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THE COMPLETE INTEGRAL CLOSURE OF R[X]

THOMAS G. LUCAS

Abstract. For a reduced ring R that is completely integrally closed it is not

always the case that the corresponding polynomial ring R[X] is completely inte-

grally closed. In this paper the question of when R[X] is completely integrally

closed is shown to be related to the question of when R is completely integrally

closed in T(R[X]) the total quotient ring of R[X]. A characterization of the

complete integral closure of R[X] is given in the main theorem and this result

is used to characterize the complete integral closure of the semigroup ring R[S]

when S is a torsion-free cancellative monoid.

Introduction

In what follows all rings are assumed to be commutative with nonzero unit

and to contain no nonzero nilpotents. Unless otherwise specified, when we refer

to the complete integral closure of a ring R we mean the complete integral

closure of R in T(R) the total quotient ring of R. The main objective of this

paper is to determine when the polynomial ring R[X] is completely integrally

closed and to characterize its complete integral closure when it is not.

It is well known that for an integral domain R, R is completely integrally

closed if and only if the polynomial ring R[X] is completely integrally closed.

The same result does not hold for rings with zero divisors. If R contains a

nonzero nilpotent element k, then (k/X)n = 0 for some n > 1. Hence in this

case R[X] is not integrally closed so it cannot be completely integrally closed.

Thus we are left with considering what happens when J? is a reduced ring.

Examples in [BCM, Lui and Q], the latter by way of [Al, Theorem 2.1], show
that even if R is a reduced total quotient ring, R[X] need not be integrally

closed so it need not be completely integrally closed. In our first example we

construct a ring similar to that found in [Lui, Example 3] with the exception

that in this case R[X] is integrally closed but not completely integrally closed

even though again R is its own total quotient ring.

Two rings which play important roles in determining when R[X] is com-

pletely integrally closed are the complete ring of quotients Q(R) and the ring

of finite fractions Qo(R) ■ Both can be realized as direct limits. For Q(R) let

3 be the set of dense ideals of R ; i.e., S = {J: rJ = (0) implies r = 0}.
Then Q(R) = lim {Hom(7, R): J £ 97} . To form Q0(R) , let </ be the set
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of those dense ideals of R which contain finitely generated dense ideals of R.
Then Q0(R) = lim{Hom(/,R):j£a/}.

As we will see, both the complete integral closure and the integral closure

of R in T(R[X]) can also be constructed using direct limits. Underlying all

of these constructions are a few basic facts about dense ideals and i?-module

homomorphisms defined on them.

Consider the construction of Qo(R) a la Lambek's construction of Q(R)

[Lam, Chapter 2].
Let Jx and Ji be finitely generated dense ideals of R and let fx £

Hom(/i, R), f2£ Hom(72, R) ■ Then Jxh is a finitely generated dense ideal
of R and f + fi. and f\fi make sense as elements of Hom(JxJ2, R). The

same definitions of addition and multiplication are used when Jx and Ji are

ideals in the set ¿/ . Define f and fi to be equivalent if they agree on some
dense ideal J. For such a pair of homomorphisms and dense ideal J, let

a £ JXJ2 and b £ J. Since fx(b) = fi(b) and a is in both Jx and J2,
bf\(a) = af\(b) = af2(b) = bf2(a). As / is dense, we must have fx(a) = f2(a)
for all a in Jx J2 ; in other words, fx and ^ agree on some dense ideal of R if

and only if they agree on JXJ2- The ring Qo(R) is formed from the equivalence
classes of homomorphisms.

While it is not the case that an (completely) integrally closed ring is locally
(completely) integrally closed, the converse is true. For if t £ T(R) is in RM

for each maximal ideal M, then the ideal (R :r t) is not contained in any

maximal ideal of R. Whence t £ R. In the event that Rm is an (completely)

integrally closed domain for each maximal ideal M, then the polynomial ring
R[X] is (completely) integrally closed ring. Also, if R sits well in a ring Q in
the sense that T(R[X]) c T(Q[X]) and Q is locally an (completely) integrally

closed domain, we can conclude that at least the (complete) integral closure

of R[X] is contained in the polynomial ring Q[X]. If R contains nonzero
nilpotents, such a ring Q can never be found as the nilradical of R must

survive in some localization of Q. But when R is reduced, there is a natural

candidate for the ring Q, the complete ring of quotients Q(R). For a reduced
ring R, Q(R) is von Neumann regular and every von Neumann regular ring

is locally a field. Moreover, both T(R) and Qo(R) sit naturally in Q(R) and

we can view T(R[X]) as a subring of T(Q(R)[X]). Hence both the integral

closure and the complete integral closure of R[X] are contained in Q(R)[X].

