xn) and C p(X ) are F_s-absolute retracts which, according to Corollary 3.6,
are Z -spaces. From Lemmas 5.2 and 5.3 it follows that C,(X) is homeomor-
phic to ¢

7. EXAMPLES OF SPECIAL Fa 5-FILTERS

In this section we apply Theorem 1.1 to answer in the negative several ques-
tions posed by A. V. Arhangel'skii and related to the following general problem:
how close do the properties of the spaces X and Y have to be if Cp(X ) and
C,(Y) are homeomorphic? We will discuss the properties of the spaces X and
Y listed below. A Hausdorff space X is a k-space if for each 4 C X, the
set A is closed in X provided that the intersection of 4 with any compact
subspace K of X isclosedin K. A k-space X isa k -space if there exists a
countable family & of compact subsets of X such that |J& = X and for every
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compact subspace K of X there exists L € & such that K C L. A topological
space X is called a sequential space if a set 4 C X is closed iff together with
any sequence it contains all its limits. A space X is called an R -space if there
exists a countable family & of subsets of X such that for every compact subset
K C X and for every neighborhood V' of K in X one can find P € & with
K CPCV. Asubset A of a space X will be called R-bounded in X, if
every function f € C,(X) is bounded on 4. A function f: X — R is called
strictly b-continuous if for every R-bounded subset 4 C X there exists a map
g€ C,(X ) such that f|4 = g|4. A space X is said to be a bg-space if every
strictly b-continuous function f: X — R is continuous.

Recall that X = {O}U{n_]: n=1,2,...} and that X can be identified with
the space N;.

7.1.  Example. There exists a free F_;-filter F on N such that:

—~

a) the space N, is countable and completely regular,

b) the function spaces Cp(N r) and CP(X) are homeomorphic,
c) the space N, is not a k-space, while X is compact metric,
d) the space N is nota k_ -space,

e) the space N is not a sequential space,

f) the space N is nota bg-space.

P

Proof. Let F be a filter of sets of density 1, i.e.,
F= {A CN: nlinolon_lcard(An{l, 2,...,n}) = 1} ,

where card(B) denotes the cardinality of a set B (cf. [AU, p. 119; V, p. 98]).
Since F =2, Up_ Nre {4 S N: k~'card(4 n {1,2,...,k})>1- n_l} ,
F is a free F_s-filter on N. The assertion (a) is obvious and (b) follows
from Lemma 4.2 and Theorem 1.1. Since for every infinite M C N there is
A € F such that M\A4 is infinite the space N, does not contain any nontrivial
convergent sequence. Moreover, all compact subspaces of N are finite. Hence
N, is not a k-space and (c) holds. The assertions (d) and (e) are immediate
consequences of (c). One can easily observe that all R-bounded subsets of N
are finite. Hence every function from N, into R is strictly b-continuous.
Consequently N, is not a by-space.

Example 7.1 answers the problems 12, 24, 25, 26 of [Ar,] and 6, 7, 26 of
[Ar,].

7.2. Example. There exists a free F_-filter G on N such that:

(a) the space N, is countable and completely regular,
(b) the function spaces Cp(NG) and CP(X) are homeomorphic,
(c) the space N is not an X -space while X is compact metric.

Proof. Asafilter G we take one of the filters described in [LvMP]. Let 2" be the
set of all functions from {0, 1,...,n—1} into {0, 1} for n=1,2,.... Let
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us put T ={J;2,2". For each function x: N — {0, 1} we define B, = {x|n €
2":n=1,2,...} tobeabranch in T, where x|n denotes the restriction of
the function x totheset {0, 1,...,n—1}. The filter G on the countable set
T is generated by the family {T\  UB_U---UB _US):n>1,x €{0, l}
and S is a finite subset of T7}. We 1dent1fy T w1th N and cons1der G as
a filter on N. Obviously, the filter G is free. By [Ca;] G is an F_ -subset
of 2¥. The assertion (b) follows from Lemma 4.2 and Theorem 1.1. Now we
shall verify (c). We identify N, with TU{cc}. Let 6={P:n=1,2,...}
be a family of subsets of 7'U{oco}. We will construct a compact set K and an
open set V' in T U {oo} such that K C V' and for every n the set K is not
contained in P, or the set P is not contained in V. By induction one can
easily define a sequence {tn}:’;] , where ¢, € 2" and such that

