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STABLE AND UNIFORMLY STABLE UNIT BALLS
IN BANACH SPACES

ANTONIO SUAREZ GRANERO

Abstract. Let X be a Banach space with closed unit ball Bx and, for x e X ,

r > 0, put B(x; r) = {u 6 X: \\u - x\\ < r} and V(x, r) = Bx nB(x; r).

We say that Bx (or in general a convex set) is stable if the midpoint map

®\/2: Bx x Bx —► Bx , with <t>i/2(H, v) = j(u + v), is open. We say that

Bx is uniformly stable (US) if there is a map a: (0, 2] —► (0,2], called
a modulus of uniform stability, such that, for each x, y e Bx and r e

(0,2], V{\(x + y) ; a(r)) Ç \{V(x; r) + V(y; r)). Among other things, we

see: (i) if dim X > 3 , then X admits an equivalent norm such that Bx is not

stable; (ii) if dim X < oo , Bx is stable iff Bx is US; (iii) if X is rotund, X is

uniformly rotund iff Bx is US; (iv) if X is 3.2.I.P, Bx is US and a{r) = /-/2
is a modulus of US; (v) Bx is US iff BX" is US and X, X" have (almost)

the same modulus of US; (vi) Bx is stable (resp. US) iff BC^K X) is stable

(resp. US) for each compact K iff BA(K X) is stable (resp. US) for each Cho-

quet simplex K ; (vii) Bx is stable iff BL ¡^ X) is stable for each measure p.

and 1 < p < oo .

0. Introduction

Let X be a normed space and Bx and Sx the closed unit ball and unit

sphere of X, respectively. If A, B are subsets of X, define the distance

d(A, B) - supxe/4infyeÄ{||x -y||}. If x £ X and e > 0, we write B(x; e) =

{y £ X:\\x- y|| < e} and V(x;e) = Bx n B(x;e). We denote by Ext(C)
the set of extreme points of a set C. A convex set C is said to be stable if

the midpoint map O1/2: C x C -> C, ^>Xß(u, v) = \(u + v), is open. Stable
convex sets have been studied in [4, 12, 3]. Many Banach spaces have sta-

ble unit ball, namely: strictly convex or rotund Banach spaces, Banach spaces

with 3.2.1.P. [4, p. 195], finite dimensional Musielak-Orlicz spaces [5], etc. In
case of stable unit balls, the characterization of some extreme elements is very

easy. For instance, if Ä" is a compact space, Bx stable and / g C(K, X),

then / £ Ext(BC(K,x)) iff f(K) Q Fxt(Bx) ■ If K is a Choquet simplex,
Bx stable and f £ A(K, X) (= affine continuous functions g: K —> X),

then / € Ext(BA[KtX]) iff f(Ext(K)) C Ext(Bx) (see [4, 2.1. Theorem]). Let
7%(X, C(K)) be the space of compact operators T: X -> C(K). It is known

that 3?(X, C(K)) is isometrically isomorphic to the space C(K, X*). Follow-
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ing Morris and Phelps [11], an operator T £ JÍ(X, C(K)) is said to be a nice

operator, if its adjoint T* satisfies T*(K) ç Ext(Bx.). Let yTJf(X, C(K))
be the set of nice operators. Then clearly JV7%(X, C(K)) ç Ext(B^(x,C(K)))

and, if Bx. is stable, we have JV5?(X, C(K)) = Ext(Bj?{X C(K))) (see [2, 15,
16]).

If x, y £ Bx and s > 0, denote D(x ,y;s) = \[V(x ; s) + V(y ; s)]. Ob-
viously, D(x,y;s) is a convex and, in general, not norm closed set; but if

X is a dual space, then D(x, y; s) is u>*-compact and so norm closed. A

map a: [0, 2] -» [0, 2] is a modulus of stability of Bx if V(\(x +y) ; a(r)) Ç
D(x, y; r) for each x, y £ Bx and r £ [0,2]. The maximum modulus of

stability am of Bx is

r £ [0, 2],        am(r) = sup{i £ [0, 2] : for each ije5x,

F(i(x+y);5)ço(x,y;r)}.

Clearly am is nondecreasing, null in [0, ro) and positive in (ro, 2], for some

rn > 0, and am(2) = 2. The closed unit ball Bx is said to be uniformly stable

(US) if there exists a map a : (0, 2] —» (0, 2] (called a modulus of US) such that

for each x, y £ Bx and r £ (0, 2] we have: F(\(x + y) ; a(r)) ç D(x, y; r).

Of course, Bx is US iff am(r) > 0 for each r £ (0, 2].
In this paper we study stable and uniformly stable (US) unit balls in Banach

spaces. In §§1 and 2 we see some elementary facts as: (i) if DimZ > 3, X

admits an equivalent norm such that Bx is not stable; (ii) if X is a dual space,

am is right continuous; (iii) if Dim X < oo, Bx is stable iff Bx is US; (iv)

if X is rotund, X is uniformly rotund iff Bx is US; (v) Bx is US if X is
3.2.I.P. In §3 we prove that Bx is US iff Bx.. is US and the moduli of US
are (almost) the same. §§4 and 5 are devoted to study the unit balls #c(à:,x)

and BA(KtX), where C(K, X) (resp. A(K, X)) is the space of continuous

(resp. affine continuous) functions f:K-+X on the compact K (resp. convex
compact K). It is proved that Bx is stable (resp. US) iff BG(k,x) is stable

(resp. US) for each compact K iff BA^K¡x-¡ is stable (resp. US) for each Choquet

simplex K. In §6 we prove that Bx is stable iff BLp^^X) is stable, 1 < p < oo.

Finally, it is an open problem if BLp(ß<X), 1 < p < oo, is US when Bx is US.

1. Preliminary results

We begin with some elementary remarks: (a) Let C be a convex subset of

some locally convex space E, 0 < X < I, and define O^ : C x C —» C by

®x(x, y) = Xx + (1 - X)y. Then <Pi/2 is open iff <P¿ is open (see [4, 1.1
Proposition]).

(b) It is easily seen that Bx is stable, if X is a normed space with strictly

convex or rotund norm.

(c) Every norm in R and R2 produces stable closed unit balls. In R this

result is evident and, concerning R2, we can apply that, for a compact convex set

K Ç R3, the map Q>i/2 is open iff Exí(.ty) is closed (see [4]). But if z belongs

to SR2\Ext(BR2), there exist x,y £ 5'R2\{z} such that z = j(x + y). Let

e = \\z - x\\. Then B(z; e/2)f)SR2 ç ,SR2\Ext(5R2). Therefore SR2\Ext(BR2)

is open in SR2 and hence Ext(ßR2) is closed.

(d) In R3 it is easy to give a norm such that Bx is not stable. Take

C = {(x,y,0):x2+y2 = l},        K = {(0,y,z): max{|y|, \z\} < 1}.
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The new closed unit ball will be B = co(C U K), that is, the convex hull of the

set CuK. Observe that

Ext(5) = {C\{(0, 1,0),(0,-1,0)}}U{(0,±1,±1)}.

As this set is not closed, by the result of [4] aforementioned in (c), B is not

stable.
If dim X > 3 , the situation is similar. We need the following lemma:

1.1. Lemma. Let X be a normed space. Then: (A) If Bx is stable, Ext(Bx)

is closed.
(B) Let Y c X be a 1 -complemented subspace. If Bx is stable, then BY is

stable.

