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INVARIANT SUBSPACES WITH FINITE CODIMENSION
IN BERGMAN SPACES

ALEXANDRU ALEMÁN

Abstract. For an arbitrary bounded domain in C there are described those

finite codimensional subspaces of the Bergman space that are invariant under

multiplication by z.

1. Introduction

Let Q be a domain in the complex plane.  An analytic function / in Q,

belongs to the Bergman space Lpa(ÇÏ), 1 < p < oo, if

(l.i) imi, = (yVrrfw) P<oo,

where m is the area measure on C. It is well known that for all p > 1, Lpa(Çï)

is a closed subspace of LP(Q,, m). Let z be the identity function on Q and

Mz the linear operator on Lpa(£l) given by multiplication by z, i.e.

(1.2) Mzf=zf,        f£Lpa(ÇÏ).

If Q is bounded, Mz is a bounded linear operator on Lpa(Çï). The aim of this

paper is to describe all closed invariant subspaces of the operator Mz which

have finite codimension in Lpa (Q). This problem was recently solved by S.

Axler and P. Bourdon [3] in the case when every connected component of dQ.,

the boundary of Í2, contains more than one point. They showed that for such
bounded domains Q these subspaces have the form QLpa(Çï), where Q is a

polynomial whose zeros lie in Q.. The structure of finite codimensional invari-

ant subspaces of Lpa(ÇÏ) is more complicated for arbitrary bounded domains Q,

especially in the case p > 2. However it will turn out from the results proved

in §3 of this paper that each closed invariant subspace E of finite codimension

in LP(Q) has the form E = QLpa(Çï), if\<p<2,orE = [QLp(íl)]- if
p > 2, where Q is a polynomial whose degree equals the codimension of E

and whose zeros lie in Q~ . Moreover, if 1 < p < 2, the zeros of Q are either

points of ÇI or isolated points of dû,. For p > 2, the location of the zeros

of Q is a more delicate problem. Some examples and further results in this

direction are deferred to §4. The characterization of finite codimensional in-

variant subspaces of Mz provides positive answers to several questions raised
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in [3]. The main tool for the proof of the results mentioned above is a local

approximation theorem for Bergman spaces, which is contained in §2.

2. An approximation theorem

We begin with the definition of the so-called localization operators on Lp(il),

which will play an essential role in what follows.

Let cp be a real-valued function in C'[0, oo) with the following properties:

(2.1) f(x) = \   ifO<x<l   and   <p(x) = 0   ifx>2.

(2.2) \<p'(x)\<2,        xG[0,oo).

Let Q be a bounded domain in C and A £ d£l. Further, for p > 1 extend

each function in Lpa(Q.) to C by letting f(u) = 0 if u £ Q.. For ô > 0 let
<Ps(u) = cp(\u - X\/ô) and consider the linear operator Ts on Lp(fí.) given by

(2.3) (Tsf)(u) = 1 / Mzm^{v) dm[v),        f e LPm.
n Jc      u — v       oz

The function Tgf is actually defined a.e. in C and has the following properties:

(2.4) T¿f is analytic in Q, U {u: \u - X\ > 20}   and   Tâf (oo) = 0,

(2.5) / - Tsf is analytic in {u: \u - X\ < ô}.

These properties are well known in the case when / is bounded and follow by

an application of Green's formula [4, p. 29]. It is not hard to see that (2.4) and

(2.5) hold for / e Lpa(Q.) as well. Moreover, T¿f is the convolution of the

locally integrable function z_1 and a compactly supported LP-function, which

shows that Tg is a bounded linear operator on Lpa(Çï).
For p > 1 and A G 9Q, denote by Apa(X) the set of functions / G Lp(£l)

with the property that there exists a neighborhood V = V(f) of A such that

/ extends analytically to QliV. The main result of this section is

2.1. Theorem. Let A e öQ. Then

(i) For p>2, Apa(X) is dense in Lpa(Q.),

(ii) For \<p<2, (z-X)-xApn(X) is dense in LP(Q).

For the proof we need the following lemma.

