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THE DEFEKTSATZ FOR CENTRAL SIMPLE ALGEBRAS

JOACHIM GRATER

Abstract. Let Q be a central simple algebra finite-dimensional over its center

F and let V be a valuation ring of F . Then V has an extension to Q,

i.e., there exists a Dubrovin valuation ring B of Q satisfying V = F ("1 B .

Generally, the number of extensions of V to Q is not finite and therefore

the so-called intersection property of Dubrovin valuation rings Bx, ... , B„

is introduced. This property is defined in terms of the prime ideals and the

valuation overlings of the intersection Bx n • • • n B„ . It is shown that there

exists a uniquely determined natural number n depending only on V and

having the following property: If B\, ... , Bk are extensions of V having the

intersection property then k < n and k = n holds if and only if Bx n • • • n Bk

is integral over V . Let n be the extension number of V to Q. There

exist extensions Bx, ... , B„ of V having the intersection property and if

Rx, ...■ , Rn are also extensions of V having the intersection property then

Bx n • • • n Bn and Rx n ■ • • n R„ are conjugate. The main result regarding

the extension number is the Defektsatz: [Q : F] = fB{Q/F)eß{Q/F)n2pd ,

where fa(Q/F) is the residue degree, eß(Q/F) the ramification index, n the

extension number, p = char(K/7(K)), and d a natural number.

1. INTRODUCTION

Valuation theory has a long tradition for commutative fields but a couple of

years ago only little was known about noncommutative valuation rings. Since

around 1980 valuation rings, especially of finite-dimensional division algebras,

have been investigated extensively and the results which have already been ob-

tained seem to signify a rich and promising theory.
A first systematic approach to a general noncommutative valuation theory

was attempted by Schilling in 1945. Since he was rather engaged in valuations

than valuation rings, his rings which arose from his valuations were necessarily
invariant (under all inner automorphisms of the division algebra). Although

they do not exist very often (indeed, there are finite-dimensional division alge-

bras which do not have any valuation) they turned out to be a useful tool in

studying division algebras and many authors could use them to get significant

information about finite-dimensional division algebras having special kinds of

valuations. A subring B of a division algebra D is called total valuation ring

if x £ B or x~x £ B holds for each nonzero x in D and with this nota-

tion Schilling's valuation rings are exactly the invariant total valuation rings
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(or invariant valuation rings for short). Originally, total valuation rings were

constructed for geometrical reasons but they also provide examples as well as
counterexamples in topological algebra and it should be emphasized that non-

invariant total valuation rings also exist in finite-dimensional division algebras.
From another point of view, the investigation of noncommutative valuation

rings can be understood as an investigation of extensions of given commutative

valuation rings and this seems to be the right standpoint, especially for finite-

dimensional division algebras, since their valuation rings are closely related to

their centers. Unfortunately, a general extension theorem does not exist and

valuation rings of the center are not necessarily extendible to the entire divi-

sion algebra. With a view to improving this situation Dubrovin introduced

in [Dl] a new type of valuation ring for division algebras as well as matrices

over division algebras (i.e. simple Artinian rings) and they have many proper-

ties which signify that Dubrovin valuation rings are the right object to study

in central simple algebras. For example, if Q denotes a central simple algebra

finite-dimensional over its center F then each valuation ring F of F can be

extended to a Dubrovin valuation ring of Q and all extensions are conjugate.

Furthermore, if V is discrete these extensions are exactly the maximal orders

over V. Finally, if Q is in addition a division algebra then all extensions are

total valuation rings if there is at least one total valuation ring of Q extending

V, i.e., general Dubrovin valuation rings appear if no total valuation rings are

available.
This paper deals with Dubrovin valuation rings of a central simple algebra

Q finite-dimensional over its center F. In [W2] Wadsworth investigates what

happens to a Dubrovin valuation ring B of Q with passage to the Henselization

of its center V = F n B and one of his results is the Ostrowski Theorem or

Defektsatz for Dubrovin valuation rings:

[Q ■ F] = fiB(Q/F)eB(Q/F)(nB/tB)2pd,

where fB(Q/F) is the residue degree, eB(Q/F) the ramification index, p =

char(V/J(V)), and d a nonnegative integer. Finally, nB/tB is a positive inte-

ger which appears by passing to the Henselization. If Q is a division algebra

and B a total valuation ring then nB/tB is equal to the number of all extensions

of V to Q but generally this number is infinite and so nB/tB cannot have this

meaning. The purpose of this paper is to state a new Defektsatz where nB/tB

is replaced by a number n which indicates the relation between the extensions

of V. In §6 we define the intersection property of Dubrovin valuation rings

Bi, ... , B„ of Q and roughly speaking Bx, ... , Bn have this property if each

prime ideal P of R belongs to a Dubrovin valuation ring B of Q containing

R such that J(B) C\R = P where R denotes the intersection of Bi, ... , Bn .

It is proved that B can be obtained by localization at P (i.e., B = RP) and

this localization induces a bijection between the prime ideals of R and the

valuation overlings of R. For example, total valuation rings always have the

intersection property. With regard to the extensions of V the following state-

ments are proved: First of all, there exist Dubrovin valuation rings Bx, ... , Bk

of Q extending V such that Bx, ... , Bk have the intersection property. If

Bx, ... , Bk are given this way we can find Bk+X, ... ,Bn such that Bx, ... ,Bn

still have the intersection property and R = Bx n • • • n B„ is integral over V.

This number n is uniquely determined, i.e., if B[, ... , B'm are also extensions
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of V having the intersection property such that R' = B[ n • • • n B'm is integral

over V then n = m. Furthermore, R and R' are conjugate. Now, we call n

the extension number of V to Q and we prove:

[Q:F] = fB(Q/F)eB(Q/F)n2pd.

If Q is a division algebra and B a total valuation ring then n is exactly the

number of all extensions of V to Q.

The investigations in this paper require two theorems which have been proved

in [W2]. The first theorem describes the center of the residue ring of a Dubrovin

valuation ring and the other states that two extensions of a central valuation ring
are conjugate. Both proofs use Henselization techniques and they are involved

in the large network of proofs given in [W2]. Therefore, in §§3 and 4 we give new

direct proofs of these results without using Henselizations and also the other

theorems are proved independently from [W2]. The proofs given in this paper

explain how Dubrovin valuation rings are built of total valuation rings, matrix

rings, maximal valuation rings as well as Azumaya algebras over valuation rings

and they also show how to use commutative valuation theory after passing to

the residue ring. These results are a further step forward making the structure

of Dubrovin valuation rings more understandable.

The author wishes to thank the referee and A. R. Wadsworth for their sug-

gestions which improved the exposition and readability of this paper.

2. Preliminaries

In this section we give all information about total valuation rings as well

as Dubrovin valuation rings which are needed in this paper and we restrict

ourselves to the case where Q is a central simple algebra finite-dimensional

over its center F . First of all a few words on notation. If R is any ring then
we write Z(R) for the center of R, J(R) for the Jacobson radical of R, and

Mk(R) for the k x /c-matrix ring of R.

Definition. A subring B of Q is called Dubrovin valuation ring of Q if there

exists an ideal M of B such that the following hold.
(i) B/M is simple Artinian.

(ii) For each a in Q\B there exist b, b' in B with ab, b'a in B\M.

It turns out that M is the only maximal ideal of B and therefore M is

actually the Jacobson radical J(B) of B. Furthermore, V = F n B is a

valuation ring of F and V is the center of B. If Q is a division algebra then

each total valuation ring of Q is a Dubrovin valuation ring.

Theorem 2.1. Let V be a valuation ring of F. There exists a Dubrovin valuation

ring B of Q extending V, i.e., V = F nB.

Proof. Cf. [D2, §3, Theorem 2] or [BG2, Theorem 3.8].

The following list is a collection of essential properties of Dubrovin valuation

rings which have been proved by Dubrovin in [D1, D2] and which are used in

this paper.

Let B be a Dubrovin valuation ring of Q with center V = F n B, then

(Dl) The two-sided ideals of B are totally ordered by inclusion where a

two-sided ideal is a ß-bimodule of Q.
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(D2) Each finitely generated left (resp. right) ideal of B is principal.