Lemma 1 of [Lu2] shows how to view the elements of Qo(R) as quotients

of polynomials in T(R[X]) so that Qo(R)[X] can be viewed as a subring of

T(R[X]). We put this together with our Lemma 1.4 to show that if b £ T(R[X])
is almost integral over R[X], then b reduces to a polynomial over Q(R) and

hence to a polynomial over Qo(R) • In Theorem 1.6 we show that the complete

integral closure of R[X] is the ring R*[X] where R* is the complete integral

closure of R in  T(R[X]).   Moreover,  R* =  lim{Hom(J, J): J £ ai}  so

R* c Qo(R) • Note that this does not imply that R# is the complete integral

closure of R in Qo(R) ■
Unlike integral closure, complete integral closure does not behave well with

respect to taking (regular) quotient rings. For example, let E be the ring of

entire functions and let S be the set of functions with at most finitely many

(different) zeroes. It turns out that E is completely integrally closed but Es
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is not [Gl, Exercises 16 and 21, pp. 147 and 148]. Oddly enough the same
sort of thing can happen between R[X] and T(R)[X]. While R[X] being
integrally closed implies T(R)[X] is integrally closed, it is possible for R[X] to

be completely integrally closed and T(R)[X] to fail to be completely integrally

closed. We present such a pair of rings in our Example 2.4.

In §3 we extend the main theorem of this paper as well as Theorem 3 of [Lu2]

to semigroup rings. Specifically we consider semigroup rings of the form R[S]

where S is a torsion-free cancellative abelian monoid with quotient group G.

As in [G2] we denote the complete integral closure of S in G by S* and the

integral closure of S in G by S' : by definition S* = {t £ G : for some s £ S,

s + nt £ S for all n > 1} and S' = {t £ G: nt £ S for some n > 1} . As in the

case of polynomial rings, we can view Qo(R) as a subring of T(jR[5]) . From

this viewpoint the integral closure of R in T(iî[5']) is the same as the integral

closure of R in Qo(R) • Denoting the integral closure of R in Qo(R) by R*

and using Chapter 12 of [G2] as a guide we show that i?#[5'*] is the complete

integral closure of R[S] and that R*[S'] is the integral closure of R[S].

Any unexplained terminology or notation is standard as in [Gl] and [Hu].

1.  THE COMPLETE INTEGRAL CLOSURE OF  R[X]

We begin with an example of a total quotient ring R for which the polyno-

mial ring R[X] is integrally closed but not completely integrally closed.

Let D be an integral domain and let 3° be a set of prime ideals of D such
that f]Pa = (0). Let sf be an index set for 3° and let J" = stf x N where

N is the set of natural numbers. For each i = (a, n) in J^, let D¡ = D/Pa

and let K¡ = qf(D¡). Construct the D-module B = J2 Ki and form the ring
R = D + B from the direct sum of D and B by defining multiplication as

(r, b)(s, c) = (rs, re + sb + be). Here we are viewing B both as a Z)-module

and as a ring without unit.

For r in D and i in J2', we denote the canonical image of r in K¡ by (r),.

Similarly for b in B we shall use (b)¡ to denote the z'th component of b. It

is elementary to show that (r, b) is a zero divisor if and only if (r), = -(b)¡
for some i in S . In particular, if r £ |J Pa , then for all b in B , (r, b) is a

zero divisor. Whence we can identify the total quotient ring of R with D$ + B

where S = D \ (J Pa .
For a finitely generated ideal J = ((ax, bx), (ü2 , ¿»2), ... , (a„ , b„)), J has

a nonzero annihilator if and only if for some i £ J^, (a;), = —(bj)¡ for

j = 1, 2, ... , n . In particular, if (ax, a2, ... , a„) c Pa for some Pa £ 3°,

then J has a nonzero annihilator.

Example 1.1. Let D = K[{UY": n > 0}, {VYn: n > 0}] and let 3s be the

set of prime ideals of D which do not contain both U and V. Form the ring
R = D + B. Then R[X] is integrally closed since D is integrally closed [Lu3,

Theorem 1.3]. However, R[X] is not completely integrally closed.

For ease of notation we shall use lower case letters to denote U, V and Y

as elements of R and continue to use upper case when we consider them in D.

Consider the quotient of polynomials / = (uyX + vy)/(uX + v). Since
(U, V) is not contained in any Pa , uX + v is not a zero divisor of R[X].

