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ANALYTIC OPERATOR VALUED FUNCTION SPACE
INTEGRALS AS AN S?(LP , Lp,) THEORY

KUN SOO CHANG AND KUN SIK RYU

Abstract. The existence of an analytic operator-valued function space inte-

gral as an £?(LP, Lpi) theory (1 < p < 2) has been established for certain

functionals involving the Lebesgue measure. Recently, Johnson and Lapidus

proved the existence of the integral as an operator on L2 for certain function-

als involving any Borel measure. We establish the existence of the integral as an

operator from Lp to Lpt ( 1 < p < 2) for certain functionals involving some

Borel measures.

1. Notations and preliminaries

In this section we present some necessary notations and lemmas which are

needed in our subsequent section. Insofar as possible, we adopt the definitions

and notations of [6 and 8].

A. Let N be the set of all natural numbers and let R be the set of all real
numbers. Let C, C+ and C+ be the set of all complex numbers, all complex

numbers with positive real part and all nonzero complex numbers with nonneg-

ative real part, respectively. Let p be a function on the set of all nonnegative

integers such that p(0) = 0 and p(n) = 1 for n > 1.

B. Given a number d such that 1 < d < oo, d and d' will be always

related by l/d+l/d' = I . If 1 < p < 2 is given, let a in (1, oo) be such that
a = p/(2- p). In our theorems, N will be a positive integer restricted so that

N <2a. For 1 < p < 2, let r be a real number such that 2a/(2a-N) < r < oo.

The number N/2a will occur often and so it is worthwhile introducing a symbol
for it; 6 = N/2a . Note that 0 < r'S < 1 where r and r' are conjugate indices.

C. For 1 < p < oo, LP(RN) is the space of C-valued Borel measurable func-

tions y/ on RN suchthat \y/\p is integrable with respect to Lebesgue measure

m¿ on RN . Loc(RAr) is the space of C-valued Borel measurable functions y/

on E^ suchthat y/ is essentially bounded with respect to m¿. Let Sf(Lp, Lp>)

be the space of bounded linear operators from LP(RN) into LP>(M.N).

The notation 11 • 11 will be used both for the norm of vectors and for the norm

of operators; the meaning will be clear from context.
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D. Let 1 < p < 2 be given. For X in C~, y/ in LP(RN), Ç in R^ and a
positive real number s, let

«fcrXO = (¿)"7,. r(.)«P ( - *¿*)¿mt(u)

where if N is odd we always choose X~xl2 with nonnegative real part and

if Re-I = 0 the integral in the above should be interpreted in the mean just

as in the theory of the Lp Fourier transform. If p = 1, from [3] Cys is

in Sf(L\, Loo) and \\Cx/s\\ < (\X\/2ns)Nl2. And as a function of X, Cx/S is
analytic in C+ and weakly continuous in C~ . If 1 < p < 2 from [1 and 8]

Cx/s is in ¿2?(LP, Lpl) and ||Q/j|| < (\X\/2ns)s . And as a function of X, Cx/S
is analytic in C+ and strongly continuous in C+ .

E. Let t > 0 be given. M(0, t) will denote the space of complex Borel

measures n on the interval (0, t). Every measure n in M(0, t) has a unique

decomposition, n = p + v into a continuous part p and a discrete part v =

Yll-i °Jp^rp where (cop) is a summable sequence in C and 6Xp is the Dirac

measure [9]. In fact, this is the Lebesgue decomposition of n . And M(0, t)*

will denote the subset of M(0, t) which satisfies the following conditions;

(a) If p is the continuous part of n in M(0, t)*, then the Radon-Nikodym

derivative d\p\/dm exists and is essentially bounded where m is the Lebesgue

measure on (0, t).
(b) If v = J2p-iœpôrp is the discrete part of n in M(0,t)*, then

IZp-i \«>p\t:p r's converges.

F. Let C0[0, t] = Co be the space of Revalued continuous functions x on

[0, t] such that x(0) = 0. We consider Q as equipped with /Y-dimensional

Wiener measure mw . Let C[0, t] = C be the space of R^-valued continuous
functions y on [0, t].