(D3) Each overling B' of B in Q is a Dubrovin valuation ring of Q and

J(B') is a prime ideal of B. Furthermore, the overlings of B in Q

are totally ordered by inclusion.

(D4) If F is a prime ideal of B then the classical localization Bp can be

formed and Bp is a Dubrovin valuation ring of Q with J(BP) = P.

(D5) If F is a prime ideal of B and P' = P n F then BP = BP,, where

BP, = B(V\P)~X .
(D6) BilF = B'r\F implies B = B' for each overling B' of B in Q.
(D7) Mk(B) is a Dubrovin valuation ring of Mk(Q) and if 5' is a Dubrovin

valuation ring of Mk(Q) then xß'x-1 = Mk(B") for some Dubrovin
valuation ring B" of Q and some regular x in Mk(Q).

The residue ring. B/J(B) is called residue ring of 5 and B/J(B) is a cen-

tral simple algebra finite-dimensional over its center. V/J(V) can be compre-

hended as a subfield of the center of the residue ring B/J(B) and

fB(Q/F) = [B/J(B) : V/J(V)]

is called residue degree where fB(Q/F) < [Q : F] can be proved like the

commutative case. If B' is a Dubrovin valuation ring of Q containing B

then B/J(B') is a Dubrovin valuation ring of B'/J(B') and B/J(B') is an
extension of V/J(W) where W = FnB'.

The value group. The set of all two-sided ideals of B is an ordered monoid

with respect to the usual multiplication and the inclusion and B is the unit

element. A two-sided ideal / is called invertible if IJ = JI = B for some

two-sided ideal J of B and in this situation / is denoted by I~x since J is

uniquely determined. The set YB of all invertible two-sided ideals is an ordered

group and is called value group of ß, YB = YB u {0}. It is easily checked

that a two-sided ideal / is invertible if and only if there exists a regular q

in Q such that I = qB = Bq. This shows that our definition is equivalent

to Wadsworth's given in [W2] but it is different from the definition given in

[Ma] (cf., [G3, 3.4. Theorem]). Let Yv be the value group of V = F n B.
Then Yv can be identified with its image in TB under the canonical inclusion,

i.e., Ty is a subgroup of the ordered group YB and eB(Q/F) = [YB : Yv] is

called ramification index. Like the commutative case, eB(Q/F) is finite since

zb(Q/F) < [Q : F] and therefore YB/YV is abelian.
With respect to the overrings there are two types of Dubrovin valuation rings.

B belongs to the first type if there exists a maximal Dubrovin valuation ring

B' of Q containing B, i.e. B' ¿ Q and Q is the only overling of B' in Q.

Then V = F n B' is a maximal valuation ring of F and Yv> as well as YBi

are archimedean ordered groups. B belongs to the other type, i.e., B has no

maximal overling in Q, if and only if V = Z(B) has no maximal overling in

F.

Theorem 2.2. Let B be a Dubrovin valuation ring of Q having no maximal

overringin Q and let {ax, ... , an} bean F-basis of Q. There exists a Dubrovin

valuation ring B' of Q, B' ^ Q, containing B with center V = F OB' such

that following hold.
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(i) B' = axV' + --- + anV.
(ii) J(B') = axJ(V') + --- + a„J(V'),i.e., J(B') = J(V')B'.
(iii) fB.(Q/F) = n.
(iv) V'/J(V) is the center of B'/J(B').
(v) B' is an Azumaya algebra over V .

Theorem 2.2 can be obtained by a result of Azumaya (cf. [A, Theorem 12]).

We now turn to the case of total valuation rings, and a Dubrovin valuation

ring B is total (and Q is a division algebra) if and only if J(B) is a completely

prime ideal of B . Let B be a total valuation ring of Q with center V = Fr~)B.

Then B is integral over V if and only if B is invariant, i.e., B = qBq~x for
all nonzero q in Q.

Theorem 2.3. Let B be an invariant valuation ring of Q with center V. Then

Z(B/J(B)) is a normal extension of V/J(V) andeach (V / J(V))-automorphism

of Z(B/J(B)) is induced by an inner automorphism of Q.

Proof. Cf. [JW, Proposition 1.7].

If B is a total valuation ring which is not invariant then the following theo-

rem is very useful.

Theorem 2.4. Let B be a total valuation ring which is not invariant and let

V = FnB.
(i) There exists an invariant overring B' of B in Q.

(ii) If B'  is the minimal invariant overring of B and V = F C\ B'  then

Z(B'/J(B'))¿ V'/J(V).
(iii) All extensions of V to Q are conjugate.

Proof. Cf. [BG1, Lemma 5, Theorem 2 and BG2, Theorem 4.3].

3. All extensions are conjugate

In this section Q denotes a central simple algebra finite-dimensional over its
center F having a Dubrovin valuation ring B with center V = B n F .

Proposition 3.1. Let {ax, ... , a„} be an F-basis of Q such that B = axV +

-Y a„V. If B' is a Dubrovin valuation ring of Q extending V, then B and
B' are conjugate, i.e., B = qB'q~x for some regular q in Q.

Proof. There exists some q in Q such that axB' + ■ ■ ■ + anB' = qB'.  Since

the identity 1 is in B ç axB' -\-+ a„B' = qB', we have that q is regular. It

remains to prove B = qB'q~x . Let bx, ... , b„ be in B' satisfying axbxq~x +

-h a„b„q~x = 1. Since a,a7 is in B = axV -\-h a„V ç axB' H-1- anB',

we obtain that aia¡bjq~x is in (axB' H-h a„B')q~x = qB'q~x for all 1 < i,

j < n. Therefore, a, = a¿axbxq~x + ■■■ + aia„b„q~x is in qB'q~x for all

I < i < n and B ç qB'q~x is shown. Finally, B n F = qB'q~x n F implies
B = qB'q~x.   Q.E.D.

Proposition 3.2. Let Q be a division algebra and let B' be a Dubrovin valuation

ring of Q extending V. If P (resp. P') denotes the maximal completely prime

ideal of B (resp. B') then P n F = P' n F and qPq~x = P' for some nonzero

q in Q.
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Proof. Without restrictions we can assume P' n F ç P n F. There exists a

prime ideal P" of B' containing P' such that P" n F = P 0 F. Since P
is completely prime, BP is a total valuation ring of Q. Let B" D B' be the
Dubrovin valuation ring of Q such that J(B") = P" , i.e., B"nF = BPf)F. By
[BG2, Theorem 4.3], B" is total and we obtain that P" is completely prime.
Thus P' = P" and P'nF = P(~)F is shown. Finally, qBPq~x = B" by [BG1,
Theorem 2] and therefore qPq~x = P'.   Q.E.D.

Now, we can give a new proof of

Theorem 3.3. Let V be a valuation ring of F. If B and B' are two Dubrovin

valuation rings of Q extending V, then B and B' are conjugate, i.e., B =

qB'q~x for some regular q in Q.

Proof. We prove the theorem by induction on n = [Q : F]. Let n > 1.

Case 1. Q = M)(D) where D is a finite-dimensional division algebra with

center F and / > 1. Then, there exist Dubrovin valuation rings R, R' of

D and regular r, s in Q such that rBr~x = M¡(R), sB's~x = M¡(R'), and

RDF = R' n F . By induction hypothesis, R and R' are conjugate in D.

Case 2. Q is a division algebra and 0 is the only completely prime ideal of B.

By Proposition 3.2, 0 is the only completely prime ideal of B'.

Case 2.1. There exists a maximal Dubrovin valuation ring R of Q containing

B. Then, there exists a maximal Dubrovin valuation ring R' of Q containing

B'. By [BG2, Theorem 5.4], R and R' are conjugate. Thus, we can assume

R = R'. Define W = RnF and B/J(R), B'/J(R) are two Dubrovin valuation

rings of R/J(R) such that (B/J(R)) n (W/J(W)) = (B'/J(R)) n (W/J(W)).
By [BG2, Theorem 5.3] we can even assume that (B/J(R)) n Z(R/J(R)) =
(B'/J(R))nZ(R/J(R)). Since J(R) is not completely prime, B/J(R) and
B'/J(R) are conjugate by Case 1.