2.2. Lemma. Let 1 < p < oo and f, g be nonnegative functions on C with

f£Lx(C,m) and g£Lp(C,m). If l/p + l/q= 1 then

(2.6) liminff/ f(u)dm)     ■[     g(u) ■ \u\~2lcidm = 0.
«5-0 \7<5<|M|<2¿ / 7|«|>,J

Proof. Denote by c the limit in (2.6) and assume that c>0.If0<C!<c,

there exists ô £ (0, 1) such that for all e < ô we have

(2.7) c1<( f(u)dm-([        g(u)\u\'2lq dm)
Js<\u\<2e \7£<|m|<1

< ||*H! log i / f{u) dm,
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by Holder's inequality. Letting ek = 2~kô, k > 1, from (2.7) we obtain

(2.8) C«.¿(logi+fclQg2)

k=\
n

<\\g\\qp-ÍZÍ f(u)dm<\\g\\p

for all n > 1. This is a contradiction which shows that c = 0.

Proof of Theorem 2.1. The proof will follow by several applications of Holder's

inequality. There is no loss of generality if we assume that A = 0. Let x 6

[^(0)]x if p > 2, or x 6 [z-xApQ(0)]± if 1 < p < 2. By the Hahn-Banach the-

orem, there exists h £ Lq(Q., m), l/p+l/q = I, such that x(f) = Jn hfdm ,
f £ LP(Q). For such /, by (2.4) and (2.5) we have

(2.9) / hfdm = [ h- T6f dm,       ô > 0.
Ja Ja

Using (2.3), Green's formula and Fubini's theorem we obtain

(2.10) / hfdm = [ hftpsdm - - [ f(v)^(v) ( [ ^-dm(u))dm(v).
Ja Jsi n Jsi        dz      \JaU-v J

Since <ps is supported on the set {u: ô < \u\ < 20} and \d<ps/d~z\ < 2ô~x, the

usual estimation of the Lp-norm of a convolution gives

(2.11) lim- i f(v)^(v)( i       ^-dm(u))dm(v) = 0,

which leads to

(2.12)

( hfdm =--Mm [ f(v)^-(v)([       -^-dm(u))dm(v).
Ja ns^oJô<M<2ôJK    8zy J\J]ul>3Su-v 'J

By a series development we obtain

r 1 °°
(2.13) hfdm = --\imYjak(ô)bk(ô),

Ja ns^to

where ak(ô), bk(ô) are given by

(2.14) ak(ô)= [ f(v)vk?ll(v)dm,
dz

and

(2.15) bk(ô)= [      h(u) • u~k~x dm,
7|M|>3<5

for all k > 0. Assume first that p > 2 . Using again the estimation |9c9¿/(9z| <

2ô ~x and Holder's inequality we obtain for all ô > 0

(2.16) \ak(ô)\<cp(2ô)k+x-2lp-(i \f(v)\pdm)   ",
W<S<M<2<S /
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and

(2.17) MS)\<dp(3ö)-k-l+2"\iniiq,

where cp, dp are positive constants depending only on p . This shows that

(2.18) x(f) = --\imYak(ô)bk(ô) = 0,

i.e. x = 0. If 1 < p < 2 the inequalities (2.16) and (2.17) hold for all k > 0.
As above we obtain

(2.19) x(f)= ( hfdm = --\imao(ô)bo(ô),
Ja n s^°

for all / G Lg(fl). If p = 2 we have

(2.20) |x(/)|<liminff / |./»|2i/m)       /       h(u)-u~xdm,

and by Lemma 2.2 we obtain x = 0. For 1 < p < 2 we know that x(z~x ) = 0,

so that by (2.19)

(2.21) |x(/)|<limsup^r / \f(v)\dm-   [      h(u)u~xdm
<5_0     1*0 7á<|w|<2á 7|tt|<3<5

again by Holder's inequality. Finally, if p = 1, (2.16) and (2.17) hold for all
k > 1 and using the above argument we obtain

(2.22) x(f) = --limal(ô)bl(ô).

Another application of Lemma 2.2 gives x = 0 and the proof is complete.

There are cases when the sets Apa(X) or (z - X)~lApa(X) are actually equal

to Lpa(Çï). Such points A are called removable points for 7,2(Q) and the set

of removable points is denoted by dp-r(£l). A point A £ <9Q which is not

removable is called essential and we denote by dp-e(Q) the set of essential

boundary points for Lpa(Q). For example, every isolated boundary point of

<9Q is removable for 7,2(ß), P > 1 [1, Proposition 5].

