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LATTICE-ORDERED GROUPS WHOSE LATTICES
DETERMINE THEIR ADDITIONS

PAUL F. CONRAD AND MICHAEL R. DARNEL

Abstract. In this paper it is shown that several large and important classes of

lattice-ordered groups, including the free abelian lattice-ordered groups, have

their group operations completely determined by the underlying lattices, or de-

termined up to /-isomorphism.

1. Introduction

In the group of integers Z with the usual order <, 1 covers 0. From this

simple fact, it is easy to see that (Z, <) is a uniquely transitive chain as defined

by Ohkuma [24] and that 1 is a singular element. Either property is enough

to show that, having chosen 0 to be the identity of Z, the usual addition is

completely specified by the chain.

In this paper, we show that these properties are sufficiently general and pow-

erful enough to prove that many large and familiar classes of lattice-ordered

groups also have their group operations completely determined by the lattice

and the choice of an identity. In particular, we will show

Theorem A. Every free abelian lattice-ordered group has a unique addition.

Theorem B. If G is archimedean and if for any 0 < g e G, there exists a

singular element s such that 0 < s < g, then G has a unique addition.

Theorem C. For a Stone space X, any two additions on 3¡(X), the l-group of

continuous extended real-valued functions with densely open real support under

pointwise order and addition, must be l-isomorphic.

Theorem D. If A is a root system satisfying the descending chain condition and

G is a lattice-ordered group such that Z(A, 3î) çGç ^(A, 32), then any two

abelian group operations on (G, <) must be l-isomorphic.

We assume that the reader is familiar with the terms and theory of lattice-

ordered groups as developed in [3] or [6]; our notation will be that of [6], as is

common1. The reader not familiar with the definitions of convex /-subgroups,
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prime and regular subgroups, polars, or plenary subsets of the regular subgroups

can find these in either of the two references above. However, for the sake of

the reader, we now include the following standard definitions. A regular convex

/-subgroup is a convex /-subgroup maximal with respect to not including some

element on the /-group; it is customary to denote the set of regular subgroups

as T(C7) = {Gx : X £ A}. Each regular subgroup Gx has a unique cover G1

minimal with respect to properly containing Gx . If the lattice-ordered group is

normal-valued, then Gx/Gx is called a component of the lattice-ordered group

and is order-isomorphic to a subgroup of the reals. Under containment, the set

of regular subgroups T(G) forms a root system: no two incomparable elements

have a lower bound.   A plenary subset of T(G) is a dual ideal A such that

rwG» = (o).
For notational ease, we will use additive notation for all groups.

Following [4], an /-group G is special-valued if every positive element is

the join of a pairwise disjoint collection of special elements; this is equivalent

to the set of special values forming a (necessarily minimal) plenary subset of

the regular subgroups. We remind the reader that special-valued /-groups are

normal-valued and completely distributive. If every positive element is the join

of only finitely many disjoint special elements, the group is called finite-valued.

Finally, (Z, <), (<S, <), and (3?, <) will denote the integers, rationals,

and reals, respectively, ordered in the usual fashion. (Z ,<,+), (S, <, +),

and (31, <, +) will denote these sets with the usual order and addition.

Now suppose that (G, <) is a lattice admitting a group operation + such

that (G, <, +) is an /-group. Let 0 be the identity of (G, <, +). For any

element g, let rg be the right translation by g. Then rg is a lattice au-

tomorphism of (G, <) and we can define a new operation +g by defining

x +g y to equal xg[x~x(x) + t~x(y)]. Then clearly (G, <, tg) is an /-group,

/-isomorphic to (G, <, +), with identity g. So we can assume that any two

group operations on a lattice (G, <) have the same identity. Having assumed

that and having chosen the identity element, we say that (G, <) has unique

addition if there is precisely one group operation + so that (G, <, +) is an

/-group. If (G, <) has more than one such operation but has the additional

property that for any two such operations + and ©, (G, <, +) is /-isomorphic

to (G, <, ©), we say that (G, <) essentially one addition. Note that if (C7, <)

has essentially one addition and if (G, <, +) and (G, <, ©) are /-groups with

common identity 0, then the /-isomorphism t between the two is just a lattice

automorphism of (G, <) preserving 0, and that every other group operation is

obtained from + in this fashion. So we will also restrict our attention to those

lattice automorphisms of the lattice of an /-group that preserve the identity.

Finally, we wish to extend our thanks to a nameless referee who not only

carefully read and analyzed our proofs but made many valuable suggestions as

to how they might be improved or replaced by simpler ones.

2. Subgroups and properties invariant under group operations

In this section, we collect for later use several results about which subgroups

and properties of an arbitrary lattice-ordered group are invariant under all group

operations compatible with the lattice and chosen identity. Our starting point

is the following theorem, which gathers several results of Bixler and Darnel

from [4]:
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Theorem 2.1. Let (G, <, +) and (G, <, ©) be l-groups on the lattice (G, <)

with the same identity. Let S c G. Then:
(a) S is a polar of (G, +) if and only if S is a polar of (G, ©).
(b) S is a minimal prime subgroup of (G, +) if and only if S is a minimal

prime subgroup of (G, ©).

(c) S is a cardinal summand of (G, +) if and only if S is a cardinal sum-

mand of (G, ©).
(d) S is the lex kernel of (G, +) if and only if S is the lex kernel of (G, ©).
(e) g £ G is special in (G, +) if and only if g is special in (G, ©).

(f) (G, +) is finite-valued or special-valued if and only if (G, ©) is finite-
valued or special-valued, respectively.

Note that the Boolean algebra of polars and the set of minimal prime sub-

groups of an /-group are completely determined by the lattice and the identity.

However, this is not true for arbitrary convex /-subgroups. For as shown by

Cantor, (S, <) is characterized by being a dense unbounded countable totally

ordered set. Let H = (S x Z, ordered lexicographically with (q, m) > (0, 0)

if m > 0 or if m = 0 and q > 0. On 77, define (qx, m)(q2, n) to equal
(qx + 2nq2, m + «). With this operation, 77 is an o-group that as a chain is

isomorphic to (&,<). Note that in H, S x 0 is a regular subgroup while

(S, <, +) has no proper convex subgroups. This shows that arbitrary prime

subgroups need not remain subgroups under a new operation. This also shows

that changing the group operation may not preserve archimedean or abelian

properties.

Proposition 2.2. If x is a lattice automorphism of (G, <, +) preserving 0, then

for any g £G, x(g) = x(g+) + x(-g~).

Proof. x(g) = a-b , where a/\b = 0. So a = r(g)v0 = x(g)Mx(Q) = x(gvO) =
t(*+). Likewise, b = [-t(*)]VO = -[x(g)A0] = -[r(gAO)] = -[t(-*")].   D

Proposition 2.3. Let (G,<,+) and (G, <, ©) be l-groups. Then for any g £
G, the mixed conjugate map: x —> (g + x) e g and the double inverse map:
x —> e - x are lattice automorphisms preserving the identity.

In one way or another, most of our results come from the two lattice auto-

morphisms presented above.

We now introduce a special kind of lattice automorphism of an /-group.

Definition. An identity-preserving lattice automorphism t of an /-group is a

p-permutation if whenever |g| A |«| = 0, \g\ A |t(«)| = 0.

T'-permutations are the lattice analogues of p-endomorphisms (/-endomor-

phisms a where if g A « = 0, g A ha = 0) and enjoy many of the same

properties.

Theorem 2.4. For a lattice automorphism t, the following are equivalent:

(a) t is a p-permutation.

(b) For all g>0, g/\x(g) >0.
(c) For all g£G, r(g) e g".
(d) For every polar P, x(P) — P.

(e) For every minimal prime M, x(M) = M.
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Proof, (a) => (b) If £ a x(g) = 0, then 0 = x(g) A x(g) = x(g Ag) = x(g) and
so g = 0.

(b) => (c) Assume g > 0 but x(g) £ g" . Then there exists 0 < h £ g' such

that x(g)Ah > 0 and so gAx~x(h) > 0. But then [^At_1(«)]At[^At_1(«)] >

0, and so 0 < g A x~x(h) A x(g) Ah<gAh = 0,a contradiction. To extend

this to all g, note that t(0) = 0 and apply Proposition 2.2.
(c) =>• (d) =>■ (e) Is easily adapted from similar results about p-endomor-

phisms.

(e) =» (a) Suppose \g\ A |«| = 0 but \g\ A \x(h)\ > 0. There exists a min-

imal prime M not containing \g\ and \x(h)\. Since \g\ A \h\ = 0, h £ M,
contradicting x(h) £ M.   D

Proposition 2.5. The p-permutations of an I-group G form a normal subgroup

of the group of all lattice automorphisms of G that preserve the identity.

Proposition 2.6. If x is a p-permutation of an l-group G, then a : x —>

-[t(-x)] is also a p-permutation of G.