G. For 1 < p < 2 and n in Af(0, t), let Lar: v([0, t] x R*) = Lar : , be

the space of all C-valued Borel measurable functionals 8 on [0, í] x RN such

that

ann = { f     \\d(s,-)\\rad\ri\(s)}   r<oo.

Note that Lan n c LaS[ n if 1 < 5 < r < oo. If 6 is in Lan n and if n = p+v is

the Lebesgue decomposition, it is not difficult to show that 6 is in Lar: ßr\Lan „

and ||Ö|U: „ = ||ö||ar: „ + H0IU:,,.
H. Let 1 < p < 2 be given and 6 be in La(RN). From Lemma 1.3 in [8],

a function Mg: Lp,(RN) -* LP(RN) defined by Me(f) = fid , is in &(LP,, Lp)
and ||Afö|| < ||f?||Q. It will be convenient to let 9(s) denote Mg(s .) for 6 in

Lar: r¡-

Let ex,d2,... , 0m_i be in La(RN), y/ in LP(RN) and 0 < sx < s2 < ■ ■■ <
sm < t. From the Wiener integral formula [12],

/   dx(x(sx))e2(x(s2))■ ■ ■ dm-x(x(sm_x))y/(x(sm))dmw(x)
JCo

= [{Cx/S o dx(sx) o ■ ■ ■ o Ci/(lm_,_ím_2) o dm-X(sm-X) o CXi(Sm-Sm_x)}y/](0).
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I. Let 0 < k < 1 be given and m be in N. For a < sx < S2 < ■■■ < sm < b,

/    /    •••/   {(sx-a)(s2-sx)---(b-sm)}~kdsxds2---dsm
Ja   Ja Ja

(b-ar^m+x^{T(l-k)}m+x      .      _.   . .      .
=-^-,---7-^—ttv^-   where T is the gamma function.

r((m + l)(l-fc))
Throughout this paper, this value is denoted by E(a, b; m; k).

And let 0 < p < 2 be given and let ax, a2, ... , an be nonnegative real

numbers. From the Holder inequality, we have

« /   n        Np/2

£«f<»(2-',/2(Efl?)   •
1=1 ^ i=l    '

J. Let 1 < p < 2 be given. Let F be a functional on C. Given A > 0, ^
in LP(RN) and f in Rw,let

lh(F)vf](i) = [ F(X-x/2x + Owß-l/2x(t) + Odmw(x).
jc0

If for mL-a.e. ^ in 1", [Ix(F)y/](c;) exists in LP>(RN) and if the corre-

spondence y/ —► [h(F)]y gives an element of 5?(LP, Lp<), we say that the

operator-valued function space integral Ix(F) exists for X. Suppose there exists

Xo (0 < Ao < oo) such that Ix(F) exists for all 0 < X < Xq and there exists an

J2?(LP, Lp/)-valued function which is analytic in C+,x0 = C+ n{z £ C| |z| < X0}

and agrees with Ix(F) on (0, Xo), then this 5?(LP, Lp/)-valued function is

called the operator-valued function space integral of F associated with X and

in this case, we say that Ix(F) exists for X in C+/i0. If Ix(F) exists for X in

C+,x0 and IX(F) is strongly continuous in C~jAo = C~ n {z £ C| |z| < X0}, we

say that h(F) exists for A in C~ k . When A is purely imaginary, /¿(F) is

called the (analytic) operator-valued Feynman integral of F .

K. Let X, Y be two Banach spaces, ^(X, Y) a space of bounded linear

operators from X into Y and (Q, m) be a measure space. Let G: Q —>

Jz^X, 7) be a function such that for each x in I, {G(s)}(x) is Bochner
integrable with respect to m . Then there exists a linear operator J from A"

into y such that

/(*) = (B) - [ {G(s)}(x) dm(s)   for jc in X
Jo.

where (B) Ja{G(s)}(x)dm(s) refers to the Bochner integral. Here, this linear

operator J is denoted by (BS) Jn G(s) dm(s) and it is called the Bochner inte-

gral in the strong operator sense. When X = Y, J is called the strong integral

of G.
We finish this section with two lemmas.