2.3. Remark. The above definition of removable points for Bergman spaces is

equivalent to the usual one (see [1] or [2]). We have the following properties.

(i) For 1 < p < 2, X £ dp-r(£l) if and only if A is an isolated point of dQ..
(ii) For p > 2, X £ dp-r(Q.) if and only if there exists a neighborhood V of

A such that every function in 7,2 (fl) extends analytically to fiuF.

This follows from results obtained in [1]. Indeed, if 1 < p < 2, as mentioned

before, every isolated boundary point is removable for L2(Q) and if A G ôQ

is not isolated, for any sequence {A„} in 9Q\{A} , which tends to A, we have

^2-"(z-A„)-' i (z-X)-xApa(X),
n>\

i.e. A G dp-e(Q). Further, (ii) is an immediate consequence of [1, Proposition

21].
We shall also use the following result, which is a consequence of Theorem

2.1.
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2.4. Corollary. For p > 1 and X G OQ we have

(2.23) dimL2(Q)/[(z-A)L2(Q)]-<l.

Proof. Let A G dQ. and p > 2. Let X[, x2 G [(z - A^ß)]"1 and x =

x2(l)xi - x\(\)x2 • Then for each / g Apa(X) we have / = f(X) + (z - X)g,

g £ Lp(ü), i.e. x(f) = 0. By Theorem 2.1 x = 0 and (2.23) follows.
Analogously, if 1 < p < 2 and Xi, x2 £ [(z - X)LP,(Q,)]± , we obtain that the

functional x = x2[(z-A)_1]xi-Xi[(z-A)_1]x2 is in [(z-X)~xAp^(X)]± , hence

x = 0 which implies (2.23).

The result also holds for A g Q. The following proposition was proved in

[3].

2.5. Proposition. For X G Q and p > 1, (z - X)LP(Q.) is a closed subspace of

L^(Q) with codimension 1.

3. Invariant subspaces with finite codimension

Throughout the following Q. will be a bounded domain in C. In order to

describe the finite codimensional invariant subspaces of the operator Mz we

use the following general method (see also [3] and [6]).

3.1. Lemma. Let X be a normed linear space and T: X —> X a bounded linear

operator. Assume that for every X £ C we have

(3.1) dimX/[(T-XI)X]- < 1.

Then each nontrivial closed invariant subspace E of T with finite codimension

in X has the form

(3.2) E = [Q(T)X]~,

where Q is a polynomial whose degree equals the codimension of E and whose

zeros lie in the residual spectrum ar(T).

Proof. Let E be a closed invariant subspace of T with dimX/E < oo and

define the linear operator Tx on X/E by

(3.3) Tl(f + E) = Tf + E,        f£X.

Since E is invariant, Tx is bounded and there exists a polynomial P of de-

gree less than or equal to dim X/E, such that P(T\) = 0, or equivalently

[P(T)X]~ c E. Let P = QP\ with P, Q\ polynomials having zeros in ar(T)
and C\or(T) respectively. Then obviously [P(T)X]~ — [Q(T)X]~ . Moreover,

by (3.1) we have dimker(T* - XI) < 1, A G C, which implies

(3.5) dimker ß(77 = dimX/[Q(T)X]~ < degreeQ,

by induction. Consequently

(3.6) dimX/E < dimX/[Q(T)X]~ < degreeß < degree^ < dimX/£,

which proves (3.2).

Lemma 3.1 may be applied to the operator Mz on 7,2 (Q), p > 1. This

follows by Corollary 2.4 and Proposition 2.5. We begin with the case 1 <p<2.
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3.2. Theorem. If E is a nontrivial closed invariant subspace of Mz with finite

codimension in 7,2(Q),  1 < p < 2, then

(3.7) E = QLp(Çi),

where Q is a polynomial whose degree equals the codimension of E and whose

zeros lie in Ql)dp-r(Q). Conversely, each subspace of the form (3.7) is a closed

invariant subspace of Mz whose codimension equals the degree of Q.