Case 2.2. There is no maximal Dubrovin valuation ring of Q containing B or

B'. Then, there exists a valuation ring W of F , W ^ F, containing V and

an F-basis {ax, ... , an} of Q such that R = axW-\-YanW is a Dubrovin

valuation ring of Q extending W and containing B. By Proposition 3.1, we

assume that R also contains B'. Similar to Case 2.1 we prove that B and B'

are conjugate.

Case 3. Q is a division algebra and the maximal completely prime ideal P

(resp. P') of B (resp. B') is nonzero. By Proposition 3.2 we can assume

P = P', and BP is a total valuation ring of Q containing B and B'. Let R be

the minimal invariant valuation ring of Q containing BP . Define W = RnF .

Thus, B/J(R) and B'/J(R) are two Dubrovin valuation rings of R/J(R)

such that (B/J(R)) n (W7./(H/)) = (B'/J(R)) f) (W/J(R)). If IF/7(H/) =
Z(R/J(R)) then ß/> is invariant by [BG1, Lemma 5], i.e., R = BP. There-

fore, (B/J(R))nZ(R/J(R)) = (B'/J(R))<1Z(R/J(R)), and B/J(R), B'/J(R)
are conjugate by Case 2. If fF/7(IF) ^ Z(R/J(R)) then we can assume

(B/J(R))f)Z(R/J(R)) = (B'/J(R))nZ(R/J(R)) by Theorem 2.3 and B/J(R),
B'/J(R) are conjugate by induction hypothesis.   Q.E.D.
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4. The residue ring and its center

In this section we give a new proof of

Theorem 4.1. Let Q be a central simple algebra finite-dimensional over its center

F and let B be a Dubrovin valuation ring of Q with center V = B n F.

(i) Z(B/J(B)) is a normal extension of V/J(V).
(ii) Each V/3(V)-automorphism of Z(B/J(B)) is induced by an inner auto-

morphism iq of Q such that iq(B) = qBq~x = B.

Before proving Theorem 4.1 we need two well-known results.

Proposition 4.2. Let F ç K ç L be commutative fields such that K is a finite

normal extension of F and L is a finite normal extension of K. Then L is

a finite normal extension of F if each o £ Gal(K/F) has an extension a' £

Gal(L/F), i.e., o'\K = o, and in this case Gal(L/F) = {a'x\o £ Gal(K/F)

and T£Gal(L/K)\.

Proposition 4.3. Let F ç K be commutative fields such that K is a normal

extension of F and let B be a valuation ring of K extending V = B n F.
Then, B/J(B) is a normal extension of V/J(V) and each

ä£Gal((B/J(B))/(V/J(V)))

is induced by some a £ Gal(K/F) such that a(B) = B.

The proof of Proposition 4.2 is straightforward and Proposition 4.3 is proved

in [E, Theorem 14.5, Theorem 19.6].
Now, we turn to the

Proof (of Theorem 4.1). We prove this theorem by induction on n = [Q : F].

Let n > 1. We show that three cases can happen where in each case a Dubrovin

valuation ring B' D B of Q with center V = B' n F occurs having one of the

following properties:

(I) The theorem holds for B' and Z(B'/J(B')) ¿ V'/J(V).
(II) J(B') is not completely prime and Z(B'/J(B')) = V'/J(V).

Case 1.   Q is not a division algebra. Define B' = Q and B' has property (II).

Case 2. Q is a division algebra and 0 is the maximal completely prime ideal

of B. If there is no maximal Dubrovin valuation ring of Q containing B,

there exists B' with property (II) by Theorem 2.2. Now, let B' be a maximal

Dubrovin valuation ring of Q containing B. If Z(B'/J(B')) ¿ V'/J(V) then

B' has property (I) by [BG2, Proposition 5.3]. Otherwise, B' has property (II).

Case 3. Q is a division algebra and there exists a completely prime ideal P

of B, P ¿ 0. Let F be maximal and choose B' = BP, i.e., J(B') = P.

If Z(B'/J(B')) = V'/J(V) the theorem holds by Case 2. Otherwise, B' has
property (II) by [G4, Theorem 3.4].

It remains to show that Theorem 4.1 holds if B' occurs satisfying (I) or

(II). If B' has property (II) we can assume that B'/J(B') = M¡(D), / > 1,
and B/J(B') = M¡(R) where R is a Dubrovin valuation ring of the finite-

dimensional division algebra D with center F . The theorem follows by induc-

tion hypothesis. If B' satisfies property (I) then the theorem can be proved like

[G4, Theorem 3.4]: Let

Z = Z(B'/J(B')).
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By the induction hypothesis, Z(B/J(B'))/(J(B)/J(B')) is a normal extension

of (Zn(B/J(B')))/(Zn(J(B)/J(B'))) and each automorphism o of the cor-
responding Galois group is induced by an inner automorphism id of B'/J(B')

that maps B/J(B') onto B/J(B'). Thus a is induced by an inner automor-

phism id of Q which maps B onto B. With respect to Proposition 4.2 it

remains to show

(a) (Z n (B/J(B')))/(Z n (J(B)IJ(B'))) is a normal extension of

(V/J(V'))/(J(V)/J(V)),

(b) each a of the corresponding Galois group is induced by an inner auto-

morphism id of Q which maps B onto B.

Clearly, Proposition 4.3 and (I) imply (a). Let a be as in (b). By Proposition

4.3 and (I), a is induced by an inner automorphism id of Q that maps B'

onto B' such that Z n (B/J(B')) = Z n (dBd~x/J(B')). Finally, there exists a
unit q of B' suchthat qdB(qd)~x = B by Theorem 3.3. Since Z is the center

of B'/J(B') the inner automorphism iq induces in Z the identity. Thus, iqd

induces a in (Z n (B/J(B')))/(Z n (J(B)/J(B'))).   Q.E.D.

Corollary 4.4. Lei Ö be a central simple algebra finite-dimensional over its center

F and let B be a Dubrovin valuation ring of Q with center V = B n F.

(i) TTzere extós a surjective group homomorphism

eB : YB/YV - Gal(Z(5/7(ß))/(F/7(F))),

vv/zere 85 w induced by conjugation by regular elements q £ Q with
qBq~x =B.

(ii) Gal(Z(B/J(B))/(V/J(V))) is obelian.

Corollary 4.5. Let Q be a central simple algebra finite-dimensional over its center
F and let B be a Dubrovin valuation ring of Q with center V = B n F . For
each Dubrovin valuation ring B' of Q containing B :

(i) there is an exact sequence

0 - Yj/Yy -!U YB/YV -^ rV/rV< -*♦ C7/Gz — 0,

(ii) |rB./rvi • iiyryi = |ivrvi • [c : gz_]_, wa«* f' = b' n f, g =
Gal(Z(B'/J_(B'))l(V'IJ(V'))),_B = B/J(B'),V = V/J(V), and Gz =
{o £ G\ct(B n Z(B'/J(B'))) = B n Z(B'/J(B'))} is the decomposition group of

Z(B/J(B')) over V/J(V).

Proof, (ii) is a consequence of (i). Furthermore, y is induced by 9B* (cf.

Corollary 4.4) and the definitions of a, ß are obvious. The only nontrivial

statement in (ii) is im/? = kery. Clearly, qB' modYy lies in kery if qB =

Bq, i.e. im/J ç kery. Now, let qB' modYy be in kery, i.e. qB'q~x = B'
and

(qBq-x/J(B')) n Z(B'/J(B')) = (B/J(B')) n Z(B'/J(B')).

By Theorem 3.3, there exists a unit b in 5' such that

B/J(B') = bqB(bq)-x/J(B'),

i.e., ß = bqB(bq)~x. Since <?i?' = e^ß' modYy , we get kery ç im/J.

Q.E.D.
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Theorem 4.1, Corollary 4.4, and Corollary 4.5 are due to A. R. Wadsworth,

whose original proofs were given in [W2, Theorem B, Corollary B, Theorem E].