Lemma 1.1. Let n be in M(0, t)* and 6 be in Lar n. Let

F(y)= [     d(s,y(s))dn(s)   for y in C
J(0,t)

for which the integral exists. Then for every X > 0, F(X~xl2x + Q is defined for

mw x mL-a.e. in CqxRn .

Proof. We can easily check that for every A > 0 and mw x mL-a.e. (x, £) in

C0 x RN, d(s, X~xl2x(s) + Ç) is defined, see [6, Lemma 0.1].
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Let n = p + ¿^1=1 œpôzp be a Lebesgue decomposition. Then

/     ( f \6(s,X-x'2x(s)+Z)\dmw(x))d\n\(s)
J{0,t)  \JC0 J

<(¿)V^'{^)5-á||o(5,.)IUN(5)

OO

+E(KiTr5nö(w)iu)
p=\

- (è) a'~N/2a' {\\e\U ß(esssuüd\p\/dm)x/r' (j    s-r'ôdm(s))

/  oo x   \jr ,  oo s   1/r'^

+ (Ei^iii^.oii;)    £Kivr'á
vp=i '   >=i        '   J

< 00.

By applying Wiener integral formula, a simple change of variables and the

Holder inequality, we obtain step [1]. Step [2] results from the Holder inequality

and G. We deduce the last inequality directly from the given conditions.

Hence, by the Fubini theorem

[  ( [     \e(s,X-x'2x(s)+i)\d\n\(s))dms(x)
JCa  \J(0,t) J

= /     ( [ \9(s,X-x'2x(s) + ^)\dmw(x))d\t]\(s)
J(0,t)  \JC0 /

< oo   for n in M(0, t)*.

Thus, for w„,-a.e. x in Co and for all Ç in R^,

/     \9(s,X-x/2x(s) + ^)\d\n\(s)
J(0,t)

exists. Therefore, for mw x mL-a.e. (x, Ç) in Co x RN, F(X~x/2x + Ç) is

defined. The lemma is proved.

The following lemma can be proved by techniques similar to those used in

the proof of Lemma 0.2 in [6].

Lemma 1.2. Let E be a complex Banach space, E* a dual space of E, (A, m) a

finite measure space and let T be a metric space. Consider a function g: TxA->

J¿?(E,E*). Assume that for each X in T and for each y/ in E, {g(X,y)}y/
is a strongly measurable function of y in A. Suppose further that there exists

h in LX(A, m) such that \\g(X, y)\\ < h(y) for m-a.e. y in A and X in T.

Set G(X) = (BS)JAg(X,y)dm(y) for all X in T.
(1) Assume that for m-a.e. y in A, g(X, y) is a strongly continuous func-

tion of A in T. Then G is strongly continuous in T.

(2) Assume that T is open in C and for m-a.e.   y in A, g(X, y) is an

analytic function of A in T. Then G is analytic in T.
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2. AN ANALYTIC OPERATOR-VALUED FUNCTION SPACE INTEGRAL

AS AN ¿¿f(Lp , Lp')   THEORY

The methods of proof and statements of our results for the Lp case ( 1 <

p < 2) are very similar to those of [6] for the L2 case. However, some care is

required to determine sufficient conditions under which the theory goes through

in the Lp context. Such conditions ensure the validity of Lemma 1.1, the

analogue of Lemma 0,1 in [6], and are adopted throughout this paper.

Theorems 2.1, 2.2, 2.3, 2.4, and 2.5 are the analogous results of Examples

3.3, 3.2, 3.1, 3.4, and Corollary 1.1 in [6], respectively.
Throughout this section, let 1 < p < 2 be given, let n be in M(0, í)*, let 6

be in Lar: n and let n = p + v be the decomposition of n into its continuous

and discrete parts. For n in N, let

Fn(y) = lj     9(s, y(s)) dV(s)\     for y in C.