Proof. In order to apply Lemma 3.1, we determine first or(Mz). It is well

known that the spectrum of Mz equals Q.~ . If A e Q, (z - X)Lpa(Çl) is

closed and has codimension 1, by Proposition 2.5. Let A G dp-r(Q.). Then

each / G 7,2(Q) may be written as f = (z - X)~xf , f £ Apa(X). Let f =

f(X) + (z- X)fl(X) + (z- X)2g, g £ ApQ(X). Then

(3.8) f=(z-X)-lm) + fl(X) + (z-X)g.

For 1 < p < 2 the constant functions are in (z -X)Lp¡(íl), hence (z -X)Lpt(£l)

has codimension 1 and is also closed, because it is the range of MZ-XI. Finally,

if A G dp-e(Q), let {A„} be a sequence in dQ,\{X} tending to A. Then

(z-A„)-1=(z-A)(z-A)-1(z-A„)-1G(z-A)L2(fi)

and {(z-A„)-1} converges weakly to (z-X)~x in Lpa(Çï). This follows using

the Hahn-Banach theorem and the fact that for q > 2 the convolution of a

compactly supported Lq-function and z_1 is a continuous function on C. As

above, we obtain that (z - X)~xApa(X) is contained in [(z - X)Lpa(Çï)]~ , i.e.

A <£ ar(Mz). We have shown that ar(Mz) = Q, U dp-r(Q.) and that for each

A G ar(Mz), (Mz - XI)Lpa(Çï) is closed and has codimension 1. Consequently,

for every polynomial Q whose zeros lie in Q U dp-r(0) , QLpa(Q.) is a closed

invariant subpsace whose codimension equals the degree of Q. Conversely, if
E is such an invariant subspace, we obtain by Lemma 3.1, Corollary 2.4, and

the above argument that E has the form (3.7).

The author is grateful to the referee for his suggestions and for pointing out

an error in the first version of this proof.

The structure of finite codimensional invariant subspaces of 7,2 (Í2) is more

complicated in the case when p > 2. S. Axler and P. Bourdon proved in [3,

Theorem 7] that there exist bounded domains £2 and closed invariant subspaces

E of Mz with finite codimension in 7,2(Q) such that E cannot be written in

the form E = hL2(Çï) for any bounded analytic function h in Q. On the other

hand, it follows immediately from Corollary 2.4 and Lemma 3.1 that each such

invariant subspace has the form [QLpa(Q.)]~ , where Q is a polynomial. The

reason for this complication is the fact that for p > 2 there exist domains Í2

with essential boundary points A for LP(ÇÏ) such that (z - A)7,2(Q) is not

dense in LP(Q). Before stating our result on finite codimensional invariant

subspaces we are going to analyze this situation more closely.

Note first that if X £ Q. then (z - X)kLpa(Çl), k > 1, is closed and has
codimension k, by Proposition 2.5. Moreover, it is easy to check that for

A G Q, [(z -X)kL^Q.)]1- is spanned by the bounded linear functionals y,, 0 <
j < k - 1, given by

(3.9) yJ(f) = fu)W,     f£Lp(Q),
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where /(0) = / and /W is the 7th derivative of /. The same is true for

A g dp-r(Q.), p > 2, as well. Indeed for such A there exists a neighborhood

F of A such that every / G 7,2 (Q) extends analytically to £2 U F. If F.
is a connected neighborhood of A with K,~ c V, the inclusion map from

Lpa(Çl\J V[) to 7,2(0) has a bounded inverse by the open mapping theorem and

the assertion follows as above.

3.3. Proposition. Let p > 2 and X G dp-e(SÎ). For each integer k > 1 we have

(3.10) dim[(z-A)':L2(Q)]±<A:.

Moreover, if n is the largest integer such that the linear functionals x,■, 0 < j <

n-\, given by

(3.11) Xj(f) = f^(X),        f£Apa(X),

extend to bounded linear functionals on Lpa(£l), then [(z - X)kL2(Í2)]-L  has

dimension n and is spanned by the functionals x¡■, 0 < j < n - 1.

Proof. The inequality (3.10) is an immediate consequence of Corollary 2.4.

We prove the second half of the statement by induction. If k = 1 and x G

[(z - A)7,2(0)]± , x ¿ 0, then for each / G Apn(X) write / = f(X) + (z - X)g,
g £ 7,2(Q), which leads to

(3.12) x(/) = /(A)x(l).