5. OVERRINGS OF DUBROVIN VALUATION RINGS

In this section Q denotes a central simple algebra finite-dimensional over its

center F . In [D2, §3, Proposition 2] it is shown that each maximal valuation

ring B of Q is integral over its center V = B n F . First of all, we give a new

proof of this theorem.

Lemma 5.1. Let B be a maximal Dubrovin valuation ring of Q with center

V = B n F and let {ax, ... , an} be an F-basis of Q. There exists a nonzero

x in B satisfying xB = Bx ç axJ(V) -\-\- a„J(V).

Proof. Let v : Q —> Yv, q —> BqB be the norm belonging to B which was

introduced in [BG2, §5] and let Us = e be the e-neighborhood for each e in

rY . In [BG2, §5] it is shown that v can be extended to a norm v in F ®P Q

where F denotes the completion of F with respect to v . The restriction of

v to F is a valuation of F and let V be the corresponding valuation ring

of F, i.e., V n F = V. We can identify Q resp. F with their images in

F ®F Q under the canonical inclusion. Thus, {ai, ... , a„} is an F-basis of

FQ = F ®F Q. By a well-known theorem (cf., [C, §9.2, Proposition 5]), the

topology of FQ which is induced by v is also induced by the cubical norm |

with respect to {ai, ... , an}, i.e., \axkx -i-\-a„kn\ = max{v(A:i), ... , v(kn)}

for all ki, ... , kn in F . Therefore, UE ç axJ(V) -\-h anJ(V) for some e

in Yv ■ Since {ax, ... , a„} is a basis, Ue ç Q implies Ue ç axJ(V) + ■■■ +

a„J(V).   Q.E.D.

The next lemma can be proved like [Bo, Chapter V, §1.1, Theorem 1].

Lemma 5.2. Let B be a Dubrovin valuation ring of Q with center V = B n F

and let {ax, ... , a„} ç B be an F-basis of Q. For each q in Q satisfying
qB ç aiJ(V) -\-h a„J(V) there exist ko, ... , k„_x in J(V) such that qn +
kn-Xqn~x +--- + kxq + ko = Q.

Proof. For all i = I, ... , n there exist kn,... , k¡n in J(V) such that qa¡ =

kiXax H-Vkinan.

If of is the determinant of the nx «-matrix (kjj-qo¡j) over the commutative

ring V[q], then we obtain da¡ = 0 for all i = I, ... , n . Thus,

d(axF + ■ ■ ■ + anF) = dQ = 0

is shown, i.e., d = 0, and q is a root of the polynomial det(A:i; - xo¡j) with

coefficients in V. Up to the sign, this polynomial has the required proper-

ties.   Q.E.D.

Corollary 5.3. Let B ^ Q be a Dubrovin valuation ring of Q with center V =

B n F. There exists a Dubrovin valuation ring B' ^ Q of Q with center V =

B' n F containing B such that

(i) B' is integral over V,

(ii) for all q in J(B') there exist ko,...,kn-X in J(V') suchthat q" +
kn-Xq"-x +--- + kxq + ko = 0.
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Proof. Clearly, (ii) implies (i) since B'/J(B') is algebraic over V'/J(V).
Now, if there is no maximal Dubrovin valuation ring of Q containing B,

then choose B' as in Theorem 2.2, and (ii) follows by 5.2. Otherwise, choose

B' maximal and let x # 0 be in B' such that xB' = B'x ç axJ(V) + ■■■ +

a„J(V) ç J(B'). Since qm lies in xB' for some positive integer m, i.e.

qmB' CaxJ(V') + --- + a„J(V), (ii) follows by 5.2.   Q.E.D.

Theorem 5.4. Let Q be a central simple algebra finite-dimensional over its center

F and let B be a Dubrovin valuation ring of Q with center V = Br\F. Then,

the following statements are equivalent:

(i) B is integral over V.

(ii) For each q in J(B) there exist ao, ... , a„-X in J(V) such that qn +
an-Xqn~x H-1- axq + a0 = 0.

Proof,   (ii) =$■ (i). This is obvious since B/J(B) is algebraic over V/J(V).

(i) => (ii). B/J(V)B is finite-dimensional over V/J(V). Thus, B/J(V)B
is Artinian and J(B)/J(V)B is nilpotent; hence J(B)n C J(V)B, for some

positive integer n. Let q be in J(B). Then q" = cb with c £ J(V) and

b £ B . As B is integral over V there exists a monic f(x) in V[x] satisfying

f(b) = 0. Let k = deg(f(x)). Then ckf(x/c) = xk + fk_xxk~x + ■ ■ ■ + fix + fo

with fo, ... , fk-i £ J(V) and ckf(q"/c) = 0. Thus q" , and hence q, is
integral over 7(F).   Q.E.D.

Corollary 5.5. Let B ç B' be two Dubrovin valuation rings of Q with centers

V = B n F resp. V = B' n F. If B' is integral over V and B/J(B') integral
over V/J(V) then B is integral over V.

Corollary 5.6. Let B be a Dubrovin valuation ring of Q with center V = BnF

such that B is not integral over V. Then there exists a Dubrovin valuation ring

B' of Q with center V = B' n F containing B minimal with the property that
B' is integral over V, and the following hold:

(i) Z(B'/J(B'))ÍV'/J(V).
(ii) V/J(V) has at least two extensions to Z(B'/J(B')).

6. Dubrovin valuation rings with intersection property

In this section we investigate the intersection of a finite number of Dubrovin

valuation rings Bx, ... , B„ of Q where Q denotes a central simple algebra
finite-dimensional over its center F. We start with the definition of the so-

called intersection property. If Q is a division algebra, then Bx, ... , Bn have

this property whenever Bx, ... , Bn are total (cf., [Gl, 3.4. Korollar]).

Definition. Let Bx, ... , Bn be Dubrovin valuation rings of Q, R = Bx n• • n5„

and let 38¡ be the set of all overlings of 5, in Q (i = I, ... , n). Then,
Bi, ... , B„ have the intersection property if

<3>:38xU---u38n^ SpecR

B ^ J(B) OR,

is a well-defined anti-order-isomorphism.

The property "<P is well-defined" signifies that J(B)nR is indeed a prime

ideal of R whereas "<P is an anti-order-isomorphism" ensures that B ç B' if

and only if J(B') nRC J(B) nR.
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Proposition 6.1. Let Bx, ... , Bn be Dubrovin valuation rings of Q and let R

be their intersection, S = R n F.

(i) If T c S, 0 ^ T, is multiplicative closed then BXT~X, ... , BnT~x have
the intersection property if Bx, ... , Bn have the intersection property.

(ii) Bi, ... , B„ have the intersection property if (BX)M, ... , (B„)m have the

intersection property for all maximal ideals M of S where

(Bi)M = (B,)(S\M)-X   fioralli=l,...,n.

Proof. We prove (i); (ii) follows similarly. RT~~X is the intersection of all

BXT~X, ... , BnT~x . The main argument we need is the following statement

which can be proved exactly as in the commutative case: (I C\R)T~X = I for

each ideal / of RT~X, and / is prime in RT~X if and only if I r\R is prime
in R.

Now, let B be a Dubrovin valuation ring of Q and let B¡T~X ç B for
some i. Then, J(B)nRT~x is prime in RT~X since (J(B) nRT~x) n R is

prime in R. If P is a prime ideal of RT~X then P n R is prime in R, i.e.,
P f)R = J(B)nR for some Dubrovin valuation ring B of Q containing at

least one B¡. Clearly, J(B)f)R does not meet T and we obtain (B¡)T~X ç

BT~X = B as well as P = (P n R)T~X = (J(B) n R)T~X = J(B) n RT~X.
Finally, BCB' if and only if J(B') nRÇ J(B) n R, i.e., B ç B' if and only
if J(B') n RT~X C J(B) n RT~X for all Dubrovin valuation rings B, B' of Q
containing some (B¡)T~X , i = 1, ... , n .   Q.E.D.

Corollary 6.2. Let Bx, ... , Bn be Dubrovin valuation rings of Q with centers

V,■ = B,n F, i = 1, ... , n . If Vx, ... , Vn are pairwise comaximal in F then

Bx, ... , B„ have the intersection property.

