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A SHARP INEQUALITY FOR MARTINGALE TRANSFORMS
AND THE UNCONDITIONAL BASIS CONSTANT

OF A MONOTONE BASIS IN L"(0, 1)

K. P. CHOI

Abstract. Let 1 < p < oo . Let d = (di, d2, ...) be a real-valued martingale

difference sequence, 0 = (0\, O2, ...) is a predictable sequence taking values

in [0, 1]. We show that the best constant of the inequality,

£M*
fc=i

< c„ £<4
k=l

n>\.

satisfies

2 + 2l0g( —
a2

+ — + ■

where y = e  2 and ai = [ 5 log -^ ]2 + \ log -^ - 2( -^- )2 . The best constant

equals the unconditional basis constant of a monotone basis of LP(0, 1).

1. Introduction

More than fifty years ago, Paley [10] proved the following inequality for the

Walsh system of functions y/n on the Lebesgue unit interval. If 1 < p < 00,

there is a positive real number cp with the property that if b\, b2, ... are real

numbers and

en=       E       bmVm,
2"<m<2"+1

then

(1.1) E>
k=\

< ^Sk^k

k=l

< CD E**
for all signs ek £ {1, -1} and all positive integer n . Notice that the left-hand

side of this inequality follows at once from the right-hand side.

It was then observed by Marcinkiewicz [8] that Paley's inequality can be given

an equivalent formulation in terms of the Haar system of functions h„ :

(1.2) ^2akhk
k=i

< E ekakhk
k=\

< c„ ¿Zakh
it=l

1 < p < OO.
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Here a\, a2, ... are real numbers and the constant cp is the same as in Paley's

inequality.
Throughout this work, we adopt the following convention. The constant cp

may change from one use to the next; however, if it is necessary to be more

specific, the best constant in an inequality, say (1.1), is denoted by cp(l.l).

With this notation, Marcinkiewicz's result can be stated as follows:

cp(\.\) = cp(\.2).

In 1966, Burkholder [1] extended the result of Paley and Marcinkiewicz to

martingales:

(1.3) ¿Z,Vkdk
k=\

< C„ 5>
k=\

1 < p < 00,

where v = (v\,v2, ...) is a predictable sequence uniformly bounded in abso-

lute value by 1 and d = (d\, d2, ...) is a martingale difference sequence. Here

the constant cp is independent of both v and d.

An important special case of (1.3) is

(1.4) Ee^*
¿fc=i

< c„ 5>
fc=i

1 < p < 00,

where, again, ek £ {1, -1}. Clearly, cp(\A) < cp(l.3). In 1981, Burkholder
[2] showed that Cp( 1.3) < cp(lA), so equality holds. The Haar system h =
(h\,h2, ...) is a martingale difference sequence, as is d = (a\h\ ,a2h2,a-¡hi, ...)

for real numbers ak . Therefore cp(l.2) < cp(l.4). Maurey [9] proved the re-

verse inequality. Therefore

c,(l.l)=c,(1.2) = c,(1.3) = c,(1.4).

In 1984, Burkholder [3] derived the value of this best constant. It is

where p* is the maximum of p and its conjugate q = p/(p-l). The proof rests

on solving a system of nonlinear partial differential equations and inequalities.

See his paper [4] for a shorter proof.

Inequality (1.3) carries over to stochastic integrals with no change in the value

of the best constant (see [3]). It has applications not only in probability theory

but also in Fourier analysis and the theory of singular integrals. It carries over to

5-valued martingales for a large class of Banach spaces B where the constant

depends both on p and B . A geometrical characterization of this class is given

in [2]. For a discussion of some of this, see [5].
The main contribution of this paper is a set of equations (see Theorem 3.3

and (3.11), (3.12) in §3) that determine the best constant in the inequality,

(1.5) ¿M*
k=\

<CP 5>

Here, as before,  1 < p < oo and d = (dx, d2, ...) is a martingale difference

sequence, but 6 = (6\, 62, ...) is a predictable sequence taking values 0 or 1.
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The gambling interpretation of ( 1.5) is obvious: as long as the gambler cannot

look into the future and the game is fair in the sense that d = (d\, d2, ...)

forms a martingale difference sequence then his fortune YTk=\ ®kdk is controlled

by the fortune ££=1 dk that would have been achieved without skipping bets.

This holds for any p in (1, oo), but does not hold for p = 1 or p = oo in

general. Inequality (1.5) can be extended to 6k taking values in [0,1] with

the same optimal constant cp(l.5).

Using a discretization argument (see §16 of [3]), we can extend the inequality

(1.5) to stochastic integrals with cp(l.5) as the best constant.

The inequality (1.5) has another important connection, a connection with the

unconditional basis constant. Let 1 < p < oo and e = (e\, e2, ...) be a basis

of real 7/(0, 1). The unconditional basis constant, denoted by Kp(e), is the

extended real number (see [7], for example)

sup E Mfc^t
k=\

where Ea^
k=\

= 1, for n > 1,

<3i, ... , a„ are real numbers and 9k £ {0, 1}

Clearly, the unconditional basis constant of the Haar system satisfies

Kp(h)<cp(l.5)

and by the method of Maurey [9] the reverse inequality is true. Therefore, we

have the following theorem.

Theorem A. If Kp(h)  is the unconditional basis constant of the Haar system,

then
Kp(h) = cp(l.5), l<p<oo.

Let (Q., sf, ¡u) be a positive measure space and (P\, P2, ...) be a non-

decreasing sequence of contractive projections in LP(Q, stf , p.) : for every

n, m > 1,

P„P„ = P„Pm = Pmin{m,n}   and   \\Pn\\ < 1.

