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SUPERHARMONIC functions on foliations

S. R. ADAMS

Abstract. We use techniques from geometric analysis to prove that any posi-

tive, leafwise superharmonic, measurable function on a Riemannian measurable

foliation with transverse invariant measure, finite total volume and complete

leaves is, in fact, constant on a.e. leaf.

0. Introduction

In [G], L. Garnett considers foliations of compact manifolds in which each

leaf is given a Riemannian structure. She proves:

Theorem [G, Theorem 1(b), p. 286]. Any bounded Borel function h which is

harmonic on each leaf must be constant on almost all leaves, relative to any finite

harmonic measure.   D

We will only consider here the case of a transverse invariant measure and

finite total volume where the "finite harmonic measure" of this theorem reduces

to the transversal measure.

The theorem is remarkable because it could be the case that every leaf is
isometric to hyperbolic space. Thus, by the axiom of choice, one could simply

choose a bounded harmonic function on each leaf. The ergodic nature of the

theorem is that these choices cannot be made in a Borel way.

Her proof uses probability theory and is quite elegant. Here we take a geo-

metric analysis approach and prove

Theorem 5.1. Let (M,&~ ,¿%) be a finite volume oriented measurable Rieman-

nian foliation such that a.e. leaf is complete. Let h: M —> (0, oo) be a measur-

able function such that, for a.e. leaf L ç M, the function h\L is superharmonic

on the Riemannian manifold L. Then h\L is constant, for a.e. leaf L ç M.

It is possible to remove the orientability assumption in the theorem by intro-

ducing the orientable double cover. A positive superharmonic function will lift

to a positive superharmonic function in the double cover, where the Theorem

5.1 applies. Therefore the lift is constant on a.e. leaf and it follows that the
same holds for the original function.

The proof of Theorem 5.1 is best understood as an evolution of theorems.
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First is the very simple

Proposition 0.1. A closed Riemannian manifold carries no nonconstant positive

superharmonic functions.

Proof. If h is positive superharmonic, then u :- In h satisfies Vw + |A«|2 < 0.

By Stokes' theorem,

/W.SS"-
since 9 = 0. However Au < -|Vw|2, so J\Vu\2 < 0, so Vu = 0, so u is

constant, so h = eu is also constant.   G

The next step is

Proposition 0.2. A complete finite volume Riemannian manifold carries no non-

constant positive superharmonic functions.

The proof of this proposition is somewhat more complicated because Stokes'

theorem only applies to compactly supported forms. Thus it is necessary to

introduce a gently sloping cutoff function with compact support. In the case of

a single leaf, these functions are easily obtained as radial functions (depending

only on the distance to some chosen point). Modulo finding such cutoff func-

tions, the proof of Proposition 0.2 is essentially the same as the proof of the

main theorem (Theorem 5.1). The new complication in proving Theorem 5.1

is that ergodicity precludes choosing a single point in each leaf of a foliation, so

finding the appropriate cutoff function becomes more difficult. Thus we devote

one section (§4) to proving a result (Lemma 4.7) about cutoff functions. With

Lemma 4.7, the proof of the main theorem is routine.
The foliations we consider here will be the measurable foliations of Zimmer

[ZI, Z2]. These include any C°°-foliation of a manifold, although we specialize
here to the case of foliations with a holonomy invariant system of transverse

measures and with finite total volume. On manifolds, these kinds of foliations

have been extensively studied.

The lack of positive superharmonic functions and the lack of convex func-

tions are basic tools in the study of finite volume manifolds of positive Ricci

curvature. It is our hope that these tools can be set up and used in a foliation

context as well.

I would like to thank R. Schoen for showing me a proof of Proposition 0.2. It

is the basis of this paper. Conversations with A. Freiré have been very helpful as

well. I would also like to thank G. Stuck for pointing out a number of mistakes

in the original version of this paper.

1. Basic definitions

All Borel spaces we consider will be standard, i.e., Borel isomorphic to [0, 1].

A measure space will always be a standard Borel space with a a-finite Borel

measure.
For the remainder of the paper, we fix a positive integer n (to denote the

dimension of the leaves of the foliation we study). Let D denote the unit ball

in R".
If R is an equivalence relation on a set S, then, for all s £ S, we let [s]r

denote the equivalence class of 5.  If A ç S, then the R-saturation of A is
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denoted [A]R := [}aç.A[a]R. We say that R is countable if every equivalence

class of R is countable.