Hence / is in T(R[X]) \ R. Essentially / represents Y as an element of
T(R[X]) but since Y is not in D, y is not an element of R. As an element
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of the quotient field of D, F is almost integral over D as UY" and VY"

are in D by definition. Whence, ¿fn(uX + v) is in R[X] for all n and since

uX + v is not a zero divisor, / is almost integral over R[X]. However, even

more is true. Since /"u = y"u and /"v = ynv are in R, /" is in the

finitely generated Ä-module M = (X/(uX + v))R + (l/(uX + v))R. Hence /

is almost integral over R (as an element of T(R[X])). Also multiplication by

/ defines an .R-module endomorphism on the dense ideal / generated by the
set {ynu, ynv: n > 0}.

Recall that for a polynomial g(X) £ R[X], the ideal of R generated by the
coefficients of g is called the content of g. We use c(g) to denote this ideal.

Proofs of the following two lemmas can be found in [Lu2].

Lemma 1.2 (cf. [Lu2, Lemma 1]). Let R be a reduced ring and let s be in

Qo(R) ■ Then there exist polynomials f(X) and g(X) in R[X] with c(g) dense

in R such that s £ Hom(c(g), R) and for each j, s(gj) = f}■. In particular,

Qo(R)[X] can be considered as a subring of T(R[X]).

Lemma 1.3 (cf. [Lu2, Lemma 2]). Let R be a reduced ring and let s £ Q(R). If
sJ c Qo(R) for some finitely generated dense ideal J of R, then S £ Qo(R) ■

Before presenting our characterization of the complete integral closure of

R[X], we need two more lemmas.

Lemma 1.4. Let R be a reduced ring. If s(X) is in Q(R)[X] n T(R)[X], then

s(X) is in Qo(R)[X].

Proof. Let s(X) £ Q(R)[X] n T(R[X]). Then s(X) = f(X)/g(X) for some
f(X) and g(X) in R[X]. If s(X) is not in Q0(R)[X], we may assume it is

of minimal degree. Write s(X) = skXk H-\-s0 and g(X) = gmXm -\-\-g0.

By Lemma 1.3, we may assume k > 0. By Lemma 1.2, if sk is in Qo, then

s(X) - skXk is in Q(R)[X] n T(R[X]) contradicting the minimality of degree
of s(X). Thus sk 6 Q(R) \ Qo(R) ■ However skgm is in R so again by

the minimality of degree of s(X) it must be that gms(X) is a polynomial in

Qo(R)[X]. In particular, sk^xgm is in Qo(R) so that skgm-X must also be in

Qo(R) since the sum of the two is in R. Thus by minimality, gm-Xs(X) is

a polynomial in Q0(R)[X]. Inductively we get gjS(X) £ Q0(R)[X] for ; =
m, m - I, ... ,0. In particular, skgj is in Qo(R) for all j which by Lemma

1.3 implies sk £ Qo contradicting the minimality of degree of s(X). Therefore,

s(X) £ Qo(R)[X].
Using the above lemmas together with the fact that Q(R)[X] is completely

integrally closed we may conclude that the complete integral closure of R[X]

is a subring of Qo(R)[X].

Lemma 1.5. Let R be a reduced ring and let s(X) e öoWI^] be almost integral

over R[X] as an element of T(R[X]). If g(X) £ R[X] is a polynomial of degree

m such that skg¡ £ R for all k and j and s(X)"g(X) is in R[X] for all n,

then sfigjgl £ R for all j = 0, ... , m, k = j, j + I, ... , m and all n > I.

Proof. Clearly, sßgo £ R for all n .
For p between 1 and m consider Ap , the coefficient on Xp in the expansion

of s(X)ng(X). for p = 1 we have Ax = s¡¡gx + nsxs£~xg0. As sßgo is in R

for all n and skgj is in R for all k and j, if we multiply through by g¡ we

see that s^gxg¡ is in R for all n .
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Assume the result holds for p = 0, I, ... , j - I. For p = j, let HtSQ~J+

denote the coefficient on XJ'~l in the expansion of s(X)n and note that Ht is a

sum of products of j -1 sg's. As with Ax multiply Aj = sßgj + nsxs¡¡~xgj-X +

-h H0Sq~jgo by gJk . As each Ht is a sum of products of j - t sq's fitgJk~'

is in R and by the induction step s^~J+lgtgk is also in R . Therefore since A¡

is in R, s¡¡gjgJk £ R for k = j, j -\-l, ... , m and all n > 1.

Theorem 1.6. Let R be a reduced ring. Then

(1) The complete integral closure of R in T(R[X]) is the ring

R* = lim {Hom(y ,J):J£a/}.

(2) The complete integral closure of R[X] is R#[X]. In particular, R[X] is

completely integrally closed if and only if R is completely integrally closed in

T(R[X]).