Thus x(l) ^ 0 and x0 = [x(l)]-'x spans [(z - X)LP(Q.)]-L by Corollary 2.4.

Now suppose that the assertion holds for some k > 1. If (z - X)k+lLpí(íl)

is dense in (z - X)kLpa(Q) there is nothing to prove. Otherwise, for 0 < j <

k, dim[(z-Ay'L2_(Q)]-/[(z-Ay+1L2(Q)] = 1, hence [(z - X)k7,2(Q)]X has
dimension k and is spanned by the bounded linear functionals x¡, 0 < j <

k-\, given by (3.11). Further, if x G ker(Àfz* - A7)fc+1\ker(Afz* - A7)* , we

have (M* - XI)kx £ ker(A7z* - A7), that is

(3.13) (M; - XI)kx = c • x0,

where c ^ 0 is a constant. Let

r    k~l 1
(3.14) xk = c~xk\ x-J2 -x[(z - X)Jp

Thenxfc G [Lpa(Q)f and for / g Apn(X),

(3.15) x,(/) = c-1rc!xi/-^^)(A)(z-AV"l = fk\X),

which finishes the proof.

3.4. Remark. For p > 2 and A G dQ let NP(X) = sup^, dim[(z-A)i:L2(Q)]-L.
Then NP(X) £ N U {0, 00} and by Proposition 3.3 and its proof it follows that

the codimension of [(z -X)kLpa(Çï)]~ equals min{A:, NP(X)}, for every integer

k > 0. It is clear that NP(X) = 00, if A G dp-r(Q.). If X £ dp-e(Q) it will
be shown by examples in the next section that NP(X) may be any nonnegative

integer, or even 00. The above definition makes sense for 1 < p < 2, as

well, but in this case NP(X) is either 0 or 00, according to A G dp-e(£ï) or

A G dp-r(£l), by Theorem 3.2.
We are now in position to state the characterization of finite codimensional

invariant subspaces of Lpa(Q) , p > 2.
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3.5. Theorem. Let p > 2 and let E be a nontrivial closed invariant subspace

of Mz having finite codimension in Lp(£l). Then there exists a polynomial Q
whose zeros lie in £2~ and whose degree equals the codimension of E such that

(3.16) E = [QLp(Q)]-.

Furthermore, if

(3.17) Q = Qi-f[(z-Xj)kt,
;=i

where Q\ is a polynomial whose zeros lie in QUf9p_r(Q), X¡ are distinct points

in dp-e(Q), and k¡ are positive integers, then kj < Np(Xj) and

(3.18) E = Qi H(z-Xj)kJLP(Q)     = ß, • f][(z-Xj)k^Lp(Çl)]-

Conversely, each subspace of the form (3.16) is a closed invariant subspace of
Mz whose codimension equals

n

degree Qi+^2 min{kj, Np(Xj)},

;"=i

where Q\,X¡, and k¡ are given by (3.17).

For the proof we need the following simple lemma.

3.6. Lemma. Let X be a normed linear space, let T\, T2: X —► X be bounded

linear operators which commute and satisfy ker 7"* nker T2* = {0}. If dim ker T,*

< oo, then

(3.19) (TlT2X)- = (TlX)-n(T2X)-,

and

(3.20) ker(ri T2f = ker T¡ + ker T2\

Proof. Obviously (TXT2X)~ c (TXX)~ n (T2X)~ . Let K = kerT* and note
that T^K c K and that r2*|7i is injective. Since dimK < oo, it follows that

T¡\K is onto. Now let x G ker(rir2)* = ker T*T*. Then T*x £ K, i.e.

(3.21) T2*x = T2*y,        y £ K.

If / G (TXX)- n (T2X)~ , f = lim™ T2f„ , we have

x(f) = lim T2*x(/„) = lim y(T2fn) = 0,
n—*oo n—»oo

which proves (3.19). From (3.21) we obtain also that x-y £ ker T2* and (3.20)
follows.

