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CENTRAL LIMIT THEOREMS FOR SUMS
OF WICK PRODUCTS OF STATIONARY SEQUENCES

FLORIN AVRAM AND ROBERT FOX

Abstract. We show, by the method of cumulants, that checking whether the

central limit theorem for sums of Wick powers of a stationary sequence holds

can be reduced to the study of an associated graph problem (see Corollary 1).

We obtain thus central limit theorems under various integrability conditions on

the cumulant spectral functions (Theorems 2, 3).

1

A. Introduction. Let X¡ be a zero mean stationary sequence with all moments

finite. We consider the central limit theorem for

y„ = ¿:Xf>:,
;=i

where : XJm) : denotes the nun Wick power of X¡. See [GS] for a definition

of Wick powers; in this case it is a certain polynomial of degree m .

We will study the asymptotic behavior of the cumulants of Yn using the

diagram formula, a combinatorial expansion for the cumulants of Wick powers

which has been widely used in proving central limit theorems [BM, CS, FT, Gl].

We have obtained in [AB and A] a formula relating the order of magnitude of

the cumulants of Wick powers to a certain graph-theoretic quantity (see 1.11
below). This formula led to a short proof of a result of Breuer and Major [BM],

as well as to a new central limit theorem in the case when X¡ is Gaussian (see

[A]).
In this paper, we show in Theorem 1 that the same methods may be used to

estimate cumulants for more general stationary sequences X¡, under a certain

assumption on their cumulant spectral functions (see 1.7). As an application,

in Theorem 2 we provide conditions for Yn to satisfy a central limit theorem,

which applies in particular when X¡ is given by

(1.1.a) Xj = Y,cJ-^
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or more generally

(l.l.b) Xj = Y,Cj-r1r,
r

where Çr is an i.i.d. sequence, Y,(cr)2 < oo, and nr = h(Çr, Çr+i, ... , Çr+d-i) >

with h(xi, ... , xd) being chosen so that y¡r has mean 0 and all moments

finite. Similar results, in the case (1.1.a), were recently announced by Giraitis

[G2].

B. The diagram expansion. We recall now the diagram expansion for the cu-

mulants of Y„ , where X¡ is an arbitrary 0 mean stationary sequence with all

moments finite. By multilinearity, the Rth cumulant of Yn is given by

(1.2) cumR(r„) = ¿ ... ¿ cum (: X™ :,..., : X™ :) .

;'i=l        ;'r=1

Let P denote a partition of the entries of the R x m table

Xj,,... , Xj,

XjR , ... , XjR

satisfying the conditions

(1.3.a)       No set t £ P is contained in a single row of the table.

( 1.3.b)       For each partition of the rows of the table into two disjoint sets,

there is a set t £ P containing an element from each of the two

sets.

The diagram formula states that the cumulant on the right-hand side of (1.2) is
given by J2p Yltep cum(0 where we have summed over all partitions satisfying

(1.3), and cum(t) — cum(t, j\, ... , jr) denotes the cumulant of the collection

of random variables in t. Thus we obtain

(1.4) cumR(Yn) = £ ¿ ... ¿ n<*m(0 = £S„(P).
P   ¿1 = 1        JR=lt€P P

Our main result, Theorem 1, provides a method of computing the order of

magnitude of Sn(P) under integrability conditions on the cumulant spectral

functions. Recall that the kth cumulant spectral function of the sequence Xj

is a function flk\xi, ... , xk_i) satisfying

(1.5) cum(Xjl,... ,Xjk) = Jfk\xu... ,xk_i)

• exp{2Aí[*iOí - jk) + ■ ■ ■ + xk_i(jk+i - jk)]}dxi ■ ■ ■ dxk_i.

(In all integrals in this paper, each variable is to be integrated from 0 to 1.)

Consider now the case where Xj is a linear sequence given by (1.1.a). In

this case cum(A^,, ... , Xjk) = dk j¡j. c,-..,- • • • Cjk-¡, where dk denotes the kth

cumulant of &.
Letting c(x) denote the Fourier transform of the sequence Cj , one finds in

this case that the kth cumulant spectral function is

(1.6) f{k)(xi,... ,xk_i) = dkc(xi)---c(xk_i)c(-xi-xk_i).
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LP = {

Inspired by this example, we assume that for the general stationary sequence

Xj there exist functions g^(xi, ... , xk) and constants oo >pk > 1, k > 2,

such that

(1.7.a) f{k)(xi, ... ,xk_x) = g{k\xx, ... ,xk_x, -xx-xk_x),

(1.7.b) \\\g^\\\Pk < oo.