Proof. Let R* = Hm{Hom(7, J): J £ a"} and let h £ R*. Let J £ ¿/ be

such that hJ c J and let (ao, ax, ... , am) be a dense ideal of R contained
in J. Then for all n > 1 and j = 0, I, ... , m, hnüj £ J.

Consider the polynomial a(X) = amXm -\-h an • Since A is a dense ideal

of R, a(X) is not a zero divisor. To see that h is almost integral over R

consider the A-module M = (Xm/a(X))R + (Xm-x/a(X))R + --- + (l/a(X))R.
Since h"aj = b„j £ R,we can write hn = (bn>mXm + ■■■ + b„i0)/a(X) £ M.

Hence h is almost integral over R (as an element of T(R[X])). Thus the

complete integral closure of R[X] contains R*[X].

Now suppose that h £ T(R[X]) is almost integral over JR. As T(Q(R)[X]) D

T(R[X]) and Q(R) is von Neumann regular, h £ Q(R). Whence by Lemma

1.4, h£ Qo(R) ■ Let g be a regular element of R[X] such that h"g £ R[X] for
all n . Then c(g) is dense and h £ Hom(c(g), R). Let J„ = {r £ R: h"r £ R} ;
J„ is the largest dense ideal on which h" is defined. Since c(g) c Jn for all

n, J = f]Jn is dense and contains c(g). Let r £ J. Then hnr £ R for

all n > 0. In particular, for each n > 1, hn+xr = hn(hr) £ R so hr £ Jn.

Hence hJ c J. Therefore the complete integral closure of R in T(R[X]) is
R* = lim {Hom(/,J):j£a/}.

Let / = f/g be almost integral over R[X] with bng £ R[X] for all n.

Then / = h(X) £ ß0(^)[^] since Q(R)[X] is completely integrally closed.

Write h(X) = hpXP + ■ ■■ + h0 and g(X) = gmXm + ■ ■ ■ + g0. In the domain

case we have h^gm in R for all n so hp is almost integral over R. With rings

containing zero divisors this is not enough since gm may be a zero divisor (even

though g(X) is not). However since a product of dense ideals is dense we may

further assume that each of the products hkg¡ is in R. Thus by Lemma 1.5,

hçgJj+x is in R for j = 0, 1, ... , m and all n > 1. As c(g) is a finitely

generated dense ideal of R so is (go, g¡, ■ ■ ■ , g%+x) ■ Thus ho £ R* . Whence,

h(X)-ho is almost integral over R[X] and thus so is (h(X) - h0)X~x. By way

of Lemma 1.5 and induction, we have hk £ R# for all k . Therefore R#[X] is

the complete integral closure of R[X].

If J is a regular ideal of R and h is an Ä-module homomorphism on J,

then h can be considered as an element of T(R). For if r is a regular element

of / with h(r) = s, then, as in the domain case, we can simply consider h
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to be equal to multiplication by s/r. Thus if the only finitely generated dense

ideals of R are the ones which contain regular elements, we have that both

T(R) and T(R)[X] are completely integrally closed in T(R[X]). A ring is

said to have property A if every finitely generated ideal containing only zero

divisors has a nonzero annihilator.

We shall find the following results useful when we consider complete integral

closure in semigroups rings.

Corollary 1.7. Let R be a reduced ring. Then the complete integral closure of

R[X,X~X] is R*[X,X~1].

Proof. Since Q(R) is locally a field, Q(R)[X, X~x] is completely integrally
closed. As in Lemma 1.4, if 5 £ T(R[X]) is almost integral over R[X, X~x],

then s is in Q0(R)[X, X~x]. Let g £ R[X, X~x] be such that sng is in

R[X, X~l] for all n . By multiplying each sng by a sufficiently large power

of X, we will get the same relations used to establish Lemma 1.5. As in that

lemma, an induction proof leads to the conclusion that R*[X, X~x] is the

complete integral closure of R[X, X~x].

Corollary 1.8 (cf. [Al, Theorem 3.2]). Let R be a reduced ring with property

A. Then the complete integral closure of R[X] is the ring R*[X] where R* is

the complete integral closure of R in T(R). In particular, R[X] is completely

integrally closed if and only if R is completely integrally closed.

Corollary 1.9. Let R be a reduced ring and let X\, Xj.Xn be indeter-

minates. Then the complete integral closure of R[XX, X2, ... , Xn] is

R*[XX, ... , Xn] and R*[XX, ... , Xn][X~x, ... , X~x] is the complete integral

closure of R[XX,..., Xn][X~x ,...,X~1].