Proposition 2.7. [4] If (G, <, +) and (G, <, ©) are l-groups, then the double

inverse maps x-»-9x and x —> e - x are p-permutations.

Since inner automorphisms in general are not p-endomorphisms, mixed con-

jugate maps usually will not be p-permutations, even if one addition is abelian.

However, mixed conjugate maps are p-permutations if one of the /-groups is
archimedean.

Proposition 2.8. Suppose (G, <, +) and (G, <, ©) are both l-groups such that

(G, <, +) is archimedean. Then for any 0 < g £ G, the maps x —► (g + x)Og

and x —» (g © x) - g are p-permutations.

Proof. Suppose there exists « > 0 such that [(g + h)Qg]Ah = 0 ; then (g+h)A
(h@g) = g and so h < g. But now for any integer « > 0, nhA[(g+h)Qg] = 0

and so [-g + («« © g)] A « = 0, implying [-g + (nh © g)] A nh = 0. But then
«« A [(g + nh) © g] — 0 and so nh < g for all integers « ; so « = 0.   D

From this, we get the following theorem.

Theorem 2.9. Suppose (G, <, +) and (G, <, ©) are l-groups.

(a) If (G, < , +) is archimedean, then (G, <, ©) is representable as a sub-

direct product of o-groups.

(b) If (G,<,+) is hyperarchimedean and for each prime subgroup M,

(G, +)¡M is either cyclic or real, then (G, <, ©) is hyperarchimedean.

Proof, (a) For all g > 0 and any minimal prime subgroup M, (g+M)Qg = M

and so M + g = g + M = M@g. Likewise, for all g < 0, (g + M) e g — M
and so M is normal in (G, < , ffi). But then (G, <, ©) is representable.

(b) Let M be a minimal prime subgroup of G. By (a), M is normal

in ((/,<,©) and for all g £ G, M + g = M © g. Thus as ordered sets,

(G, +)/M = (G, ®)/M, which is order isomorphic either to Z or to 3?,

both of which are Dedekind complete chains. Thus for every minimal prime

M, (G, ®)/M is an archimedean o-group and so M is maximal as well.   □
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Our previous example shows that Theorem 2.9(a) is the best one can get for

archimedean /-groups. It also shows that p-permutations need not preserve

maximal convex /-subgroups.  For in (&,<,+), the map g -> 2g is a p-

automorphism that determines a p-permutation on H = S x Z. Since (¿f, <,

+) is archimedean, the corresponding p-permutation on 77 cannot preserve

3 x {0}.
As mentioned in the Introduction, (Z, <) is an example of a uniquely tran-

sitive chain: for any a, b £Z, there exists a unique order-preserving permuta-

tion x such that x(a) = b . In [24], Ohkuma studied such chains, proving that

every such chain X is order isomorphic to a subgroup of 32 and that sé (X),

the group of order permutations of X, is just the right regular representation

of this subgroup. He also proved that there exist 22<" nonisomorphic groups

of this kind. We will call these groups Ohkuma groups and uniquely transitive

chains Ohkuma chains. We now investigate some of the properties of Ohkuma

chains.

Lemma 2.10. If T is an Ohkuma chain and C is a proper convex subset of T,

then C has no nontrivial order permutations.

Proof. Since C is convex, any order permutation x of C can be extended to

one of T by defining the extension to be the identity on T\C. But then x

must be the identity on T and soon C.   G

Theorem 2.11. Let T be a chain and G bean I-group acting transitively on T

as a group of order-preserving permutations. Let C be a convex subset of T that

is either a maximal Dedekind complete subchain or an Ohkuma chain. Then C

is an o-block [15, p. 12] of the action of G on T. In particular, if C is properly

contained in T, there does not exist any order isomorphism of T onto C.

Proof. The case when C is a Dedekind complete chain was proven by Holland

in [19].
So suppose C is an Ohkuma chain. If C is not an o-block, there exists

0 < g € G such that g(C) n C ¿ 0 but g(C) ¿ C. Clearly C £ g(C) and
g(C) çt C. So there exists c £ C such that c < g(C) and there exists d £ C

such that g(d) > C.
Any order-preserving permutation of C or of g(C) can be extended to

one of S - C U g(C) and thus the group of order automorphisms of S acts

transitively on S. Since C is an Ohkuma chain and is a proper initial segment

of S, S is not an Ohkuma chain. Thus there exist a, b £ S and an order

automorphism t of S such that x(a) = a but x(b) # b. Assume a £ C.

Now if for all c £ C, x(c) £ C, x restricts to order permutations of both

C and g(C) and so is the identity. So, without loss of generality, b £ C

but x(b) £ C. But then C c x(C), a contradiction since C and t(C) are

Ohkuma chains.   D

Corollary 2.12. Let (G,<,+) bean I-group and M be a prime subgroup of G.

Suppose C is a convex subset of 32(M), the right cosets of M in G, properly

containing M so that C is either a maximal Dedekind complete subchain or is
an Ohkuma chain. Then M is regular and P = {g £ G : M + g £ C} is the

cover of M.
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Proof. It is well known that^ the o-blocks containing M of the action of C7

upon 32 (M) correspond to the convex /-subgroups of G containing M ; thus

F is a convex /-subgroup.

Now suppose there exists a convex /-subgroup 77 such that M c H c P.

Suppose that C is Dedekind complete. Since 77 c P, there exists 0 < a £

P\H and so M + a > M + « for any « £ 77. So M + g = \J{M + h : h £ 77}
exists in C. We can assume that g is positive. Now for any 0 < « £ 77, M +

g + h = [\/{M + hx : «i € 77}] + h = y {M + hx + h : hx £ 77} = M + g, and so
g + H - g C M. But then McHC-g + M + g. Since Me -g + M + g,
-g + M + g c -2g + M + 2g. Since M + g = \J{M + h : h £ 77} and
77 C -2g + M + 2g , g £ -2g + M + 2g , implying g £ M, a contradiction.

If C is an Ohkuma chain, then for any m £ M, M + m = M and so for

all M + g£C,M + g + m = M + g, implying that M is normal and P and
P/M is then an Ohkuma group and so archimedean.   D

Note that if C is an Ohkuma chain, then M is normal in its cover P.

Ohkuma chains are the only chains that guarantee such normality.

Proposition 2.13. Let T be a chain and M be a regular subgroup of an l-group

G such that 32jg. (M), the chain of right cosets of M in its cover M*, is order

isomorphic to T. Then M must be normal in M* if and only if T is an

Ohkuma chain.

Proof. Suppose that T is not an Ohkuma chain. Since M* acts transitively

on 32jf.(M), saf(T) acts transitively on T. So there exist a, b £ T and an

order automorphism x of T so that x(a) = a but x(b) / b. There exists an

order automorphism a of T so that a (a) = b. Then (a~x o t o a)(a) ^ a. So

the stabilizer Sa is a maximal convex /-subgroup of s/(T) that is not normal,

but 32tf(T)(Sa) is order isomorphic to T.   G

Proposition 2.14. Let (G,<,+) bean o-group and 77 be a convex subset of G
containing 0 that is either a maximal Dedekind complete chain or an Ohkuma

chain. Then 77 is the minimal convex subgroup of G, and is invariant under

every order-preserving permutation that preserves 0.

Proof. 77 is clearly the covering convex subgroup of (0) in G by Corollary

2.12. The rest follows from the fact that for any order-preserving permutation

x of G, either 77 C x(H) or t(77) ç H.   a

Theorem 2.15. Let (G, <, +) be an l-group and H be a convex l-subgroup

invariant under all lattice automorphisms x of G that preserve 0. Then for any
compatible group operation ©,

(a) H is an l-ideal of (G, < , ©).
(b) For all g £ 77, H + g = 77 © g.
(c) (G, +)/H = (G, ©)/77 as ordered sets.

Proof. For ail g £ H, g + H - g = H and so 77 is an /-ideal of (G, <, +).
Now H = (g + H) e g implies that H + g = g + H = H®g for ail g £ G.
More, if g £ 77, this shows 77 to be a convex subsemigroup of (G, <, ©).

Finally, ö - H = H shows 77 to be closed with respect to inverses under ©

and so 77 is a convex /-subgroup of (G, <, ©). The rest is now clear.   D

Lemma 2.16. Let (G,<,+) bean o-group such that T(G) satisfies the descend-

ing chain condition and that each component G1' ¡Gy is either an Ohkuma group
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or isomorphic to 32 . Let (G, <, ©) also be an l-group. Then (G, <, ©) has

exactly the same convex subgroups as (G, <, +) and, for all y £ T(G),

(a) Gy is normal in (G, <, +) and Gy is normal in (G, <, ©).