Here ||| • |||p denotes the greatest cross-norm on the tensor product space Lp '

of Lp with itself k times. If / is a finite sum of products of k functions in

Lp , the norm is defined

|||/|||p = infêll/;,l||,-|W,jk||p,

where the infimum is taken over all decompositions of f(xx, ... , xk) of the

form / = Y^j=i fj,i • • ■ fj,k ■ The tensor product space Lp ' is then obtained

by completing the set of finite sums of products under this norm (see [LC]).

Assumption (1.7.b) is used since a generalized Holder inequality with respect

to the |   Hip norms holds (see [AB, Theorem 1']). Throughout the paper, we

use the notation
Lp[0, 1],        1 <p < oo,

C[0, 1],        p = oo.

Informally, (1.7.a) amounts to replacing (1.5) by

(1.8) cum(Xj,,... ,XJk) = I gW(xi,... , Xk)e2^x^-+i^)

• ô(xi H-h xk) dxi ■ ■ ■ dxk.

C. The optimal breaking problem. To each partition P satisfying conditions

(1.3) we associate a graph G with two types of vertices: R "row" vertices

(one for each row of the table) and T "subset" vertices (one for each of the
T = T(P) subsets in partition P ). Each element of the table is represented

by an edge connecting the "row" and "subset" containing that element. With

this edge we associate a "cost" zk , where k is the cardinality of the partition

subset containing that element of the table, and zk is given by

(1.9) 2k = \-(pk)-\

Let E denote the edge set of this graph. With each set of edges A c E we

associate a "profit"

(1.10) a{A) = C{G\A)-YáZe,
e£A

where ze denotes the cost of edge e and C(G\A) is the number of components

left in G after the edges in A have been removed. The "optimal breaking

problem" is to find

(1.11) aG = maxa(A).
ACE

We will show that the order of magnitude of Sn(P) is aG. More precisely,

we have
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Theorem 1. Suppose that the cumulant spectral functions of X¡ satisfy conditions

(1.7). Let P be a partition satisfying conditions (1.3), and let S„(P) be the

corresponding term in the expansion (1.4) of the Rth cumulant of Yn. If aG

denotes the solution of the associated optimal breaking problem given by (1.9)-

(1.11), then
(a) ^«(P)! < Cna°, where C is a constant depending only on the norms

\\\g(k)\\LHIS     \\\Pk ■

(b) If aG > 1, then S„(P) = o(na°).
(c) If aG = I, then lim„_>005'„(P)/« = IG, where IG is an integral defined

as follows.
Let t — I, ... , T denote the subsets in the partition P and nt denote the

cardinality of subset t. Let the matrix M* be an integer representation of the

cutset matroid f*(C7) of the graph G. Then

-¡tlf{"' {xtii, ... , *(,„,) dyi---dyN

where the vectors

X = (Xiti , ...  , Xi _ „, , . . .  , Xj,l, ...  , Xr,n,)

and y = (yi, ... , y¿v) are related by x — yM*, with N being the number of

rows in M*. See the appendix for a review of some basic facts from matroid

theory.

D. Central limit theorems. Let &r be the family of graphs arising from parti-

tions involved in the expansion of the .Rth cumulant of Y„ . An immediate

corollary of Theorem 1 is

Corollary 1. Suppose (1.7) holds and that aG, defined in (1.1), satisfies

aG < R/2,    for every G £&R, R>2.

Then n~xl2Yn converges in law to the normal distribution with mean 0 and

variance a2 = £G€g>2 Ig ■

Using Corollary 1 we are able to prove

Theorem 2. Suppose (1.7) holds and that zk (given by 1.9) satisfies

2^    ifk(k-l)>2m, k<m + l,

InW^nT)    ifm+l<k<2m,

I + 2m    otherwise.

Then n~xl2Yn tends in law to the N(0,a2) distribution. Theorem 2 implies

Corollary 2. If zk > \ + \ for all k, then Yl%\ Xj satisfies the central limit
theorem.

Corollary 2 is related to a result of Giraitis [G2].