(*) t,{0,1,...,n=2}=1¢,_,,if n>1,

(xx) t, € P, or s, & P, where s, € 2" isdefined by s,|{0, 1,...,n-2} =
t,{0,1,...,n=2},if n>1,and s,(n—-1)#¢,(n—-1)if n>1.
Now, let x € {0, 1}N be such that x|[{0,1,...,n—-1} =1¢,. Weset V =
(Tu{co})\B, and K = {s,: n=1,2,...}U{oo}. Let us observe that B NK =
& and for every y € {0, l}N, Yy #£ X, By N K is finite (if n is such that
x|n # y|n, then s, & B, for k > n+1). Hence the set K C V is compact
and, by (*x), the set P, is not contained in V' or the set K is not contained
in P forevery n=1,2,....

Example 7.2 answers the problem 34 of [Ar,] (cf. also problem 36 of [Ar,]).

8. SEQUENCE SPACES OF HIGHER BOREL COMPLEXITY

According to [LvMP, Ca,] and Lemma 4.2 for every countable ordinal a >
2 there exists a filter F' on N such that ¢, € M \2 . In [BM] it was shown that
in each class 9, there exists a maximal object Q which can be characterized
as follows:

8.1. Proposition. 4 space X is homeomorphic to Q_ iff X satisfies the fol-
lowing conditions:

(1) X is an absolute retract,

(2)-Xem,,

(3) X isa Z_,-space,

(4) X is homeomorphic to X

(5) X is M -universal, i.e., each Y € M is embeddable onto a closed subset

of Q.

Let us note that €, is just 0™ and in §6 we have proved that if X is a
countable completely regular space such that C (X) € M,\%,, then C (X) is
homeomorphic to ™ . It suggests the following

8.2. Conjecture. For every countable completely regular space X such that
C,(X) e m\2,, C,(X) is homeomorphic to Q..
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Now, we focus on the spaces ¢, for Borelian filters ¥ on N. For spaces
¢p the condition (1) is clear. According to [Ca,] (see Lemma 4.2) ¢, € M
provided F € M _. The condition (3) is a consequence of Corollary 3.4. The
conditions (4) and (5) are the major obstacles in order to confirm Conjecture
8.2 for higher Borelian classes.

8.3. Problem. Let F be a filter on N such that F € A UM _, where a > 1.
Is ¢, homeomorphic to (c;)™

8.4. Problem. Let for a filter F on N the space ¢, € M \%A, . Can every
X € M, be embeddable onto a closed subset of ¢, ?

For a = 2 the condition (5) is a consequence of the remaining four condi-
tions. For higher «, we ask

8.5. Problem. Let X satisfy the following conditions:

(1 ) X 1is an absolute retract,
2) Xem\u,

(3) X isa Z -space,

(4) X is homeomorphic to X*°
Is X homeomorphic to Q_?

8.6. Remark. We say that a set X in a compact space M is Wadge 9 -
maximal in M if X € M and for a subset ¥ of M, with Y € 9 _, there

exists a map f: M — M such that f _I(X ) = Y. An inspection of the proof
of Lemma 5.3 yields the fact that a space X satisfying the conditions (1)-(4)
is Wadge ,-maximal in a topological copy of the Hilbert cube I . The last
result can be considered as a Hilbert cube counterpart of the fact that in the
Cantor set each set 4 € M \2A is Wadge 9 -maximal (see [W]). To answer
8.5 in the positive, it is enough to show that a space X satisfying (1')- (4') is
Wadge 9 -maximal in a topological copy of the Hilbert cube.

The condition (4) for spaces ¢ is closely related to decomposability of filters
F described in Proposition 2.4. If a space ¢, € 9M,\%,, then the restrictions
F, of the filter F of Proposition 2.4 are in the class (9,\2,) U (2%,\7M,) and
consequently Cp, € 9,\2, . This was the crucial step in verifying the condition
(4). For hlgher a the Borel type of spaces Cr for restricted filters F, can
be essentially lowered. That is why we introduce the following deﬁmtlon A
filter F on N is decomposable if there exist infinite, disjoint sets N, and N,
such that N =N, UN, and F, = {ANN;:a € F} is a filter on Ni which is
isomorphic to F for i = 1,2. Then we have F = {4, UA4,: 4, € F, and
A, € F,} and we write F = F| x F,. By an easy induction we obtain

8.7. Lemma. If F is a decomposable filter on N, then there exists a sequence
{N,} ofinfinite pairwise disjoint subsets of N with N = U‘i’:l N, , and such that
each F,={ANN;: a € F} is a filter on N, which is isomorphic to F .