Proposition 6.3. Let B, Bx, ... , Bn be Dubrovin valuation rings of Q such that

Bx, ... , Bn c B. Then Bx, ... , B„ have the intersection property if and only

if BX/J(B), ... , Bn/J(B) have the intersection property.

Proposition 6.3 is a simple consequence of

Lemma 6.4. Let B,BX, ... ,Bn be Dubrovin valuation rings of Q such that
Bi, ... , B„ ç B and let R = Bx n ■ • • n B„ . If I is an ideal of R then J(B) C /
or I ç J(B). Furthermore, if in addition I is prime in R and I ç J(B) then

I is a prime ideal of B.

Proof. Let V = B n F, S = R n F and let / g J(B). We define J = I + J(B)
and VJ is an ideal of B containing J(B) properly since VR = B . Therefore,

VJ = B and there exist fx, ... , fk in V, jx, ... , jk in J such that fiji +
-1- fkjk = 1. Let a be in S\J(V) satisfying afi £ S, i = I, ... , k. We
obtain a = afxjx + ■■■ + afkjk £ J. Let c be in /, b in J(B) such that
a = c + b; thus c = b - a is a unit in B. This completes the proof since
J(B) = cJ(B)cl.

Now, let / ç J(B) and let / be prime in R. We show aBb <£ I for all
a, b in B\I. This statement is trivial if a, b are in R or if a, b are in

B\J(B). Thus, let a be in B\R and let b be in J(B). There exists k in
S\J(V) such that ak £ R\J(B). Since k~xb lies in J(B)\I we conclude
aRb = akRk~xb £ I because / is prime in R.

It remains to show that / is indeed an ideal of B. Let a be in B. If a lies

in R then ai, la CI is trivial. Otherwise, there exists k in S\J(V) suchthat
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ka is in R\J(B) and we are done if k~xI ç / is shown. Since k is in R\I,

we obtain that k~lx lies in / for all x in / because kBk~xx ç I.   Q.E.D.

Remark. The second half of Lemma 6.4 follows immediately by [AS, Theorem

2.5]: J(B) is a common ideal of R and B Q R). If I c J(B) is a prime
ideal of R then there exists a prime ideal P' of B such that P = P' r\R, i.e.,

F = P' since F' ç J(B) c F..

Lemma 6.5. Let Bx, ... , Bn be Dubrovin valuation rings of Q having the in-

tersection property such that V = BxnF=-=BnnF. If each B¡ is integral

over V then Bi =••■ = Bn.

Proof. Without loss of generality we an assume Bx, ... , Bn ^ Q. First of all

we prove that there exists a nonzero ideal I of Bx which lies in each J(B¡),

i = I, ... , n . By Theorem 3.3 there is a regular q in Q such that B2 = qBxq~x

and we can even suppose that q is in J(BX) n J(B2). Let I2 be a nonzero ideal

of Bx satisfying I2 ç qBx = J?2<7 (as q is regular, there exists a nonzero a

in qBx n V ; set I2 = aBx). It follows that I2 ç J(BX) n J(B2). Similarly,
a nonzero ideal 7, of Bx exists such that 7, ç J(BX) n J(B¡), i = 2, ... , n .

I = /2IT • -nl„ . Now, let I be maximal with this property, let P be the minimal

prime ideal of Bx containing I, and let B D Bx be the corresponding Dubrovin

valuation ring of Q, i.e., J(B) = P. We show PnR C J(B¡)nR, i = 1, ... , n .
Assume PnR<£ J(B¡) n R for at least one i. By Bx n F = ■ • • = Bn n F and
the intersection property, J(B¡) ni? is a maximal ideal of R. Let a be in

PnR but not in J(B¡) nR and we obtain RaR + J(B¡) nR = R. Thus, there
exists b in RaR ç PnR as well as c in J(B¡) n F such that b + c = 1, i.e.,

è = 1 - c. Since F is minimal relative to I ç P, there exists a positive integer

n satisfying b" £ I. But b" = (1 - c)n $. J(B¡) n i? is a contradiction and

PnRC J(B¡)nR is shown for all i = 1,...,«. By the intersection property,
this implies B¡ ç ß and F Ç 7(ß,) for all i = 1, ... , n, i.e., I = P. If
F n F = J(V) then F = J(BX) = ■■■ = J(B„) follows and we are done. Thus,
let F n F / /(F) and Bx/P, ... , Bn/P ¿ B/P are Dubrovin valuation rings

of B/P which are integral over (Bx/P) n Z(B/P) = ■ ■ ■ = (Bn/P) n Z(B/P).
Since Bx/P, ... , Bn/P have the intersection property there exists an ideal 7'

of ßi satisfying F c / ç /(i?i) n • • • n /(ß„) (consider the Dubrovin valuation

rings ßi/F, ... , B„/P in Ä/F). But this is a contradiction because P = I is
maximal with this property.   Q.E.D.

Corollary 6.6. Let Bx, ... , Bn be incomparable Dubrovin valuation rings of Q

having the intersection property such that V = F n Bx n • • • n Bn is a valuation

ring of F. If R¿ denotes the minimal Dubrovin valuation ring of Q containing

B¡ such that R¡ is integral over its center W¡ = R¡ n F   (i = I, ... , n) then

Rx = ■■ ■ = Rn .

Proof. Let n ^ 1 and let W be the minimal valuation ring of F containing V

such that each extension of W to Q is integral over W. Clearly, W ç W¡ for
all i = I, ... , n . Assume W ^ W¡ for at least one i and let W¡ be maximal

among Wx, ... ,Wn . Then R¡ = B¡ since F., is integral over W¡ and minimal

relative to B¡ ç R¡. Let F = J(W¡) and (BX)P n F = ••• = (Bn)P n F =
Wi. By Proposition 6.1, (BX)P, ... , (B„)P have the intersection property and

(Bi)p = • • • = (B„)p = Bi follows by Lemma 6.5. This leads to the contradiction
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Bi, ... ,BnCBi. Therefore, Wx = ■ ■ ■ = Wn and R¡ = (B¡)P, i= I, ... ,n.
Thus, Rx, ... , R„ have the intersection property and Rx = ■■■ = R„ follows

by Lemma 6.5.   Q.E.D.

Corollary 6.6 has a conclusion which is crucial for the proofs of the following

theorems. Let R be the intersection of Dubrovin valuation rings Bx, ... , B„

of Q having the intersection property and let V = Rn F be a valuation

ring of F. Without restriction we can assume that Bx, ... , Bn are pairwise

incomparable and two cases can be distinguished:

Case l. F is a Dubrovin valuation ring, i.e., n = 1.

Case 2. R is not a Dubrovin valuation ring, i.e., n ^ 1. Let B be the Dubrovin

valuation ring of Q containing Bx minimal relative to the property that B is
integral over its center W = B n F . By Corollary 6.6, Bx,... , Bn ç B and

Bx ± B. Thus, Z(B/J(B)) ± W/J(W) by Corollary 5.6. In many inductive
proofs this construction is the crucial point and we will call it the reduction step

since [B/J(B) : Z(B/J(B))] <[Q: F].

Corollary 6.7. Let Bx, B2 be two Dubrovin valuation rings of Q having the

intersection property. If Bx and B2 are comaximal then Bxn F and B2 D F
are comaximal in F.

Proof. Let F ^ 0 be a common prime ideal of Bx n F and B2 n F. Then
(BX)P, (B2)p ^ Q have the intersection property and (BX)P n F = (B2)p n F .

Thus, there exists a Dubrovin valuation ring B ^ Q of Q containing Bx and

B2 (see above).   Q.E.D.

Theorem 6.8. Let Bx, ... , B„ be Dubrovin valuation rings of Q.

(i) Let B, B' be Dubrovin valuation rings of Q such that B¡ ç B, Bj ç B'

for some i, j = 1, ... , n . If Bx, ... , B„ have the intersection property then B
and B' have the intersection property.