Proof. (A) Let A = {(x, x) : x £ Bx} . As A is closed in Bx x Bx , <Pi/2 open

and Bx\Ext(Bx) = Q>X/2(BX x BX\A), then Bx\Ext(Bx) is open and Ext(Bx)
is closed in Bx .

(B) We say that Y is 1-complemented in X if there exists a projection

P: X -> Y such that ||P|| = 1. Let <pf,2, <t>\,2 be the midpoint maps in Bx

and BY respectively. Since P o <p* = (pj^ o (P x P) and P is open, we get

that <Pw2 is open if <p£2 is open.   D

1.2. Proposition. Let X be a normed space with dimX>3. Then X admits

an equivalent norm such that the new closed unit ball is not stable.

Proof. We write X as a direct topological sum X = XX®X2 with dim Xx = 3.

Take in Xx the norm || • ||i used in (d) above, an arbitrary equivalent norm

|| • ||2 in X2 and in X the norm || • ||3 defined by

if x = (xx, x2) £ Xx ®X2 - X, then ||jx:||3 = sup{||xi||i, HX2II2},

Now it is enough to consider (d) and Lemma 1.1.   D

1.3. Proposition. Let X = Y* be a dual Banach space. Then am is right-

continuous.

Proof. Let So e [0, 2), e > 0 and suppose that limJ_VJ+ am(s) = am(so) + e.

Choose x,y £ Bx such that, if z = ¿(x+y), V(z; am(s0) + %) % D(x, y;s0).

By hypothesis, if j > So , we have V(z ; am(so) + e) ç D(x, y ; s). Clearly the

distance d(D(x, y ; s), D(x, y ; sq)) -> 0 when s -* s£ . Since D(x, y ; So) is

norm closed (is w*-compact), we conclude that f)s>So T>(x, y; s) = D(x, y; So).

Therefore V(z ; am(so) + e) ç D(x, y ; Sq) , a contradiction.   D

1.4. Proposition. Let X be a finite dimensional normed space. The following

are equivalent: (a) Bx is stable; (b) Bx is US.

Proof. As b => a is clear, we prove that a => b . If Bx is not US, there exist r >

0 and sequences {x„}„>x, {y„}«>i in Bx such that, if zn = \(xn +y„), then

V(zn ; l/n) <£ D(xn ,yn;r). Since Bx is compact, we can suppose the existence

of lim^oo *„ = x0, lim^ooy« = y0 and lim«^^ z„ = zQ = j(.xo +y0) • since

Bx is stable, there exists e > 0 such that V(z0 ; e) ç D(xq , yo ; r/2). Taking
limits in V(zn ; l/n) <£. D(xn , yn ; r), we get a contradiction.   D
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1.5. Proposition. Let X be a rotund normed space. The following are equiva-

lent:
(a) X is uniformly rotund;

(b) Bx is US.

Proof, (a) =>■ (b). Let 6: (0, 2] -» (0, 1] be a nondecreasing modulus of uni-

form rotundity of X and take x, y £ Bx, z — (x + y)/2 and re (0,2].

Suppose firstly that r < \\x - y\\ = e. By hypothesis, B(z; ô(e)) ç Bx. If

X = r/(ô(e) + ¿e), the homothecy h(y ; X), with centre y and ratio X, sat-

isfies h(y;X)[B(z;ô(e))] = Bx ç V(y;r). Also h(x; X)[B(z; ô(e))] = B2 ç

V(x ; r). Observe that the radius of B¡■, i = 1, 2, is p(e) = [r-ô(e)]/[ô(e)+\e].

In short, if e = ||x - y\\ > r, then V(z; p(e)) = B(z; p(e)) = \(BX + B2) ç
D(x,y;r). Suppose finally that ||x - y|| < r. Then clearly V(z;r/2) C

D(x, y ; r). So a modulus of US of Bx is

(b) =>■ (a). Let a be a modulus of US of Bx and e > 0. We prove

that there exists ô > 0 such that ||(.x + y)/2|| < 1 - ô, for each x, y £ Sx

with ||x - y|| > e . By hypothesis V((x + y)/2 ; a(e/2)) ç D(x, y ; e/2). Since

X is rotund, V(x ; e/2) n V(y ; e/2) C {(x + y)/2} . But (x + y)/2 i Sx .
Hence V((x + y)/2; a(e/2)) n Sx = 0, because V((x + y)/2;a(e/2)) n Sx

ç D(x, y ; e/2) n Sx ç V(x ; e/2) n V(y ; e/2) n Sx = 0. So the distance
d((x + y)/2 ; Sx) > a(e/2), that is, ||(x + y)/2|| < 1 - a(e/2).   O

1.6. Proposition. Let X be a normed space, a a modulus of US of Bx and

Y c X a 1 -complemented subspace of X. Then a is a modulus of US of By .

Proof. Take e>0, x, y £ BY , z - (x + y)/2 and P: X —► Y a projection
with | |.P| | = 1. If the subindex Y indicates we work in By, we have the

following:

VY(z; a(e)) = P(V(z; a(e))) Q P(D(x,y;e)) = DY(x,y;e).   U

1.7. Example. Let us see some examples of Banach spaces X suchthat Bx is

stable but not US. Indeed, take X = (£„>, ®lx+x/n)p orí- (E„>2©/n)p .

1 < p < oo. The unit ball Bx is rotund but not US, because if Bx is US,

from Proposition 1.6 we would deduce that the family {ln}n>2 or {/1+¡/„}n>i is

uniformly US (that is, there is a common modulus of US). Now, from the proof

of Proposition 1.5, we conclude that these families are uniformly uniformly

rotund, which is not true.   D

1.8. Proposition. Let X be a Banach space and Y ç X a dense US subspace.

Then X is US.

Proof. Let a be a left-continuous and nondecreasing modulus of US of Y (if

a is not left-continuous, take a(r) = lime^0+ a(r - e)). We prove that ma is

a modulus of US of Bx for each 0 < m < 1 . Pick x, y e Bx , re (0,2]
and z e V((x + y)/2; ma(r)).   Since a  is left-continuous, we can choose

x' £ V(x ; r) n Y, y' £ V(y ;r)nY and 0 < e, ô such that

z € DY(x' ,y';r-e),        V(x' ; r - e) ç V(x ; r - Ô)
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and V(y' ; r - e) ç V(y ; r - 3). Now take Xi £ VY(x' ; r - e) and yx £

Vy(y' ; r - e) such that z £ DY(xi, yi ; S/2). Next take x2 £ VY(xi ; ö/2) and

y2 £ VY(x2 ; S/2) such that z e DY(X2, y2 ; S/4). By reiteration we get Cauchy

sequences {xn}„>x ç V(x; r), {y„}„>x ç V(y; r) satisfying ||z-(x„+y„)/2|| <

S/2" . Then, if x0 = limn^^Xn and yo = limn^^yn , clearly xq e V(x; r),

y0 € V(y ; r) and z = (x0+ y0)/2.   D

The proof of Proposition 1.9 following is straightforward and left to the

reader.