Here if n = 0, from the definition, directly h(Fo) = Cx/t.
We begin by treating simple cases.

Theorem 2.1 (n purely discrete and finitely supported). Let n = Y!¡>=\ °>p^tp

where we may assume that 0 < rx < %2 < ■ ■ ■ < 17, < t. Suppose that 9(rp, •),

p = 1, 2, ... , h, are essentially bounded. Then the operator Ix(F„) exists for

all X in C+ and for all X in C~,

(1)     Ix(Fn) = n\       £ »    »        * ¿(A;n.xh; qx,..., qh)

0<<7i ,...,9*<n

where L(X;xx, ... ,xh; qx, ... , qh) = CXh, o [0(t,)]<" Q/(T2_T|) o [9(t2W2 ° ■ • • °

[0(ta)]«* ° Cm-Xk).
(We use the convention Cx/{Tp-rp_,) ° [9(tp)]° ° Cmtp+i.tp) = CA/{Tp+1_Tp_,).)

Moreover, for all X in C+ ,

» «««(er £ ^r\       / q¡+-+qh=n ^ ™

0<q,,. •,«/,<«

{ri(llÖ(T/"-)lir1||Ö(Tp,-)IU)^)}{t,(t2-T1)---(i-TA)}-<5.

h

p=l

Proof. Let 0 = t0 and t = Th+X. Let y/ be in LP(RN), Ç in R^ and A > 0
be given. Then
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[h(Fn)VM)

=] [  ( [     9(s,X-x'2x(s) + c;)dn(s)) y/(X~xl2x(t) + Ç)dmw(x)
JCo \J{0,t) J

h

- j   (¿M(W~1/2*(T/0 + É))  y/(X-xl2x(t)+t:)dmw(x)

m mqx ■■■(nqh / ; \N(h+i)p

H*   E   ^ s)       M*-*)-i>-*)î-»
q,+-+qh=n   *' *n     \       /

0<<7.?/,

*/  {no(îP,^V(vi)

/-       i A+l n n? ^     h+\
J A ̂  \\Vp-Vp_X \\¿ \    ,-pr

TAI Cíí       * ■ * it)

- w!     E ',     JW; Tlf ... , T„; qu ... , qh)m)-

0<«i.«/,

By the definition and an elementary calculus, steps [1] and [2] are clear. Step

[3] results from the multinomial expansion, the Wiener integral formula and a

simple change of variables. From H in §1, 9(rp), p = 1,2, ... , h,

are in £?(Lpl,Lp). Since 9(xp, •), p = 1,2,..., h, are essentially
bounded, [9(xp)]n , p = 1, 2, ... , h, are in ^(L^ , Lp) for n > 1. Hence

L(X; xx, ... , Tf, ; qx, ... , qh) is well-defined for any nonnegative integers qx,

... ,qh. Thus we obtain step [4].
Now, let y be an ¿2?(LP, Lp-)-valued function on C~ given by &~(k) =

L(X ; rx, ... , Th; qx, ... , qh). Then for all A in C~ ,

(3)       iiy-(A)n < (A)     f[(\m*p,-)\\iarl\m*p, oii*)^'

x{TX(T2-Tx)--.(t-rh)}-S.

It can be shown that &(X) is an analytic function of A in C+ [8, p. 108].

To show that &(X) is strongly continuous in C+ , it suffices to show that

\\^rW¥-^(-iq)yv\\pl^0

as A -» -iq for y/ in LP(RN) and a nonzero real q . For 1 < I < h + 1, let

A, = C_i?/t, o • • • o CLii/to-t,,,) o [0(t/)]9' o CA/(T/+1_T/) o ... o Cx/(,-xk)V

and

W = [d(*l)]91 ° Q/(T/+1-r,) ° • • ■ ° Q/(i-t»)^.
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Then

h+\ h+\  f l-\

\\Sr(X)y,-!?(-iq)y,\\p, < ¿P, - A,_x\\p, < ¿ { ft [,_,_ M_     J  }

/-I .

ndl^'Olir1!!^.-)!!«)^}
>=i

X   IIQ/(T,-T,_,)^ - C'-i9/(T/-T/_1)V/|lp'

From D in § 1, the right-hand side in the above last inequality converges to zero

as A —> -iq . Hence, &~(X) is strongly continuous in C~ .

