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FINITE CODIMENSIONAL SUBALGEBRAS OF
STEIN ALGEBRAS AND SEMIGLOBALLY STEIN ALGEBRAS

HA HUY KHOAI AND NGUYEN VAN KHUE

Abstract. The following theorem is proved: For each finite codimensional

subalgebra A of a Stein algebra B there exists a natural number n such that

B is algebraically isomorphic to A ffi C .

1. Introduction

This paper continues a series of papers on the finiteness of complex analytic

spaces. It is well known that for complex Stein spaces a number of problems

of complex analysis have solutions: the first Cousin problem, the problem of

continuation of holomorphic functions on analytic sets, and so on. In [4] we

give a vector space structure to the class of additive Cousin data {Í7,, <p¡) on a

complex space X, and we consider the class of complex spaces for which the

set of additive Cousin data having a solution (i.e., the set of additive Cousin

data [Ui, (pi), / e 7, for which there exists a meromorphic function g> on X

such that <p - (p, is holomorphic on U¡ for each / 6 7) is "sufficiently large"; it

is a finite codimensional subspace. In [5] we study complex spaces with the fol-

lowing property: for each analytic set V in X the space cf(X) of holomorphic

functions on X considered as a subspace of the space cf(V) of holomorphic

functions on F is a finite codimensional subspace. In the present paper we

consider certain properties of finite codimensional subalgebras of Stein algebras

and obtain some corollaries for the continuation of holomorphic functions on

Stein subspaces of complex spaces.
First of all we recall some notation and formulate the results of this paper.

A C-algebra is called a Stein algebra if it is algebraically isomorphic to the C-

algebra (f(X) of holomorphic functions on a Stein space X. For every algebra

B we denote by S(B) its spectrum and by S*(B) the noncontinuous spectrum.

It is known that for a Stein algebra B we have

B £ (f(S(B))   and   S*(B) = S(B).

Main Theorem. For each finite codimensional subalgebra A of a Stein algebra

B there exists a natural number n such that B is algebraically isomorphic to
A@Cn.
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There are some corollaries that can be deduced from the Main Theorem but

we need some more notation to explain them.

A complete m-convex algebra B is said to be a semiglobally weakly holomor-

phic algebra if it is isomorphic to the algebra cf(K) of holomorphic functions

on a weakly holomorphic compact set K (we recall that a compact set K is said

to be weakly holomorphic if it has a decreasing neighborhood basis consisting

of open sets having an envelope of holomorphy).

Corollary 1. Let A be a finite codimensional subalgebra of a semiglobally weakly

holomorphic algebra B. Then B is algebraically isomorphic to A®C" for some

natural number n.

Corollary 2. Let V be a Stein subspace of a complex space X, and let R: /f(X)

—> <f(V) be the restriction map. If dim(f(V)/Rcf(X) < oo, then there exists a

finite subset T c V such that

(i)   V\T is an analytic subset of X ;
(ii) the restriction map R:cf(X) -^ cf(V\T) is surjective.

2. Proof of the Main Theorem

2.1. Lemma. Every finite codimensional subalgebra of a Stein algebra is a

closed subalgebra.

Remark. It is well known that a finite codimensional subspace of a Banach space

must be closed and complemented.

Proof of Lemma 2.1. Let B be a finite codimensional subalgebra of a Stein

algebra B. Assume that A ^ A . Take / e A\A, and consider the subalgebra

A[f] of A. Since dimA[f]/A < dimB/A < oo, there exists the minimal
polynomial for / :

P(x) = Xn + Cn-iX""1 + ■ ■ ■ + CXX + Q0 ,

where c\, ... , cn-\ e C, a0 e A, P(f) = 0. We first prove that the discrimi-

nant D of the polynomial P is nonzero. Suppose on the contrary that D = 0,

then for every ß 6 S*(B) we have

nf(ß)"-1 +(n- \)cn-J(ß)n-2 + ■ ■■ + a = 0,

where / denotes the Gelfand transform of /. It follows then that

n n

This however contradicts the fact that the polynomial P(x) is minimal. This

shows D ^ 0. Now take w e -S*(A) so that D(w) ^ 0. One finds two

complex numbers X\ and X2 satisfying

X\ + cn-XXn-x +■■■ + CiXi + à0(w) = 0,

X\ + cn-\Xn2~x + ■■■ + cxX2 + â0(w) = 0.

We define then two multiplicative linear functional W\ and w2 on A[f] by

the following formulas:

(m \ m I m \ m

E hP = E MfMi.    V2 E bjfJ = E W4
7=0 /        ,=0 \;=0 /        ;=0
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It is easy to see that the functionals W\ and w2 are correctly defined, since

if for some polynomial Q we have Q(f) = 0 then Q(x) = P(x)R(x) and

wx(Q(f)) = w2(Q(f)) = f).
Let 7i and I2 be the integral closures of kerwji and kerw2 in B, respec-

tively. Then we have I\ n A[f] = kerw\ and 72 n A[f] = kerw2 ; I\,I2± B .