Note that the lower bound for zk given by Theorem 2 is maximized over

k when k = 2 or k — m + I, achieving the maximum value \ + -^ . Thus

we obtain

zk> {
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Corollary 3. Suppose (1.7) holds and zk> ¿ + j¿¡ for all k. Then Y„ satisfies
the central limit theorem.

Theorem 3. If Xj  is given (l.l.b) and c(x) = Y,rcre~2mrx  Is in Lp  with

p - 1 ~ 2m - tn~en Yn satisfies the central limit theorem.

Proof. We have

cum(Xj,,... ,XJk)=   Y,   ch-n • ■ ■ cJk-n cumfari,... , rjfk).
r\ , - , rk

Fixing ri, ... , rk, we see that, if \r¡ - ri\ > kd for some 2 < I < k then

the random variables nr¡... , nrk can be partitioned into two sets which are

independent of each other, which implies that cum(nri, ... , nrk) = 0. Thus

cum(Xjl, ... , Xjk) equals

oo kd kd

/ „       ¿^    " - '    ¿^    cji-ricJ2-r2-r, ' ' ' cjk-rk-T\ cum(lr, > ̂ -l-ri , • • •  , ^+r, )

rl=-oor2=-kd       rk=-kd

kd kd

=   £"'£   cum(?7o, nri,... , nVk)

ri=—kd       rk=—kd

oc

'   2-i  cJi_r' ch-n-n ' ' ' cjk -ru -n •
f|= —oo

This implies that the spectral cumulant function of Xj is

kd kd

£   •••   £   cum(?7o, rir2,... , nrk)

T2=—kd      rk=—kd

. e-2niriXlc(x2) ■ ■ ■ e-2nirkXkc(xk)c(-x2-xk).

The result of Theorem 3 now follows from Corollary 3 .

Applying Theorem 3 with nr = £,r, we receive a result of Giraitis [Gl].

2. Proof of Theorem 1

We begin by establishing three extensions of results in [A]. Let An(x) be the

Dirichlet kernel

An(x) = ¿ e2»'kx.

k=\

We consider integrals of the form

(2.1)   S„ = Jh^(u\,... ,uxni)---h^T\uf,... ,uTnr)

• An(vx),... ,An(vR)dxx---dxN,

where u'k , k = I, ... , n,, t = 1, ... , T, and Vj, j = I, ... , R, are linear

combinations of the variables xx, ... , xn with integer coefficients.

We arrange the coefficients of the above linear combinations, taken in that
order, into columns, with the first nx-\-h «7- columns forming the matrix U

and the last R columns forming the matrix V. We consider U and V to be
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sets of columns so that, for example, a £ V is a column in V and A c U is

a set of columns of U. We assume

(2.2) rank(F) = rank(F\a)   for every column a£V,

where V\a is the matrix obtained by deleting the column a from V.
We consider the matrix [U, V] as a matroid on the columns of U and

V, and define W — [U, V]/V to be the matroid obtained by "contracting"

the columns of V. (See the appendix for a review of the basic concepts of the

matroid theory.) Thus W is a matroid on the columns of U.

Let V0 be an integer matrix with row space equal to the orthogonal com-

plements of the column space of V. By Proposition A. 8 of the appendix, the

matroid W is represented by W0 = VqU .

We suppose

(2.3) h^eLpl'K        t=l,...,T,

where Lp"'^  denotes the closure of the tensor product of LPl  with itself nt

times with respect to the greatest cross-norm.

Finally, with each column a of U we associate a number za defined so that

if a = uk then

(2.4) za = l-(pt)-K

Proposition 1. // (2.1)-(2.4) hold, then

\Sn\<c{j{\\\h^\\\p\

where C is a constant depending on V only and

n>

a = Cor(F) + max
ACU

J2(l - za) - rw(A)
LaeA

with rw  denoting the rank function of the matroid W, and cor(F) = R -

rank(F) denoting the nullity of the linear map Vx.

Note that in the special case where each function has just one variable and
U is an identity matrix, Proposition 1 reduces to Theorem 1 of [A]. To see

this, it suffices to show that in this case W is the dual of the matroid generated

by the columns of the transpose Vu, i.e. W = (VtT)*. This follows from the

equalities

w* = ([i, vyvy = [i, vr\v = \vx\ -i\\v = viT,

where we have used Propositions A. 1 and A.6 from the appendix.