By the uniqueness theorem in [5], h(Fn) exists for A in C~ and it is given

by (1) for all A in C~ . Furthermore, from (3), a norm estimate of Ix(F„) is

given by (2). Thus the proof of this theorem is complete.

Theorem 2.2 (n = p purely continuous). We suppose that n is purely continu-

ous. The operator h(F„) exists for all X in C~ and for all A in C~,

(4) Ix(Fn) = n\(BS) f L(X;sx,..., sn)d f[ rj(su)
JA„ ..   ,

u=\

where An = {(sx, ... , sn) £ (0, t)n | 0 < sx < s2 < ••• < sn < t} and for

(sx, ... , s„) in A„ , L(X;sx, ... ,sn) = Q/,, o 9(sx) o CXpS2-Sí) o • • ■ o 9(sn) o

Cx/(ts„) ■ Moreover, for all X in C~

/mi \ (n+l)<5

(5) ||/,(F„)|| < (n\)x'r' (U j        (lieiU: „)»(esssupdto|/d/n)"/v

xE(0,t;n;r'6) x'r'.

Proof. Let y/ be in LP(RN), Ç be in R^ and A > 0 be given. Then

[h(Fn)Vm

-f\f       f[0(Su,^l/2x(su)+C)df\ri(su)\V(X-l'2x(t) + i)dmw(x)
Jq> I Ao,0" uJi £=l        J

-/   [H  !      f[0{Su,X-xl2x(su) + Z)df[n(su)\v,(X-xl2x{t) + !i)dmw{x)

-"'/   If  f[6{su,X-'l2x{su) + Qdf\n{su)\v(X-xl2x(t) + i,)dmw{x)

l-n]j {/ ( n «fi». ̂ i/2^(s«)+«] r(^i/2^(')+íi ¿m»(^ |¿ n '^i

l=]n\      [L(X;sx,...,sn)VmdT[r,(su).
Ja" u=\

Step [1] follows from the definition, the Fubini theorem and Lemma 1.1. Let

A,; = {(s\, ... , s„) £ (0, t)n | s¡ = Sj} for I < i ^ j <n . Then by the Fubini

theorem, D¡j is rj"=i »/-null. Let Pn be a permutation on {1,2,...,«} and

for a in P„ , let

ACT(„) = {(sx, ... , s„) £ (0, t)n | 0 < sa{x) <      < sa{n) < t}.
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Since (0, t)" = {{JaePn ̂ (n)} u {U,^ A,;} , we obtain step [2]. Since the inte-

grand is invariant under permutations of s-variables, the integral over the n\

simplexes are equal. Hence, we obtain step [3]. Step [4] follows from the Fubini

theorem which will be justified below in conjunction with the proof of the norm

estimate. Step [5] is obtained by applying the Wiener integral formula, a simple

change of variables, and D and H in § 1.

If we use the same techniques as in the proof of Theorem 2.1. in [8, p. 107],

it can be shown that L(X; sx, ... , s„)y/ is weakly measurable, so it is strongly

measurable since Lpi(RN) is separable.

(6) \\h(Fn)y/\\p. < n\\W\\p I \\L(X;sx,S2,...,sn)\\df[\n\(su)
Ja" u=\

,   ,   x (n+\)S

- {n])l/r' YlHj        \\v\\p(™™pd\n\/dm)n'r'

■(\\9\\ar,n)nE(0,t;n;r'6)xlr'.