Proof. For any ring T, the polynomial ring T[X] has property A. Thus the
complete integral closure of R[XX, X2] is R*[XX, X2] since R#[XX] is the com-
plete integral closure of R[XX]. Hence by induction R*[XX, ... , Xn] is the

complete integral closure of R[XX, ... , X„]. Similarly, the complete integral

closure of R[XX,..., Xn][X-[ ,...,X~X] is

R [Xx, ... , X„][X{    , ... , Xn   ].

2. Rings of the form R = D + B

If R is a ring of the form D + B , then Q(R) can be identified with the
direct product Y[ ̂ / • This is due to the facts that since f| Pa = (0), D can be

considered as a subring of \\ K¡ and B = Y^K¡ is itself a dense ideal of R. In

fact an alternate way to construct the ring R is as the subring of n K¡ generated
by B and the canonical image of D in F] ̂ / (f°r more on this method see [Hu,

§26] or [Lu3]). With this alternate view of R it is easy to see that for a dense
ideal / of R, every Ä-module homomorphism is defined by multiplication

by an element of F]Ki ■ Thus if (r, b) £ J such that r £ S = R\\JPa,
then J is a regular ideal and so every homomorphism on J can be defined by

multiplication by an element of the form (s/r, c) £ T(R)—recall that we have

identified T(R) with Ds + B.
By Theorem 1.6, if 5 e T(R[X]) is almost integral over R, then there exists

an ideal J containing a finitely generated dense ideal such that s £ Horn (J, J).
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Before we give a description of the complete integral closure of R[X] for R =

D + B , we need the following lemma.

Lemma 2.1. Let R = D + B and let J £a(. Then the set J' = {a £ D: (a, b) £
J for some b £ B} is an ideal of D and J = J' + B.

Proof. For an ideal L of R, L' = {a £ D: (a, b) £ L for some b £ B} is
an ideal of D. This follows easily from the definition of multiplication on R.

Hence /' is an ideal of D.
Since J £</ there is a finitely generated dense ideal A = ((ax ,bx),(ü2, ¿2),

... , (am, bm)) contained in J . Since A is dense it must be that A' = (ax, «2,

..., am) is an ideal of D which is not contained in any Pa. Thus for each

¡€/, (aj)i is not zero for some j . Since each K¡ is a field, (a,-),- is invertible.

For lack of better notation we let (a¡)~x denote both the inverse of (a¡)¡ as

an element of K¡ and the element of B all of whose components are zero

except the z'th one which is (a,)"1. Now multiply (a¡, b¡) by (0, (a¡)~x) to

get (0,(1),). With (0,(1),) in J for each i, we have B contained in /.

Hence J = J' + B .

Theorem 2.2. Let R be a ring of the form D + B and let ¿/ ' denote the set

of ideals of D which contain a finitely generated ideal not contained in any

Pa. Then the complete integral closure of R in T(R[X]) can be identified with

D* + B where D* = \J{(J' : J') : J' £ a"} .

Proof. Let s' £ D* and let J1 £ a" be such that s'J' c J'. Then there is a

finitely generated ideal A = (ao, ax, ... , am) c /' such that A is not contained
in any Pa . Since s'J' c J', s'na¡ £ D for n > 0. As a polynomial over R,

a(X) = amXm H-h ao is a regular element of R[X]. Hence as in Theorem

1.6 we can define a homomorphism s on J = J' + B by multiplication by the

quotient (s'amXm + • •• + s'ao)/a(X). This gives us an element of T(R[X])

which is almost integral over R. Whence for any b £ B, (s', b) is almost

integral over R as an element of T(R[X]).

Note that we have shown that multiplication by s' makes sense in B .

Let s £ R* and let J £a7 be such that sJ c J. Let ((ax, bx), (02, ¿2), • • • ,
(a„, b„)) be a finitely generated dense ideal contained in J . By Lemma 2.1,

A+B = ((ax,0)), ... , (a„,0)) and J = J'+B where J' = {a £ D: (a, b) £ J
for some b £ B} is in a". Define a map s': J' -> D by s'(a) = (p(s(a, 0))

where cp is the natural map from R to D defined by cp(r, b) = r. By the

discussion preceding the theorem we know that 5 can be defined by multipli-

cation by an element of \[Ki. As such it easy to see that 5(0, b) £ B for all

b £ B. Hence cp(s(a, 0)) = cp(s(a, b)) for all b £ B . Since s' is a D-module
homomorphism on an ideal of D it can be defined by multiplication by an

element of J'~x . Let t £ J'-1 be such that s'(a) = ta. As sJ c J, we must

have s'J' c J'. Hence t £ (J': J') so as above t can be considered as an

element of T(R[X]) which is almost integral over R. Thus we can consider /

to be an element of Y[ K¡. Moreover, since J = J' + B and J' generates /

as an ideal of R it must be that s - t = c is an element of B . Therefore we

can view s as multiplication by (t, c) £ D* + B and hence R* = D* + B.