Proposition 1 can be proven by following the proof of Theorem 1 of [A],

which applies entirely in this more general setting. The only difference between

Proposition 1 and Theorem 1 of [A] is that Proposition 1 involves functions of

several variables, and hence that a Holder inequality involving such functions

(Theorem 1' of [AB]) has to be used instead of the univariate Holder inequality
(Theorem 1 of [AB]). Note however that since such an inequality does not hold

over the whole Lp([0, l](/c)) spaces (see remark after Theorem 1' of [AB]),

we are forced to assume now that our functions (and the cumulant spectral
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functions in the C.L.T.'s above) belong to the Lp ' subspaces (which means that

they can be approximated in a strong sense by sums of products of univariate

functions).

Theorem 2 of [A] can be extended to

Proposition 2. Assume that (2.1)-(2.4) hold, with Lp replacing Lp, and that
a = cor(F) or equivalently

(2.5) 5^(1 - za) < rw(A)   for every A c U.
aeA

Then

Ä(|)=C-oW)

where Cir0 is a constant which equals 1 if Wq is unimodular and

T

I(Wo)= fÍ\h^(w\,... ,w'ni)dyx---dyd,
J t=i

where (w{,... ,wxn¡,... ,wT,... ,wfT) = (yx,... , ydW0 and d is the

number of rows in W0 .

Proof. Introduce vectors x = (xx, ... , x^) and y = (yx, ... , yd). Let q be

a column vector nx H-h «r integers. As in the proof of Theorem 2 of [A]

it is enough to show that Proposition 2 holds when

lim^ = {
«—>oo na

since the generalized Holder inequality (Theorem 1' of [AB]) and Proposition

1 yield then the general case.

Letting B = {I, ... , n}R we see that in this case Sn equals

J2 f e-2nix(Uq-vk)dxr-dxN = cardinality{A: e B : Uq = Vk} ,

ites

which equals 0 unless Uq is in the column space of V , i.e., unless 0 = VoUq -

W^q. As in the proof of Theorem 2 of [A] we conclude

cWo    if W0q = 0,

0   otherwise,

or equivalently

lim  —=CWn   [ e-2niyWogdyr-dy^
H-oo n<*        ° J

The analogue of Corollary 1 of [A] holds also:

Proposition3. 7/(2.1)-(2.4) hold, with Lp replacing Lp and a > cor(F), then
Sn = o(na) .

We now refer to the graph G = Grp introduced in § 1. We will also use the

graph G = Grp formed by adding an extra vertex to G and connecting that

vertex by one edge to each of the R row vertices.
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Let T denote the number of sets in the partition P and index the edges

of G with pairs (t, k) where t = I, ... , T, and k = 1, ... , nt, with nt
denoting the cardinality of the subset t. With each edge (t, k) we associate a

variable xt k. Let

k=\

V)=    £    X',k,

(t,k)ej

n,-\

VJ=    £   xt,k-   £   ^2xt,k,       j=l,...,R,
{t,k)ej (t,n,)ejk=l

kjin,

where we write (t,k)ej if edge (t, k) is incident to vertex j.

Thus

(2.6) Vj = Vj-   £   Vt.
(t,n,)€j

Lemma 1. The sum Sn(P) can be written

T

(2.7) Sn(P)= [f[gM{xtil,... ,xt>n,.i,t=l-xtti-xttHl-i)

R T     t

l[An(Vj)]lY[dxtk.
j=\ t=\ k=\

Proof. Relation (2.7) follows by direct substitution of (1.5) and (1.7.a) into
the definition of S„(P). It is easier, however, to plug in the heuristic formula

(1.8), leading to

T R T     n

Sn(P)= fX[g(n-\xtA,... , x,,n,)ô(V,)t[An(Vj)f[f[dxttk,
J   t=\ j=\ t=\ k=\

and then to replace x, „, by - Yfk~x xtk.

Now let U and V be the matrices obtained by writing as columns the coef-
ficients of the linear combinations

IXt,k, t = I, ... , T, k = I, ... , nt — 1, — y ^ xt<k, t = I,... , T
k=\ J

and {Vj, j = I, ... , R} , respectively.

Lemma 2.  (a)  The matrix [U, V] is a representation of W*(G), the cutset

matroid of G.
(b) The contraction matroid [U, V]/V is equivalent to W*(G), the cutset

matroid of G.