(b) For all g £G, Gy + g = Gy © g.
(c) (G, +)/Gy = (G, ®)/Gy as ordered sets, and

(d) (Gy, ®)/Gy is the same group as (Gy, +)/Gy if Gy/GY is Ohkuma.

Proof. We will index T(G) by an ordinal X so that Go = (0). It is clear that in

T(G), Gß+X covers Gß and that if a is a limit ordinal < X, Ga = U«<a Gß ■

Now Go clearly satisfies all conditions. Let a < X be an ordinal and suppose

for all ordinals ß < a, Gß is a subgroup of (G, <, ©) satisfying (a), (b), (c),

and (d). If a = ß + 1, then by passing to the factor group G/Gß, we can

assume that a = 1.

But Gx is Ohkuma or real; by Proposition 2.14, t(Gi) = Gi for any order

automorphism x that preserves 0 and so by Theorem 2.15, Gx satisfies (a), (b),
(c), and (d). So for every successor ordinal a < X, the theorem is true.

If q is a limit ordinal, then Ga = U«<a Gß, each of which is a normal

convex subgroup of (G, <, ©) and so Ga is normal in (G, <, ©). Also,

Ga © x = [jß<a(Gß © x) = {jß<a(Gß +x) = Ga + x.   D

Theorem 2.17. Let (G, <, +) be a special-valued l-group with A the minimal

plenary subset of special values of T(G). Suppose A satisfies the descending

chain condition and that for all ô £ A, Gó/G¿ is either Ohkuma or real. Then

for any other addition © on (G, <), (G, <, ©) has exactly the same special

values and covers of special values as (G, <, +).

Proof. As mentioned above, special elements are determined by the lattice and

the identity. Let s be special in (G, <, +) with value G¿ . G¿ then equals

7s Eis', where Is = {g £ G : n\g\ < \s\ for all integers «} [1].

Now s" is a polar in (G, <, ©) as well and lex s" is the prime subgroup

of s" in both (G, <, +) and (G, <, ©). s" is also special-valued; the special

components of s" remain Ohkuma or real; and the special values of s" still

satisfy the descending chain condition.

So in s"/(lexs"), we satisfy the hypotheses of Lemma 2.16 and thus

(s", ©)/(lex5") has exactly the same set of convex o-subgroups as does

(s", +)/(le\s"). Thus two special elements are a-equivalent in (G, <, +) if

and only if they are ^-equivalent in (G, <, ©) and so each special value Gy

in (G, <, +) remains a special value of exactly the same special elements in

(G,<,©).    D

We cannot do away with the hypothesis that A satisfies the descending chain

condition; for let 1,(Z, Z) denote those elements of "V(Z, Z) that have

finite support. Then the underlying chain is a countable unbounded chain dense

in itself and so is isomorphic to (&, <).

3. Lattice-ordered groups with unique addition

In the preceding section, we established that many subgroups, subgroup struc-

tures, and properties of lattice-ordered groups are preserved under any compat-

ible group operation. We are now in a position to apply these results and prove

that several important classes of /-groups have unique addition.
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Theorem 3.1. For an o-group G, the following are equivalent:

(a) G has unique addition.

(b) An order-preserving permutation of (G, <) that fixes 0 must be the iden-

tity.

(c) The only order-preserving permutations of (G, <) are the group transla-

tions.

(d) G is an Ohkuma group.

Proof. Clearly (b) =► (c) =► (d) =► (a).
For (a) => (b), let x be an order-preserving permutation of (G, <) such

that t(0) = 0; define a®b to be x~x[x(a) + x(b)] for all a, b £ G. Then
+ = © by hypothesis and so x is an o-automorphism of (G, <, +). Suppose

by way of contradiction that x is not the identity. Define

[g,        ifg<0.

Then ß  is an order automorphism of G with ß(0) = 0 but is not an o-

automorphism.   D

For an arbitrary /-group with unique addition, certain parts of the above

theorem are also true.

Proposition 3.2. For an l-group (G, <, +) with unique addition, every lattice

automorphism of (G, <) preserving 0 is a group automorphism and the only

p-permutation of (G, <) is the identity.

Proof. If x is a p-permutation of (G, <), we can define a : g —> x(g+)-g~ . a

is then easily seen to be a lattice automorphism of (G, <) preserving 0 and thus

is a group automorphism. But then x(g~)-g+ = a(-g) = -a(g) = g~-x(g+),

implying g~ = x(g~) and g+ = x(g+). So x is the identity on G+ and a

similar proof shows x to be the identity on G~ . Since a lattice automorphism
preserving 0 is determined by its actions on the positive and negative cones, x

is the identity.   D

We suspect but cannot prove that if (G, <) has no nontrivial p-permutations,

then (G, <) has unique addition. We can show this to be true if (G, <) admits

an archimedean addition.

Proposition 3.3. If (G, < , +) is archimedean and has no nontrivial p-permuta-

tions, then (G, <) has unique addition.

Proof. Suppose © is another addition for (G, <). Since (G, <, +) is archime-

dean, then for any 0 < g £ G or any 0 > g £ G, the map x -> -g + (x © g)

is a p-permutation and so x + g = x © g for all x e G. Also, for all g £ G,

-g — &g since the map g —> - © g is a p-permutation. So for any x, g £ G,

x + g = (x + g+) + -g- = (x © g+) © -g- = (x © g+) © eg' =x®g.   D

The following theorem is central to most of our results of this section.

Theorem 3.4. Suppose that G is an l-group that satisfies

There exists a set Jf  of convex l-subgroups of G such that

Ç\Jf — (0);   that for each M £ Jf, 32(M) is an Ohkuma
(*) chain; and that each M £ Jf contains a minimal prime sub-

group N such that G/N has Ohkuma or real components and

T(G/N) satisfies the descending chain condition.

Then G has unique addition.
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Proof. By Proposition 2.13, for any M £ Jf, M is normal in G and G/M is

an Ohkuma group. Since C\Ji = (0), G is archimedean. So if © is any other

group operation on (G, <), then for any minimal prime subgroup N of G,

N is normal in (G, ©) by Theorem 2.9(a), and for all x £ G, N + x = N®x.

Now for M £ Jü, let N be the minimal prime subgroup contained in M so

that G/N has Ohkuma or real components and T(G/N) satisfies the descending

chain condition. Since for all x e G, N + x - N © x, (G,<, +)/N =

(G, <, ®)/N as ordered sets. Applying Lemma 2.16 to (G, <)/N shows that

M/N is a maximal convex subgroup normal in (G, ®)/N and so M is a

maximal convex /-subgroup normal in (G, ©). Also by Lemma 2.16, M + x =

M © x for all x e G.
Suppose now there exist a, b £ G such that a + b ^ a © b. Then there

exists M £ J( such that M + a + b^M + (a®b). But M + a + b =
(M + a) + (M + b) = (M © a) ® (M © b) (since G/M has unique addition)
= M + a © b, a contradiction.   D

We get several corollaries from this theorem.

Corollary 3.5. If G is a subdirect product of Ohkuma groups, if T(G) satisfies

the descending chain condition, and if each component Gy/Gy is Ohkuma or

real, then G satisfies (*) and hence has a unique addition.

Corollary 3.6. If G is a hyperarchimedean subdirect sum of Ohkuma groups,

then G satisfies (*) and so has a unique addition.

Corollary 3.7. If G is a finitely generated archimedean l-group and each com-

ponent is cyclic, then G has a unique addition.

Proof. If N is a minimal prime subgroup, then G/N is a totally ordered finitely

generated abelian group. Thus F(G/N) is finite and each component is cyclic.

Since G is archimedean, finitely generated, and all components are cyclic, G

is a subdirect product of integers.   D

Corollary 3.8. A completely distributive archimedean l-group G has unique ad-

dition if and only if £A KA ç G ç Y[A ̂i • where each Kk is an Ohkuma group.

Proof. If G is a completely distributive archimedean /-group, then without loss

of generality, £¡A Ax ç. G ç Y[A Ax, where each Ax is an archimedean o-group.

In particular, G = AxSA'x for all X. Now if some Ax is not an Ohkuma group,

then it admits two additions as an o-group and hence G has two additions.

Conversely, suppose J2a ^x Q G ç T[A Kx, where each Kx is an Ohkuma

group. For all X £ A, let Gx — {g £ G : gx — 0} . Then Gx is a maximal and a

minimal prime subgroup of G and G/Gx = Kx . So G satisfies (*).   D

At this time, we know of no subdirect product of Ohkuma groups that do

not have unique additions. The following characterizes those that do.

Proposition 3.9. The following are equivalent for any l-group G that is a subdi-

rect product of Ohkuma groups:

(a) G has unique addition.

(b) There exists a set J! of maximal prime subgroups such that Ç\J? = (0)
and for all M £ Jf, G/M is an Ohkuma group and x(M) = M for every

p-permutation x of(G,<).
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(c) Each maximal prime subgroup of G is invariant under all p-permutations

of the lattice (G, <).
(d) The identity is the only p-permutation of (G, <).