Theorem B. Let P = (P\, P2, ...) be any nondecreasing sequence of contractive

projections in LP(Q, j/ , p) and let P0 = 0. If f £ Lp(Q.,snf , p), then

Y,ak(pk
k=\

"k-\ )f <cp(\.5 V ' 1 < p < 00,

for all integers n > 1 and all numbers ak £ [0, 1]. And this inequality is sharp.

A basis (for definition, see [7]) e = (e¡, e2,...) in a real Banach space B

with norm || • \\B is said to be monotone if

|fl+i

Ea*^
k=\

< ^2akek
k=\

for every n > 1 and all ak £ R. If B does have a monotone basis and

x - Y^Li akek, then let P0x = 0 and Pnx = Y!k=\ ak^k for all « > 1.
Then it is easy to verify that P = (Pq , P\, ... ) is a nondecreasing sequence of
contractive projections so we have the following conclusion.
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Corollary C. The unconditional basis constant of a monotone basis of Lp(0, 1)

¿s Cp(1.5), i.e.

Kp(e) = cp(l.5).

See [3] for the proof of Theorem B. These theorems illustrate the interest in

knowing the value of cp(l.5).

In §4 (see Theorem 4.3), it is shown that

Kp(e) = cp(\.5)^P-+l-\og(^f^

2. Zigzag martingales

Let / = (f\, f2, ... ) be a real-valued martingale on a probability space

(Í2, stf, P) and d = (d\,d2, ...) be its difference sequence. Suppose f =

x - y , where x, y £ R and 6 = ( 1, 62, Ö3, ... ) is a sequence of real numbers

taking values in {0, 1}. A sequence g = (g\, g2, ■■■) is the transform of /

by 6 = (1, 92, 03, ... ) if, for every n > 1, gn = ££=1 dkdk , where 6X = 1.
Indeed, g is also a real-valued martingale.

Let (X\ ,Yi) = (x,y) and for all n > 2,

(2.1) xn = x + J2ekdk,
k=i

(2.2) Yn=y + Yj(dk-\)dk.
k=2

Then Z = (Z\,Z2, ...), where Z„ = (Xn, Y„), is an R2-valued martingale
starting at (x, y). Since 6k e {0, 1} , it is obvious that for each n > 2 either
X„ - Xn-\ = 0 or Yn - Yn-\ = 0. In other words, if Z moves at all at the «th

step (n > 2), it moves either horizontally or vertically, which way depending

on n only. In the terminology of [3], Z is a zigzag martingale. Furthermore,

we can recover /„ and g„ by

(2.3) fn = Xn-Yn,

(2.4) gn+y = Xn.

3. Sharp inequalities

By a standard duality argument, it can be proved that

(3.1) cp(l.5) = cq(l.5),        1 <p,q <oo,  - + - = 1.

Therefore, we will determine cp(1.5), 2 < p < 00 .
Let po be the unique solution to the equation

(3.2) p-2 =v     ' [-p 2 + 5p-5

(3.3) po^ 2.5455458.

(p-l)(p-2)V
2 <p < 3,
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Indeed, putting x = p-2 into (3.2) and simplifying, we obtain an equivalent

equation

(3.4) (x+ l)log(-x2 + x+ 1) = x\ogx + (x + l)log(x+ 1),        0 < JC < 1 .

The left-hand side is concave in x and the right-hand side is convex in x . The

existence and uniqueness of solution to (3.4) can then be deduced readily by

considering the behavior of the two sides near the endpoints of (0, 1). Indeed,

we have

(3.5) (p-2)[-p2 + 5p-5]p-l>[(p-l)(p-2)]p-x,        2<p<po,

and,

(3.6) (p-2)[-p2 + 5p-5]p-x<[(p-l)(p-2)]p-x,       Po<P<3.

For t £ [-1, 1], we define

(3.7) E(t) = sgn(t)\t\p-1 -(p-l)t + p-2,

(3.8) A(t) = (p-l)(l- t)2 - [(p - 2) - pt]E(t),

(3.9) D(t) = (p - 1)(1 - t)2 + tE(t),    and

(3.10) B(t) = (p-l)(l-t)2E(t)-tA(t),

or equivalently,

(3.10') B(t) = [(p-l)-pt]E(t)-tD(t).

For po < p < oo, let Ip = (0 V (p - 3)/(p - 1), (p - 2)/p), and for 2 < p <

Po,Ip = (-(3-p)/2p,0].

Lemma 3.1. For 2 < p < oo, there exists a unique solution, tp £ Ip, to the

equation

(3.11) \p - 2 - O - \)t][A(t)]p~l = [B(t)f-X.

For 2 < p < oo , let

A(tP) f D(tp)Y
A(tP)j   '(3-12) ^(p-m-tAm ' and

(3.13) v(x, y) = \x\p - kp\x -y\p,        (x,y)eR2.

Lemma 3.2. For 2 < p < oo, there exists a biconcave function u : R2 —> R such

that u(0, 0) = 0, u(x, y) > v(x, y) for all (x, y) £ R2, and u satisfies the

following bounds:

(3.14) \u(x,y)\<cp(\x\p + \y\p),

(3.15) \ux(x,y)\<cp(\x\p-l + \y\p-x),    and,

(3.16) \uy(x,y)\<cp(\x\p~l + \yrl).

Lemmas 3.1 and 3.2 will be proved in §5.

The following theorem is the main result of this paper.
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Theorem 3.3. For 2 < p < oo,

cp(L5) = (kp)x'p.

Proof. The proof is based on the idea of Burkholder in [4]. The proof consists

of two parts. Part I makes use of Lemma 3.2 to show that cp( 1.5) < kp and

Part II shows by an example that kp < c£(1.5).