Proof of Theorem 3.5. The existence of the polynomial Q follows by Lemma

3.1. Let Q = g, • n"=i(z - Àj)kj with Ôi - ¿-j » fe7 as in (3.17). Since multi-

plication by Q\ is a bounded linear operator with closed range on 7,2 (£2) we

obtain

(3.22) [QLpa(Q)r = ôi n(z-A7)^L2(")
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Furthermore, if j ¿ s, then the bounded linear operators given by multiplica-

tion by (z - Xj)kJ and (z - Xs)ks satisfy the conditions in Lemma 3.6, hence

(3.23)
j=\
rï(z-A;)*;LZ(n)    = f)[(z-Xj)k>isa(a)]-

;=i

= f][(z-Xj)k'JLp(Q)]-,
i-\

where k] = min{kh Np(Xj)},  1 <j < n. Using (3.20), (3.22) and (3.21) we

obtain
n

(3.24) degree Q = degree Qx + ^ k¡ = dim Lp(Cl)/E

7=i
n

= degree gi +^k'j.

;=i

Thus fc, = /cj and the result follows. The converse is an immediate consequence

of Lemma 3.6 and (3.23).

As pointed out in the introduction, the results of this section provide positive

answers to the questions raised in [3] concerning finite codimensional invariant

subspaces in 7,2(£2).

4. The spaces (z - X)kLp(Çl)

There is a nice connection between the spaces (z -A)L2(£2), A G d£2 and the

structure of the maximal ideal space of the Banach algebra 77°° (£2) of bounded

analytic functions in £2 with the norm H/Hoo = supze£i |/(z)|. For A G <9£2

denote by Mk the set of complex homomorphisms x of H°°(Çl) satisfying

x(f) = f(X) for each / G 77°° (£2) which extends analytically in a neighborhood

of A.

4.1. Lemma. If p > 1 and X £ dQ, is such that (z - A)L2(£2) is not dense
in 7,2(ß)> then Mx contains a homomorphism which is w*-continuous on

77°°(£2)c[L1(£2,m)]*.

Proof. A homomorphism x is w*-continuous if and only if there exists F £

LX(Q, m) such that x(h) = ¡ahFdm, h £ 77°°(£2). For A G dp-r(Q), Mx
contains only the point evaluation at A which is w*-continuous. If p > 2

and A G dp-e(£l), then by Proposition 3.3, there exists Xo G [(z - A)7,2(£2)]x

satisfying x0(/) = f(X), f G Apn(X). Let h £ 77°°(£2) and define xh(f) =

xo(hf) -x0(h)x0(f), /G L2(£2). Then xh £ \(z - A)L2(£2)]X and xA(l) = 0,
i.e. Xf, = 0 which leads to

(4.1) xo(hf) = x0(h)x0(f).

In particular, xo is multiplicative on 77°°(£2), Xo|77°°(£2) is w*-continuous

and belongs to Mi.

According to results in [5], the existence of a u;*-continuous homomorphism

in Mx is equivalent to the fact that A is not a peak point for 77°° (£2), i.e. there

exists no A G 77°°(£2) satisfying limz_AA(z) = 1 and limz^^ sup|A(z)| < 1,

for all A' G <9£2\{A}. Then the results proved in §3 yield
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4.2. Corollary. Assume that each point of <9£2 is a peak point for 77°° (£2).

Let p > 1 and let E be a closed invariant subspace with finite codimension in

L2(£2). Then there exists a polynomial Q whose degree equals the codimension

of E and whose zeros lie in £2 such that E = QLP(Q.).

Proof. By Lemma 4.1 we have 9p_r(£2) = 0 and for p > 2, NP(X) = 0 for all
A G ô£2. The result follows by Theorem 3.2 and Theorem 3.5.

Under the slightly more restrictive assumption that no connected component

of <9£2 reduces to a point, this result was proved by S. Axler and P. Bourdon

in [3].
In what follows we are going to give some examples concerning the numbers

NP(X), p > 2, defined in the previous section. We shall consider domains of

the type

(4.2) £2 = {z: 0 < |z| < 1}\( |J A„) ,

where A„ , n > 1, are disjoint closed discs contained in{z:0<|z|<l} whose

centers cn > 0 and radii rn > 0 decrease to zero.

For such domains £2 we have dp-e(Çl) = <9£2 because <9£2\{0} c dp-e(Q)

and dp-e(£l) is a closed set. It is well known [5] that if 2«>i rn¡cn < oo, 0

is not a peak point for 77°° (£2). As Corollary 4.2 shows this is a necessary

condition in order to have Np(0) > 0.