The main result of this section is the following:
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8.8. Theorem. Let F be a first category filter on N which is free and decom-
posable. Then the sequence space cy is homeomorphic to (cp)™

The proof of Theorem 8.8 is based on the following lemma which is a stan-
dard fact about absorbing sets (see [BM]):

8.9. Lemma. Let X and Y be absolute retracts which are Z -spaces. Assume
that there are noncompact absolute retracts M and N and p e M, g € N
satisfying W(M ,p) C X C M™ and W(N, q) CY C N>, where for a space
Z and z € Z we write

W(Z,z)= {(z,) € Z%: z, = z for all but finitely many i}.

If X =U2, X; and Y =, Y, where X, is closed in X and Y, is closed
inY for i =1,2,... and moreover each X, embeds onto a closed subset
of N and each Y, embeds onto a closed subset of M, then X and Y are
homeomorphic.

Proof of Theorem 8.8. In the proof we will use the spaces c., B(1), and c,
and their products. These spaces are noncompact absolute retracts. Since F is
a first category filter, Proposition 3.3 implies that ¢, Bg(1), and c; are Z_-
spaces. Consider a decomposition N = U‘i’:l N, into infinite pairwise disjoint
sets N, so that the restricted filters F; are isomorphic to F (see Lemma 8.7).
Thus the spaces CF s BF,.(I)’ and c}i are linearly isomorphic to ¢, Bg(1),
and c}, respectively. This together with Lemma 5.6 gives a homeomorphism
h: R” — R™ satisfying:

Wicp, 0) Ch(cg) S (cp)”,
T8 (1) U W B(1), 0) € hBA(1) € (Bo1)™,
i=1

W(cp,0) Ch(cp) C (cp)™.

Now, Theorem 8.8 follows from Lemma 8.9 applied for M = N = ¢,
X =h(cg),and Y = (cF)°° and from the following fact:

(i) (cF)°° embeds onto a closed subset of ¢, .
The last is a consequence of (ii)-(iv) below.

(ii) Bg(1) is homeomorphic to (B.(1))™
By the obvious fact that B.(r) is homeomorphic to B(1), for r > 0, and
by Lemma 5.6(3), the product (B, (1)) embeds as a closed subset of Bj(1).
Now, we apply Lemma 8.9, with M = N = B.(1), X = h(Bg(1)),and Y =
(Bf (1)

(iii) ¢ is homeomorphic to B.(1).
First let us observe that c; = U:‘;] B (n). Now, (iii) follows from Lemma 8.9
applied for M =c, N=B.(1), X = h(cz),and Y = h(B.(1)).

(iv) ¢, embeds onto a closed subset of (c;)°° .
Let r R — [—1, 1] be the retraction defined by

r(x) = (sgn x) min(|x|, 1).
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Write for (x,) € R™,
Foxis Xys o) = (s Xy ooy Xpps F(Xiq) s T(X40) 5 -0 )
Then f = (f,, f,,...) defines a closed embedding of R™ into (Rpq)™ (recall

that R,y = {(x,) € R*: sup|x,| < oo}). Moreover, we have f_l((c;)°°) =Cp.
Thus fl|c, is an embedding of c, onto a closed subset of (c;)°°

8.10. Remark. For every countable ordinal o > 2 there exists a filter F such
that ¢, € M \2A,  and c, is homeomorphic to (cF)°°

Proof. Let F € M _\2_ be a filter on N and let F™ be a filter defined in the
proof of Lemma 4.2(3). Obviously, the space ¢y~ is homeomorphic to (cF)°°
and consequently to (cp)™ .

Added in proof. The authors have just learned that an equivalent version of
Lemma 2.2 for filters is contained in Theorem 21 of [Ta].
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