1.9.   Proposition. Let {X¡}¡ei be a family of Banach spaces.

(A) The following are equivalent (J'&'ség) :

(1) IfX = (£,e/©*/)o, Bx is stable,   (2) BXj is stable for each i el.

(B) 9~&s*W\
(1) If X = (E/e/ ©*«)«,, Bx is stable.
(2) Each Bx¡ is stable and for each re (0,2], there exists a finite

subset F(r) C I such that inf{am¡(r): i £ I\F(r)} > 0, where am¡ is the

maximum modulus of stability of X¡.
(C) For p = 0 or p = oo, y&stfg :

( 1 )   a is a modulus of US of Bx, with X = (J2i€l © X¡)p .
(2)   a is a modulus of US of Bx¡, for each i £ I.

(D) Let I be an infinite set, Y a Banach space, X¡ = Y for each i £ I and

* = (£,e/© *;)oc. FFstfW:
( 1 )   Bx is stable, with X = (£ieI © *,■)«,.
(2) BY is US and a is a modulus of US of BY .
(3) Bx is US and a is a modulus of US of Bx .

2. Uniformly stable unit balls and intersection property of balls

A normed space X has the n.2.I.P. (n.2. intersection property, see [6, p. 207;

8; 9]) if for each set of closed balls Sx, S2, ... , Sn in X (with varying centers

and radii) such that S¡ n Sj ^ 0 for all i and ; , it follows that f\"=i S,■ ̂ 0.
It is known (see [4, p. 195]) that if X is 3.2.I.P, then Bx is stable and we see

here that a(r) = r/2 is a modulus of US of X.

2.1. Proposition. Let X be a Banach space with 3.2.I.P. Then a(r) — r/2,

r £ (0, 2], is a modulus of US of X.

Proof. Take r £ (0, 2], x, y £ Bx and d £ X satisfying \\d\\ < r/2 and
||jc + y + 2d\\ < 2. Let z = (x + y)/2 and u = z + d. Then u £ V(z ; r/2).
We must find x' £ V(x ; r) and y' e V(y ; r) such that u = (x' + y')/2.

Let Bx = B(0;l), B2 = B(x + d; r/2) and B3 = B(x + y + 2d ; 1). These

balls intersect mutually. So there is x' £ f|/=i B¡ ■ Now x' £ V(x ; r) (since

Hx'll < 1), B2 ç B(x;r) and, if y' = 2u - x', also y' e V(y; r). Finally
u = (x'+y')/2.   G

3. Uniformly stable unit balls and bidual

Let X be a Banach space. We prove that Bx is US iff BX" is US. Let
N C X be a closed subspace,  Y — X/N and Q: X —> Y the quotient map.
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We say that Q is an open quotient if Q(BX) = BY and Q restricted to Bx

is open. We say that Q is uniformly open quotient (u.o.q.) if Q is open and

there exist a map c: (0, 2] —> (0, 2], called an u.o.q. modulus, such that, for

each x £ Bx and r £ (0, 2], V(Q(x) ; c(r)) ç Q(V((x ; r))).

3.1. Examples. (1) Let K, Kx be compact Hausdorff spaces such that Kx ç

K . Then the restriction map Q: C(K) -» C(KX), defined by Q(f) — /[at, for
each / £ C(KX), is an u.o.q. with modulus c(r) = r.

(2) Let / be a set, % an ultrafilter on /, {X¡}¡ej a family of Banach spaces,

Y = (E,e/ ©^,)oo and (X¡)% the ultraproduct with respect to % (see [10, p.

121]), that is, (Xi)% = Y/N, where N = {x = (x¡)i€l £ Y: lim^x, = 0} . Then
the quotient Q: Y -> Y/N is an u.o.q. with modulus c(r) = r. Indeed, denote

by (x¡) an element of Y and Q((x¡)) = (x¡)^ the image element in Y/N.

Suppose that ||(x,)g/|| < 1. Define (y,) £ Y as follows: y, = x¡, if ||x/|| < 1,

and y¡ = Xi/\\x¡\\, if ||x,|| > 1. Then (y¿)% = (x¡)% and (y,) e By . This proves

that Q(BY) = BY/N . Now take (jc,) £BY,r£ (0,2] and (y¡)w £ V{{x¡)v ; r).
We want to find (z;) e V((x¡); r) such that (z¡)^ = (y¡)%. We can suppose

that 1 > ||(y,)|| = sup{||y,||: i £ 1} (if 1 < ||(y,)|| for some i £ I, take

(y[) defined by y\ = yu if ||y,|| < 1, and y\ = y;/||y,|| if ||y,|| > 1, that
satisfies ||(y(')|| < 1 and (y,)^ = (y'i)it) ■ Choose (z¡) as follows: z,- = y, if

11*/ -y/ll < r and z, = Xi + r • (y,- - x,-)/||y,- - x,|| if ||x,- -y,|| > r. This proves

that V((xih;r)CQ(V((xi);r)).

3.2. Proposition. Let X be a Banach space, N ç X a closed subspace and

Q: X —> Y = X/N the quotient map. Then
(a) // Bx is stable and Q is an open quotient, BY is stable.

(b) If a is a modulus of US of Bx and Q is an u.o.q. with modulus c, then

coa is a modulus of US of BY .

Proof, (a) Take x, y e Bx and r > 0. We prove that there exists 5 > 0 such

that V(Q((x + y)/2) ; s) ç D(Q(x), Q(y) ; r). Since Bx is stable, there exists

s' > 0 such that V((x + y)/2 ; s') ç D(x, y ; r). As Q is open, there exists

5 > 0 such that V(Q((x + y)/2) ; s) ç Q[V((x + y)/2 ; s')]. In consequence

y(a(^\ i^i.
CQ(D(x,y;r))CD(Q(x),Q(y);r).

(b) Let x,y £ Bx and re(0,2].   By hypothesis  V((x + y)/2; a(r)) ç
D(x, y ; r). Hence:

V(Q(^l);coa(r))çQ çQ(D(x,y;r))T, fx+y        .

CD(Q(x),Q(y);r).

So coa is a modulus of US of Y.   D

3.3. Corollary. Let I be a set, % an ultrafilter on I, a a modulus of US

common to all members of the family of Banach spaces {X¡}i€¡ and (X¡)f¿ the

ultraproduct with respect to %. Then a is a modulus of US of B(x,)v ■
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Proof. By (C) of Proposition 1.9, a is a modulus of US of BY, being Y =

(E/e/ ©^/)oo • Now apply Proposition 3.2 and Example 3.1.   D

3.4. Proposition. Let X be a Banach space. Then Bx is US iff Bx— is US.
Moreover, the maximum moduli am, a'^ of US of Bx, Bx— , respectively,

satisfy a'^(r) = lim£^0+ am(r + e), for each r £ (0, 2).