Part I. Let d = (d\, d2, ...) be a martingale difference sequence of an LP-

bounded martingale / and let g be the martingale transform of / by a

predictable sequence 6 = (6\, 62, ...), where 8k £ [0, 1]. By a reduc-

tion argument (see §2 in [3]), we may assume d\ = 0, 6\ = 1 and that

6 = (1, 62, ... ) is a sequence of real numbers taking values in {0, 1} . Con-

struct the zigzag martingale Z = (Z\, Z2, ... ), Zn = (Xn ,Yn) by (2.1) and

(2.2) where x = y = 0. By Lemma 3.2, there exists a biconcave function

u(x, y) that majorizes v(x, y), therefore

v(Xn, Y„) = |*„|" - kp\X„ - Y„\p < u(Xn , Y„).

By (2.3) and (2.4), this implies that

\gn\p-kp\fn\p<u(Xn,Y„).

Using the bound (3.14), we see that u(X„ , Y„) is integrable. Taking expecta-

tion, we have that

(3.17) \\gn\\p-kp\\fn\\p<Eu(Xn,Yn).

We also observe that

(3.18) u{Xn,Yn)<u{Xn-U Yn-rt + dnUAXn-u VlH

+ {0„- \)Uy(Xn-i, Y„-X)dn,

since u is biconcave and 6„ = 0 or 1 — 0„ = 0.

Now d„ is Lp-integrable and by the bounds (3.15) and (3.16), it follows that

ux(Xn-i, Yn-i) and uy(Xn-\, Yn-\) are Lq-integrable. Indeed

||M*„_i, Yn-X)\\l < cpE(\Xn-X\p-x + \Yn-i\P-1)*

< cp(E\Xn-^p-x^ + E\Yn-^p-^")

= cp(||Xn_1||^ + ||rM_1||^)

Eö^a
k=\

+ ¿2(\-ek)dk
k=\

< cPY,\\dk\\p < OO .
k=\

Similarly \\uy(X„-i, Y„-\)\\q < oo . By Holder's inequality, ux(X„-X, Yn-X)dn

and Uy(Xn-\, Yn-\)dn are integrable. Therefore

Eux(Xn-XYn-,)dn = E(E(dn\s/n-X)ux(Xn-X , r„_,)) = 0

and, similarly, Euy(X„-l, Y„-\)d„ = 0.
Hence, by (3.18) we get Eu(X„ , Yn) < Eu(Xn-\, Yn-\). Working backward,

we have

Eu(Xn, Yn) <Eu(Xi, Yl) = u(0,0) = 0.
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Combining this and (3.17), we have

\\8n\\Pp<kp\\fn\\Pp.

Therefore Cp(1.5) < kp .

Part II. We will exhibit an example here to show that Cp(1.5) > kp . We need

the following definitions. Let tp be as in Lemma 3.2,

(3.19) a = [p-2-(p-l)tp]

(3.20) ß =

E(tp)

D(tp)

h D(tp)
[p - I - ptp] E(tp) '

(3.21) X = [p-l-ptp]-
,E(tP)

lD{tpy

(3.22) œ = 2^0A_E(tp).

Note that ß > 0 when po < p < oo ; ß < 0 when 2 < p < po .

We need the following technical lemma which can be verified by straightfor-

ward computation. Its proof is given in §5.

Lemma 3.4. For 2 < p < oo,
d) j^ + iÊiL-k tíi^n + y-fin*-»

(û)   jh + xkl=p'
(iii)   0 < a < X < ß~x, for p0 < p < oo, and

(iii')   0<a<X, ß <0,for 2<p <p0.

Returning to the proof of Theorem 3.3, we proceed as follows. For x > 0,

there exists a unique r\ £ (a, X) such that

We have, by (ii) in Lemma 3.4, that n converges to a as x converges to 0.

Case (1). po < p < oo. Fix x > 0 and choose S £ (0, x), actually we will

eventually let ó -» 0. For all k > 1, define

4-1- (X - n)(x + ko) + no '

v       i ô
n (l-ßX)(x + kS)'

n

7i0=l,    and   nk = JJ yjÇj.
j=i

Note that ß > 0.
When there is no risk of ambiguity, we use [a, b) to denote either the interval

{x : a < x < b} or the indicator function of the set [a, b).
On the probability space ([0, 1), si, m), where si is the er-field of all

Borel measurable sets in [0, 1 ) and m is the Lebesgue measure on [0, 1 ), we
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define a sequence of functions on [0,1), d = (d\, d2, ... ) as follows:

d\ = ( 1 - X)x,     and for all k > 1,

d2k = -Xo[0, nk_iÇk) + (X - t])[x + (k - l)ô][nk_^k , 7r>t_1),

d2k+i =¿[0, nk)-[(l -ßX)(x + ko)-o][nk, nk_^k).

It is not difficult to see that d = (d\, d2, ...) forms a martingale difference

sequence. Let 62k - 0 and 62k-i = 1 for all k > 1. Let / be the martingale
with the martingale difference sequence d = (d\, d2, ...) and g the martingale

transform of / by 6 = (6\, 62, ...). Therefore, we have

11/11, = Um ||/2„+1 Iß

- lim \\X2n+l - Y2n+l\\p
n—»oo y

= lim J (1 -X)p(x + nô)pnn +Y(l - n)p[x + (k - l)<?f 7^,(1 -4)
H—»OO ¿—'

l k=\

+ Yj(\-ß)pXp(x + ko)pnk-Xc:k(\ -yk)\,
k=\ )

and similarly,

\\g + Xx\\pp= \im\\X2n+x\\pp

k=\

= lim \(x + nô)pnn + Y[x + (k-l)ô]pnk_l(l-^k)

n

+ Y,mp(x + kSyiik-lSk(l-yk)
k=\

We make use of the inequality 1 - wô < (1 - S)w for all w > 1 and

0 < ô < 1. Since ßX < 1 by Lemma 3.4(iii), we introduce Si = X/(X - n) > 1
and s2= 1/(1 - ßX) > 1, then

x   Yi+iY,       nà   Vf   x + kô   Vi +
x + kô)       V      (l-l)xj    \x + kô + ^