Definition 1.1. If R is a countable equivalence relation on a Borel space B,

then we say that R is Borel if its graph R ç B x B is a Borel subset. A Borel

automorphism f:B-^B is called an automorphism of R if (b, f(b)) £ R,
for all b £ B .

Definition 1.2. A countable Borel equivalence relation R on a finite measure

space T is said to be measure preserving if every automorphism of R is measure

preserving.

Definition 1.3. A flow bow consists of
(i) a countable measure preserving Borel equivalence relation R on a finite

measure space T ; and

(ii) a measurable map / —► cot from T to the space of all Riemannian metrics

on D. Let pt be the volume density associated to cot, and define a measure
p on T x D by

p(A) := Í pt{d £ D\(t,d) £ A}dt,

for all measurable A ç T x D. The resulting measure space is denoted TxmD.

In the next definition, no measurability assumption is made on the map S? .

In fact, Definition 1.5 makes precise what it means for the map M to be

"measurable".

Definition 1.4. Let !F be a Borel equivalence relation on a measure space M.

Let ¿ft: L h-> 31 (L) be an association of an «-dimensional C°°-Riemannian

manifold structure to each equivalence class L ç M. A foliation chart for

(M,&,92) consists of
(i) a flow box (T, R, 11-> cot) ; and

(ii) a measure preserving Borel injection u: T xœ D —» M such that (a) for

all d, d' £ D, for all /, f e T,

(t, t') £ R «► (u(t, d), u(t', d')) £F,

such that (b), for every equivalence class L ç M, u(T x {0}) n L has no

accumulation points in the topological space L and such that (c) for all t £ T,

with Lt := [u(t, 0)]gr , the map

d»u(t,d):(D,cot)^(Lt,¿%(Lt))

is an isometry.

Definition 1.5. Let &~ be a Borel equivalence relation on a finite measure space

M. Let ¿% assign an «-dimensional C°°-Riemannian manifold structure to

each equivalence class of &. Then (M, ^, âê) is a finite volume oriented

measurable Riemannian foliation if there exists a countable collection s/ :=

{(T¡, Ri, t \-> co't, Wj)}i=i,2,... of foliation charts such that
(i) Uimí(^í x Bi) contains a.e. equivalence class; and

(ii) for every i, for every t £ T¡, u¡(t, •) is an orientation preserving

C°°-isometry of (D, co't) onto an open subset of the Riemannian manifold

[Ui(t,0)]sr.

Such a collection si is called an atlas. Equivalence classes are called leaves.
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Now, if / is a function on M, then it makes sense to speak of / being C°°

along leaves. For such functions, we have a well-defined leafwise gradient V/

and a leafwise Laplacian Af.

2. Partitions of unity

Let (M, !F, M) be a finite volume oriented measurable Riemannian folia-

tion.

Definition 2.1. If sé = {(7/, R¡, t i-> co\, «,)}, is an atlas, then a sequence

f: M —>[0, 1] is called a a locally finite partition of unity subordinate to sé if

(i) £,/; = 1 a.e. on M;
(ii) each f is measurable on M and C°° along leaves;

(iii) for all i, f = 0 on M\uj(T¡ x D¡) ;
(iv) for all /, for all t £ T¡, d h-> f(t, d) : D —» R has compact support.

(v) if L is a leaf and K C L is compact, then f\K = 0, for all but finitely
many i.

Lemma 2.2. There exists an atlas sé for (M, SF, 9i) which has a locally finite

partition of unity subordinate to it.

Proof. Let & = {(Uj,Sj,t^a{,Vj)}j=i¡2,... be an atlas for (M,^,S?).
Let gk : D —> [0, 1], k = 1, 2, ... , be a locally finite partition of unity for

the open ball D CR" such that every gk has compact support. (Recall that

"local finiteness" means that, for any compact K C D, gk\D = 0, for all but

finitely many k.)
Let rx,r2, ... be a strictly increasing sequence of positive real numbers

tending toward 1. For / = 1, 2, ... , let D¡ ç D be the open ball about 0 of
radius r¡. For each /, let h¡: D —> [0, 1] be a C°° function satisfying h¡ = 0

on D[ and h¡ = 1 on D\D!+X.