Proof. We show instead that [U, V]* is a representation of ë'(G), the cycle

matroid of G. To do so, we abuse notation by using V,, V'_,-, and Vj to denote
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the row vectors of coefficients of the corresponding linear combinations. Also,

Vt will denote the vector of coefficients of - Ylk'=i xt,k • Thus

[U, V] = [ImR-T, K, ... , Ftr, V?, ... , Vg\.

By Proposition A.6 of the appendix, [U, V]* is represented by

Vi

Vt   -It+r
Vi

VR

Now we take one of the last R rows, starting with a certain V¡, and subtract

it from each row t among the first T rows for which (t, nt) e j. We perform

this operation for each of the last R rows. Using (2.6) and letting T columns

of -It+r correspond to !,,„,, t = I, ... , T, we see that the matrix we have

obtained is

(2.8)
-VT

Vi

Vr
Ir

This matrix has precisely one 1 and one -1 in each of the first mR columns.

If we append to it another row equal to minus the sum of the previous rows,

we obtain the incidence matrix of G, the last row corresponding to the "extra"
vertex. Part (a) of Lemma 2 follows from Proposition A. 5. To prove part (b),

note that ([U, V]/V)* = [U, V]*\V by Proposition A.l, so that ([£/, V]\V)*
is represented by the first mR columns of (2.8), which is the incidence matrix

of G.

Proof of Theorem 1. (a) By Lemma 1, Sn(P) is an integral of the form (2.1).

By Lemma 2, in this case W = r*(C7), so that rw(A) = \A\ - C(G\A) + 1 by
Proposition A.3. Part (a) follows from Proposition 1.

(b) This follows from Proposition 3.
(c) This follows from Proposition 2.

Proof of Theorem 2. We will show that the conditions of Theorem 2 imply

those of Corollary 1. Let G be a fixed graph in the family S'r of graphs with

R row vertices. For each subset vertex t in G, we may identify the elements of

the corresponding subset with edges incident to t. Thus \t\ denotes the degree

of t and we write e £ t if edge e is incident to t.

We begin by assigning to each edge e £ ta cost ze = l/\t\ + l/2m. These

costs are chosen so that the "total breaking" (obtained by deleting all of the
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edges of G) achieves a profit of R/2 for all G £&r. To see this, introduce the

notation zA = Y,e€A ze for any set of edges A , and note that for each subset

vertex t

v- , /1        1 \     i      1*1
z< = £^ = l'l^ + 2^) = 1 + 2^

e£t x'  ' '

Since Yi,t\t\ - mB, the profit associated with the total breaking is

If the total breaking were optimal at costs ze for every graph in &R , Corol-

lary 1 would imply that a central limit theorem holds if zk (given by (1.9))

satisfies zk > i + jiñ • However, the total breaking is not optimal, because of

a phenomenon we call a "bond:" a set B of b edges connecting the same two

vertices, such that zg > 1.

We will show below that a given subset vertex t can contain at most one bond.

If t contains a bond B, we modify the costs ze fore£t as follows: The cost

of each bond is "discounted" to £ , so that the bond becomes "removable." At

the same time, we increase the cost of the other edges in t so that the total cost

of the edges in t is unchanged, i.e. the total discount zB - 1 is divided equally

among the other edges in t. We denote the resulting costs by z'e . Theorem 2

follows directly from the next two propositions and Corollary 1.

Proposition 4. At the cost z'e, the total breaking is optimal and achieves a profit

R/2 for every graph G in &r .

Proposition 5. Let t be a subset vertex with k edges, containing an edge e.

(a) z'e = \ + ^ if k(k - I) <2m or k>2m.

(b) z'e<£n-ifk(k-l)>2m,k<m+\.

(C)    Z'e ̂  2n«hnT)   if ™ + l< k < 2m .

Before proving Propositions 4 and 5, we establish two lemmas. For any set

of edges A, define z'A = Y,eeA z'e .

Lemma 3. Let t be a subset vertex containing a bond B with b edges.

(a) \t\/2 < b < m. No subset can contain two bonds.

(b) z't_B<l.

Proof,   (a) It is clear that b < m . If b < |i|/2, then zB = b/\t\ + b/2m < \+\,
contradicting the assumption that B is a bond.

(b) Since z\ = zt and z'B = 1,

'-B       ' ^ \\t\     2mJ 2m
eeT Vl  ' '

by the result of part (a).
The second part of Lemma 3 implies that when the costs z'e are adopted

no new bonds are introduced, so that there are no bonds with cost z'e.