Proof. (1) Let a be a modulus of US of Bx- , x, y £ Bx, r £ (0, 2], e >
0 and d £ X such that \\d\\ < a(r) and x + y + 2d = u £ 5(0 ; 2), that
is, u/2 £ V((x + y)/2 ; a(r)). We claim that there exist x' £ V(x ; r + e),

y' £ V(y ; r + e) such that x', y' £ X and u/2 = (x' + y')/2. This fact
will imply that V((x + y)/2; a(r)) ç D(x, y; r + e) in X. By hypothesis,
there exist z e V"(x; r), v £ V"(y; r) (we put V" when we work in X**)

such that u/2 = (z + v)/2. This implies that z e [B"(0; 1) n B"(x; r) n
B"(x + 2d;r)r\ B"(u ; 1)], where B" indicates that we take balls in X**. Let

A be the subspace of X** spanned by {x, x + 2d, u, z} and 6 > 0 such that

(1 + 0)||z|| < 1 + a(e/l6) >(l + 0)\\z - u\\,

(1 + 0)||x -z\\<r + e/2 > \\x + 2d- z||(l + 6).

By the principle of local reflexivity (see [10, p. 196]), there exists an operator

T: A -» X such that: (i) T(w) = w, w £ A n X; (ii) ||r|| < 1 + 6. So if
zx = T(z), we have

zi £ [B(0; l+a(e/l6))nB(x;r+e/2)f]B(x + 2d; r+e/2)nB(u; l+a(e/16))].

Let

( zx ifzx£B(0;l),

U] Xl      \zx/\\zx\\    ifzx$B(0;l),

[*> [u-zx if zx£B(u; I),
yx = <

{ (u-zi)/||m-zi||    if zi iB(u; I),

and di £ X such that Xi +yx +2d\ = u. As ||zj - Xi\\ < a(e/l6) > \\xx +
2di - zi ||, we get \\dx \\ < a(e/16). Apply again the principle of local reflexivity:

there exists Z2 £ X such that

z2 £ [5(0; 1 + a(e/32)) n B(xx ; e/16 + e/32)

n B(xi + 2di ; e/16 + fi/32) n B(u ; 1 + a(e/32))].

Now ||zi-z2|| < ||z,-Xi||-(-||jci-Z2|| < a(e/16)+e(l/16-(-l/32) < e/4,because
always a(s) < s. Define X2, y2 as in (*) using now z2 and take d2 £ X such

that X2 + V2 + 2úÍ2 = u. Then H^ll < a(e/32). Apply the principle of local
reflexivity: there exists z^£ X such that

z3 £ [5(0 ; 1 + a(e/64)) n B(x2 ; e(2~5 + 2~6))

n 5(jc2 + 2d2; e(2~5 + 2~6)) nB(u;l + a(e • 2"6))]

and ||z2-z3|| < ||z2 -x2|| + ||jc2 - z3|| < a(e -2"5) + e(2~5 + 2~6) <e-2~3. By

reiteration, we obtain a Cauchy sequence {zn}n>x such that, if x' = lim,,-,^ z„ ,

then clearly

x' £ [5(0; I) n B(x ; r + e) n B(x + 2d ; r + e) n B(u; I)].



684 ANTONIO SUAREZ GRANERO

Thus x' £ V(x ; r + e) and, if y' = u - x', then y' e V(y ; r + e) and \ =

\(x'+y'). This proves, in particular, that am(r+e) > a'^(r) for each r £ (0,2)

such that r + e <2.
(2) Let Bx be US. It follows from the principle of local reflexivity that X**

is 1-complemented in (X)% for some ultrafilter %. Applying Corollary 3.3,

we get that a'L>am. Thus Bx- is US.
Finally for r £ (0,2) and e > 0 with r + e < 2, we have: a'L(r + e) >

am(r + e) > a'L(r). Thus, as a"m is right-continuous (see Proposition 1.3), we

get that a"m(r) = lim£^0+ am(r + e), for each r £ (0 ; 2).   D

4. The unit ball in C(K, X)

If AT is a compact Hausdorff space and X a Banach space, we denote by

C(K, X) the Banach space of continuous functions f:K^>X with the supre-

mum norm. We prove in this section that BC(K X) is stable (resp. US) iff Bx

is stable (resp. US).

4.1. Lemma. Let X be a Banach space such that Bx is stable, x, y £ Bx

and e > 0. Then there exist 0 < 6, n such that, for each x' £ V(x ; 5),

y' £ V(y ; ô), we have

V((x' + yl)l2;n)çD(x',y';e).

Proof. Let nx such that

V((x + y)/2;nx)CD(x,y;e/2)

and

ô = min{e/2, nx/2}.

Then, if x' e V(x ; S) and y' £ V(y ; a), we have

V((x + y)/2; //,) Ç D(x, y; e/2) C D(x',y'; e).

But

V((x'+y')/2;r,i/2)çV((x + y)/2;ni).

Thus it is enough to take n = ni/2 .   D

4.2. Proposition. Let K be a compact Hausdorff space and X a Banach space.

The following are equivalent: (1) BC(k,x) is stable; (2) Bx is stable.

Proof. (1) => (2) As X is 1-complemented in C(K, X), it is enough to apply

Lemma 1.1.
(2) => (1) Take f,g£ BC{K,X),e > 0 and the compact H = {(f(k), g(k)):

k e K} ç Bx x Bx ■ For each z = (x, y) e H choose 0 < ôz,nz fulfilling

Lemma 4.1 with respect to z and § . If U(z; ôz) = V(x; ôz) x V(y; ôz),

then the interiors of {U(z; ôz); z £ H} cover the compact H. So there ex-

ists a finite subfamily {U(z¡ ; SZj): i = 1, 2, ... , n} that also cover H. Let

n - miniez, : i = 1,2,... , n} . If h = (f + g)/2, we have

(1) V(h(k);n)CD(f(k), g(k);e/2) in Bx   for each k £ K.

We claim that V(h ; n) ç D(f, g; e) in BC(k,x) ■ Indeed, let p £ V(h ; n) and
consider the functions
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(a) (j):Bx^2B^B" (= family of subsets of Bx x Bx) such that

x£Bx,        4>(x) = \(u,v)£BxxBx:^-^- = x\ ,

(b) y/:K^2B*xBx suchthat y/(k) = [<P°p(k)]n[V(f(k); e) x V(g(k); e)],
k£K.

We have the following:

(1) For each k £ K, y/(k) is a nonempty closed convex set.
Indeed, as 4>op(k) and V(f(k) ; e) x V(g(k) ; e) are closed convex, y/(k) is

closed convex. Let see that i//(k) ^ 0. As p £ V(h ; n), \\h - p\\ < n and by

(1), for each k £ K, p(k) £ D(f(k), g(k) ; e/2). Thus:
(2) for each k £ K there exists u £ [<t>op(k)]0,[V(f(k) ; e/2) x V(g(k) ; e/2)].

So we y/(k) and y/(k) ̂  0 .
(II) y/ is lower semicontinuous.

Let U = Ux x c/2 be an open subset of Bx x Bx and ko £ K such that

V(h) n U í 0. The set A = {(xx, x2) £ y/(k¡)- \\xi - /(*u)ll<e>ll*2 - g(h)\\}
is nonempty (by (2)) and dense in y/(ko). As ^(^o) C\U ̂  0, also Ar\U ^ 0.
Take z = (zx, z2) e Af)U. The continuity of / and g implies the existence
of p > 0 and a neighbourhood Gi of ko in K such that

(3) for each k £ Gx, V(zx ; p) x V(z2 ;p)QUn[V(f(k); e) x V(g(k) ; e)].
As Bx is stable and (zi + z2)/2 = p(k0), there exists ô > 0 satisfying

V(p(ko) ; ô) ç D(zi, Z2 ; p). In consequence:

(4) for each y 6 V(p(k>) ; S), cj>(y) n [K(z, ; p) x V(z2 ;p)]¿0.