We let I\ and I2 denote maximal ideals of B which contain I\ and I2, re-

spectively. Then B/I\ and 5/72 are fields which are integral over A[f]/I\ — C

and A[f\/I2 = C. This implies that B/I\ = B/I2 = C, and hence 7i = keru>i,

I2 = kerw)2, where W\ , w2 e S*(B) - S(B). By the continuity of W\ and w2

we have «M^r~ = «hl^m. This contradiction proves Lemma 2.1.

2.2. Proof in the special case. S#(A) is normal. Let R:S*(B) —> S*(A) be the
restriction map. Since B is integral over A , R is finite, proper and surjective.

By Cartan's theorem, S*(A) has a Stein space structure such that

(i)   A isdensein cf(S*(A)) (and then, by Lemma 2.1, A = A = cf(S#(A)));

(ii) if / € cf(S*(B)) is such that for all w e S*(A) one has f\R-i{w) =

const., then / e tf(S*(A)).

Let S#(A) - UYj be the decomposition of S*(A) into irreducible branches.

For every j we denote X¡ = R~XY¡. Then we have

dimY[(f(Xj)/(f(Yj) = dimcf(S#(B))/c?(S*(A)) < oo.
j

This implies that for j sufficiently large we have (?(X¡) = (f(Yj). Thus, without

loss of generality we may assume that S#(A) is irreducible.

We prove the Main Theorem by induction on n — codim A .

( 1 ) n = 1.  In this case we have B = Cf + A and there exist a, ß e C ;

g, h e A such that f2 = af + g, f3 = ßf + h.   This implies that f3 =
ßf+h = af2 + gf=a2f+gf+ag,

f(a2 -ß + g) = h-ag.

We consider separately two cases depending on whether or not a2 - ß + g is
zero:

(i) a2 - ß + g / 0. In this case V(a2 - ß + g) (the analytic set defined by

a2 - ß + g) is an analytically rare set and we have

f\
h - ag\s*(A)\V(qi-ß+g)

a¿ - ß + g\s*(B)\R-HV(ai-ß+g))

Thus f E(f(S*(A)\V(a2-ß + g)). Since R is proper, / is locally bounded on

S*(A). From the normality of S*(A) it follows that there exists / e cf(S*(A))

such that / = f\s*(A)\v(a2-ß+g) • On the other hand, since 7\_1(K(a2 - ß + g))

is an analytically rare set, we have fR - f. Hence, / e cf(S*(A)), and we

have (f(S*(B)) = (f(S*(A)) = A~ = A, which contradicts the hypothesis that
codim A — 1.

Thus, we have only the following case.

(ii) a2 - ß + g = 0. In this case g = X e C, and we have f2 - af+X = 0. It
follows that / takes only two distinct values. We prove that in this case there

exists a compact set K c A such that the map

R:S*(B)\R-\K) -> S*(A)\K
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is injective. If we assume the contrary, then there exist sequences {zkti},

{zk<2} c S*(B) such that RZk , = RZk 2 = tk -» oo and zkA ^ zky2 for all

k. Take u e cf(S*(B)) such that u(zk]) = k, u(zk2) = -k. Assume that
u = yf +1, where y € C, I e A . Then we have

y{f(Zk,\)-f(Zk,i)}^oo.

This contradicts the fact that / takes only two distinct values. Thus there exists

a compact set K suchthat f\s*(B)\R->{K) e (?(S#(A)\K). We denote by W the

set of irreducible branches of S*(B) intersecting with S*(B)\R~l(K). Then

we have S*(B) = WII T, where T is a finite subset of S*(B). Let m be the
number of elements in T. We have

B ^ cf (S*(B)) ̂ cf(W)®Cm^ cf(S*(A)) © Cm S A © Cm = A © Cm.

This completes the proof in the case n = 1.

(2) codim A = n > 1. In this case we have

B = A®Cfi®---®Cf».
We consider separately two cases: A[f] ^ B and A[f] = B.

(i) A[f] ¿ B. Then we have dim A[f]/A < dim B/A = n .
We consider the restriction map

7\i is proper and surjective. It follows from the Grauert-Remmert theorem that

S*(A[fi]) has Stein space structure such that A[f] s cf(S*(A[fx])). Hence,

A[f] is a Stein algebra. From the inductive hypothesis it follows that A[f] =

A®Cn> , B^ A[f] © C"2. Thus, B S A © C"'+"2.
(ii) A[f] = B . Since codim A < oo, there exists an m such that

ZT' = oimJT + cxm-xfrl +--- + alfl+a0;

fr2 = ßmfr+ßm-ifr~l+• • •+ß\f\+h,
where a\, ... , am; ßi, ... , ßm eC; üq , bo 6 A . We have

ßmfr + --- + ßiA+b0 = amfm+l + • • • + ao/i

= am(amfm + am-xfx-x + • ■ ■ + ai/i + a0)

+ am-lflm + --- + altf + a0f.