Lemma 4. If G' is a subgraph of G, let X be the set of row vertices in G', and

Y the set of subset vertices in G'. Then at costs z'e the total breaking of G'

achieves a profit of at least \X\/2.

Proof. We may write Y — Y{ U Y2 U Y3, where under costs ze the vertices in

Yi had no bonds, each vertex in Y2 had a bond connected to a vertex in X,
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and each vertex in Y3 had a bond connected to a vertex not in X. For any

t £ Y denote the set of edges from no I by t(X). Next we show

(3.1) z;w<1 + iffl,      t£Y.

Indeed, for t £YX,
\t(X)\     \t(X)\

Z'W - Z'W - ~\tT + ~2m~ '

implying (3.1).
If t £ Y2, then z't(x) < z^X) so (3.1) follows as before. If t £ 73, then

Lemma 3 implies z't,X) < 1, which establishes (3.1). The profit from the total

breaking of G' is now

•     \x\+£a - «M * 1*1 - ¿ £ i'Wi > w - ^ = ̂ •
/er (ey

Proof of Proposition 4. Suppose that there is an optimal breaking other than

the total breaking. Let G' be a component left after the removal of the edges

in this breaking, and X the set of row vertices in G'. If \X\ = 1 then, since

there are no bonds any more, we may remove all of the edges in G' without

decreasing the profit. If \X\ > 2, Lemma 4 implies that we may remove the

edges in G' without decreasing the profit. Thus the total breaking is optimal.

Since the profit of the total breaking at costs ze is R/2, and the prices z'e

were chosen to have the same total cost, it follows that the total breaking has

profit R/2 at costs z'e.

Proof of Proposition 5. First suppose k < m+l. In view of (1.3.a), no bond in

t can contain more than k - 1 edges, so t cannot contain a bond (at prices ze )

if (fc-ij^ + jL) < 1, i.e. if k(k-l)<2m. Thus z'e = ze if k(k-l)<2m,
establishing the first half of part (a). If k(k - 1) > 2m and k < m + 1, then
bonds are possible. The largest value of z'e occurs when t contains a bond B

with k - 1 edges and e is the edge not in B, in which case

^=(Í + ¿)+(fc-1)0 + ¿)"1 = ¿'

establishing part (b).
Now suppose k > m + 1. By Lemma 3, no bond can contain more than m

edges. Thus t cannot contain a bond if m(^ + j¿¡) < 1, i.e. if k > 2m, so

z'e — ze when k > 2m , establishing the second half of part (a). If m +1 < k <

2m, then bonds are possible. The largest value of z'e occurs when t contains

a bond B with m edges and e £ t - B, in which case

1  ,    l.\L« (Í + 2Í)-1

establishing part (c)

*k     2m) k-m 2m(k-m)'

4. Appendix

Here we review some elementary facts about matroids. More detail may be
found in [W], [B] or [BP], for example.
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Basic definitions. If E is a finite set, a matroid on E is a nonempty collection

M(E) of subsets of E, called independent sets, satisfying

(a) Subsets of independent sets are independent sets.

(b) For any A c E, every maximal independent subset of A has the same

size, denoted by r(A).
The function r(A) is called the rank function of the matroid. An independent

set of cardinality r(E) is called a basis of the matroid.

If M is a matrix over a field, we may view M asa set of columns and

define a matroid for which an independent set is a linearly independent set of

columns of M. The same letter is often used to denote both the matrix and

the associated matroid.

Induced matroids. If M(E) is over E, the dual matroid to M(E) is the ma-

troid with independent sets M*(E) = {A : A c E - B for some basis B of

M(E)} . The bases of M*(E) are the complements of the bases of M(E), so

that (M*)* = M.
Any set X c E induces two matroids on E - X with independent sets

M(E)\X = {A c E -X : A £ M(E)} and M(E)/X = {A c E - X : Aö
B £ M(E), where B is a maximal independent subset of X}. We say that

M(E)\X is obtained by deleting X and M(E)/X is obtained by contracting

X.

Proposition A.l. For any X c E, (M(E)/X)* = M*(E)\X.

(This is Theorem (4.3.2) of [W], or Theorem 14 of [B], for example.)

Proposition A.2. The rank function of a contraction matroid is given by

rM{E)/x(A) = r(AuX)-r(X).