(ii) If Bi and Bj have the intersection property for all i, j = 1,... , n, then

Bx, ... , B„ have the intersection property.
(iii) Let B ç Bx be a Dubrovin valuation ring of Q and let Bx, B¡ be incom-

parable (i > 1). If Bx, ... , Bn have the intersection property then B, B2, ... ,

Bn have the intersection property.

Proof. We prove the theorem by induction on [Q : F]. Let [Q : F] > 1.

(i) Let S = F n B n B'. By Proposition 6.1 we have to show that BM
and (B')M have the intersection property for all maximal ideals ¥ of S. Let

F = M nFn(Bx n • • -nBn). Obviously, (BX)P, ... , (Bn)P have the intersection

property and Fn(Bx)Pn■■ -n(Bn)P = V is a valuation ring of F. Furthermore,

(Bi)p C BM and (B¡)P ç (B')m . By the reduction step for BM, (B')M and the

induction hypothesis, (i) is shown.

(ii) Let S = F n Bx n • • • n B„ and let M be a maximal ideal of S. Then,
(B¡)M and (Bf)m have the intersection property for all i, j = 1, ... , n, and

F n (Bx)m n • • • n (Bn)M = V is a valuation ring of F. We can assume that the
(Bí)m are incomparable (i = I, ... , n). If R¡ denotes the minimal overring
of (B¡)m integral over its center, then i?, = Rj for all i, j = I, ... , n, i.e.,
Ri = ■■■ = Rn. By the reduction step and the induction hypothesis, (ii) is

shown.
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(iii) By (ii) we have to show that B and B¡ have the intersection property.

We define Vx = F n Bx, V¡ = F n B¡, and V = F n B . Let F be the maximal
common prime ideal of Vx and V¡. If (BX)P =¡¿ (B¡)P , then (iii) follows by the
reduction step since F n (BX)P = F n (B¡)P is a valuation ring of F. Now,

let R = (BX)P = (B¡)p as well as W = R n F . Since Bx, B¡ are incompara-

ble, we conclude that Vi/J(W) and Vi/J(W) are comaximal. Thus V/J(W)

and Vi/J(W) are comaximal, and therefore Z(B/J(R)) and Z(B¡/J(R)) are

comaximal. (iii) follows by Corollary 6.2.   Q.E.D.

Especially, Theorem 6.8 shows that Bx, ... , B„ have the intersection prop-

erty if and only if B¡, Bj have the intersection property for all i, j = 1, ... , n .

Theorem 6.9. Let Bx, ... , Bn be Dubrovin valuation rings of Q having the

intersection property and let R be their intersection. If P is a prime ideal of R

and Wr(P) = {r £ R\r + P is regular in R/P} then the following hold.
(i) Each element of Wr(P) is regular in Q.

(ii) Wr(P) is a (left and right) Ore-set of R such that PR = RP and RP is
a Dubrovin valuation ring of Q such that J(RP) n R = P.

Proof. We prove the theorem by induction on [Q : F]. Let S = R n F and

M = P n S is a prime ideal of S and Fm is a prime ideal of Rm such that

PmC\R = P . It is easy to check that we are done if everything is proved for PM

and Rm instead of F and R. Therefore, we can assume S = Rn F = V is

a valuation ring of F such that J(V) = V n F and the statements are valid if

R is a Dubrovin valuation ring. Thus, let Bx, ... , Bn be incomparable having

an overling B such that [B/J(B) : Z(B/J(B))] < [Q : F] (reduction step).
By J(B) n V C J(V) = P n V and Lemma 6.4 we obtain J(B) Ç P. We can
apply the induction hypothesis to the prime ideal P/J(B) of R/J(B) and (i)

follows immediately. Now, let r be in R and 5 in Wr(P) . There exist r' in

R and s' in 'Sr(P) such that rs'-sr' = a£ J(B). Since s~xa lies in J(B)nR

we obtain rs'= s(r'+ s~xa). Similarly, Wr(P) is a left Ore-set. Finally, there

exists a Dubrovin valuation ring B' of Q, B' ç B such that PR = RP = B'

and B' n R = P by induction hypothesis.   Q.E.D.

Theorem 6.10. Let Bx, ... , Bn be Dubrovin valuation rings of Q having the

intersection property and let R be their intersection. If B isa Dubrovin valuation

ring of Q containing R then B contains at least one B¡.

Proof. We prove the theorem by induction on [Q : F]. Let S = R n F and

F = J(B) n S. We can assume that S = V is a valuation ring of F such that

J(V) = F n F (otherwise pass to the localization at F) and that Bx, ... , Bn

are incomparable. If F is a Dubrovin valuation ring we are done. Thus, let

B' be the minimal Dubrovin valuation ring containing Bx, ... , Bn such that

B' is integral over its center, F' = J(B') n V. It follows B' = (BX)P- = ■■■ =

(Bn)P, = RP, C BP, .If PC P' then BP, = B. Otherwise, BP,nF = B'nF,

i.e., B c Bp, = B'. The reduction step and induction hypothesis complete the

proof.    Q.E.D.

Using the notations of the definition for the intersection property, Theorem

6.10 means that 38x U • • • i)38„ consists exactly of all Dubrovin valuation rings of

Q containing R and Theorem 6.9 signifies <P~'(F) = RP for all prime ideals

F of R.
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In view of the Defektsatz we now look at the intersection of Dubrovin valu-

ation rings from the standpoint of extending given valuation rings of the center

F of Q.

Theorem 6.11. Let Vx, ... ,Vn bepairwise incomparable valuation rings of F

and let S be their intersection.

(i) If Bx, ... , Bk are Dubrovin valuation rings of Q having the intersection

property such that R n F = Vx n • • • n V¡ where 1 < / < n and R = Bxn-nBk

then there exist Dubrovin valuation rings Bk+X, ... , Bm of Q such that Bx, ... ,

Bm have the intersection property, R'nF = S, and R' is integral over S where

R' = Bi n • • • n Bm.
(ii) If Bx, ... , Bk (resp. B[, ... , B'm) are incomparable Dubrovin valuation

rings of Q having the intersection property such that RnF = R'nF = S and

R, R' are both integral over S where R = Bx n • • • n Bk , R' = B[ n • • • n B'm
then k = m.

Proof. We prove the theorem by induction on [Q : F]. The case [Q : F] = 1

is trivial. Thus, let [Q : F] > 1. We prove this part by induction on n .

n = 1. (i) F n (Bx n • • • n Bk) = Vx. First of all we assume F n F, = Vx
for all i = I, ... , k. If R is integral over Vx we are done. Otherwise, let

B be the minimal Dubrovin valuation ring of Q containing Bx, ... , Bk and

[B/J(B) : Z(B/J(B)] <[Q : F]. By induction hypothesis there exist Dubrovin

valuation rings Bk+X, ... , Bm ç B of Q such that BX/J(B), ... , Bm/J(B)
have the intersection property, R'/J(B) is integral over (R'/ J(B))nZ(B/J(B))

where R' = Bx n • ■ • n Bm and (R'/J(B)) n Z(B/J(B)) is the integral closure
of VX/(J(B) n F) in Z(B/J(B)). Now, we consider the general case and we

can assume that Bx, ... , Bk are incomparable. For each i = I, ... , k there

exists a Dubrovin valuation ring C, of Q such that C, ç B¡ and F n C,> = Vx.

By Theorem 6.8, Cx,... , Ck have the intersection property, and there exist

Bk+X, ... ,Bm such that Cx, ... ,Ck, Bk+X, ... , Bm have the corresponding

properties. Finally, Cx, ... ,Ck, Bx, ... , Bm are the desired rings.