<HX(Ô)
x il +.52

.X + fcrJ

where

Now
/       „      \sl+s2

0<(x + nS)pnn<Hi(ô){ J       (x + nô)p,
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the right side goes to zero as n goes to infinity by (3.23). So

lim sup ||/||^
<5—0

< lim sup \ ¿(1 - n)p[x + (k- \)ô]pnk-x(\ - 4)

oo

+ E(l - ßY*P(x + kô)pnk-{c:k(\ - yk)

<^°    U=i

k=\

= lim sup \ (1 - r¡)pxp(\ - Í,) + ¿(1 - n)p(x + kô)pnk(\ - &+1)
<^°    <. fe=i

oo «

+ ̂ 2(l - ß)pXp(x + kô)pnk^^-
k=\ ^k

^(X(\-t])p   (i-ß)pxp\r       „^^       jc,+*
<S-h-— +    i     ,,    Mimsup771 ¿ ¿>-, _.  x,   nJ,

<
\X(\-n)p   (i-ß)pxp\t.       .   °°      xs>+s>
\—,—— +    i    o,    MimsuP<$ /    ?-fXc^c  „M,dt
\   X-t] 1-ßX   J    ô^o     Jo    (x + tô)s<+si-p+l

X(l-t])p     (l-ß)pXp\       xp1 - ß)pXp 1

1-/U   ;A - r7 1 - ßX    j S\ +s2- p

X(\-r¡)p     (\-ß)pXp    .,,,,.

Similarly,

limsup||s + Ax||£<T-^ + (^
á^o -      A - n     \ - ßX'

We proceed to a lower estimate of 7T/¿.   Note that if w > 1  and Wi =

w(x - ô)/(x - wô), then

l-ws> (1 -j)"",       se(o,-

To see this, consider

log(l - ws) _ log(l - ws) - log 1

log(l-s)   "   log(l-j)-logl   '

by mean value theorem, there exists a c £ (0, s),

-wl(\-wc)      w-\      ,        w - 1
= -T771-r = 1-+ ! ^ 1-YT~ + l = wi ■

-1/(1 -c)       \-wc l-wô/x

Therefore,

log( 1 - WS) > W\ log( 1 - s),

i.e.,

l-ws>(l -s)w< .
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To obtain a lower estimate of nk , let

x - ô
r\ =

(l- ßX)x-o'

xri+r2       (     x + kô

X(x-Ô)

(X - n)x - Xô '

»   V

(x + kSym yx + ks+jL

-n +r2

> -H2(ô),

where

x + kSyi+'i

x + kô
H2(ô) =

x + kô + g.
1   asó^O.

Furthermore, as ô -+ 0, rx -» 1/(1 - ßX) and r2 -> A/(X - n). Therefore,

s^o   »■"'*-    s^o   \   X-n 1-ßX   j f^ (x + kô)r>+r2-p+l

¿-o   I   A - i/ \- ßX   ) Jo

k=\
oo ¿Xr'+r2

(x + i<y)'i+r2-J>+i
rfí

A(l-^ + (l-yS)^

i.e.

X-r\

lim
á—o

1 — iff A

p_A(l-^     (1-/Q/W

p        A - >/ 1 - ßX
Similarly

X}m\\g + Xx\p =

so

<W0

lim lim
X->0S->0

(AA)P
A - n '  1 - ßX '

+

p = A(l-a)^      (1-/?)*#

p X-a 1- ßX

= y- lim lim II £ + Ax||?
k„ x^os^o p

by Lemma 3.4(i) since ß > 0 for po < P < oo

7-limlimHglß,
k„ x^o<5^o      p

i.e., c£(1.5) >k¡p ■

Case (2). 2 < p < p0. Fix x > 0 and choose ô > 0 such that ô < x. For

all k > 1, define £,k,yk,nk, dk and 0^ as in Case (1). Similar calculation as

in Case (1) shows that kp < Cp(1.5). This completes the proof, apart from the
lemmas, of Theorem 3.3.   D
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Remark. The martingale / described in Part II of the proof of Theorem 3.3

is actually constructed from a zigzag martingale by (2.3). Here we provide

a brief geometrical description of this zigzag martingale. Let x > 0, choose
r\ £ (a,X) by (3.23). The zigzag martingale first starts at (x,Ax), it then

moves vertically either down to the point (x, nx) where it will stop or up to

the point (x, A(x + ô)). From the point (x, A(x + ô)), the zigzag martingale

moves horizontal either to the left to the point (ßX(x + ô), X(x + ô)) where it

will stop or to the right to the point (x+ô, X(x+ô)). The pattern of movement

is then repeated.

4. Asymptotic results and remarks

We make use of a result of Burkholder in [3] and triangle inequality to obtain

Theorem 4.1. For 1 < p < oo,

max {l,y-l}<^(1.5)<^*;

where p* = max{/?, p/(p - 1)} .