Let n{: Tj x D —> D denote projection onto the second coordinate. For all

positive integers j, k, I, define g[, h\ : M —» [0, 1] by

(gk "4° vJl)(m) » if w € Vj(Uj x Dj),

0, otherwise,

(ht on{o vjx)(m), if m £ Vj(Uj x Dj),

1, otherwise.

Then, for all m £ M, there exists j, k such that gk(m) ^ 0. However, for

some values of m , there might exist infinitely many such pairs (j, k).

For all j , k , let ~gJk := gl^-1^-2... «J_, . Then for all m £ M there exists

j, k such that ~gk(m) ̂  0. Further, around each m , there is a neighborhood

N in the topological space [m]^ such that g~]k\N = 0 for all but finitely many

pairs (j, k). Thus, for every compact subset K in any leaf, gJk\K = 0, for all

but finitely many (j, k).
We now renumber. Let i >-> (cp(i), y/(i)): Z —> Z2 be a bijection. Define

fi := ¿V(i) '      Ti := U<P(i) '      Ri := $<!>{') '

t »-» co't := 11-> af(,),    Ui := v9(i).

Let sé := {(T¡, R¡, /1-> g>; , «,)}, and normalize: let fi := fJ £,- /,.   □
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3. Forms

Definition 3.1. If £ is a re-form on a Riemannian manifold L, then, for all

/ £ L, we define

||Ç||/:=max|(Ç,ci A---Aek)¡\,

where ex, ... ,ek ranges over orthonormal collections of k vectors in the tan-

gent space T\L.

Let * denote the Hodge-* operator on an oriented «-dimensional Rieman-
nian manifold L. Then, for any «-form k on L, for any / e L,

U\\l = \(*X)(m)\ = \{X,eiA---Ae„)l\,

for any orthonormal frame ex, ... , en in T¡L.

Lemma 3.2. If n is an (n - I)-form on an n-dimensional Riemannian manifold

L and if cp : L -» R is C°°, then

\\d<pAr,\\i<\(Vg>)(l)\-\\ri\\i,

for all I £ L.

Proof. Let ex, ... , e„ be an orthonormal frame in T¡L such that (dcp, e¡)¡ =

0, for all i = 2, ... , n . Then

\\dtp/\n\\i = \(dcp An, ex A---Aen)t\

= \(dcp,ex),\-\(n,e2A---Aen)i\

<|(V«»)(/)|.||i/||/.D

It makes sense to speak of a measurable k-form on (M ,9~ ,32), i.e., a

system of fc-forms (one on each leaf) which becomes measurable when pulled

back into any flow box. Since all the leaves are oriented, we have a well-defined

leafwise Hodge-* operator,

*: {measurable A;-forms} -* {measurable (n - fc)-forms}.

We also have a well-defined leafwise exterior derivative d .

Let (M, ^ ,32) be a finite volume oriented measurable Riemannian foli-

ation. If £ is a measurable A;-form on (M ,& ,32) and if m £ M, then

restricting £ to the Riemannian manifold [m]gr gives meaning to ||£||m :=

IICIfmlHL.
Definition 3.3. If £ is a measurable fc-form on (M, S?~, 32), then we say that
£ is bounded if there exists a constant K £ R such that ||£||m < K, for all

m £ M.

If A is a measurable «-form on (M, &, 32), then we say that X is integrable

if the function m ■-► ||A||m : M -»• R is in L1 (M). In this case, we define

/ A:= [ (*X)dp,
Jm       Jm

where p denotes the measure on M.

Since M is a finite measure space, any bounded «-form is integrable.
Now let {f}i=x ,2,... be a locally finite partition of unity subordinate to some

atlas sé for (M, '¿F, 32), see Lemma 2.2.
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Lemma 3.4. If r\ isa measurable (n -1 )-form on (M, ¿F, 32), if i isa positive

integer and if d(firi) is integrable, then

í
Jm

d(fn) = o.
IM

Proof. We may pull the form fin back to the /th flow box, integrate along

leaves, then integrate the resulting function along the transversal T,.

Since fi is compactly supported along the leaves (when pulled back into the

/th flow box, see Definition 2.1, condition (iv)), the leafwise integrals are of

compactly supported exact «-forms. They are therefore all equal to 0, and the

lemma follows.   D

4. Cutoff functions

Let (M, ¡F, 32) be a finite volume oriented measurable Riemannian folia-

tion such that a.e. leaf is complete. Let p denote the (finite) measure on M.

For AC. M of positive measure, we define

_p(SnA)
ßAiS) - ~1KÂT'

for all measurable S c M.