Let C72 = p~x(V(p(ko) ; ô)) and G = C7i n G2 a neighbourhood of &o in K.
Then for each k £ G we have y/(k) ni/^0. Indeed, take k £ G:

(a) As k £ G2 , we have, by (4), that [</> op(k)] n [V(zx ; p) x V(z2 ; p)]¿0.
(b) As k £ Gi, we have, by (3), that V(zx ; p) x V(z2 ; p) ç Un[V(f(k) ; e) x

V(g(k);e)]. Therefore Uny/(k) = [<l>°p(k)]n[V(f(k); e)x V(g(k); e)]nU ¿
0 . Thus \ji is lower semicontinuous.

By Michael's selection theorem [13, p. 5], y admits a continuous selection

(s\, sj) = s: K —> Bx x Bx such that p = \(sx + Si) and sx £ V(f; e), S2 £

V(g; e). This proves that V(h; n) ç D(f, g; e) and that BC(k,x) is sta-
ble.   □

4.3.   Proposition. Let K be a compact Hausdorff set and X a Banach space.

Then Bx is US iff BC^KX) is US and the maximum moduli a* , a£(K'X) of
US of Bx and BC(k,x) , respectively, satisfy

for each r£ (0,2],    ax(r) > a%K'X)(r) > lim a£(r-e).
s—>0+

Proof. As X is 1-complemented in C(K,X), applying Proposition 1.6, we

obtain that Bx is US, provided that BC(k,x) is US and that a* > o$K'x).

Suppose now that Bx is US and that a is a modulus of US of Bx. Let

f, g £ BC(K,x), h = (f + g)/2 and re(0,2], We prove that for each
0<e<r, V(h;a(r-e))cD(f,g;r) in BC{K>X). Take p£ V(h;a(r-e))

and consider the functions (j), y/ as in Proposition 4.2, that is,

X£BX,        (j)(x) = l(u,v)£BxxBx:^-j^ = x\ ;



686 ANTONIO SUAREZ GRANERO

k£K,        y/(k) = [<¡> o p(k)] n [V(f(k) ; r) x V(g(k) ; r)].

As in Proposition 4.2, y/ is lower semicontinuous and i//(k) is a closed

convex nonempty set, for each k £ K. Applying Michael's selection theorem

[13, p. 5], we obtain that p £ D(f, g;r) in BC(K¡X). Thus BC{K,x) is US

and, for each r £ (0, 2], a^K'X)(r) > lim£_0+ ax(r-e).   D

5. The unit ball in A(K, X)

If K is a compact convex set and X a Banach space, A(K, X) will be the

Banach space of affine continuous functions f:K—>X with the supremum

norm. A compact convex set AT is a Choquet simplex iff A(K, X) is a Lx-

predual (see [6, p. 183]; [1, p. 84]).

5.1. Proposition. Let K be a Choquet simplex and X a Banach space. ^^séW :

(1) BA(K,X) is stable; (2) Bx is stable.

Proof. (1) => (2) As I is 1-complemented in A(K, X), this follows from
Lemma 1.1.

(2) => (1) Take f, g £ BA{K>X), e > 0 and h — (f + g)/2. From Lemma
4.1 it follows that there exists n > 0 such that, for each k £ K, V(h(k) ; n) ç

D(f(k), g(k) ; e/2) in Bx . We claim that V(h ;n)çD(f,g;e) in BA{K¡X).
Indeed, pick p £ V(h;n)  and consider the functions (f>, y/ of Proposition

4.2. We know that y/ is lower semicontinuous and that y/(k) is a convex

closed nonempty set, for each k £ K. Moreover, it is easily proved that y/

is affine, that is, if kx, k2 £ K, 0 < X < I, and k = Xk\ + (I - X)k2, then
Xy/(ki) + (1 - X)y/(k2) ç y/(Xki + (1 - X)k2). So applying Lazar's theorem
[7, Theorem 3.1, p. 511], we get an affine continuous selection s = (si, S2):

K -> Bx x Bx such that p = j(si +52),^ £ V(f;e) and s2 £ V(g;e).
Therefore V(h ; n) ç D(f, g;e).   O

5.2. Proposition. Let K be a Choquet simplex and X a Banach space. Then

Bx is US iff BA(K,X) is US, and the maximum moduli ax , a^'^ of US of
Bx and BA(KX), respectively, satisfy

for each r £ (0, 2],    ax(r)> a%K 'X)(r)> lim axm (r - e).
i-»0+

Proof. This proof is similar to the proof of Proposition 4.3, applying Lazar's

theorem instead of Michael's theorem.   G

Open problem. Let K be a compact convex set satisfying Proposition 5.1 or

Proposition 5.2. Is AT a Choquet simplex?

6. The norm in Lp(p, X)

In this section we study the unit ball BLp^X)  when the unit ball Bx  is

stable. Let us begin with Loc(p, X).
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6.1. Proposition. Let X be a Banach space and (fi, E, p) a measure space.

(A) Suppose that p is purely atomic with a finite number of atoms. Then

(1) BLoo{/ltx) is stable iff Bx is stable.

(2) a is a modulus of US of 5Loo(/i ̂) iff a is a modulus of US of Bx .
(B) Suppose that the measure space (fi, Í, p) does not reduce to a purely

atomic measure with a finite number of atoms. Then OT&'srf'ig :

(a) BLoo{^X) is stable.

(b) Bx is US.

(c) BLa¡llt3x) is US.

Proof. (A) In this case Lx(p, X) is isometric to (¿3/Li ©^/)oo, with X¡ =

X, i = 1, 2, ... , n , and n the number of atoms of (fi, E, p). Now apply

Proposition 1.9.
(B) (a) =» (b) Apply that (£„>i © Xi)oo , with X„ = X, is 1-complemented

in Loo(p, X) and Proposition 1.9.
(b) => (c) Let Y c Loo(/i, X) be the subspace of bounded countable X-

valued functions / = T,n>ix» ' Xa„ , An £ X, A„ n Am = 0 if n ¿ m.

As Y is dense in L^p, X), by Proposition 1.8, it is enough to prove that

Y is US. But this follows immediately from (D) of Proposition 1.9 and the

fact that, if fi £ Y, i = 1,2, ... , m, there is in Y an isometric copy of
z = (£„>i ©XOoc , Xn = X, n > 1, such that fieZ.

(c) =>■ (a) This is immediate.   D

In the following we prove that BLp^tx), 1 < p < oo, is stable iff Bx is stable.

As X is 1-complemented in Lp(p, X), it is enough to prove that 5¿(j(/J x) is

stable when Bx is stable. We begin with the case 1 < p < oo.

6.2. Lemma. Let X be a Banach space with stable unit ball Bx, K a compact

Hausdorff space, fi £ C(K, X), i — 0, 1, 2, such that fi = \(fx + fi) and
\\fo(k)\\ = \\f(k)\\ = ||/2(fc)|| for each k £ K, and e > 0. Then there exists
n > 0 such that for each g £ B(fo ; n) we can choose g¡ £ B(fi ; e), i = 1,2,

satisfying g = {(gx + g2) and \\g(k)\\ = \\gx(k)\\ = \\g2(k)\\ for each k£K.