Proof. We have shown (a) =>■ (d) and clearly (d) =>■ (c) =>■ (b). For (b) =>

(a), let x € G. Because G can be /-embedded into Y\M€^ G/M, G is
archimedean and thus for all g £ G, the map x —> -g + (x ® g) is a p-

permutation. So for all g £ G and all M £JK, M + g = M © g, and thus G
has a unique addition.   □

We now look at the class %?* of /-groups that satisfy (*) of Theorem 3.4.

Proposition 3.10. If (G,<,+)£ %S*, so does every l-ideal of (G, <, +).

Proof. Let L be an /-ideal of G. Since the map P —> P n L is an order-

preserving bijection from the primes of G not containing L onto the primes

of L, this is clear.   D

Proposition 3.11. If {Ax}a is a set of l-groups where each Ax is an element of

%*, and G is an l-subgroup of T[A Ax containing £A ^ < tnen G £%*.

Proof. If P is a prime of Ax , then Q — P EE3 [IXi^eA AA x% a prime of T[A Ax
and so Q n G is a prime of G.   D

Proposition 3.12.  %(* is not closed with respect to l-subgroups.

Proof. There exists an Ohkuma group K that contains a nontrivial divisible

subgroup 5" [16]. By Theorem 2.1, S is not an Ohkuma group and so does not

satisfy (*).   D

We now show that free abelian /-groups satisfy (*) and this will at last prove

Theorem A.

Theorem 3.13. Each free abelian l-group G satisfies (*). Thus each l-ideal of

a free abelian l-group has unique addition.

Proof. Let S be a free set of generators for G. Then each 0 / g £ G has a

representation g = \l¡ f\j gij, where each gtj is in the subgroup [S] generated

by S and both 7 and J are finite. Since G is a subdirect product of integers

[26], there exists a maximal prime M such that g £ M and G/M is cyclic.

Let sx, s2, ... , s„ be the generators in S needed for this representation

of g. Then each g¡j is in the subgroup [sx, s2, ... , sn] and without loss

of generality, we may assume M + s¡ ^ M for i = 1, 2, ... , k and that

M + s¡ = M for i — k+\,k + 2,...,n. Thus we have an /-homomorphism

n of G onto Z such that gn ^ 0, s¡n ^ 0 for 1 < / < k, and s¡n = 0 for

k + 1 < / < « .
Let {sx}a = S\{sx, ... ,sk} with A being well ordered. Let 77 be the

lexicographical sum of k copies of Z:H — ZxZx-xZ, and let L be

the lexicographical sum L = W(A, Z) x 77.
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We define a map a of S into L by

sxa = (0, 0, ... , 0, sxn) £ H

s2a = (0,0, ... ,0, l,s2n) £H

ska = (1,0, ... , 0,skn)£H

and for X £ A, Sxo is the characteristic function of {X} in 7^(A, Z).
Since G is free, a lifts to an /-homomorphism ~& of (G,<,+) into L

with kernel Ker(rT), and clearly a is injective on the subgroup [S]. Note

Ker(rJ) ç M. Thus for any maximal convex /-subgroup M such that G/M is

cyclic, there exists a prime subgroup N = Ker(rJ) so that G/N has cyclic com-

ponents and F (G/N) satisfies the descending chain condition. So to complete

the proof that G satisfies (*), we need only show that Ker(fj) is a minimal

prime subgroup.   D

Lemma 3.14. Let S be a set of generators of an l-group G. If n is an l-

homomorphism of G onto an o-group that induces an isomorphism on the group

[S], then Ker(7r) is a minimal prime subgroup of G.

Proof. Suppose P is a prime subgroup of G contained in Ker(7i) and let

0 / g £ G. Then g = \J, /\y g¡¡, where #,•_,- e S and both 7 and J are
finite.   Let a be the natural map of G onto the right cosets of P.   Then

o(g) = P + g = \lINJ(P + gij).
Now l\j(P + gij) = min{P + gu : j £ J} = P + gir for some / £ J

and V/(^ + gij') = max{.P + giy : i e 1} = P + gVy for some /' e I. Thus
P + g = P + gij for some i £ I and j £ J .

Now if g £ Ker(7r), then gu = p + g £ Ker(n) n [S] = (0). So g £ P and
thus Ker(7r) = P.   D

Corollary 3.15. Neither f¿* nor the class of l-groups with unique addition is

closed with respect to l-homomorphic images.

Recall that an element 0 < s of an /-group is singular if 0 < g < s implies
gA(s-g) = 0, or that there exists 0 < « G G such that g Ah = 0 and gVh = s.

Singular elements are thus recognizable from the lattice and the identity, and

if x is any lattice automorphism preserving 0, then x(s) is singular if and only

if 5 is singular. Any join of singular elements is again singular and if s, t are

singular elements of an /-group G, then s A [t - (s A /)] = 0. An archimedean

/-group is singular if every positive element exceeds a singular element.

A Specker l-group is an /-group that is generated either as an /-group or as

a group by singular elements. Since each Specker group is a hyperarchimedean

subdirect product of integers [8], every Specker group satisfies (*).

Theorem 3.16. A Specker group has unique addition.

Remark. As shown in [8], on a Specker group G, there exists a unique multi-

plication • so that (G, <, +, •) is a ring where for any two singular elements j

and /, s-t = sAt. Moreover, (G, <, +, •) is an /-ring with zero radical, with

each /-ideal being a ring ideal, and with each /-homomorphism of G being a

ring homomorphism. Note that (G, <, +, •) is completely determined by the

lattice (G, <)!
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Let 5 be the set of all singular elements of an /-group G. Then the subgroup

[S] is an /-ideal of G, called the Specker kernel (or radical) of G [8] and [11]

and of course is a Specker group.

Theorem 3.17. If (G, <, +) and (G, <, ®) are both l-groups and [S] is the
Specker kernel of (G, <, +), then [S] is also the Specker kernel of (G, <, ©)

and so + = ® on [S].

Proof. Let s be singular in (G, <) and suppose that for all positive integers

k < «, ks is the same under both + and © . Then / = (ns ®s) - ns is singular

and is in s" ; so t < s . Let u = s - t. Then u A t = 0 and / V u = s . So

0 = [©«5 + (t + ns)] A [®ns ® (u + ns)] = s A [Qns © (u + ns)], a contradiction

since u £ s" . Note ns ® s = ns + s .

Now for any singular element s, t = - © s is singular and in s" by Propo-

sition 2.7. So t <s . But s = Q - t implies s < t. So for any singular element

s, -s = Qs . Arguing as above, but this time for -s, all multiples of -s agree

in both (G, <, +) and (G, <, ©).
For any g £ [S] in (G, <, +), we can find a pairwise disjoint collection

of singular elements {si, s2, • •. , sk] and integers {mx, m2, ... , mk} so that

g = mxsx + ■ ■ ■ + mksk , with g+ = (mx V 0)sx + ■■■ + (mk V 0)5*. and g~ =
(-mx V 0)si +-h (-mk V 0)sk . So g+ and g~ are in the Specker kernel of

(G, <, ©). The reverse inclusion is proved similarly.   D

Corollary 3.18. Let (G, <, +) be an l-group and S be the set of singular ele-

ments of (G, <). For every lattice automorphism x of (G, <) preserving 0,

x([S]) = [S].

Proof. Define for all g,h£G,g®h = x[x~x(g) + x~x(h)]. Since x is now

an /-isomorphism from (G,<,+) onto (G,<,©), x([S]) is the Specker

kernel of (G, <, ®). Bug [S] is the Specker kernel of (G,<,+) and so

t([S]) = [S].    D

We can now prove Theorem B.

Theorem 3.19. If (G, <, +) is a singular archimedean l-group, then G has a

unique addition.

Proof. Let S be the set of singular elements of G ; then G — S" . For every

p-permutation x of G and every s £ S,t = x(s) is in s" and so t < s.

Likewise, s < t and so x is the identity on S. By a proof similar to the first

part of Theorem 3.17, x(ns) = ns for any integer « > 0.

Define a(g) tobe -[x(-g)]. By Proposition 2.6, a is then a p-permutation

and so for every s £ S, -s = x(-s). So for any integer «, t(«s) = «5 and

thus for all ge[5], t(#) = g.
But [S] is a dense convex /-subgroup of (G, <, +) and so every 0 < x £ G

is the join of all 0 < g £ [S] such that g < x. So for all 0 < g £ G,
t(g) — g - This is easily established as well for all 0 > g £ G and since lattice

automorphisms of (G, <) that preserve 0 are determined by their actions on

the positive and negative cones, x(g) = g for all g £ G. By Proposition 3.3,

G has unique addition.   □

In [11], there was given an example of a singular archimedean /-group G

such that G cannot be embedded into a product of real groups. By Theorem
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3.19, G has unique addition. Our previous examples of /-groups with unique

addition were all subdirect products of reals.