Proof. Let d = (d\, d2, ... ) be a martingale difference sequence and 6k £

{0, 1}, k > 1. Let ek = 28k - 1. Then ek £ {1, -1} and

¿Ma
k=i

Edk+EBkdk

<

\k=\ fc=l

l+cp(1.4)
5>
k=l

1 r,*Therefore, t>(1.5) < (1 + t>(1.4))/2 = t¡p-

Similarly, let ek £ {1, -1} and define 6k = (ek + l)/2 € {0, 1} . Then

'¿Z^kdk
k=\

2EÖ^-E^
k=\ ¡fc=l

n

< [2cp(L5) + 1]

k=i

Therefore, cp(1.4) - 1 < 2cp(l.5). On the other hand, cp(1.5) > 1, Theorem

4.1 follows immediately.   D

We assume that tp = YH?=oakP~k, Po < P < oo.  By (3.10) and (3.8), we
rewrite (3.11) as

(4.1) {tP + [p-2-(p- I)*,]»/«*-1)}-1 =
1 p-2-ptp

E(tp)     (p - l)(\ - tp)2 ■

From Theorem 3.3, we have ao = 1 > fli = —2. Substituting tp = Yl^o^P k

into (4.1) and equating coefficients of p~k , k = 0, 1, 2, ... , we obtain
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Theorem 4.2. Assuming tp = YlT=o akP k > Po < P < oo, then

t      i     2     W-V)1      4y(3-y)(l-y) 1
lp p     (\ + y)p2 (l + y)3      P3

4y(-9y4 + 56y3 - 186y2 -:- 120y - 13) 1
+ 3(1+7)5 P4+'"'

where y = e~2.

We substitute these known coefficients into (3.12), we have

Theorem 4.3. For p0 < p < oo,

<*(l-5) = f + 2l0gx V j + 7 + -'

wnere y = e~2 anö?

_[.|og(i±Z)]%.log(i±7)^(Tl_)2.

Remark. That 02 = -2(1 - y)/(l + y) can also be derived from Theorem 4.1

and the fact that tp = \ - 2/p + a2/p2 H— . Indeed, Theorem 4.1 implies that

Cp(1.5) = p/2 + 0(1). Substitute, tp = l-2/p + a2/p2 + 0(l/p3) into (3.12)
and by Theorem 3.3, we have c>(1.5) = p(\ + y)/(4 + (1 + y)a2) + 0(1). this

implies a2 = -2(1 - y)/(l + y).

5. Proof of lemmas

Proof of Lemma 3.1. We will give a sketch of the proof. For details, see [6].

Case 1. po <p < 00. Define a(r) = A(t)/(l - t)2 and ¿>(r) = B(t)/(l - t)2.

Step 1. We shall show that a(t) is increasing on Ip , è(/) is decreasing on Ip
and that they are both positive on Ip .

We note that E(t) is positive and decreasing on (0, 1). Convexity of E(t)

on (0, 1) and 7i(l) = 0 imply that E(t)/(l-t) is a positive decreasing function

on (0,1). Note that

(5.1) a{t)=p-^\k^Eû.mt,  and

(5.2) b(t) = (p - l)E(t) - ta(t).

Now a(t) is increasing on (0, (p - 2)/p) because [(p - 2) - pt]/(l - t) and

E(t)l(\ - t) are both positive and decreasing on (0, (p - 2)/p). By direct

verification, we have a((p - 2)/p) > 0 and b((p - 2)/p) > 0.

(i) When p0 < p < 3, a(0) > 0. Therefore a(t) > 0 on (0, (p - 2)/p). It
follows from (5.2) that b(t) is decreasing on (0,(p-2)/p) and hence positive

on Ip.

(ii) When 3 < p < 00. There exists a unique t\ £ (0, (p - 2)/p) such that

a(ti) = 0. Since a((p - 3)/(p - 1)) > 0, it implies that a(t) > 0 on Ip. It
follows from (5.2) that b(t) is decreasing on Ip and hence positive on Ip .

Step 2. Existence of a solution to (3.11). Define

p-\

t£lP.(5.3) A(t) = (p-2)-(p-\)t
B(t)

A(t).



A SHARP INEQUALITY FOR MARTINGALE TRANSFORMS 521

(i) When po < p < 3, we can verify that

-(p-2)(p-l)]p-x
A(0)=p-2 -p2 + 5p-5 <0.

(This explains equation (3.2).)

(ii) When 3 < p < oo, we have A((p - 3)/(p - 1)) < B((p - 3)/(p - 1)),
therefore A((p-3)/(p-1)) < 0. Now A(t) is continuous and A((p-2)/p) > 0.

Existence of a solution to (3.11) follows.

Step 3. Uniqueness of solution to (3.11). For 3 < p < oo, we first show

that a(t) is convex on (0, 1). Differentiate (5.1) twice and let M(t) be

the numerator. When 4 < p < oo, M"(t) < 0 on (0,s), where 5 =

(P - 4)(p - 2)1 p2 ; M"(t) > 0 on (s, 1). Computing M'(t) at 0 and 1, we see
that M'(t) < 0 on (0, 1). Therefore, M(t) > M(\) = 0. When 3 <p < 4,
M"(t) > 0 on (0, 1), therefore M'(t) < M'(l) = 0 and this implies that
M(t) > 0 on (0, 1). Now we deduce that [p-2-(p- l)t](a(t))p~x is increas-

ing on Ip . Its derivative equals (a(t))p~2{[p-2-pt]a'(t)+ta'(t)-a(t)} which is

positive because ta'(t)-a(t) is increasing, therefore ta'(t)-a(t) > t\a'(t\) > 0

for / £ (t\, (p - 2)lp). Uniqueness of solution to (3.11) follows immediately

since (b(t))p~x is decreasing. For p0 < p < 3, we show that b(t)/a(t) is convex

on (0, t2). Uniqueness of solution to (3.11) follows because [p -2-(p - l)t]

is linear and (b(t)/a(t))p~x is convex. To show that b(t)/a(t) is convex, we

differentiate it twice and rewrite the numerator as

N(t) = a(t)[a(t)b"(t) - 2a'(t)b'(t)] + (-a"(t))a(t)b(t) + 2b(t)a'(t).

Since a"(t) < 0 in this case. To show that N(t) is positive, it suffices to show

that Ai(0 = a(t)b"(t) - 2a'(t)b'(t) > 0. Recall b(t) = (p - l)E(t) - ta(t) from
(5.2), Al(t) = (p-l)a(t)E"(t) + ta(t)[-a"(t)] + 2(p-l)a'(t)(-E'(t)) + t(a'(t))2.
Each of these four terms is nonnegative on Ip . This completes the proof of

Lemma 3.1 for Case 1.