Corllary 2.3. If D is completely integrally closed and 3° is any set of prime

ideals such that f]Pa = (0), then the corresponding ring R = D+B is completely

integrally closed in T(R[X]) and R[X] is completely integrally closed.
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In our next example we construct a reduced ring R = D + B with the prop-

erty that R[X] is completely integrally closed but T(R)[X] is not. As in our

first example we use upper and lower case letters to distinguish between the

indeterminates used in defining D and the image of these elements in the ring

D + B.
Let {Uj} , {Vj} and {W¡} be countably infinite sets of indeterminates and

for each j let Z, = UjVj/Wj . Let M = {(mx, m2, ■■■,): m} > 0 for all
;}. For m £ M, let Um denote the product U™1 Up ■■■ and define Vm ,
Wm and Zm similarly. Let ^ = {Um: m £ M}, T = {Vm: m £ M},

W = {Wm: m £ M} and 27 = {Zm: m £ M}. In terms of elements of

M we have Zm = UmVm/Wm . Similar expressions hold for Um , Vm and

Wm. Let F = {m £ M: for some n > 0, m¡ > 0 for all ;' > n} and let

S = {UmVWsZ': m, r, s, t £ F}. Except for allowing infinite products of

powers of indeterminates, our construction of D is essentially the same as that

used by Claborn to prove that every abelian group is the class group for some

domain [C, Proposition 6].

Example 2.4 (cf. [C, Proposition 6]). Let D = K[%S, T, W, Z] and let 3°
be the set of prime ideals which miss S and either 'V or W . As in Claborn's

example, D is completely integrally closed. Hence the ring R = D + B is such

that R[X] is completely integrally closed.  However the same is not true for

T(R).

Consider the element / = (ZXZ2... )/(Vx V2... ) = (Ux U2... )/(Wx W2... ),
/ is not in Ds but / is almost integral over Ds. In particular for m =

(1,2,...), /»Vm = (ZxZ2...)"(Vn+xV2+2...)/vrlV2n-2...Vn_x £ Ds for

all n > 1. The expression for /nWm is similar so we also have /" Wm £

Ds for all n > 1. By our choice of prime ideals for the set 3°, the finitely

generated ideal (Vm, Wm) is not contained in any Pa. Hence in T(R[X])

we can view / as the quotient of polynomials (zmX + um)/(vmX + wm) and

we have /" £ (X/(vmX + w"))T(R) + (l/(vmX + wm))T(R) for all n . Thus

T(R)[X] is not completely integrally closed in T(R[X]).
In our next example we start with a ring R = D + B that is completely

integrally closed and show that it is possible that the complete integral closure

of R[X] is not completely integrally closed.

Example 2.5 (cf. [GH, Example 1]). Let D = K[{U2n+x rV^2n+^ : n > 0},

iV2n+iWnt2n+i). „ > Q}] and let 3s be the set of prime ideals of D which

are contractions of height one primes of K[U, V, W] that do not contain W.

Then the ring R = D + B is its own total quotient ring so, trivially, it is com-
pletely integrally closed. But as in the example of Gilmer and Heinzer, both

uw and vw are almost integral over R, at least they are when considered as

elements of T(R[X])). In fact both elements are integral over R . For example,

written as an element of T(R[X]),

uw = (uxowxoX + uv9wx0)/(u9w9X + v9w9).

Note that this expression makes sense since no prime ideal in 3° contains

powers of both U W and V W. Hence uw satisfies the integrality equation

Z9 - u9w9 = 0. Similar expressions and equations can be found for any of

the products uiwk and vjwk provided j > 0. Hence the complete integral
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closure of R in T(R[X]) can be identified with the ring R* = D* + B where

D* = K[{UWn ,VWn: n > 0}]. As in Example 1.1, the complete integral

closure of R* is the ring R*# = D** + B where Dm = K[U, V, W]. Therefore

even though R is completely integrally closed, neither R[X] nor the complete

integral closure of R[X] is completely integrally closed. However, R**[X] is

completely integrally closed since K[U, V, W] is completely integrally closed.

The example above brings up the following question. If a reduced ring R

is completely integrally closed, does the process of taking successive complete

integral closures of R[X] terminate in a finite number of steps? On the one

hand, examples by Hill [Hi, Theorem 2] and Lantz [Lan, p. 956] show that it
is possible to construct infinite chains of domains Dx c D2 c • • • such that
for each j, Dj+X is the complete integral closure of D¡. On the other hand,

Roitman has recently shown that for domains with ace on divisorial ideals, the

process stops in at most two steps [R, Theorem 1.4].