(ii) If F is a Dubrovin valuation ring, i.e., k = 1, then B[, ... , B'm are

integral over their centers and B[ = ■■ ■ = B'm follows by Corollary 6.6, i.e., m =

1. Thus, let k > 1 and let B (resp. B') be the minimal Dubrovin valuation

ring of Q containing Bx, ... , Bk (resp. B[, ... , B'm) such that B (resp. B')

is integral over BnF (resp. B' nF). Therefore, B and B' are conjugate by

B n F = B' n F, and we can assume B = B'. Since R/J(B) and R'/J(B)
are both integral over VX/(J(B) n F) we obtain (R/J(B)) n Z(B/J(B)) =
(R'/J(B))nZ(B/J(B)). Thus, (ii) follows by induction hypothesis considering

B/J(B).

n > 1. Case 1. There is no prime ideal F ^ 0 of S such that F ç J(V¡)
for all i = 1, ... , n . Then there exists a disjoint union {Vx, ... , V„} =

{Wi,..., Wt) U {W[,..., W/,} such that W¡ and W¡ are comaximal for

i=l,... ,t and j =1,... ,t'.
(i) Let Bx, ... , Bk t¿ Q be incomparable. Without restrictions there is a

disjoint union {Bx, ... , Bk} = {Rx, ... , RS}\J {R\, ... , R's,} such that Wx n

■ ■■nWr = F nRxn---nRs and W[ n • • • n W'r, = F n R\ n • • • n R's,, where

1 < r < s , 1 < r' < s' and { Wx, ... , Wr, W[, ... , W/,} = {Vx, ... , V¡} .
By induction hypothesis there exist Dubrovin valuation rings Rs+X, ... , Rp of
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Q such that Rx, ..., Rp have the intersection property, T n F = Wx n • • • n

Wt and F is integral over Wx n ■ • • n Wt where F = Rx n • • • n Rp . Let
R's,+X, ... , R'p, and F' be defined similarly. We choose {Bk+X, ... , Bm} =

{Rs+X,... ,RP, R's,+l,... , R'p,} . By Proposition 6.1 (ii), Bx,... , Bm have the

desired property.

(ii) Without restrictions, {Bx, ... , Bk} = {Bx, ... , BS}U {Rx, ... , Rs,} is

a disjoint union where Wx n • • • n Wt = F n Bx n • • • n Bs and W[ n ■ ■ ■ n

W'v = F n Rx n ■ • • n Rs, and let B[, ... , B'r, R\, ... , R'r, be defined similarly.
Furthermore, let N be the set of all s in S which does not belong to any

J(Wj)nS (i = 1,..., t) and we obtain SN~X = Wx n • • • n Wt, RN~X =

Bxn---nBs, R'N~X = B[ n ■ • • n B'r, RN~X n F = R'N~X n F = SN~X and

.Fc/V-1, R'N~X are both integral over SN~X. By induction hypothesis, s = r

follows. Similarly, s' = r' and k = m .

Case 2. There exists a prime ideal F ^ 0 of 5 such that F ç /(F¿) for all
i = I, ... , n . Let F be maximal relative to this property.

(i) First of all we consider the case that for all i = I, ... , k there is

.7 = 1,...,/ such that F n B,■ = V¡. If (Bx)Pn---n (Bk)P = B is a Dubrovin
valuation ring then (BX)P = ■■■ = (Bk)P = B. We consider B/J(B) as well

as all extensions of Fi/(F n J(B)),... , Vn/(F n J(B)) to Z(B/J(B)) and
Case 1 can be applied. If (BX)P n • • • n (Ft)/' is no Dubrovin valuation ring
then there exists a Dubrovin valuation ring B of Q containing all Bx, ... , Bk

as well as Vx, ..., Vn such that [B/J(B) : Z(B/J(B))] < [Q : F]. Con-
sidering B/J(B) and all extensions of VX/(F n J(B)), ... , V„/(F n 7(5)) to
Z(B/J(B)), the statement follows by induction hypothesis. Now, we investi-

gate the general case and we can assume that Bx, ... ,Bk are incomparable.

For each i = I, ... , k there exists a Dubrovin valuation ring C, of Q such

that C, ç Bi and F n C, = F; for some / e {1,...,/}. By Theorem 6.8,
Ci,... , Ck have the intersection property, and there exist Bk+X, ... , Bm such

that Cx, ... , Ck, Bk+X, ... ,Bm have the corresponding properties. Finally,

Cx, ... ,Ck,Bx, ... ,Bm are the desired rings.

(ii) If (BX)P n • • • n (Bk)P = B is a Dubrovin valuation ring then (Fq)/> =

••• = (Bk)P = B and B is integral over BnF. Therefore, (B[)P = ••■ =

(B'm)P = B' and we can assume B = B' since F and F' are conjugate. The

statement follows by Case 1. If (BX)P n • • • n (Bk)P is no Dubrovin valuation

ring the statement follows by the reduction step and the induction hypothesis

(see above).   Q.E.D.

If S is the intersection of valuation rings Vx, ... ,Vn of F then there exist

Dubrovin valuation rings Bx, ... , Bm of Q having the intersection property

such that S = F n R and R is integral over S where R = Bi n • • • n Bm . This

follows by Theorem 2.1 and Theorem 6.11.

Theorem 6.12. Let R (resp. R!) be the intersection of a finite number ofDubrovin

valuation rings of Q having the intersection property. If S = FnR = FnR' and
R, R' are both integral over S then R and R' are conjugate, i.e., R = qR'q~x

for some regular q in Q.

The proof of this theorem requires the general approximation theorem for

Dubrovin valuation rings which was recently stated by P. Morandi (cf., [M2,

Theorem 2.3]). He introduces the following condition for Dubrovin valuation
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rings B, B' of Q : Let R be the least overring in Q of B and B'. Then

(B/J(R))nZ(R/J(R)) and (B'/J(R))nZ(R/J(R)) are comaximal. Morandi
proves that the general approximation theorem holds for Bx... , Bn if and only

if Bj, Bj satisfy this condition for all i, j = I, ... , n , i # j.
First of all, two Dubrovin valuation rings of Q satisfy Morandi's condition

if and only if they have the intersection property: By Corollary 6.2 and Propo-

sition 6.3, Morandi's condition implies the intersection property. Furthermore,

Proposition 6.3 and Corollary 6.7 show that the intersection property implies

Morandi's condition.

Proof (of Theorem 6.12). Let S = Vx n • • • D Vn , R = Bx n • • • n Bk, R' = B[ n
■■■nB'k where Vx, ... ,Vn are pairwise incomparable valuation rings of F and

Bx, ... , Bk (resp. B[, ... , B'k) are incomparable Dubrovin valuation rings of
Q having the intersection property. We prove the theorem by induction on

[Q : F] where the case [Q : F] > 1 is proved by induction on n .

n = 1. The proof is exactly the same as "« = 1, (ii)" in the proof of Theorem

6.11.

n > 1. Case 1. There is no prime ideal F 5¿ 0 of S such that F ç J(V7) for
all i = l,...,n. Let Wu ... ,Wt,W{,... ,W¡, ,BX,..., Bs, Ry,... ,RS,,
B[, ... , B's, R\, ... , R's, as in "« > 1, (ii)" of the proof of Theorem 6.11.
By induction hypothesis there exist regular elements a, b in Q such that

a(Bx n • • • n Bs)a~x =B[n---nB's and b(Rx n • • • n Rs,)b~x = R\ n • • • n R's,.
Without restrictions we can assume a, b in R n R'. By construction and the
general approximation theorem there exists q in Q such that

q - a £ aJ(Bi)    for all i = 1, ... , s,

q-b£bJ(Rj)   for all 7 = 1,..., s'.

Thus, q = a(l + x¡) for all i = I, ... , s where x¡ is in 7(5,) as well as

q = b(l + Xj) for all j = 1, ... , s' where Xj is in J(Rj) and q is regular.
Finally, qB¡q~x = aB¡a~x for all i = I, ... , s and qR¡q~x = bR¡b~x for all

; = l,...,i'.

Case 2. There is a prime ideal P ^ 0 of S such that F ç J(V¡) for all

i = 1, ... , n . This case can be treated like Case 2 in "« > 1, (ii)" of the proof

of Theorem 6.11.   Q.E.D.

Definition. Let Q be a central simple algebra finite-dimensional over its center

F and let F be a valuation ring of F . If Bx, ... , Bn are Dubrovin valuation

rings of Q extending V and having the intersection property such that Bx n
• • • n Bn is integral over V then n is called extension number of K to ß.

By Theorem 6.11, the extension number is well-defined. If Q is a division al-

gebra having a total valuation ring which extends V then the extension number

of V to Q is exactly the number of all extensions of V .