Case 2. 2 < p < po . We will be brief in the proof. We are able to show that

A(t) and B(t) are positive on Ip, and by (3.5), A(0) > 0 (see (5.3)). It can
be shown that A(-(3 - p)/2p) < 0, existence of a solution follows. Lastly we

can show that [p - 2 - (p - l)t](B(t)/A(t))p~x is decreasing and uniqueness is

proved.

This completes the proof of Lemma 3.1.   D

Proof of Lemma 3.4. We note that (p - 1 - ptp), [p - 2 - (p - \)tp], D(tp)
and E(tp) are positive, so a > 0. Also, A - a = (1 - tp)E(tp)/D(tp) > 0 and

l-ßX=l-tp>0. When p0 < p < oo, tp > 0 so ß > 0. Since ßX = tp < 1,

this implies A < ß~x. When 2 < p < po,tp < 0 so ß < 0. This completes the

proof of (iii) and (iii').

It is easy to show (ii) by (3.19) to (3.21).
From (3.7) and (3.9), we see readily that the left-hand side of (i) equals

D(tp)l(\ - tp). By definition of A(t) in (3.8), we have

A(tpX(\-a)p = [p-i-ptp]

X-a (\-tP)      [D(tp)
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From (3.10'),

K P. CHOI

(1 - ß)pXp B(tP)

D(tp)X-a (\-tp)

Since tp is a solution to (3.11), the right-hand side of (i) can be simplified as

(p - 1 -ptp)A(tp) + [p-2-p- \)tp]B(tp)

(p-\)(\-tP?

which can be further simplified as D(tp)/(l - tp) by (3.10'), (3.8) and (3.9).
This completes the proof of (i) and hence Lemma 3.4.   D

Let

(5.4) A=l-kp(l-a)p = v(x,ax)\x\~p,

(5.5) B = \ß\p -kp(\- ß)p = v(ßy, y)\y\-p .

To prove Lemma 3.2, we need the following identities and inequalities which

are grouped under the following lemma.

Lemma 5.1. For 2 < p < oo, we have

(i)

(ii)     A =

l-a=M>0.
D(tp)

[{p-2)-ptp]E(tp)>0.
(p-\)(\-tp)2

(iii)     I - kp(l - af'2 < 0,

(iv)    co - A =
(p-m-tP)

>o,

(v)
co - A

a
= pkp(\ - a)p~x,

(vi)    pA-a{^    A) =p[l-kp(l-a)p-x].,
X — a

(vii)   pA + (p - 2)(œ -A)- 2a{œ ' A) = 0,

(viii)   1 - ß =
B(tP)

[(P - 1) - PtP]E(tp)

X — a

>0,

(x)     p[sgn(ß)\ß\»-x+kp(l-ß)p-l} =

(xi) ■ pkp(\ - ß)<>-x = pB

1-ßX

¡coÍ--IXP

(xii)   pB + (p-2)
XP

1 - ßX Up

2ßX    \co

1 - ßX Up
B

XP

o,

,   co-BXP         .     a(co-A) ...
(xiu)  -¡--Fr=pA-\-— + (p- \)(co-A),

\-ßX X — a

B(xiv) pBX"-l + (p-l)[^-

(xv)    \ß\P-2-kp(l-ß)"-2<0.

xp- ßX
1-ßX Xp      J

xp-x = co- A

X — a
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Proof of Lemma 5.1. From (3.19), (3.8) and (3.9) we get (i). By (i), (3.12) and
(3.8), we get (ii). Using (i), (3.12) and (3.9), we obtain

i-kp(\-a)p-x = i - {p_l){;_tp)2 = {p_p){l_tp)2 < o.

Therefore, 1 < kp(\ - a)p~x < kp(\ - a)p~2, so (iii) is proved. From (ii) and

(3.22), we prove (iv).   From (iv), (3.19) and (3.21), both sides of (v) equal

D(tp)l(p - 1)(1 - tp)2 , so (v) follows.
Now,

pA_a(co-A) = pA _ pak{l _ a)P-i    by(v)
X — a

= p[l-kp(l-a)p]-pakp(l-a)p-x    by (5.4)

= p[l-kp(l-a)p-x],

which is (vi). From (ii), (iv) and (v), we can prove (vii). By (3.20) and (3.10'),

we prove (viii).

To show (ix). From (viii), we obtain

„ _ mP _   2[p-l-ptp] _ [B(tp)]p
BÁ  -(p-\)(\-tP?Htp)     ltp]+(p-l)(l-tp)2[A(tp)]p-i

-(^olr-t)2^^-1'^1"^
[p - 2 - (p - l)tp]{[p - l-ptp]E(tp) - tpD(tp)}

(p-\)(\-tp)2

(3.9H3.11)
[P - 1 - PtP][p - (P - l)tP]E(tp) _    [p-l-ptp]

(p-\)(\-tp)2 (p _!)(!_,p)2   W

+ [p-l-ptP]

[P - 1 -PtP][P -(P- \)tP]E(tp)     [p - 1 -ptp]tpE(tp)

(p-l)(\-tp)2 (p_l)(l_ip)2

p[(p - 1) - ptp]E(tp)

(p-l)(l-tp)

To show (x). It is enough to show that

co-BX"

>0.

1-/?A
= p[sgn(ß)\ß\p-' + kp(\ - ß)p-x]Xp~x.

Now,

= p^E(tp)-[(p-2)-(p~\)tp]

D(tp)[(p-2)-(p-l)tpn
(p-l)(\-tP)2        J

^p^-l\-Ptp]E(tP)=LHS     so(x)is verified.
(p-\)(\-tp)2
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Now,

B = \ß\p - kp(l - ß)p

= ß{sgn(ß)\ß\p~x +kp(\- ß)p~x} -kp(\- ß)p~x.