(See for example [W, p. 61, (4.3.2)], or [BP, Theorem 2.8)].

Graphic matroids. Let G be a connected undirected graph with edge set E.

The cycle matroid ^(G) is the matroid on E for which an independent set is

a collection of edges containing no cycle. The bases of S'(G) are the spanning

trees of G.
The dual matroid to £?(G), denoted l?*(C7), is called the bond, or cutset

matroid of G. An independent set in !?*((?) is a collection of edges whose

removal does not disconnect G.

Proposition A.3. The rank function &*(G) is r(A) = \A\ - C(B'\A) + 1, where

C(i?\A) is the number of components in G after the edges in A are deleted.

(This follows from [W, p. 35, (2.1.5) and p. 29], (1.10.5), or [BP, Exercise 3.3
and p. 125].)

Representable matroids. A matroid M(E) is said to be represented by a matrix

M if there is a one-to-one correspondence between the elements of E and the

columns of M which preserves independence.

Proposition A.4. // M(E) is represented by a matrix M, then M*(E) is rep-

resented by any matrix M* with row space equal to the orthogonal complement

of the row space of M.

Proposition A.4 is Theorem 17 of [B], or Theorem 9.3.2 of [W]. The next

proposition can be found on p. 350 of [B], or in [W, pp. 171-172].
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Proposition A.5. If G is a connected graph, introduce a directed graph G' by

assigning an arbitaray orientation to each edge of G. Then the edge-vertex

incidence matrix of G' represents W(G).

Proposition A.6. If M(E) is represented by the matrix [I,M], then M*(E) is

represented by [MtT, -I]. (See [W, Corollary 9.3.1], or Theorem 18 of[B].)

Proposition A.7. Suppose M(E) is represented by M. Let X c E. Row reduce

M so that the columns corresponding to X are in echelon form, obtaining a

matrix M'. Form M" by deleting from M' the columns corresponding to X,

and also deleting any row which has a nonzero entry in one of those columns.

Then M" represents M(E)/X.

Proposition A.7 is Theorem 9 of [B].

Proposition A.8. Given a matrix of the form [U, V], the contraction [U, V]/V

is represented by MU, where M is any matrix with row space equal to the

orthogonal complement of the column space of V.

Proof. Let B be a maximal nonsingular submatrix of V, which we assume for
convenience to lie in the upper left corner of V. Reducing [U, V] to put V

in echelon form is equivalent to multiplying on the left by

'/r',o'
M

The result now follows from Proposition A.7.

References

[A] F. Avram, Generalized Szegö theorems and asymptotics of cumulants by graphical methods,

Trans. Amer. Math. Soc.

[AB] F. Avram and L. Brown, A generalized Holder inequality and a generalized Szegö theorem,

Proc. Amer. Math. Soc.

[B] R. Bixby, Matroids and operations research, Preprint.

[BM] P. Breuer and P. Major, Central limit theorem for non linear functional of Gaussian fields,

J. Multivariate Anal. 13 (1983), 425-441.

[BP] V. Bryant and H. Perfect, Independence theory in combinatorics, Chapman and Hall, Lon-

don, 1980.

[CS] E. Chambers and S. Slud, Central limit theorems for nonlinear functionals of stationary

Gaussian processes, Probab. Theory Related Fields 80 (1988), 323-346.

[FT] R. Fox and M. S. Taqqu, Non-central limit theorems for quadratic forms in random variables

having long-range dependence, Ann. Probab. 13 (1985), 428-446.

[Gl] L. Giraitis, Central limit theorems for functionals of a linear process, Litovsk. Mat. Sb. 25

(1985), 43-57.

[G2]     _, Personal communication, 1988.

[GS]     L. Giraitis and D. Surgailis, Multivariate Appell polynomials and the central limit theorem,

Dependence in Prob & Stat., (E. Eberlein and M. Taqqu, eds.), Birkhäuser, 1986.

[LC]     W. Light and E. Cheney, Approximation theory in tensor product spaces, Lecture Notes in

Math., vol. 1169, Springer-Verlag, New York, 1980.

[W]       D. Welsh, Matroid theory, Academic Press, New York, 1976.

Department of Mathematics, Northeastern University, Boston, Massachusetts 02115

Department of Mathematics, Boston College, Chestnut Hill, Massachusetts 02167

Current address: Department of Mathematics, Trenton State College, Trenton, New Jersey 08650