Example 2.6 (cf. [Hu, Example 17]). Let D be a Dedekind domain with a
nonprincipal maximal ideal M = (u,v) where neither (u) nor (v) is M-

primary. Let 3d be the set of nonzero prime ideals different from M and form

the ring R = D + B. Then R = T(R) and R[X] is completely integrally closed
since D is completely integrally closed. Also since M~x properly contains D,

R Ï Qa(R) ■

The ring in the example above is strongly Prüfer, that is, every finitely gen-

erated dense ideal is locally principal. In general, every total quotient ring is
Prüfer (every finitely generated regular ideal is invertible), but not necessarily

strongly Prüfer. It is easy to see that a Prüfer ring with property A is strongly

Prüfer and the example above shows that the converse does not hold. In [D],

Dixon put together results in [A2 and AAM] to show that if R is an integrally

closed reduced ring and T(R) is strongly Prüfer, then R[X] is integrally closed

(see also [Hu, p. 118]).
While it is not the case that R[X] being completely integrally closed implies

T(R)[X] is completely integrally closed, the converse does hold (assuming, of
course, that R is completely integrally closed). Since R has property A if

and only if T(R) has property A, we see from Corollary 1.8 that if T(R) has

property (A) (and hence, is strongly Prüfer), then R[X] is completely integrally

closed if and only if R is a completely integrally closed reduced ring. The

natural question to ask is whether T(R) being strongly Prüfer is sufficient for

R[X] to be completely integrally closed when R is a completely integrally closed

reduced ring. We do not know the answer to this question, but our next example

shows that Qo(R) need not be strongly Prüfer, and hence it need not have

property A.

Example 2.7 (cf. [Hu, Example 18]). Let D = K[X, Y] and let 3° be the set
of nonzero principal primes of D. Then the ring R = D + B is not strongly

Prüfer even though R = T(R) = Q0(R)

Since (X, Y) is not locally principal, the same thing is true for the dense

ideal (x, y) of R. Since D is a UFD, the only ideals A of D with A~x ̂  D
are those contained in principal prime ideals. Thus by repeating the appropriate
part of the proof of Theorem 2.2, we have Hom(7, R) = R for all finitely

generated dense ideals of R. Hence R = Qo(R) ■
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3. Semigroup rings

Let S be a (nontrivial) torsion-free cancellative (abelian) monoid with quo-

tient group G. Let < be a total order on G compatible with the operation.

As in the case of the polynomial ring R[X], the results of this section depend

upon knowing that since Q(R) is von Neumann, Q(R)[G] is both integrally

closed and completely integrally closed.

As in [G2, Chapter 12] we write elements of R[S] essentially as polynomials,

specifically for f(X) £ R[S], f(X) = fmXs- + ■ ■ - + f0Xs° where s0<---<sm.

Theorem 3.1 (cf. [G2, Corollary 12.6]). Let Q be a von Neumann regular ring

and let G be a torsion-free (abelian) group. Then Q[G] is completely integrally

closed.

Proof. Let 5 e T(Q[G]) be almost integral over Q[G]. Then there is an

element g in ß[C7] such that s"g is in Q[G] for all n. Thus there is a

finitely generated subgroup H of G such that s £ T(Q[H]) and g £ Q[H].
Since H is finitely generated and torsion-free, H = Zn for some n and

Q[H] S Q[XX,..., Xn][X;x,..., X~x]. Hence by Corollary 1.8, Q[H] is
completely integrally closed. Therefore 5 £ Q[H] c Q[G] and Q[G] is com-

pletely integrally closed.

Recall that the complete integral closure of S is the monoid S* = {t £ G:

for some s £ S, nt + s £ S for all n > 0} .

Corllary 3.2. Let Q be a von Neumann regular ring and let S be a torsion-free

cancellative monoid. Then Q[S*] is the complete integral closure of Q[S].

Proof. Let / £ T(Q[S]) be almost integral over Q[S] and let g £ Q[S] be
such that /"g e Q[S] for all n . Then as in the proof above we may assume

that there is a finitely generated subgroup H such that / £ Q[H] and g £
Q[H] n Q[S]. Hence we may assume that the quotient group S is Zm for

some m.

Let M be a prime ideal of ß. Then QM is a field since ß is 0-dimensional.

Thus by [G2,Theroem 12.5] the complete integral closure of ßA/iS] is Qm[S*] .

Since ß is a reduced ring no coefficient of / is in every prime ideal of ß.

Thus / £ Q[S*].