4.3. Example. Let k be a nonnegative integer and p > 2. If

(4.3) lim c£+1r„"1+2/p = 0,     forp>2,
n—»■oo

or

/       1 \ 1/2
(4.4) limck+x   log-        =0,    for/> = 2,

«-►oo        y      r„ J

then Np(0) < k .
Indeed, for n > 1 let fn = (z - cn)~l . Then /„ g ^(0) and for p > 2

(4.5) ||/„||p < ( [ \u\-pdm)   " < (p - 2)-xlpr~x+2lP ,
Wr„<l"l<2 /

and similarity for p = 2

(       1 \ 1/2
(4.6) ll/»l|2<(tog-J     .

On the other hand

(4.7) JÍk)(0) = k\c-k-1,        n>\.

Then (4.3) and (4.4) show that the linear functional / -» fik\0), f £ APQ(0)

cannot be bounded on Lpa(£2), hence Np(0) < k by Proposition 3.3.

The next example is based on the following technical lemma which is essen-

tially due to S. Axler and P. Bourdon [3, Proof of Theorem 7].
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4.4. Lemma. Let p > 2 and £2 be a domain as above. Assume that the numbers

r„,c„, satisfy

(4.8) c„ -c„+i -2rn+x > 4r„,        n > 1, cx + 2rx < 1.

(i) For f £ 7,2(£2), k > 0 and -(1 + cx + 2rx)/2 < u < 0

,4.9) />) = <_,)««.¿W^M^,

w/We T0 = {z: |z| < (l+cx+2rx)/2} and for n>\, Yn = {z: \z-c„\ = 2rn}.

(ii) For p > 2 there exists a constant ap> 0, depending only on p such that

(4.10) -dv <ap\\f\\p2k+2c-k-xr!l-2/p,       n>\.f      f(v)
kn(v-u)k^

(iii) If p = 2 and rn, cn also satisfy

(4.11) cn-cn+x -2r„+x >4rl,        n>\,

for some y G (0, 1), then there exists a2 > 0 such that

(4.12)

/r> JJ^d«\ s*iww -')- -^.-"-'(logi)""2

Proof. The formula (4.9) was proved in [3] for p = 2 and k = 0. For arbitrary

k it follows by complex differentiation. The inequalities (4.10) and (4.12)

follow also with the method used in [3]. Let pn = (cn - cn+x - 2rn+x)/2 > 2rn .

For each t £ (rn, pn) we have

n > 1.

(4.13)
m[    nv

h„ (v-u k+l
dv

fin
= /    f(cn + tew)(cn + teie - u)-k-xteit

Jo

< 2k+xc-k~x f K \f(cn + tei6)\tda.
Jo

de

If p > 2, multiplying both sides of the above inequality by r2 , integrating on

(rn , pn) and using Holder's inequality we obtain

(4.14) (2rn) I, f(v)
-dv

n (v - u)k+i

JT„<\v~c„\<p„

<ap\\f\\pr72'pc-k-x.2k+x.

< 2k+'c \f(v)\-\v\-2dm

The inequality (4.12) follows in a similar way. Multiplying by t~x in (4.13)
integrating or (rn , p„), using Holder's inequality and the fact that pn > ry„ we

obtain

(4.15) "-'K|/,<^>
<a2\\f\\22k+xc-k-x[\ogy^

1/2
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4.5. Example. Assume that the numbers rn , cn satisfy (4.8) if p > 2 and also

(4.11) if p = 2. If

(4.16) Y,rn~2,Pcñk~l<oo>    for/7>2,

n>\

or

/ i \-l/2

(4.17) E    l08r cZk~x<oo,    forp = 2,
n>\ V        Yn)

then JVp(O) > fc + 1. Indeed by (4.9) and (4.10) or (4.12) there exists bp > 0,
depending only on p, such that for -(\ + cx+ 2rx)/2 < u < 0 and 0 < j < k

(4.18) l/(;'H")l<V/!2;+1-11/11,,,

and the result follows by Proposition 3.3. If in addition r„ , cn satisfy

(4.19) lim c-k-2rxn~2/p = oo,    if p > 2
n—Kx

or

(4.20) lim c~k~2   log - = oo,    if p = 2,
n—oo y r„ )

then Example 4.3 shows that Np(0) = k + 1. All these conditions are satisfied

for c„ = 2~xn~2, rn — 5~xn~a , with 2k + 3<a<2k + 4,ifp>2, and for
c„ = 2-xn~2, rn = 2~10exp(-«a), with Ak + 5 < a < 4k + 8, if p = 2. In

this case we may take y = 1/2. Finally if c„ = 2~xn~2, r = 2~x0 exp(-a"),

a > 1, n > 1, it follows from above that Np(0) = oo for all p > 2.