Corollary 3.20. If G is a Specker group, then the lateral completion GL and the

Dedekind completion GA of G have unique additions.

Every example so far of an /-group with unique addition has been archime-

dean. It is easy to see that any /-group with unique addition must be abelian,

for if (G, <, +) is any /-group and g, « e G, defining g © « to be h + g

makes (G, <, ©) into an /-group. We suspect that every /-group with unique

addition must be archimedean. The next proposition is the best we have been

able to prove on this line. The following proof is not ours but is due to a referee.

Proposition 3.21. If (G, <, +) is completely distributive and has unique addi-

tion, then (G, <, +) is archimedean.

Proof. First note that G must be abelian.

Let 0 < a £ G. Since G is completely distributive, there exists g £ G such

that g > 0 and for any set A of positive elements of G satisfying a = \J A,

there exists b £ A such that g < b . Define 77 to be G(a) = {x £ G : \x\ < na
for some integer «} ; let K = H + g'. Let V be a value of g and 0 < v £ V.

Since G is abelian, a = a Av + (a- a Av) < 2(a A n) V 2(a - a A v). Since

g i- V, g ¿ 2(a A v), and so g < 2(a - a A v). Thus v - a Av £ g'. But
a Av £ V , and so v £ K.

Now suppose that x £ K, y £ K, and x < y. Clearly x - g < y. If

g A (x + g - y)+ ^ 0, there is a value of g which contains (x + g - y)~ =

(y - (x + g))+ , and hence (y - (x + g))+ £ K . Since (x + g) Ay £ K, this

gives the contradiction that y £ K. Thus g A (x + g - y)+ = 0, and since

(x + g - y)+ < g, we have (x + g - y)~ = 0, and x + g < y . It follows that

the map x : G -» G defined by

f u + a,       uiK;
x(u) = \

[ U, U£ K.

is an order automorphism of G. Since addition is unique, x is an /-automor-

phism of G. Thus for all u £ G\K, 2u = (u + a + u + a)-a = 2u + a,
which is impossible since a ^ 0. Thus K = G. In particular, for any B £ G+ ,

there exists an integer « such that b - b Ana £ g' and ((« + \)a - b)+ >

(a-(b-bAna))+ > g; so (« + l)a < b is impossible. So G is archimedean.   D

4.   /-GROUPS WITH ESSENTIALLY ONLY ONE ADDITION

In the preceding section, we generalized two properties of the integers—

that they form a uniquely transitive chain and that 1 is a singular element—to

obtain the class $/* of /-groups satisfying (*) of Theorem 3.4 and to show

that singular archimedean /-groups, respectively, have unique additions. In

this section, we generalize the real number chain.

As before, let (32 ,<,+) be the group of real numbers with the usual order

and addition. If (32, <, ®) is an o-group, then since (32, <) is Dedekind

complete and has no singular elements, (32, <, ®) is o-isomorphic to (32, <,
+) but + need not equal © . Thus the ordered set (32, <) has essentially only

one addition + such that (32,<,+) is an o-group.
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Let (G, <, +) be a subgroup of (32,<,+) and let © be an addition on

(G, <) such that (G, <, ©) is archimedean. Then © can be extended to

an addition on (32, <) so that (32, <, ©) is an o-group. Thus each new

archimedean addition of (G, <) is determined by an order automorphism x

of (32, <) where t(G) is a subgroup of (32,<,+).
However, we cannot assume that if (G, <, ©) is archimedean, then (G, <,

©) is /-isomorphic to (G, <, +). For (<S,<,+) is as a chain order-isomor-

phic to (¿f + &\[2, <,+) with the usual order and addition. So we can place

new archimedean additions on (¿f, <) not isomorphic to the usual addition.

To generalize these ideas, let X be the Stone space associated with the com-

plete Boolean algebra of polars of an /-group G. X is then a compact Haus-

dorff extremally disconnected space. Let 31 (X) be the set of all functions

/ from X into the extended real numbers [-oo, +oo] so that / is a con-

tinuous real-valued function on a dense open subset of X. Then 3(X) is

an archimedean /-ring under pointwise order, addition, and multiplication.

Bernau [2] proved that if G is an archimedean /-group, there exists an /-

embedding n of G into 3(X) such that 3(X) is an essential extension of

G: each nonzero /-ideal of 3(X) has nonzero intersection with G7r. In fact,

3S(X) is the unique archimedean essential closure of G [7]. We will identify

G with Gn . Then Gç3(X)^ GdAL = GdLA , where Gd is the divisible hull

of G, GL is the lateral completion of G, and GA is the Dedekind-MacNeille
completion of G.

Theorem 4.1. For any Stone space X, 3(X) has essentially only one addition.

Proof. Let + be the usual addition on 3(X) and let © be another addition

on (3(X), <). Since (3(X), <) is complete, (31 (X), <, ®) is archimedean.

Because the polars of (3l(X), <, ®) are those of (31 (X) ,<,+), (3(X), <,
®) can be /-embedded into (3(X), <, +) as a dense /-subgroup, and (3(X),

<,+) = (3(X), <, ©)AJ? . But (31 (X), <) is complete, laterally complete,

and has no singular elements; so (3(X), <, ®) is divisible, laterally complete,

and complete.   D

So every two additions on (3(X), <) are connected by a lattice automor-

phism of (3(X), <). Note that we have also proved Theorem C.

Theorem 4.2. Let (G,<,+) be an archimedean l-group and (3(X), <, +)

be the essential closure of (G,<, +).   Let x be a lattice automorphism of

(3(X), <) preserving 0 and define a®b to be x~x[x(a) + x(b)] for all a, b

in 3(X).
Then ® defines a new archimedean addition for (G, <) if and only if x(G)

is an l-subgroup of (3(X), <, +) and ever archimedean addition for (G, <)

is obtained in this way.

Proof. Let © be a new archimedean addition for (G, <). Since the polars

of (G, <, ®) are those of (G, <, +), the Stone space of (G, <, ©) is home-

omorphic to that of (G,<,+) and so (77, <, ©), the essential closure of

(G, < , ©), is /-isomorphic to (3(X), <, +) by way of some /-isomorphism

n. Note that n restricts to a lattice isomorphism x of the subset (G, <) of

(3(X), <) onto another subset (t(G) , <) of (3(X), <). We will now show

that x can be extended to a lattice automorphism of (3(X), <).
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To start, the Dedekind completions of both (G, <) and (t(G), <) are lattice

constructions within (3(X), <) and so x can clearly be extended to a lattice

isomorphism from (G, <)A onto (t(G), <)a . So we can assume that (G, <)

is complete.

Then (G, <) = Gv EB Gs, where Gv is a complete vector lattice (under +

or ©) and Gs is a complete singular archimedean /-group [11]. Similarly,

(r(G), <)A decomposes as x(G)vSx(G)s. Since x must map singular elements

to singular elements, clearly t(G„) = t(G)„ and t(G.$) = t(G)s .

Now Gs is a singular archimedean /-group and so has unique addition; thus

+ = © on G s and then x lifts to an /-isomorphism between (Gs, <, ®)d and

(r(Gi), <, +)d = (x(G)s, <, +)d ; this gives us a lattice isomorphism again

inside (3(X), <) of (G, <, ®)d onto (t(G), <, +)d which again extends to

a lattice isomorphism from (G ,<, ®)d onto (t(G) , <, +)d .

Now t(G) is large in (3(X),<,+) because (G, <, ®) is large in (77, <,

©). Jakubik [20] has shown that (t(G) , <)d actually defines (3(X), <) as

a lattice and so x can be extended to (3(X), <). Note that defining * on

(3(X) ,<) by g * h = x~x[x(g) + t(«)] yields that * = © on (G, <) and so
we can extend © to (3(X), <).

The rest of the proof is obvious.   D

When G is a completely distributive archimedean /-group, we can make a

useful restriction on the action of the lattice automorphism x. For in this case,

we can assume that J2a Ax = G ç Y[a Ax , where each Ax is an archimedean o-

group, and so (3(X), <, +) is /-isomorphic to \\A32x . Now if x is a lattice

isomorphism of X\A32x, then for all X, x(32x) = 32ß for some p £ A. Thus
x determines a permutation n of A : X -> p. tt in its turn defines a lattice

automorphism a of Y\A32x by [otx)]^ = JC^-im. Now for all X, o~x ox

preserves each x and so induces a lattice automorphism Xx of 32x. Let a

denote a~xox; then [q(x)],i = xx(xx). Defining © by g®h = x~x[x(g) + x(h)],

we see that g © « — a~x[a(g) + a(h)]. Thus we can assume that x preserves

each stalk 32x . This generalizes to the following proposition.