Corollary 3.3. Let Q be a von Neumann regular ring and let G be a torsion-free

group. Then Q[G] is integrally closed.

We are now ready to characterize both the complete integral closure and the

integral closure R[S]. We begin with the complete integral closure.

Theorem 3.4. Let R be a reduced ring and let S be a torsion-free cancellative

monoid. Then the complete integral closure of R[S] is the ring R*[S*] where

R# = lim{Hom(/, J): J £ e/}.  In particular, R[S] is completely integrally

closed if and only if R is completely integrally closed in T(R[X]) and S is

completely integrally closed in G.

Proof. Since R* is contained in r(/?[S]), the elements of R#[S] are almost
integral over R[S] as elements of r(^[S]). Also, for each element t of S*,

X' is almost integral over R[S] since for some s £ S, X"'+s is in R[S]. Thus

Ä#[S*] is contained in the complete integral closure of R[S].
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Let / £ T(R[S]) be almost integral over R[S]. By Theorem 3.1, / is

an element of Q(R)[G] and hence in Q(R)[H] for some finitely generated

subgroup H. Using essentially the same technique employed in the proof of

Theorem 3.1, it is easy to mimic the proofs of the lemmas in § 1 to show that / is

an element of Qo[H] • Thus we may assume G = Z" so that R[S] is a subring

of R[XX ,X2,..., Xn][X~x ,X2~X,... , X~x] c T(R[S]). Thus by Corollary

2.9, / £ R*[Xi,..., Xn][X~x, ... , X~x] and by Corollary 3.2, / £ Q(R)[S*].

Therefore / 6 R*[S*] and R*[S*] is the complete integral closure of R[S].

Before characterizing the integral closure of R[S], we recall the following

result from [Lu2].

Theorem 3.5 (cf. [Lu2, Theorem 3]). Let R be a reduced ring. Then the integral

closure of R[X] is the ring Rf[X] where R^ is the integral closure of R in

Qo(R) ■

Theorem 3.6. Let R be a reduced ring. Then the integral closure of R in Qo(R)

is the ring R/ = lim {Hom(^4, A): A is finitely generated dense ideal of R}.

Proof. Let s £ Qo(R) be integral over R. Then there is a finitely generated

dense ideal A = (ao, ax, ... , am) such that s £ Hom(A, R).  Moreover we

can write s = (bmXm H-h bo)/(amXm -\-h ao) where sak = bk for each

k . Let f(Z) = Zn+X + f„Z" H-h fo be an equation of integrality of 5 over
R and let C = c(a") + c(an~xb) + ■■■ + c(bn) where a = amXm + ■ ■ ■ + a0 and

b = bmXm + ■ ■ ■ + b0. We will show that s g Hom(C, C). For each ;' > 0,
we have sajbn~j = aJ-xb"-J+x £ R[X] and sc(aJb"-J) = c{aJ-lbn^+t) since

s = b/a and sak = bk .
To see that sc(b") c C we need to use the integrality equation. Write

sn+i _ -(fnSi + ... + fQ). Replacing each sJ by bj/aj we get s(bn/a") =

-(f„bn + fn-xb"-xa + - ■ ■ + f0a")/an . Hence sbn = (f„bn + ■ ■ ■ + fioa"). Whence,

sc(bn) c C and sCcC as desired. Thus Rf contains the integral closure of

R in ß0.

Conversely, since Qo(R) C T(R[X]), no nonzero element of Qo(R) can

annihilate a finitely generated dense ideal of R. Hence as in the domain case,

if s A c A for some finitely generated dense ideal of R, Cramer's Rule implies

s is integral over R.

Theorem 3.7. Let R be a reduced ring and let S be a torsion-free cancellative

monoid. Then Rf[S'] is the integral closure of R[S].

Proof. By Corollary 3.3 the integral closure of R[S] is contained in Q(R)[G].
As with complete integral closure, the integral closure of Q(R)[S] is Q(R)[S']

since Q(R)m is a field (cf. [G2, Corollary 12.11]). Hence the integral closure

of R[S] is a subring of Q(R)[S'] and contains R/[S'].

Since R/[S'] = R/[G] n Q(R)[S'], to complete the proof all we need do is

to show that R^[G] is integrally closed. As in the proof of Theorem 3.4 we

may assume that G is finitely generated and hence G = Zm for some m.

For a single indeterminate X, the integral closure of R[X] is i?/[Ar]. Since

polynomial rings have property A, R/[XX, ... , Xn] is integrally closed by [Al,

Theorem 3.2]. Thus R/[XX, ... , X^IXT'1, ■■■ , X~l] is integrally closed and

therefore so is Rf[G].
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