Proof. Define 0: X -» 2XxX by <f>{x) = {(u, v) £ XxX: x = (u + v)/2, \\x\\ =

\\U\\ = \\v\\},  X £ X .
(1) Let us see that <j> is lower semicontinuous. Pick ô > 0, x0 £ X

and (xx, X2) £ <p(xo) ■ We prove that there exists p > 0 (depending on

ô, xq, Xi, X2) such that each y0 e B(xo ; p) satisfies 4>(yo) n [B(xi ; S) x
B(X2 ; Ô)] # 0 . If xo = 0, take p = ô . Assume that xo # 0 and, without loss
of generality, that ||xo|| = 1. Since Bx is stable, there exists 0 < p' < 1 such

that, for each x'0 £ B(xo ; p')fîSx , there exists x\ £ B(x¡ ; ô/2)r\Sx, i = 1,2,

satisfying x0 = \(x[ + x'2). Put p = min{p'/2, 3/2} and let yo € B(xo; p)

and x¿ = y0/||yo|| • As \\x'0 - x0\\ < ||jc¿ - y0|| -1- ||y0 - x0\\ < 2p < p', there

exist x\ £ B(Xi ; 6/2) nSx, i = 1, 2, with x'0 = \(x[ + x^). Put y¡ = ||y0||.

x\, i =1,2. Then (y>, y2) 6 <£(y0) and \\xi - y,|| < \\x¡ - x,'|| + \\x\ - y¡\\ <
6/2 + 0/2 = 0, i =1,2, that is, (p(x0) n [B(xx ; 6) x B(x2 ;6)]¿0.

(2) Let fi e C(K, X), i = 0, 1, 2, and e > 0 satisfy the statement of
Lemma 6.2. We prove that there exists n > 0 such that 4>(x)n[B(fx(k) ; e/2) x

B(f2(k);e/2)] ¿ 0, provided that k e K and x £ B(f0(k);n).   By (1),
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for each k £ K, there exists nk > 0 satisfying, for x £ B(fo(k); nk), that

4>{x) n [B(fi(k) ; e/4) x B(f2(k) ; e/4)] / 0 . For k £ K put

Glc=fo-l[B(f0(k);rlk/2)]nfl-x[B(fi(k);e/4)]nf2-x[B(f2(k);e/4)].

The family of neighbourhoods {Gk}keK cover K. So there is a finite fam-

ily {ki, ... , k„} ç K such that {G¿. : i = 1, 2, ... , n} also cover AT. Let
n = min{nk/2: k = 1,...,«}. If A: € Ä" and x G B(fi¡(k) ; n), there ex-
ists /'o € {1, ... , n}, for example, /0 = 1, such that k £ Gki and fo(k) £

B(fo(kx); \nh). Thus x £ B(f0(kx); nkl) and there exists (x{, x2) £ </>(x) n

[B(Mki); e/4) x B(f2(ki); e/4)] satisfying

11*/ - //(*)|| < ||x, - f,(ki)\\ + \\fi(ki) - fi(k)\\ <i + í = í,       i =1,2,

that is, (xi, X2) £ cj>(x) n [B(f(k) ; e/2) x B(f2(k) ; e/2)].
(3) Pick g £ C(K, X) such that \\g - fQ\\ < n and define y/: K - 2XxX as

follows:

y/(k) = [<t> o g(k)} n [5(/i (k) ; e) x B(f2(k) ;e)],        k£K.

As in Proposition 4.2, it is proved that y/ is lower semicontinuous and that

y/(k) is a nonempty closed convex set for each k £ K. Applying Michael's

theorem [13, p. 5], there exists a continuous selection 5 = (si, S2): K —► X x X

such that s(k) £ y/(k) for each k £ K. Now take g¡ = s¡, i = 1,2.   O

6.3. Proposition. Let X be a Banach space with Bx stable, K a compact

Hausdorff space, p a positive Radon measure on K and 1 < p < 00. Then

BLp(ß,x) is stable.

Proof. Let 0 < e < 1 and fi £ BLp(^X) ,¿ = 0,1,2, such that fi = j(fi+f2).
We prove that there exists p > 0 such that V(fi¡ ; p) Ç D(f , f2 ; e), assuming
\\fi\\ = 1, i = 0,1,2 (if ll/oll < 1 , this fact is clearly true). As 1 < p < 00,
we have ||/o(^)ll = ll/i(^)ll = H/iCOH, k e K, almost everywhere (a.e.). Let

G = {x £ X\{0}: x/\\x\\ i Ext(Bx)}. Note that G is open because Bx is

stable and Ext(Bx) is closed. If U = fQ~x(G), then fx(k) = f0(k) = f2(k),
k £ K\U a.e. If p(U) = 0, there is nothing to prove. Suppose that p(U) > 0

and choose a compact subset K0 ç U such that p(K0) > 0, fi continuous

on Ko, i = 0, 1,2, and [SK\Ki\\fi - fo\\" • dp?/' < e/8, / = 1, 2. Let

6 = (e/4)/[p(K0)]x/p . By Lemma 6.2, there exists 0 < n < 1 such that, if

h £ C(Ko, X) and \\h - foWx^ <n (II • lk0 is the supremum norm on K0), then

there exist h¡ £ C(K0, X) satisfying ||/z, - fi\\KQ <6, i =1,2, h = \(hx + h2)
and ||A(fc)|| = ||Ai(fc)|| = ||A2(ik)|| for each k £ K0 . Let

M = max{l,||/-||jf0:/ = 0,1,2}   and   p = (en)/(l6M).

Pick g £ V(fo;p) in BLp{ß,X) and let A = {k £ K0: \\f0(k) - g(k)\\ > n}.
Note that

i/p
<p = (en)/(l6M)n-p(A)x/"< yjfo(k)-g(k)\\"-dp

that is, p(A) < [e/(l6M)f . Now choose a compact subset Kx ç K0\A such

that g is continuous on Kx and [JKo^Ki \\f(k) - fo(K)\\p • dp]xlp < e/4, i =

1,2. Note that this choice is possible because
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1\\fi(k)-fo(kW-dp
-|1/P

<2M-p(A)x'p <e/8, 1 = 1,2.

Let g: Ko —> X be a continuous extension of g\Kl to K0 satisfying ||./ô-g||jf0 <

n. By Lemma 6.2, there exists gi £ C(K0, X) such that ||g, - fi\\K0 < 6,

i = 1, 2, and for each k £ K0, g(k) = ^(gx(k) + g2(k)) and ||£i(fc)|| =

= \\g2(k)\\. Define

k£K>        8'{k) = \8(k),        k£K\Ki
i =1,2.

Then g = %(gx + g2), \\g¡\\p = \\g\\p < 1 and \\fi - g¡\\p < e, i =1,2, because

gi\\p < f  \\fi-gi\\p'dp
JKi

[      \\fo-g\\p-dp
Jk\k,

yip
/       \\fi-fo\\p-dp

Jk\k,

<6-p(Ki)x'p+e-+E- + p<e.   D

6.4. Proposition. Let (fi, X, p) be a positive measure space, X a Banach

space with Bx stable and 1 < p < <x>. Then BLp^x) is stable.