Therefore, by (x), we have,

B ßX
p(l-ßX)

co

Jp~
B] - kp(l - ß)p-x

Multiplying throughout by p and rearranging terms, we obtain (xi). Instead of

verifying (xii), we will show that

pBXp
2ßX

1-ßX

which is equivalent to (xii). Now,

BXP = [BXP - co] + co

(P-2) [co-BXp],

-p[(p - I) -ptp]E(tp)     2[(p - I) -ptp]E(tp)

(p-m-tp)
P[(P - 1) - Ptp]E(tp)

(p-\)(\-tp)   \p(\-tp)

(p-\)(\-tp)2
by (ix)

P[(P - 1) - Ptp]E(tp)

(p-m-tP) W-tp)   v   p)\
Since ßX = tp and by (ix), so

BXp [-1U(i
2ßX

ßX) Ï))[co - BXp],

this implies (xii). Rewriting (vii) and (xii), they become

XA

X — a

X        p~X^*~2 co   and
1BXp

1-ßX      [1-ßX     2\
co.

Therefore,
XA BXp

+
X- a      1 - pX

which is equivalent to (xiii).

A 1
+

A - a     1 - ßX
co

L.H.S. of (xiv)
2ßX

1-ßX

+ (P-1

co

Yp
B Xp-[-(p-2)

ßX

co

ff
B a"

-i

{-r^}[g-

1-ßX

xp-x

co -B Xp-X   by (xii)

D(tp)
by (ix) and (3.21).

(p-\)(\-tp)2

By(iv), (3.19) and (3.21), R.H.S. of (xiv) =pD(tp)/(p- 1)(1 -tp)2, so we have
proved (xiv).
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It remains to show (xv). It is enough to verify kp((\ - ß)/\ß\)p~2 > 1 . Now,

by (viii), (3.20), (3.12) and (3.11), we have

/l-/?y-' _        lp-2-(p-l)tp][D(tp)]2 _

"\  \ß\  ) \tp\p-2(p-l)(l-tp)2B(tp)     l-

Therefore, it suffices to show that

(5.6) [(p -2)-(p- l)tp][D(tp)]2 -(p- 1)(1 - tp)2\tpr2B(tp) > 0.

Using (3.10'), we can rewrite the

L.H.S. = {[(p -2)-(p- \)tp]D(tp) + (p- 1)(1 - tpfsgn(tp)\tp\p-x}D(tp)

-(p-\)(\- tp)2\tp\p-2[(p - \)-ptp]E(tp).

We simplify the expression inside { } :

Up -2)-(p- \)tp)D(tp) + (p- 1)(1 - tp)2[E(tp) -(p-2) + (p- \)tp]

= [(P -2)-(p- l)tp]{D(tp) - (p - 1)(1 - tp)2} + (p - 1)(1 - tp)2E(tp)

= [(p-l)-ptp]E(tp)   by (3.9).

So,

L.H.S. = [(p - 1) -ptp]E(tp)D(tp) - (p - 1)(1 - tp)2\tp\p-2[(p - \)-ptp]E(tp)

= [(P - \)-ptp]E(tp){D(tp) - (p - 1)(1 - tp)2\tp\p-2}

> [(p - l)-ptp]E(tp)(p - 1)(1 - tp)2(\ - \tp\p~2)   by (3.9)

>0.

So (xv) is established and this concludes the proof of Lemma 5.1.   D

Proof of Lemma 3.2. Define

0.1 = {(x, y) £R2 : y > 0, y < ax},

&2 - {(x, y) £ R2 : y > 0, ax < y < Ax},

Q3 = {(x, y) £ R2 : y > 0, ßy < x < X~xy},

Ci4 = {(x,y)£R2:y>0,x<ßy}.

Let u(x, y) be the continuous function from R2 to R satisfying u(x, y) =

u(-x, -y), and

'v(x,y), (x,y)£ÍliUÍl4,

u(x,y) = \ Axp + ^(co-A)xp~x, (x,y)eQ2,

ByP + ä^M[^-B]yp-x,       (x,y)efi3.

The bounds on u, ux and uy , and u(0, 0) = 0 can be verified readily.

Step 1. To show that u is concave in y on \J4i=l Q,-. On Qi UÍ24 , uyy(x, y) =

-p(p - i)kp\x - y\p~2 < 0, therefore u is concave in y. On Q2, uyy = 0,

hence u is concave in y . On Q3,

uyy(x, y) = pip - l)Byp-2 - fcif [£ - B] yp~2
ßX
By

1-ßX
+ ̂ 1)(p-2)fcÄ)^_s)^.
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Now,

uyy ((^)-,y)=(p-l)S[pB + (p- 2) [g - B

= 0   by Lemma 5.1 (xii).

2ßX

1-ßX

co

ÏP~
B oP~2

So,

uyy(x, y) = uyy(x, y) - uyy ((y) - » y)
A>

(p- \)(p - 2)(Xx - y) ¡co
B „P-i

1 - ßX lXp

< 0   by Lemma 5.1(ix) and that y > Ax on Q3

Step 2. To show that u is concave in x on |J/=i Q< • On Qi ,

uxx(x, y) =p(p - \)[xp~2 - kp(x-y)p~2]

< p(p - \)[l - kp(l - a)p-2]xp-2 < 0

by Lemma 5.1 (iii).

On Q4, uxx(x, y) = p(p - l)[|xr2 -kp(y- x)p~2]

<p(p-l)[\ßr2-kp(l-ß)p-2]yp-2

< 0   by Lemma 5.1(xv).