Proposition 6.13. Let Q be a central simple algebra finite-dimensional over its

center F and let V be a valuation ring of F. If n is the extension number

of V to Q then n is the extension number of V to Mk(Q) for any positive
integer k .

Proof. Let Bx, ... , B„ be extensions of V to Q having the intersection prop-
erty.   Then B\ = Mk(B¡),  i = 1, ... , n, are Dubrovin valuation rings of
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Mk(Q) extending V . It is not hard to check that B\, ... ,B'n indeed have the

intersection property and it remains to show that B\ D • • • n B'n is integral over

V. But this follows by [Rw, Theorem 4.2.8].   Q.E.D.

Proposition 6.14. Let Bx, ... , B„ be incomparable Dubrovin valuation rings of

Q having the intersection property and let R = Bxn-nB„,S = RnF. For

each maximal ideal M of S let nM be the extension number of Sm to Q and

kM the number of all maximal ideals M' of R satisfying M' n S = M. If R
is integral over S then the following hold:

(i) M' nS is a maximal ideal of S for each maximal ideal M' of R.

(ii) «a/ = k\i for each maximal ideal M of S, i.e., there exist exactly «m

Dubrovin valuation rings among Bx, ... , Bn extending Sm■

Proof, (i) follows immediately by [MR, Theorem 13.8.14] or can be proved in

the following way: For each B¡ there exists a Dubrovin valuation ring C, of Q

such that S çCj ç B¡ and J(C¡)nS is maximal in S. Then Cx, ... , Cn have
the intersection property and R' = Cx n • • • n Cn is integral over S = F n R'.

Finally, R =■ R' by 6.12.
(ii) kM is the number of maximal ideals of Rm , and Rm is integral over

Sm = F n Rm ■ Finally, Rm is the intersection of kM incomparable Dubrovin

valuation rings having the intersection property and extending Sm , i.e., kM =

nM.   Q.E.D.

7. The "Defektsatz" for central simple algebras

In this section we prove the

Defektsatz. Let Q be a central simple algebra finite-dimensional over its center

F and let B be a Dubrovin valuation ring of Q with center V = F n B. If n

denotes the extension number of V to Q and p = char(V/J(V)) then

(*) [Q: F] = fB(Q/F)eB(Q/F)n2pd,

for some nonnegative integer d.

We divide the proof of the Defektsatz into several parts and we say that the

Defektsatz holds for Q and V if (*) holds for an extension B of V to Q.

First we observe that the Defektsatz holds for all Mk(Q) and V if it holds
for Q and V. Let B be an extension of V to Q and B' = Mk(B). Clearly,

fß'(Mk(Q)/F) = k2fB(Q/F). Furthermore, if / is an ideal of B then Mk(I)
is invertible if and only if I is invertible, i.e., eB,(Mk(Q)/F) = eB(Q/F). The
final argument is provided by Proposition 6.13. Especially, if V is Henselian

then the Defektsatz holds for Q and V by [Dr, Theorem 2].

Proposition 7.1. The Defektsatz holds for Q and V if V is maximal.

Proof. Let F be the completion of F with respect to V. In [BG2, §5] it

is shown that there exists a Dubrovin valuation ring B of Q = F ®f Q

extending B such that B/J(B) = B/J(B) relative to the canonical inclu-

sion. Furthermore, since Q is dense in Q with respect to B each element

of T~ can be written as qB where q is a regular element of Q such that

qBq~x =B. Since F is an immediate extension of F relative to^F we ob-

tain h(Q/F) = MQ/F) as well as e~(Q/F) = eB(Q/F). Since V = F n B
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is Henselian the Defektsatz holds for Q and V, i.e., [Q : F] = [Q : F] =

fii(Q/F)e~(Q/F)pd = fB(Q/F)eB(Q/F)pd since B is integral over V and B
is integral over V .   Q.E.D.

Proposition 7.2. Let B ç B' be Dubrovin valuation rings of Q being integral

over V = FnB resp. V = F n B'. If the Defektsatz holds for Q and V as
well as for B'/J(B') and (B/J(B'))nZ(B'/J(B')) then the Defektsatz holds
for Q and B.

Proof. Notice that the Defektsatz holds for Z(B'/J(B')) and V/J(V) by [E,
Theorem 20.21] where V/J(V) has exactly one extension to Z(B'/J(B)).

Corollary 4.5(ii) completes the proof.   Q.E.D.

Proposition 7.3. The Defektsatz holds for Q and V if V has an extension B

to Q such that B is integral over V.

Proof. We prove the statement by induction on [Q : F] and let [Q : F] > 1.

Case 1. Q is no division algebra. Then the proof is obvious since Q = Mk(D)

where [D : F] < [Q : F].

Case 2. Q is a division algebra and 0 is the only completely prime ideal of

B. If there is a maximal Dubrovin valuation ring of Q containing B then

the statement follows by 7.1, 7.2, and Case 1. Otherwise, there exists B' as

in Theorem 2.2 and let V = F n B'. Each element of Q can be written in

the form kq where A: is in F and q in B'\J(B'), i.e., eB>(Q/F) = 1. The
proposition follows by 7.2 and Case 1.

Case 3. Q is a division algebra and F ^ 0 is the maximal completely prime

ideal of Q, i.e., BP is an invariant valuation ring of Q. The statement follows
by [Ml, Theorem 3.3], 7.2, and Case 2.   Q.E.D.

Now, we are ready to prove the Defektsatz by induction on [Q : F]. If B

is integral over V we are done. Otherwise, let B' be the minimal Dubrovin

valuation ring of Q containing B such that B' is integral over V = F n B'.

By Corollary 5.6 we can use the induction hypothesis for B'/J(B'), and by [E,
Theorem 20.21] we obtain

fiß'(Q/F) = fB/j{B')eB/jiB,)(n')2tps,

where

fB/jtB') = fiB/j{B,)((B'/J(B'))/(V'/J(V'))) = MQ/F),
eB/J{B,) = eB/J{B,)((B'/J(B'))/(V'/J(V'))),
n' is the extension number of (B/J(B'))nZ(B'/J(B')) to B'/J(B'),
t is the number of all extensions of V/J(V) to Z(B'/J(B')),

5 is a nonnegative integer.

Finally, Corollary 4.5 shows eB,(Q/F)eB/J{B,) = eB(Q/F)t and we get

fB'(Q/F)eB,(Q/F) = fB(Q/F)eB(Q/F)(n't)2ps.

By Proposition 6.14, n't is the extension number of V to Q since B' is

integral over V , and Proposition 7.3 completes the proof.   Q.E.D.

In [W2], A. R. Wadsworth proved the following version of the Defektsatz

(cf., [W2, p. 306]):

[Q : F] = fB(Q/F)eB(Q/F)(nB/tB)2pd,
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where nB and tB as well as nB/tB are positive integers which are defined as
follows:

tB = matrix size of B/J(B) (i.e., B/J(B) = MtB(E), where F is a division
ring).

nB = matrix size of Q ®f Fh, where Fh denotes the Henselization of F

with respect to V .

Proposition 7.4. Let Q be a central simple algebra finite-dimensional over its

center F and let B be a Dubrovin valuation ring of Q with center V = F n B.

Then nB/tB is equal to the extension number n of V to Q.

Proof. We prove the proposition by induction on n .

n = 1.  B is integral over V, i.e. nB/tB = 1 by [W2, Theorem F].

n > 1. Let B' be the minimal overring of B integral over its center V , and

let n' be the extension number of (B/J(B')) n Z(B'/J(B')). By Corollary

5.6(ii), we obtain ri < n, and therefore nj/tj = n' by induction hypothesis

where B = B/J(B'). If / denotes the number of all extensions of V/J(V)

to Z(B'/J(B')), then we conclude n = In'. Since B' is integral over V, the

statement follows by [W2, Theorem E(iii)].   Q.E.D.

Proposition 7.4 together with [W2, Theorem D] can be helpful for computing

the extension number (at least if V has finite Krull dimension; in this case [W2,

Theorem D] can be applied where Qx c • • • C Qk are all prime ideals of V).
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