Proof. Let K be the Stone compact of the measure algebra (X, p) and m the

induced Radon measure on the Borel sets Bo(AT) (see [6, p. 119]). If p is a
lifting on Loo(p), we can obtain (see [14]) a map p: fi -» K such that the

map F : Lp(m, X) -> Lp(p, X), defined by F(f) = fop, is an isometry. Now
apply Proposition 6.3.   D

6.5. Proposition. Let {X,}/€/ be a family of Banach spaces with BXi stable

and 1 < p < oo. Then, if Y = (£,-6/ © X¡)p, By is stable.

Proof. Let x, y, z £ SY such that z = j(x + y). We can suppose that I = N.
As 1 < p < oo , then ||x„|| = ||y„|| = ||z„||, n > 1 . Let us prove that, for a given

e > 0, there exists p > 0 such that V(z; p) ç Z)(x, y;e). Choose m £ N

such that [£„>m ||x„ - z«^]1^ < e/4 > [£„>w ||y„ - z„|H1/" . From the proof

of Lemma 6.2 we know that there exist n > 0 such that, if \\zn - z'n\\ < n,

n<m, there exist x'n, y'n e Xn fulfilling \\x'n\\ = \\y'n\\ = \\z'n\\, z'n = \(x'n + z'n),

K-x„||<e/(4.m1^)>||y;-y„||.Take p = min{e/2, n} and z'eV(z;p).

Let x', y' such that x'n,y'n, n < m , are as above and x'n = z'n = y'n , n > m.

Then z' = $(x' + y') with x' £ V(x ; e) and y' £ V(y ; e) D

6.6. Lemma. Let X be a Banach space with Bx stable, K a compact Haus-

dorff space and fi £ C(K, X), i = 0, 1, 2, continuous functions such that

h=2-(fi+f2) and ||/o(fc)|| = i(||/i(fc)|| + ||/2(fc)||), k£K. Then, given e > 0,
there exists n > 0 such that, for each g £ B(fi, ; n), there exist g¡ £ B(fi ; e),

i =1,2, satisfying
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g = i(gi + 8i),        \\g(k)\\ = i(||ft(*)|| + \\g2(k)\\),       k£K.

Proof Define <f>: X -» 2XxX by 4>(x) = {(u, v) £ X x X: x = (u + v)/2,

11*11 = î(ll"ll + llwll)}> X£X .
(1) Let us see that <j> is lower semicontinuous. Take e > 0, xo £ X and

(xi, X2) £ <P(xq) . We prove that there exists n > 0 such that, for each x'0 £

B(xo ; n), <¡>(x'q) n [B(xi ; e) x B(x2 ; e)] ^ 0 . If x,■ = X,■• x0, X, > 0, i = 1,2,
take n = e/2. Suppose that x¡ ^ X¡ • xo . Without loss of generality, assume

that ||jc2|| = 1, ||*oll = 1 - a > 0 and ||xi|| = 1 - 2a > 0. Let y, = x,/||jc,|| ,
¿ = 0,1,2. We claim that y0 G [yx, y2] (= {pyx + (1 - p)y2: 0 < p < I}).
Indeed, if X = (1 - 2fl)/2(l - a), then

xo     _1   JCi        1   x2        1 1 - 2a    xx

y° ~~ 1 -a ~ 2 1 -a + 2 1 -a ~ 2 I -a I-2a

+ (l - ^-^A x2 = Xyx + (I - X)y2.

Thus [yi, y2] ç Sx . Observe that, if 0 < t < 1 and we define <j>t: X -> 2XxX

as 4>t(x) = {(u,v) £ XxX: x = tu + (l-t)v, \\x\\ = \\u\\ = \\v \\} , x £ X, then
the proof of Lemma 6.2 implies that d>t is lower semicontinuous. Then, for

X = (1 - 2a)12(1 - a), there exists n' > 0 such that, for each y'0 £ B(y0 ; n'),
there exists y'¡ £ B(y¡; e), i = 1, 2, such that

(*) y>Q = xy\ + (i-X)y'2,      ||y0ll = lly',ll = l|y2||.

Let n = (1 - a)?7' and x0 G 5(xo ; n). Then, if y¿ = x'0/(l - a), we have

y¿ G 5(yo ; n'). Thus there exist y¡ £ B(y¡ ; e), i = 1,2 , satisfying (*). In

particular

vi _   x'o   _ 1 1 ~ 2a,,/ , 1    1    v/

Let x¡ = y't(l - 2a) and x2 = y2. Then

•"■o = 2-*i + 2X2 >

\\x'0\\ = (l-a)\\y'0\\ = (l-a)\(\\y'x\\ + \\y'2\\)

= i[(l-2íz)||yi|| + (l-a + u)||y2||] = i(||xí|| + ||x2||).

Moreover \\x¡ -x¡\\ < e, that is, (x[, x2) £ 4>(Xq) n [B(xx ; e) x B(x2 ; e)]. Thus
(f> is lower semicontinuous.

(2) Let fi £ C(K, X), i = 0, 1, 2, be continuous functions and e > 0.

Then there exists n > 0 such that, if x £ B(fo(k) ; n), k £ K, we have that

[B(fx(k) ; e/2) x B(f2(k) ; e/2)] n <¡>(x) ¿ 0 (the proof is analogous to the part

(2) of Lemma 6.2). Take g £ B(f0; n) in C(K, X) and define y/: K -► 2XxX
as y/(k) = [<t>o g(Â;)] n [5(/i(A:); e) x B(f2(k); e)], k £ K. As in Proposition
4.2, it is proved that y/ is lower semicontinuous and that (¿/(A;) is a nonempty

closed convex set for each k £ K. Applying Michael's theorem [13, p. 5], there

exists a continuous selection 5 = (sx, S2): K —> X x X such that s(k) £ y/(k)

for each k £ K. Now take g,■ = s,■, i = 1, 2 .   D

6.7. Proposition. Let X be a Banach space with Bx stable, K a compact

Hausdorff space and p a positive Radon measure on K. Then Bl^,x) Is

stable.
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Proof. Take fi £ SLl{lt>X), i = O, 1,2, satisfying f0 = \(fx + f2), that implies

ll/o(fc)ll = îdl/i WH + II/2Wll) a.e. Given O < e < 1, let us prove that there
exists p>0 such that V(fi> ; p) ç D(fi ,f2;e) in BLl{ltiX) • If

/lll/WI|-||/o(fc)lll^ = 0,        i=l,2,
JK

(what implies that ||/o(A;)|| = ||/(A;)||, 1 = 1,2) the conclusion follows from

the proof of Proposition 6.3. Assume that JK | ||/(A;)|| - ||/o(A;)|| \dp > 0 and
denote

Ui = {k£K:\\fi(k)\\>\\fo(k)\\},        i =1,2.
Then

/ (ll/i(*)l|-H/o(*)||)rf//= / (Wf2(k)\\-\\fo(k)\\)dp
Ju, Ju2

= \JK\\\fi(k)\\-\\fio(k)\\\dp = H'>0.