Definition 4.1. If e > 0 and AC M has positive measure, then an (e, A)-cutoff

function is a measurable function cp: M -> [0, 1] which is C°° along leaves

and which satisfies
(i) pA{<P= 1} > 1 -e;and
(ii) |Vç>| < e on M.

The product rule implies that the product of an (e, /l)-cutoff function and
an (e', A)-cutoff function is an (e + e', ^)-cutoff function.

If S c M and m £ M, then we define

d(m, S) := inf{dm(m, s)\s £ S n [m]^},

where dm denotes distance in the Riemannian manifold \m\gr . If Sn[m]&- =

0 , then we set d(m, S) = +oo.

Fix, for the remainder of this section, a C°° function 5 : R —► R such that

(i) s(t) = 0, for all t < 1 ;
(ii) 5(i) = 1, for all t > 3 ; and
(iii) 0 < s'(t) < 0.98, for all / e R.

Extend 5 to RU {+00} by setting 5(+oo) = 1.

Lemma 4.2. If S ç M is measurable and e > 0, then there exists a measurable,

leafwise C°° function cp : M —> R such that:

(a) ^ = 0;
(b) \Vcp\ < e on M ; and
(c) cp(m) = 1 for all m £ M satisfying d(m, S) > 4/e.

Proof. Let y/: M —» R be defined by y/(m) := s(ed(m, S)). Then y/ satisfies
conclusions (a) and (c). In fact, y/ satisfies

(a')   y/(m) = 0, for all m £ M satisfying d(m, S) < 1/e ; and
(c')   y/(m) — 1, for all m £ M satisfying d(m, S) > 3/e.



superharmonic functions of foliations 631

Unfortunately m »-+ d(m, S) is not differentiable, so we cannot just set cp = y/.

However m <-► d(m, Sj) is leafwise Lipschitz of norm 1, and so y/ is leafwise

Lipschitz of norm < (.98)e. We now smooth y/ in >jach leaf of each flow box

and sum over a partition of unity to get cp :

Let bx, b2, ■ ■ ■ £ Cj?(Rn) be a sequence of "bump" functions approximating

the Dirac mass at 0. Specifically, we assume

(A) for all k , bk > 0 on Rn and ¡bk = l; and
(B) rk := max{dw(0, p)\p £ suppôt} satisfies rk < l/e , for all k, and also

satisfies rk —> 0 as k -* oo .

Let {fi}i and sé := {(T¡,Rj, t ►-> co\, u¡)}¡ be as in Lemma 2.2. Let
y/¡(d) := y/(ui(t, d)), for all /, t £ T¡, d £ D. For all m £ M, define

J(m):={i\fi(m)¿0},    n(m) :=\J(m)\,

where | • | denotes cardinality.

Fix i and t e T¡. Let D' := {d £ D\fi(Ui(t, d)) = 0} . Then D' is compact.
Let co := co\I, Let dw denote the distance function in (D, co) and let V<u

denote the gradient on (D, co). Let

N := max{n(Ui(d', t))\d' £ D'},    G := max{|Vafi(Ui(d', t))\\d' £ D'}.

Since {fi}i is locally finite, N < oo .
Fix all x, y £ D' and fix v £ R" such that \\v\\ = 1. Then, for all r\ > 0,

there exists ô > 0 such that

^ ^      dio(x + tv , y + tv)
0<t<ô=ïx + tv,y + tveD,       "v    ,  .   'rN- <l + n.

dco(x, y)

By compactness of D' and of the unit sphere in R" , we may, given n, choose

ô independent of x, y and v . Taking w = 1/98 , we conclude that there exists

So > 0 such that

,v   ,  m     ? ^      dw(x + v,y + v)     99
x,y£D',\\v\\<ôo^x + v,y + v£D,     _^__-^ < _.

Let k be the smallest positive integer satisfying

(C) D' + suppbkCD;
(D) if x, y 6 D' and v e supp bk , then

dw(x + v ,y + v)     99

4(x,y)        <98;

and

(E) í»¡ := v/ * bk : D' -> R satisfies \cp\ - y/¡\ < e/lOOGN on D'.
Note: (C) and (D) above are obtained by choosing k so large that rk <5q.