Proposition 4.3. For a Stone space X, the group of all lattice automorphisms of

(3(X), <) that preserve 0 is a splitting extension of the p-permutations by the

ring I-automorphisms of (3(X), <, +, •).

Proof. Let x be a lattice automorphism of (3(X), <) preserving 0 and let ©

be the addition defined from x in the usual way. Then x is an /-isomorphism

of (3(X), <, +) onto (3(X), <, ®) and so for every minimal prime sub-

group M of (3(X), <, +), x(M) is also a minimal prime subgroup under

both + and ©. Thus x induces a permutation n on the minimal primes of

(3(X),<).

For all x £ X, Dx = {g £ (3(X),<,+): g(x) = 0} is easily seen to be

a maximal prime subgroup. Since 3(X) is complete, there exists a unique

minimal prime subgroup Mx ç Dx and Mx = (j{f : 0 < f £ 3(X)\DX}.
Let M be a minimal prime subgroup of (3(X) ,<,+). Since M is also

a ring ideal, M cannot contain any multiplicative units of (3(X) ,<,+,•)

and, since multiplicative units of 3(X) are precisely the weak order units, M

contains no weak order units.
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Now suppose that for all x £ X, M ^ Mx . Choose 0 < gx £ M\MX . Now

supp(gx) = {y £ X : g(y) # 0} is open in X and \Jx€X supp(^) = X. By the

compactness of X, there exist gXl, ... , gXn such that X = [}x<i<nsupp(^).

Then « = gX{ A ■ ■ ■ A gXn is in M and is a weak order unit. Thus M must be

Mx for some x £ X.

Thus n induces a permutation f on I that is easily seen to be a home-

omorphism of X [5]. It in its turn defines a ring /-automorphism a of

(3(X), <,+,-) by (fa)(x) = f(ñ(x)).
Now for any g £ Mx , x(g) £ M^ implies that there exists 0 < / e 3(X)

suchthat f(ñ(x)) ¿ 0 but x(g)Af = 0. Then [x(g)]oAfo = 0 and (fa)(x) =
f(ñ(x)) ^ 0, giving that x(g) £ Mx . Therefore, p = a o x is a p-permutation

of (3(X), <) and x = a~x o p .

The p-permutations clearly form a normal subgroup of the group of lattice

automorphisms that preserve 0. So suppose that x = a o ß , where a is a ring

/-automorphism and ß is a p-permutation. Then a o a is a p-permutation

and a ring /-automorphism; hence a o a is the identity.   D

Remark. The proposition above also generalizes a description of the l-group

automorphisms of 3(X) that appears in [5].

Note that if we define an addition * from p as before, then * = ©, and

so with regard to new additions on (3(X), <), we need only consider those

additions defined by p-permutations.

Now for any set A, T[\ &\ has essentially only one addition by Theorem

4.1. It is equally clear to see that J2\ &i als° na$ essentially only one addition.

However, for an /-subgroup (G,<,+) of l\A32x containing Y^,A32x, this

may not be true. Indeed, in the examples at the end of this section, a new

addition on such an /-subgroup (G, <, +) with a strong order unit may not

preserve the strong order unit. In what follows, we investigate when (G, <, +)
does have essentially only one addition.

Proposition 4.4. Let g be the characteristic function of A in \\A32x. Then the

l-subgroup G = Yï,\ ¿%\ + [g] °f Ha ^ has essentially only one addition.

Proof. Let © be a new addition for G. Then © is given by a set of order auto-

morphisms {xx}xeA of the 32x's so that t¿(0) = 0 for each X, x(... , gx, ...) =

(... , Xx(gx), ■■■), and © is defined from x in the usual way.

If we follow t by the /-automorphism a of ]1A ¿%x that is multiplication by

the element (... , ^4^ ,...), we have that a(x(g)) = g . Since a(x(G)) is an

/-subgroup of Y[A32x , G ç a(x(G)) and so we can assume both that G ç x(G)

and that x(g) = g .
Now J2A32x is invariant under every lattice automorphism <rof (G, <) and

so ¿^,A32x is an /-ideal of (G, <, ©) with

Z - (G, ®)/ \T32xj = (G, +)/ ÍL^-j

as ordered sets and (G, ©)/(EA^/i) - (?(G), +)/(Ea^a) as ordered groups.
So there exists 0 < x £ x(G) suchthat Y,A32x+x generates (t(G), +)/(¿Za^)

But now Yj,A32x + g = Sa^a + nx f°r some integer « > 0.

Without loss of generality, x = (... , j¡, ... ). Let « = t~'(x) . If « > 1 , «
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differs from g in every component and so £A ^x < Ea ¿%x + h < EA ¿%x + g

in (G, +)/ Y,A32x), a contradiction.   D

In contrast to this, Y^A32+ê{g] admits nonisomorphic additions. Let a be

an order isomorphism of the chain (&, <) onto the chain (<§+@\¡2, <) so that

a(0) = 0. a can then be lifted to an order automorphism a of 32 . Let xx = a~

for all X. Then x(G) = YjA321 + (S + @^2)g. Defining © in the usual way

from x, we have that (G, ©)/(£a<S?a) = (t(G), +)/(Ea^a) = & + &V2 ?
S = (G, +)/(Ea^a). But if (G,<,+) were /-isomorphic to (G, <, ©)
by some map a, a must induce an isomorphism of (G, +)/Ç£,A32x) onto

(G,®)/(iZa^).
At this time, we do not know if J2A^x + ¿%[g] has essentially only one

addition. We can prove the following.

Proposition 4.5. Let (G,<,+) bean l-subgroup of T[A32x so that G/(Y^A32x)
is l-isomorphic to 32xm322B ■■■m32„, where each 32¡ s 32. Then G has
essentially only one addition as a real vector lattice.

Proof. G/(YA32x) = (EA^ + 32gx) m ■ ■ ■ m (¿2A32X + 32gn) and we may
assume that the g,'s are pairwise disjoint. Furthermore, by taking a suitable
/-automorphism of fTA ¿%x > we can assume that each g¡ is the characteristic
function of a subset A, of A. Then

G= l^ + ̂ ts,]) œ-œ í$^ + ̂ te"]) .

So it suffices to show that each £A &+&[gi] has essentially only one addition.

So let © be another addition on 77 = £A 32 + 32[g¡] so that we get a

real vector lattice. We can assume that © is connected to + by some lattice

automorphism x = (..., xx, ...), that (t(77), <, +) is a vector sublattice of

EA 32 , and that x(gi) = gl■. So 77 ç x(H).

(x(H),<,+)/C£Ai3?s) s 32, and so for any 0 < x e x(H)\(J2A¡323),
there exists an r £ 32 such that g, = rx + t for some / £ 5ZA 32x . But then

x = \(gi - t) £ H. So x(H) = H and again we are done.   D

An immediate corollary to the above is that J2a^x +32[g] has essentially

only one addition as a vector lattice.

In this section, completeness of either 32 or 3(X) has been the crucial

factor in the proofs. Every complete /-group G is the cardinal sum of a com-

plete vector lattice Gv and a complete singular /-group Gs. Now if S is the

set of singular elements of G, then Gs = S" and so Gs has unique addition;

since Gs is a polar of G, a new operation can differ from + only on Gv .

Note that since (Gv , <) is complete and has no singular elements, then under

any addition ©, (G„ , <, ©) must be an archimedean real vector lattice. So to

pursue the study of new additions on complete /-groups, we can assume that

(G, <, +) is a complete real vector lattice and is a dense /-ideal of 3(X) for
the Stone space of 3s(G), the set of polars of G.

Proposition 4.6. Suppose that (G, <, +) is a complete vector lattice with a strong

order unit u and (G, <, ©) is an l-group. Then (G,<,+) = (G,<, ®) if

and only if (G, <, ©) «ai a strong order unit.
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Proof. One way is clear. So suppose (G, <, ®) has a strong order unit. Let

X be the Stone space of 3(G) for both (G,<,+) and (G, <, ©). Let

1 be the multiplicative identity of 31 (X). There exists an /-embedding a of

(G, <, +) into (3(X), <, +) so that ua = 1. Since (G, <, +) is a complete

vector lattice, Ga is an /-ideal of (3(X),<,+) and so Ga S C(X). But

(G, <, ©) has a strong order unit and so there exists an /-embedding ß of

(G,<,©) onto C(X) as well.   D

By combining this with earlier results about singular archimedean /-groups,

we can drop the hypothesis that G be a vector lattice.

Corollary 4.7. If (G, <, +) is a complete l-group with a strong order unit and

if (G, <, ©)  is also an l-group with a strong order unit, then (G, <, +) =

(G,<,®).

We now build an example of a complete and dense lattice (G, <) with one

addition + that makes (G, <, +) into an /-group with a strong order unit

and with two nonisomorphic additions © such that (G, <, ©) does not have

a strong order unit.