Let H = min{l, H'} and, as in Proposition 6.3, choose a compact K0 ç K

satisfying that fi is continuous on #0 and JK,K \\f¡ - fo\\dp < eH/32, i =

0, 1,2. Let 6 = eH/l6p(Ko). By Lemma 6.6, there exists 0 < n < 1 such
that, if A G C(K0, X) and ||A-/0|k0 ^ 1 >there exist ni € c(Ko > x) satisfying

\\hi-fi\\K0<S,       h = \(hx+h2)

and

\\h(k)\\ = \(\\hx(k)\\ + \\h2(k)\\),       keKo.

Let M = max{l, ||/(A:)||a:0: ¿ = 0,1,2} and p = Hen/(32 • M). Pick g0 £
V(f0; p) in BLlUtiX) and put A = {k £ K0: \\fo(k) - g0(k)\\ > rj} . Then

n-p(A)< [\\fo(k)-go(k)\\dp<p
Ja

that is, p(A) < He I (32 • M). So we can choose a compact Kx ç Ko\A such
that go is continuous on Ki and

/       \\fi-fo\\dp<eHß,        i=l,2.
JKq\Kx

Denote Un = U¡nKi, i = 1, 2, and observe that

/      (ll/-(fc)||-||/o(A)ll)^< /      ll/-/oll^<^ + ̂ .
■/c,\tfi Jk\k{ il        o

Thus

^ (ll//(*)ll - \\Â(k)\\)dp > /f - g - *£ > |Z#.

Let go: Ko ^> X a continuous extension of g-0|jc, to ^0 satisfying ||/o-gol|x"0 <
?/. By Lemma 6.6 there exist continuous functions g¡■ : /¡To —> X, ¿=1,2, such

that

Atg^o,       \\gi(k)-Mk)\\<S,       i =1,2,

(1) go(k)=2-(gi(k) + g2(k)),2^

l£o(*)ll = 2(ll£i(*)ll + llfc(fc)ll).
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Let bi = JK (\\gi(k)\\ - \\go(k)\\)dp, i =1,2, and note that bx + b2 = 0 and

N= 1/ (\Mk)\\-\\go(k)\\)dii
\Jkx

< \í (\\gi(k)\\-\\fi(k)\\)dp
\Jk¡

+ \í (\\f(k)\\-\\Mk)\\)dp +   í (\\fo(k)\\-\\go(k)\\)dp
\JK¡ JKt

< í   \\gi(k)-fi(k)\\dp+  j        \\fi(k)-fo(k)\\dp
Jk, Jk\k¡

+ I  \\fi(k)-g*(k)\\dp
Jk¡

< 6 ■ p(Kx) + eH/32 + eH/S + (enH)/(32M) < eH/4.

Here we use (1), that

/[||/l|-||/oll]^ = 0    (thus I / [\\fi\\ -\\fo\\]dp =   f     [||/-||-||/o||]rf/i
JK \ \Jkx Jk\k,

and that go G V(fi¡; p). Next define measurable functions g¡: Kx -» X, i

1,2, satisfying

k£Kx,        go(k) = \(g'x(k) + g'2(k)),        \\go(k)\\ = \(\\g[(k)\\ + H^(fc)H)

/  \\g¡(k)\\dp= f  \\go(k)\\dp,
JK, JK,

i =1,2.

If bx = b2 = 0, take g\ = g¡, i = 1,2. Suppose, for instance, that bx > 0
(the case b2 > 0 is analogous) and denote 5 = {k £ Kx: ||gi(A;)|| > ||go(A;)||}.

Then JB\\gx(k)\\dp> JB\\g0(k)\\dp + bx . For 0 < A < 1, let g*(k) = Xgx(k) +
(l-X)g0(k), that satisfies \\gÀ(k)\\ = X\\gx(k)\\ + (1 -X)\\g0(k)\\, k £ Kx. Thus
there exists 0 < X0 < 1 such that ¡B ||^0(^)ll dp = JB |||i(A;)|| dp- bx. Define

g\, i = 1, 2, by

keKx,       g[(k) = {
gx0(k),       keB,

gx(k),       keKx\B,
g>2(k) = 2go(k)-g'x(k).

Note that

(1) go(k)=2-(g'x(k) + g2!(k)), \\go(k)\\ = i(\\g'x(k)\\ + \\g'2(k)\\), k£Kx.

(2) !Ki\\g'i(k)\\dp = JKi\\go(k)\\dp, i =1,2.
(3) We claim that jK¡ \\g¡(k) - fi(k)\\ dp < 3e/4, i = 1, 2. Let us see that
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1 - Xo < e/3 :

e-f>bx=(l-Xo) jB(\\gi(k)\\ - \\go(k)\\)dp

>(1-A0)/  (\\gi(k)\\-\\go(k)\\)dp
Jun

= (1 -Ao) f/   (\\gl(k)\\-\\fi(k)\\)dß+ f  (||/i(fc)||-||/oWII)^

+ [  (\\fo(k)\\-\\go(k)\\)dp
Jun

(■

27
-6-p(Uu) + ^-H-p

'27        eH     enH

>-^-^^Y2-\h-Y2)H = ̂ -^Y2H-

So (1-Ao) < e/3 . Also, as \\gi(k)-fi(k)\\ < 6 , k £ Kx, and ||¿||i = 1 > ||£0||i,
we obtain

í Ui(k)-go(k)\\dp
JB

< i \\go(k)\\dp+ ¡ \\fi(k)\\dp + 6-p(B)
JB JB

<2 +
eH_

16

and therefore

/ \\fi(k) - g¡(k)\\ dp< f \\f(k) - gi(k)\\ dp
JK, JKi

+ [\\gi(k)-(Xogi(k) + (l-Xo)go(k))\\dp
JB

< 6 • p(Kx) + (l-X0)jB \\gi(k) - g0(k)\\ dp<E-^ + e-(2+e-^j< 3e/4.

Finally define g,■, ¿=1,2,

[ go(k),       k £ K\KX.

Then we have

(a) k£K, go(k) = ±(gi(k) + g2(k)) and \\go(k)\\ = {(\\gl(k)\\ + \\g2(k)\\).

(b) JK\\gi(k)\\dp = jK\\go(k)\\dp<l, i =1,2.
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(c) For i = 1, 2, we have

\\fi(k)-gi(k)\\dpL
= [     U(k) - go(k)\\ dp+ [ \\fi(k) - gi(k)\\ dp

JK\K, JK,

<  [     U(k) - fo(k)\\ dp+ i      \\fo(k) - go(k)\\ dp
JK\K, JK\K,

+ /  \\fi(k)-gl(k)\\dp
JK,

eH    eH 3e
*32+T + ' + T<e-

Thus V(f0;p)çD(fx,f2;e).   D

6.8. Proposition. Let X be a Banach space with Bx stable and (fi, X, p) a

positive measure space. Then BLl^¡X) is stable.

Proof. Use the Stone compact corresponding to the measure algebra (X, p) as

in Proposition 6.4.   D

6.9. Proposition. Let {Xi}ieI be a family of Banach spaces with Bx¡ stable.

Then, if Y = Ç£iel © */)i, By is stable.

Proof. The proof, analogous to that of Proposition 6.5 (with some changes, as

in Proposition 6.7), is left to the reader.   D

Open problem. Suppose that Bx is US. Is BLp^ßtX) US, 1 <p < oo?
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