Now fix i and let t e T¡ be variable. Define cp¡: M —> R by cp¡(Ui(t, d)) :=
cp\(d) and <p¡ e0 on M\u¡(T x D). Since y/ is leafwise Lipschitz of norm

< (.98)e, it follows from (D) that cpi is leafwise Lipschitz of norm < (.99)e .

Further, <p¡ is leafwise C°° , by standard properties of convolution, so \Vy>¡\ <

(.99)e on M. Finally, from (E), we see that, for all m £ supp fi ,

(1) |^)-^)|<100|vy;(£m)Km).

Let cp := ¿Zficpi. Now £/1 = 1, so £ Vf■ = 0, so £(V¿)<y = 0 on M.
From this and the product rule,

v<p = X^v¿)(^' - y) + Y,fiW(p>
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on M. Since fi > 0, we have fi(m) — 0 => (Vfi)(m) = 0. Taking absolute
values and using the estimate (1), we have, for all m £ M,

|V,W|< Y. l^(m)l|ÎSJv7èjKS)+^W(m)1[(-99)£l
ieJ(m) ' J  v     n   v     ' i

<(.01)e + (.99)e = e.

Thus conclusion (b) is satisfied.

By (B), every rk < l/e, so conclusion (a) follows from  (a').   Similarly,

conclusion (c) follows from (c').   D

For the remainder of this section fix e > 0 and fix some A ç M of positive

measure.

Lemma 4.3. Let F : M —> R be measurable and bounded on any compact subset

of any leaf. Then there exists a constant K £ R and an (e, A)-cutoff function

cp such that cpF = 0 on {\F\ > K} . In particular, cpF is bounded.

Proof. Let G(m) ;= s\ip{F(m')\m' £ B(m, 4/e)} , where B(m, r) denotes the
closed ball of radius r about m in the Riemannian manifold [m]gr.  (Since

a.e. leaf is complete, closed balls are a.e. compact, so G is finite a.e.)

Since G is measurable, choose K so large that

Pa{G<K}> l-e.

Let S := {\F\ > K} and apply Lemma 4.2.   D

Corollary 4.4. If £ is a measurable k-form on (M, !F, 32), then there exists

an (e, Afcutofffunction cp suchthat <pC is bounded.

Proof. Let F(m) := \\n\\m in Lemma 4.3.   D

Corollary 4.5. Let d , ... , fjv be measurable forms on (M, £F, 32). Then

there exists an (e, A)-cutofffunction cp suchthat <pt¡x, ... , ç>Cn are all bounded.

Proof. By Corollary 4.4, we may choose for each /, an (e/N, ^4)-cutoff function

cpi such that #>,£, is bounded. By the product rule, cp := <px ...<Pn is an (e, A)-

cutoff function. The product of a bounded function and a bounded form is a

bounded form, so this cp has the required properties.   D

Let {fi}i=\ ,2,... be a locally finite partition of unity subordinate to an atlas

sé for (M, &,',32), see Lemma 2.2.

Corollary 4.6. Let £ be a measurable k-form on (M ,SF ,32). Then there

exists an (e, A)-cutofffunction cp suchthat y>fiÇ = 0 on M, for all but finitely

many i.

Proof. Let F(m) :— max{i\fi(m) ^ 0}. Since the partition of unity {fi}, is
locally finite (see Definition 2.1 (v)), this function is bounded on compact subsets

of leaves, and so we may apply Lemma 4.3.   D

We now come to the main technical result that we will need:

Lemma 4.7. Let A C M have positive measure, let e > 0 and let n be a

measurable (n - l)-form on (M, SF, 32). Then there exists an (e, A)-cutoff

function cp such that

(i) cp dtp A r] is bounded;

(ii) cp2 dn is bounded;
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(iii) d(y>2n) is bounded (hence integrable); and

(iv) JMd(y>2n) = 0.

Proof. By Corollary 4.6, choose an (e/2, vl)-cutoff function y/ and a positive

integer N such that y/fin = 0 on M, for all i > N.
By Corollary 4.5, choose an (e/2, A)-cutoff function x such that