Let (G,<,+) be a complete real vector lattice with a strong order unit.

As outlined in the proof of Proposition 4.6, we can assume that (G, <, +) is

/-isomorphic to C(X) for the Stone space X of 3(G).

Now for any other addition ©, there exists a lattice automorphism x of

D = 3(X) such that t(0) = 0, t(G) is an /-ideal of D, and x is an /-

isomorphism of (G,<,©) onto (t(G), <, +). Let 1 be the characteristic

function^of X, 2 be twice 1, 3 be three times 1, etc. We can assume that

t(T) = T. Then C(X) = D(x(l)) ç D(x(2)) C D(x(3)) ç ••• and t(G) =
\JnD(x(n)). (Recall that D(x) is the convex /-subgroup of G generated by x

and so equals {geT>:|g|<«|x| for some positive integer «}.) If only a finite
number of the D(x(n)) are distinct, then x(G) has a strong order unit and so

(G, <, +) = (G, <, ®). Otherwise, t(G) = \Jn 7>(t(«)) , where, without loss

of generality, 7>(t(T)) c D(x(2)) c • • • .
Now to the example:

Example 4.8. Let (G, <, +) be the bounded real sequences with pointwise or-

der and addition; then (G, <,+) is the /-ideal of D = 3(X) = Y[x<i<O032i

generated by 1 . Recall that we can define a lattice automorphism of D by

defining its action on each stalk 32¡. Now on 32i, there exists an order auto-

morphism t, such that for a positive integer « , t,(«) = (/ + l)n_l. Then

t(T)=T,     r(2) = (2,3,4,5,...),     t(3) = (22,32,42,...), etc.

Since Y.i& = (&> ̂ » +) » r(G) = Ui<,D(1', 2', 3'',...)). But then t(G)
has no strong order unit.   D

Example 4.9. A similar lattice automorphism can now be used to give a second

addition on the /-group of bounded real sequences, again having no strong

order unit, that is not isomorphic to the addition defined in Example 4.8. Let

X = U; 7)(2', 3', 4', ... ). (Note that X is then t(G) from Example 4.8.) Let

Y = U,7>((2!)', (3!)', (4!)', ...). Then Y is an /-subgroup of n,-#/ for the
same reasons that X is.
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Now X is lattice isomorphic to Y . To prove this, for each i, there exists

an order permutation a¡ of 32i such that a¡((i + \)k) = [(/ + l)\]k . Let a be

the lattice automorphism of Yii^i determined by the <j,'s. Then

<7(1, 1,1,...) = (1,1,1,...),     a(2,3,4,...) = (2!,3!,4!,...),

,r(22,32,42,...) = ((2!)2,(3!)2,(4!)2,...), etc.

Now suppose by way of contradiction that there exists an /-isomorphism

ß mapping X onto Y. Without loss of generality, for each i, 32iß = 32¡ ;

so extending ß to an /-automorphism ß of D means we can assume that
ß is multiplication by a positive element y £ Y. But then there exists an

integer « such that y £ D((2\)n, (3\)n, ...) and we can assume that y <

((2!)" , (3!)" , ... ) for this « .
Now for each integer k , there exists an x e X such that xß > ((2\)k, (3\)k ,

(4\)k , ...) and there exists an m such that x < (2m, 3m , 4m , ...). Therefore,

((2!)"2W , (3!)"3W,...)> (2m , 3m , ...)y > xy = xß > ((2\)k, (3\)k ,...). Let

k = 2«. Then for any integer ;, (j\)njm < (j\)2n2m ; so jm > (;'!)"

for all j with m and « fixed. But we can select j so that jm < j\.

Thus we have a contradiction.   D

Once again, every example of an /-group with essentially only one addition

in this section has been archimedean. We now give a construction that, for

any nonzero Specker group A, gives a nonarchimedean /-group which has es-

sentially only one addition. From this construction, it is easy to build other

examples. However, every example we know is abelian and it is an open ques-

tion if every /-group with essentially one addition must be abelian.

So let (0) t¿ A be a Specker group and let G = Ax A . Since Specker groups

are hyperarchimedean, for any two elements a and b of A, b = ba + ba',

where ba £ a" and ba> e a'. For (a, b) £ G, define (a, b)>(0,0) if a > 0
and bai > 0. Then with componentwise addition + , (G, <, +) is an /-group

and for any (x, y) £ G, (x, y)V(0, 0) = (x+, (x+Vy+)-(x+Vy-) + (yx, V0))

[1].

Proposition 4.10.  (G, <) has essentially only one addition.

Proof. Let Au — A x {0} and A¡ = {0} x A ; then A¡ is the Specker kernel
of (G,<,+) and hence of any other addition ffi. Also, (G,<, ®)/A¡ =
(G, <, +)/A¡ = A as lattices, with singular elements of the form (s ,0) + A¡,

where s is singular in A. Let 5 be the set of singular elements of A and let

T = {(s, 0), (0, s) : s £ S} . Then T generates (G, <, ©). So to first prove

that (G, <, ©) is abelian, it suffices to show any two elements of T commute.

Clearly if x = (0, s) and y = (0, /), then x®y =y®x . So let x = (5, 0)
and y = (0, /). Then there exist a, b, and c in S such that s = aV b; t =

bye; and a, b , and c arepairwisedisjoint. Then x©y©x = (a, 0)®(b, 0)®

(0, b) © (0, c) © (b, 0) © (a, 0) = (b, 0) © (0, b) © (b, 0) © (0, c) since disjoint
elements commute. Now (b, 0)©(0, b)e(b, 0) is singular in (b, 0)" = (0, b)"

and so is less than (0, b). Likewise, e(b ,0)®(0,b)®(b,0)<(0,b) and so
(b, 0) commutes with (0, b). Thus x®y®x = y. A similar argument works

if x = (s, 0) and y = (/, 0). Hence (G, <, ©) is abelian.
Let n*(b, 0) denote the sum of n(b, 0)'sin (G, <, ©) and n(b, 0) the sum

in (G, <, +). Then n*(b, 0)®A, = n(b, 0) + A¡ and so n*(b, 0) = (nb,x)
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for some x £ b" in A. Thus if B is the subgroup of (G <, ffi) generated by

((í,0):í€5}, B is an /-subgroup of (G, <, ©), B n A¡ - (0), and for any

(x,y) £B and (h,k) £ A,, \(x, y)\ A \(h, k)\ « |(x,y)|. So (G,<,©) is
the direct product of B and A¡ [1], and B = A¡. But then since A is a free

abelian group on some subset of S [23], (G, <, ©) is free abelian on some

subset of T. Thus the identity map on T lifts to a group isomorphism a of

(G, <, ®) onto (G, <,+).
But a is also an /-isomorphism. For if g £ B, ga is the projection of g

onto Au and in fact a induces an /-isomorphism of B onto Au. Thus for

any b £ B and a £ A¡, (ba)+ - b+a , (ba)' = b', and b A a = ba A a . So for
any g = b © a £ B x A¡, (g v 0)a = [b+ © (b+ A a+) © (b+ A a~) ® (ab, V 0)]a =
b+a + (b+ Aa+)-(b+ Aa-) + (ab,VO), while gaVO = (b®a)aV0 = (ba+a)\/0 =
(ba)+ + ((ba)+Aa+)-((ba)+Aa-) + (a[baY\/0). But then (gVO)er is the same

as gaVO.   G

If A - Z, then (G,<, +) = Z x Z, which is nonarchimedean and so

by the above has essentially only one addition. Note that this does not extend

to Z x Z x Z, as on that chain we can define (a, b, c)(x, y, z) to equal

(a + x + cy, b + y, c + z) and get a nonabelian nilpotent o-group.

5. Lattice-ordered groups with essentially only one abelian
or archimedean addition

The following theorem from [12] and a subsequent version replacing 32 by

Z will be the keys to the main theorem of this section.

Theorem 5.1. If G is a special-valued abelian l-group with A being the minimal

plenary subset of T(G) ; // A satisfies the descending chain condition; and if for

all ô £ A, Gs/Gs *32, then G can be l-embedded into W(A,32) such that
1.(A,32)CG. Moreover, if G is finite-valued, then G^Y(A,32).

We now prove that this is true when 32 is replaced by Z.

Theorem 5.2. If G is a special-valued abelian l-group with A being the minimal

plenary subset of T(G) ; if A satisfies the descending chain condition; and if for

all ô £ A, Gs/Gs = Z, then G can be l-embedded into *V(A, Z) such that
I(A, Z) CG. Moreover, if G is finite-valued, then G = 1(A,Z).