From this it follows that

f{"(ßm -a2m+am-x) + fr'X(ßm-\ -amQm_i - am-2)

+ ■■■ + fi(ß\ -amon -a0) = -bo-

Therefore, a proof similar to that in the case n = 1 gives us:

B^cf(S*(B))^A®Ck   for some k.

2.3. Proof in the general case. We denote by v.S#(A) —> S*(A) the normaliza-

tion of S*(A). Consider the commutative diagram:

Z = S*(B) x S%4) -^    S*(À)
S*(A)

i i"

S*(B) -^   S*(A)
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Let {Gk} be an increasing exhaustion sequence of holomorphically convex do-

mains in S*(A). Then {R~xGk}, {R~xv~xGk} , and {u~xGk} are exhaustion

sequences of holomorphically convex domains in S*(B), Z , and S*(A), re-

spectively. For each k > 1 we consider the following exact sequence:

0 - <?(Gk) - cf(R-lGk) -> <?{R-\Gk))l<?{Gk) -» 0.

Since for every Ä: > 0 the restriction map cf(Gk+\) -» <f(Gk) has a dense

image, we have

¿f(5#(5))/^(S#(yl)) = lim <?(R-lGk)/0(Gk).

Therefore there exists a &o such that for all k > ko we have

dimcf(R-1Gk)/^(Gk) = dimcf(S*(B))/cf(S*(A)).

From the relation R~~xy - {x e S(B) ; Rx = vy) = R~xvy it follows that

cf(v-lR-lGk)/tf(u-lGk)

is an integral extension of cf(R~xGk)/cf(Gk) of degree < sup{#i?~'} < oo,

y £ S*(A). This implies that there exists k\>ko such that for k>k\ we have

dimrf(v-xR-xGk)l@(v-xGk) = const.

By the result of §2.2 we have

(f(v-{R-xGk)^cf(v-xGk)®Cn

for some n independent of k > k\ . Therefore we have

rf(SHA) © C") ~ (f(Z) ;     Z 2 S*(À) II {/>,, ... , Pn),

and 7c: Z\{pi, ... ,p„} = S*(A)\{Rp\, ... , Rpn}.  From this it follows that
there exists an analytically rare set V c S*(A) such that

(1) R:S*(B)\R-XV^S*(A)\V.

On the other hand, we have

dimcf(R-xV)l(f(V) < dimcf(S(B))/cf(S(A)) < oo.

By induction we have cf(R~xV) = cf(V) ®CP for some p > 0. Hence there

exist qi, ... , qp e R~XV such that

(2) R:R-lV\{ql,...,qp}^V\{Rql,...,Rqp}.

From (1) and (2) we obtain

R:S*(B)\{qi,...,qp}^S*(A)\{Rqi,...,Rqp}.

Hence we have

B S cf(S*(B)) £ cf(S*(A)) © C £ A © C = A © C.

The theorem is proved.

3. Proof of the corollaries

3.1.   Proof of Corollary  1. Let A be a finite codimensional subalgebra of a

semiglobally weakly holomorphic algebra B:B = (f(K), where K is a weakly
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holomorphic compact set. Take a decreasing neighborhood basis ^ of K con-

sisting of open sets having envelope of holomorphy such that dim* U > 0 for

all U £ % and x £ U\K. Suppose that B = C/i © • • • © Cfp © A , and set
Av = An cf(U). We may assume that f, ... , fp£ cf(Ui). For each U £ %

we denote by U its envelope of holomorphy and by ou, ¿oo the canoni-

cal maps: Su: U -* Û, ô^-.K -> Stf(K). Then we have dim(f(U)/Av =

dim& (K) j A, dimx Û > 0 for all U £ %f, U c £/,, and x £ Û\ÔVU. Since

8V:cf(U) ^ c?(U) for all U £ %, it is easy to see that dim* S(f(K) > 0 for all
x £ S&iK^SooK. Therefore, by the Main Theorem, there exists a finite subset

{zi, ... , zp} c K such that cf(U) ^Av ©rf({zx,..., zp}) for all U £ %,
U C U\ . This implies that

tf(K) = lim cf(U) £ lim ![/ © C = I © C.

The corollary is proved.

3.2. Proof of Corollary 2. Let F be a Stein subspace of a complex space X,

and let R:cf(X) -> ¿f (K) be the restriction map and dim¿f (K)/7fcf (X) < oo .
We set A = R(f(X). By the Main Theorem we have tf(V) = A © C" for some

n. From this it follows that there exists a finite set {z\, ... , z„) c V such

that ^4 = cf(V\{z\, ... , z„}). Corollary 2 is proved.
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