(A) xn is bounded;
(B) x dn is bounded;
(Q X(fi*l) is bounded, for all i - I, ... , N; and
(D) xd(fit]) is bounded, for all i = I, ... , N.
Let ç? = x ¥ ; by the product rule, q> is an (e, ^)-cutoff function. Since the

product of a bounded function and a bounded form is a bounded form, we

conclude
(A')  cpn = y/(xn) is bounded;
(B')   (p2 dn = (xy/2)(x dn) is bounded;
(C) cp(fin) = y/(xfirl) is bounded, for all i = I, ... , N; and
(DO  <p2d(fin) = (xv2)(xd(fin)) is bounded, for all i = 1,..., N.
By definition of a cutoff function (Definition 4.1), the function \V<p\ is

bounded. Thus, by Lemma 3.2, if £ is any bounded measurable (« - l)-form,

then dcp A £ is also bounded. Thus
(A")   cpdcp An = dtp A (<pn) is bounded, for all i = I, ... , N; and
(C")   cpdcp A (fin) = dcp A (<pfin) is bounded, for all i = I, ... , N.
Now conclusion (i) is just (A") and conclusion (ii) is (BO . Conclusion (iii)

is a linear combination of (i) and (ii), since

d((p2n) = 2tpdcpAn + cp2 dn.

By exactly the same argument, (C") and (DO imply that the form

d((p2fiV) = 2cpdcpA (fin) + <p2d(fir\)

is bounded, for / = I, ... , N. As bounded implies integrable, Lemma 3.4
yields

(1) [ d(<p2fit¡) = 0,
JM

for all i = I, ... , N. On the other hand, by the choice of y/, we have for all

/ > N that cpfin = x(yfr\) — 0 on M. Thus conclusion (iv) follows from
summing ( 1 ) over i = I, ... , N.   O

5. Harmonic functions

We now state and prove the main theorem of this paper.

Theorem 5.1. Let (M,^ ,32) be a finite volume oriented measurable Rieman-

nian foliation such that a.e. leaf is complete. Let h: M —* (0, oo) be a measur-

able function such that, for a.e. leaf L CM, the function h\L is superharmonic

on the Riemannian manifold L. Then h\L is constant, for a.e. leaf L ç M.

Proof. Let u := In h and let r\ :- *du, where * denotes the leafwise Hodge-*

operator. Then Au + |Vi/|2 < 0 a.e. on M.

Assume for a contradiction that there exists some a > 0 such that

^:={|V«| >a}
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has positive measure.  Let e > 0 be arbitrary.  Choose cp as in Lemma 4.7.

Then

/   2cpdcp An + cp2 dn = /   d(cp2r\) = 0.
Jm Jm

From this and conclusion (i) of Lemma 4.7,

(1) - /   cp2 dn = /   2cp dcp A n < oo.
Jm Jm

Let X denote the (oriented) volume «-form on the leaves of SF, i.e., X := * 1.

Then,
*dn = *d * du = Au < -|Vw|2 ,

a.e. on M, and
*(dcp An) = *(dcp A (*du)) = Vcp • Vu.

Thus (1) becomes

(2) /   cp2\Vu\2 dp < /   2q>Vcp • Vu dp < oo,
Jm Jm

where p denotes the measure on M.

Now 2ab < 2(a/\/2)(bV2), so

2ab <(-?=)   +(bV2)2 = ^- + 2b2.

Letting a := <p\Vu\ and b := \Vcp\, we obtain

co2\Vu\2
2cpVcp • Vu < 2(çî|Vm|)|Vç»| < v '     '   + 2|Vç>|2.

Plugging this into (2) yields

(3) [ cp2\Vu\2dp<\ f <p2\Vu\2dp + 2 [ \Vcp\2dp.
Jm 2 JM JM

By (2), \ JM cp2\Vu\2 dp < oo , so we may subtract this quantity from both sides

of (3) and obtain

(4) \ ¡ cp2\Vu\2dp<2 [ \Vtp\2dp.
2 Jm Jm

Let B :- {cp — \}C\A . Since cp is an (e, A)-cutoff function (Definition 4.1),

(I - e)p(A) < p(B)   and   \Vcp\2<e2.

Since B CA = {a2 < \Vu\2},

( 1 - e)a2p(A) < a2p(B) < f a1 dp
Jb

< [ \Vu\2dp= [ cp2\Vu\2dp< f cp2\Vu\2dp.
Jb Jb Jm

< 2 [ \V<p\2 dp < 2 [ edp = 2e2p(M),
Jm Jm

So, by (4),

(l-e)a2p(A)

2

for all e > 0. As p(A) > 0 and a > 0, this is a contradiction, for e sufficiently

small.
Thus |Vm| = 0 a.e. on M, so, by continuity, u is constant on a.e. leaf. So

the same must be true of « = eu .   D
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