As Example 4.5 shows, the condition NP(X) = oo does not imply that A is
a removable boundary point for L2(£2), p > 2. This will follow under some

additional conditions.

4.6. Proposition. Let p > 2 and X G d£2. The following are equivalent:

(i) X £ dp-r(Q).
(ii) (z-A)L2(£2) is closed.
(iii) Np(X) = oo and there exists c > 0 such that the bounded linear func-

tionals Xj given by (3.11) satisfy

(4.21) ||x;||<vVHxo||,       ;>0.

Proof. We have seen in §3 that (i) implies (ii).   If (ii) holds, then for every

/ G 7,2(£2) we have

(4.22) ||/||p<ö||(z-A)/||p,

for some positive constant a. Let x,-, j > 0, be the functionals given by (3.11 ).

For / G A^(X) let fo = f and fk be defined by

k-\ .

(4.23) f=J2 JxXj(f)(z - Xy + (z- X)kfk.
j=o J-

Then for k > 1

(4.24) fk-x=x0(fk-l) + (z-X)fk,
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hence

(4.25) IIAIIp<a(l + IWI)||A-i||p,

which leads to

(4.26) \Xk(f)\ = kl\xo(fk)\<kl\\xo\\\\fk\\,

and (4.21) follows with c = a(\ + ||xn||). Finally, if (iii) holds, each / g Apa(X)

is actually analytic in the disc centered at A and of radius c~x, and (i) follows

by Theorem 2.1.

Thus if p > 2 and A G 9p_e(£2) the subspaces (z -X)kLpa(Çï) are not closed.

This holds for 1 < p < 2 too, in view of Theorem 3.2. The next result shows

more than that, namely that [(z - A)^L2(£2)]~ cannot be written in the form

h-Lpa(Q.) for any h £ 77°°(£2), unless h is invertible and NP(X) = 0. The proof
is based on S. Axler's characterization of Fredholm multiplication operators on

L2(£2) [1].

4.7.  Proposition. Let p > 1, X £ dp-e(£l), and k be a positive integer.  If

h £ 7f°° (£2) is such that

(4.27) [(z-X)kLp(n)]-=hLp(Q),

then h is invertible in 77°°(£2) and thus (z - X)kLpa(Çl) is dense in Lp(iï).

Proof. Let Mh be the bounded linear operator on L2(£2) given by Mh(f) =

hf, f £ 7,2(£2). Note that h is invertible if and only if Mh is. If 1 < p < 2
and A G dp-e(£l), [(z - X)kLp(Çl)]~ = Lp(Çï), i.e. Mh is onto. Mh is also

injective, hence invertible and the result follows. Let now p > 2. From (4.27)

and Proposition 3.3 we obtain that Mn is a Fredholm operator on 7,2(£2).

By Axler's theorem [1], \h\ is bounded away from zero near dp-e(Q). Then

if (z-X)k = hg, g £ Lpa(Q), it follows that g £ 77°°(£2). Moreover, Mg
must have dense range in L2(£2) by (4.27). Assume that NP(X) > 0 and let

x0 G [(z - A)7,2(£2)]x satisfy x0(/) = f(X), f £ Apa(X). By Lemma 4.1,
xo|77°°(£2) belongs to Mx , and

(4.28) 0 = x0[(z-A)/c] = xCJ(/i)xo(s),

which leads to xo(g) = 0. An application of (4.1) shows that Xo(gf) =

Xo(g)xo(f) = 0, for all / G Lpa(Çl), i.e. x0 G [#7,2(£2)]x which contradicts
the fact that Mg has dense range. Thus NP(X) = 0, and M„ is invertible,

which finishes the proof.
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