Proof. For each ô e A, pick a positive special element g¿ £ Gs/G¿ so that

Gs + gs generates G0/G¿. It is easily seen that the subgroup H of G generated

by the set {gs : ô £ A} is free abelian on A and is an /-subgroup /-isomorphic

to Z(A, Z). Thus the map taking g¿ to the characteristic function of {ô} in

^(A,Z) lifts to an /-isomorphism a of H onto ^A,^). By Wolfenstein's

proof [27] of the Conrad-Harvey-Holland Theorem , a lifts to an /-embedding

a of G into T(A, £) with E(A, Z) ç Ga.
Let s be special in G with value G¿ . Then there exists an integer « so that

5 - ngs £ G¿ and so (sa)s = « £ Z. Now for any root W of A through ô,

since ^ is well ordered, we can assume by induction that for any y 6 A with

y<ô, (sa)yeZ. Thus sa £T(A,Z) and so GaçT(A,Z).
If G is finite-valued, then for any special element 5 with value Gs and

integer « such that s - ng¿ e Gg , again by induction each special component

of (s - ngs)a is in I(A, Z) and so sa £ I(A, Z). So Ga = 1(A, Z).   O
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Proposition 5.3. If A is a root system satisfying the descending chain condition,

then Z(A,Z), 1(A,32), W(A, Z), and T(A,32) have essentially only one
abelian addition.

Proof. We will do this only for Z. From Theorem 2.1, I,(A,Z) remains

finite-valued and T~(A, Z) remains special-valued under any new additions.

From Theorem 2.17, we keep the same set of special values and special covers.

Thus under any new abelian addition ©, (L(A, Z), ®) must be /-isomorphic

to E(A, Z) with the usual addition.
For y (A, Z), since A satisfies the descending chain condition, "V(A, Z) —

1(A,Z)^ [12]. Let (G,<,©) be T(A,Z) with a new abelian addition;
then without loss of generality, L(A,Z) ç (G <, ©) ç T(A,Z) and so
(G, <, +)L = T(A,Z). But (G, <, ©) is already laterally complete.   D

Remark. The descending chain condition is necessary. Charles Holland has

communicated to us a proof that y(Z, 32) is order-isomorphic to <V(Z~ , 3)

as ordered sets. Before his proof, we knew (as said earlier) that Z(Z, Z) is

order-isomorphic to {<£,<).

For the rest of this section, let Ar be the class of all /-groups with essen-

tially only one archimedean addition and Ab be the class of all /-groups with

essentially only one abelian addition.

Proposition 5.4. Both Ar and Ab are closed with respect to cardinal sums and

products.

Proof. Suppose that G = ARB, where A, B £ Ar and suppose that (G, <, ©)

is an archimedean /-group. Then (G, ©) = (A, ©) EB (B, ©) and so is /-

isomorphic to (G, +).

Now suppose that {Ax}xeA Ç Ar. Then J2AAx £ Ar. For all 0 < g £

nA Ax, g = \/ax where ax £ Ax and if 0 < « = V h e Eh Ax, g + h =
V(ax + bx).

Now each Ax remains a cardinal summand of (T[A Ax, <, ®) for any archi-

medean addition © and so (Ax, +) — (Ax, ©) by way of some /-isomorphism

xx . Define t : (T[A Ax , <, +) — (fTA Ax ,<,©): V ax — Wat*) • Then for all

0<g,h in (T\AAx, <,+), (g+h)x = [\J(gx+hx)]x = \/(gxx+hxx) = gx®hx.
Similar arguments work for Ab .   D

We have not been able to show that when A is a cardinal summand of

G £ Ab, then A £ Ab; in fact, this is not yet resolved even in the case when A

is a maximal convex o-subgroup. We remark here that such convex o-subgroups

are double polars of basic elements and so are recognizable from the lattice and

the identity. Such an A would of course be an indecomposable summand.

However, if G £ Ab and G = £A Ax where each Ax is indecomposable, we

get the desired result.

Proposition 5.5. Suppose (G,<, +) £ Ab or Ar, and G = Y,AAx, where

each Ax is an indecomposable summand of G. Then each Ax £ Ab or Ar,
respectively.

Proof. Choose a e A and let A = {X £ A : Ax is lattice isomorphic to Aa}.

Suppose © is a nonisomorphic abelian addition on Aa. Then © defines a

new addition © on (G, <) by, for all ô £ A, (Aâ, ©) = (Aa, ®), while for
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each X £ A\A, (Ax, ®) = (Ax, +). Then (G, <, ®) = (G, <,+) as abelian
/-groups. Since the Ax's are indecomposable, the /-isomorphism must take

J2a(As , ©) onto Y,a(As , +) • But then the atomic polars, the Aâ's for ô £ A,
must be isomorphic as well.   D

6. Open questions

Below we list and discuss some of the questions we have not been able to

solve.

(1) If (G, <, +) is an l-group such that the positive cone has a unique addi-

tion, does (G, <) have a unique addition"?

Here for any 0 < g, h e G, g®h = g + h for any two additions © and +

on (G, <). We can show that © = + if for all 0 < g £ G, eg = -g .

Proposition 6.1. Let (G,<,+) and (G,<,®) be l-groups such that for all

0< g, h£G, g + h = g®h. If for all 0 < g £ G, -g = eg, then + = ®.

Proof. First, for all g £ G, g can be written uniquely as g = a - b, where

a A b = 0. By Proposition 2.2, -eg = (-ea) + eb = a-b. Thus for all
g £ G, -g = eg.

If g A « < 0, g V h = (g -«)+ + « = (g -«)+©«, and so (g - «)+ =
g\/h®h = (geh)+ . The result then is clear.   D

We can answer Question 1 affirmatively if G is totally ordered.

Proposition 6.2. If (G, <, +) is an o-group such that the positive cone has a

unique addition, then (G, <) has a unique addition.

Proof. First note that if 0 < a « b in (G+ , <, +), then

( x + a,    if x > a ;

\ x, otherwise

is an order automorphism of G+ and so we define a new addition © on G+

from T as before. Note b®b — 2b+a ^ 2b . So + / © on G+ , a contradiction.

Thus (G, <, +) must be archimedean and so can be embedded into 32 [18].

Now suppose that (G, <, ©) is also and o-group. The map g —> - eg is a

semigroup automorphism of G+ , for -e(g + h) = -e(g®h) = -(eg + eh) =
-(eg ® eh) = - © g + - e « , and thus there exists 0 < r £ 32 such that

-eg = rg for all g £ G+ [17]. Note that G+ is r-divisible: for any g £ G+ ,
there exists « e G+ such that rh — g .

Without loss of generality, 1 + G+ and r < 1 . Define on G+

(rg, if 0 < g < x ;

i(g)= \ (r+ l)g-r,    ifr<g< 1;

l g, if g > 1 •

t is then an order automorphism of G+ that is not the identity and is not a

homomorphism.   D

(2) If G is an l-group with unique addition, must G be archimedeanl

(3) Does each subdirect product ofOhkuma groups have a unique addition")

(4) 7s the class of l-groups with unique addition closed with respect to 1-ideaW.
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(5) (Kopytov) If G is an l-group with essentially only addition, must G be

abelian"!
As mentioned before, for a nonabelian /-group (G, <, +), defining geh to

equal h + g makes (G, <, ©) into an /-group. Thus if (G, <) has essentially

only one addition, (G ,<,©) = (G ,<,+).
Andrew Glass has suggested that (G, <, +) = sé (3) may be a possible

counterexample. Giraudet [21] has shown that if ©is an addition on (G, <)

so that (G, <, ©) is /-isomorphic to an /-subgroup A of sé(T) for some

chain T so that A acts doubly transitively on T, then (G, <, ©) = sé(32).

One of us (Darnel) has recently shown that for any x £32, the point stabilizer

Sx = {g £ sé (32) : g(x) = x} is a maximal convex /-subgroup in any addition

on (sé (32), <). This means that no normal-valued operation can be placed on

(sé(32),<).
(6) If (G, <, +) is an archimedean vector lattice, must (G, <, ®) be archi-

medean for any other addition ® ?
(1) If (G, <, +) is hyperarchimedean and (G, <, ©) is archimedean, must

(G, <, ®) be hyperarchimedean!

(8) Are the classes Ar and Ab of l-groups with essentially only one archi-

medean addition and abelian addition, respectively, closed with respect to cardinal

summandsl

(9) If (G, <, +) is normal-valued and ® is another addition for (G, <),

must (G, <, ®) be normal-valued!

Added in proof

Questions 1 and 2 have been answered in the affirmative by Jakubik in "On

lattice-ordered groups having a unique addition," Czechoslovak Math. J. 40

(115) (1990), 311-314, and in Lattice-ordered groups with unique addition must

be Archimedean, Czechoslovak Math. J. 41 (1991). Question 5 has been an-
swered in the negative by Darnel, Giraudet, and McCleary, in Lattice-ordered

groups with one essential operation, submitted (1991) to Algebra Universalis.

In this paper, it was indeed shown that sé(3) does have essentially only one

operation.
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