On fi2, uxx(x, y) = p(p - \)Axp~2 - 2{P ~ ]Mœ " A)x»~2
X — a

+ (p-l)(p-2)^-^(co-A)xp-3.
X — a

Since

uxx(x, Xx-) = (p- \)\pA + (p-2)(co-A)-
2a(co

^}
xp = 0,

so

uxx(x, y) = uxx(x, y) - uxx(x, Ax-)

(p-\)(p-2)(co-A)

A - a
(y-Ax)xp"3<0,

by Lemma 5.1 (iv) and the fact that y < Xx on Cl2. The function, u, is affine

in x on Q3, so u is concave in x on U^=1 ̂ ; •

Step 3. To show that the first derivatives match up at the boundaries of the

regions. At y = ax, we have

ux(x, ax+) =
a

pA---(co-A)
X — a

rp-i

= p[\ -kp(\ -a)"-1]^-1 =ux(x,ax-)

from Lemma 5.1(vi). Also, we have

co - A
uy(x, ax+) rP-¡

X — a

pkp(\ - a)p~xxp~x = uy(x, ax-)   by Lemma 5.1(v).
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At y = Xx,

ux(x, Xx+) =
p-\co-BX"

1-ßX

a(co - A)
pA - —,-— + (p-l)(co- A)

X — a
fp-\ — ux(x, Ax-)

from Lemma 5.1(xiii); and

uy(x,Xx+) = <pBXp-x +07-1)
Tp~B

xp- ßX
1-ßX lXp

Xp-X\xp-X

co- A ■p-i -
-   Uy\X ,   AX — J

from Lemma 5.1 (xiv). At x = ßy , we get

ux(ßy-, y) = p[sgn(ß)\ß\p~x +kp(\- ß)p~x]yp-x

CO

Jp
-B

1-ßX

from Lemma 5.1(x); and

uy(ßy-,y)= -pkp(\-ß)p-xyp-x

ßX

yp-[ = ux(ßy+,y)

= \pB Xp
yp~x = uy(ßy+,y)

1-ßX

from Lemma 5.1(xi).

Step 4. To show that A < 1. Since

1 - A = {D(tp) - \p - 1 - ptp]E(tp)}/D(tp)

= (\-tp)2\a(tp)-^^ID(tp),

it is enough to show that a(tp) - E(tp)/(l - tp) > 0. From Step 1 of the proof

of Lemma 3.1, we see that a(t) and E(t)/(l-t) are increasing and decreasing

functions respectively. Therefore, y/(t) = a(t) - E(t)/(l - t) is an increasing

function. For p0 < P <3, ^(0) = a(0) - E(0) = A(0) - E(0) = (3-p)(p-\) >
0, therefore i//(tp) > 0 ; for 3 < p < oo,

ip-i
<0\j-4)

and

W

p-\

P-2

Pjll
p-\

1
p-\

>0.

Therefore, there exists a unique sp £ Ip such that <j/(sp) = 0 and y/(t) > 0 on

(Sp, (P - 2)/p). So, y/(tp) > 0 follows if we can prove that sp < tp . This can

be reduced to proving

(5.7) [p - 2 - (p - l)sp] - (b(Sp)/a(Sp))p-x < 0.

As y/(Sp) = 0, it implies (1 - sp)a(sp) = E(sp). Using this and (5.2), we get

b(Sp)/a(sp) = p - 1 - psp > 1 . Therefore,

b(sp)

a(sp)

p-\
>

b(sp)

a(sp)
p-l-pSp>(p-2)-(p-l)sp.
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So, (5.7) follows and this finishes Step 4.

Step 5. To verify that u(x, y) > v(x, y) on R2. By homogeneity and sym-

metry, it suffices to show that (i) u(l, y) > v(l, y) for y £ (a, X) ; and (ii)

u(x, 1) > v(x, 1) for x £ (ß, A-1).

Case (i). We observe that the graph of u(\, y) for a < y < X is part of the

line tangent to the graph of the concave function v(l, y) at y = a. Therefore,

u(\, y) > v(\, y) for a < y < X.

Case (ii). Observe that again the graph of u(x, 1) is tangent to the graph of
the function v(x, 1) at the point x = ß . Since u(l, X) > v(l, X) from case

(i), u(X~x, 1) > v(X~x, 1) by homogeneity. Let m be the slope of the line

defined by u(x, 1) on (ß, A"1), i.e., m = (A/(l - ßX))[co/Xp - B]. Consider
the function V(x) = v(x, 1). We have,

V'(x)=p{sgn(x)\x\p-X - sgn(x - l)|x - l^1}

and

V"(x) = p(p - l){\x\p~2 - kp\x - \\p~2}.

There exist £i, £2 such that 0 < ft < 1 < & and K"({/) = 0, i = 1,2.
Furthermore, V is concave on each of the connected components of R\[£i, £2] ;

and V is convex on (£i, ¿;2). If t\2 > A-1. The affinity of u(x, 1), the

concave-convex situations as described above, the fact that u(x, 1) is tangent

to V(x) at x = ß and u(x, 1) > v(x, 1) at x = ß and x = A-1 imply that

u(x, 1) >v(x, 1) on (ß,X~x). If 6 <A-'. Now kp(Ç2 - l)"'2 = ÇP~2 and

it follows that K'fo) = K2-2 < />A-("-2). Consider,

m->r<f-2, = ï^[£-^]-<'<r(,'-2,

prp[p-i-p?p][£(fp)]2   fg_n

(p-iXi-f,)*/^)

from Lemma 5.1(ix), (3.21) and (3.9). Therefore, m > pX^p-2'> > F'(&).
Since w(x, 1) > u(x, 1) at x = /?, x = £2 and x = A-1, it follows that

u(x, 1) > v(x, 1) on (ß, X~x). This completes the proof of Case (ii) and

hence the proof of Lemma 3.2.   D
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