In the above, the first inequality follows from [8], the last inequality results

from Holder inequality and an elementary calculus. This justifies the use of the

Fubini theorem in step [4] above. Hence, for A > 0,

Ix(Fn) = n\(BS) f L(X;sx,..., sn)d f[ n(su).
Ja" u=\

By the same method as in the proof of Theorem 2.1, L(X; sx, ... , sn) is

analytic in C+ and it is strongly continuous in C+ . Using Lemma 1.2.,

n\(BS) /   L(X;sx,...,sn)dHn(su
■/A» «=i

is analytic in C+ and is strongly continuous in C+ . By the uniqueness theorem,

Ix(F„) exists for A in C~ and for all A in C~ , we obtain (5) as in (6) except

with A replaced by |A|. Thus the theorem is proved.

Theorem 2.3 (Finitely supported measure). Let v = J2p=i ^p^ where we may

assume that 0 < tx < %2 < ■ ■ ■ th < t■ Suppose that 9(xp, •), p = 1, 2, ... , h,
are essentially bounded. Then the operator Ix(Fn) exists for all X in C~ and

for all X in C~,

coV ■ ■ ■ oßh

í

(7) 0<q0,...,qh

qa+-+qh=n   ^' Hn

x(BS)f L0oLxo...oLhdf[p(su)
J¿^0;j,,...,jh u=x

where for nonnegative integers q0,qx, ... ,qh and jx, ... , jh+i, AqoJ¡¡„,

{(sx ,s2,..., sqa) e (0, *)*> | 0 < Si < s2 < ■■■ < Sj, < t, < sjl+x < ■

Sh+J2 < T2 < ••• < rA < sh+...+Jh+x <        < sh+...+jk+l = sqo < t}  and for

(sx,s2, ... ,sqo) eA,o;j.,;w and me {0, 1, ... , h},

<Jh+1
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Lm = [9(Tm)]qmCx/(Sj¡+...+Jm+,-Tm) o 9(sji+...+jm+x) o Cx/(sh+...+jm+2-sh+...+Jm+\)

o • • • o 9(sjl+...+jm+l) o CA/(Wl_îyi+...+.m+i).

(We- Míe i/?e conventions to = 0, xh+x = í and [0(to)]?o = I, an identity map

on Lpl(RN).

Moreover, for all X in C+ ,

(8)
(flo+n+l)<5

0o+-"+0ft=n
0<<?o.qh

^fl(l|ö(t/, OllSr'llöiT/, ')\\ar^](esssnpd\p\/dm)x/2r'
q0W.

x(||0|U,)?°

l=\

7i+-+A+i=«o  ^ /=0

2A'n 1/2

Proo/. Let A > 0 be given, y/ in ¿¿(R^) and £ in RN. Then

(9)

[h(Fn)yy](0

i
=] /   { /      0(5, A"'^(j^)^)

JCo  I J(0,t)

h -. n

+ Y, UpO(*P , k-x'2x(rp) + Í) j ^(A-'/2x(i) + {) ¿^(x)

[2]■an!     2

p=i

.?!
0o+"+0/,=« "     7i+•■+./*+i=0o   ^o^i.J/,+ 1
0<?o , - , 0*

{/c (fl0(^,A-1/2x(Tp)+^S

00 \ -.        00

]^[ 9(su, X-Xl2x(su) + Í) ) y,(X-x'2x(t) + O ¿m„,(x) \d \\ p(su)

[3]la!»!    E
00+-+«*="

O<9o.-,0*

q\\---qh\

i+-+V*+i=«o   WZV'r

(Lo°Lxo.-.oLh)y/(Qd

>h+\

00 \

Step [1] is clear. Step [2] follows from the multinomial expansion, the "simplex

trick" and the Fubini theorem which will be justified below in conjunction with

the proof of the norm estimate. By D and H in §1, we obtain step [3].



706
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]a>x\q¡ ■■■\OJh\("'

«0+'+«*="

O<0o, - , 0*

qx\---qh\

?   /

«o

<n\

\\Loo.-.oLh\\d\{p(su)
>i+---+;*+i=0o""?o^i. ■■4+1 »=i

wx\qi ■■■\œh\q*E
«o+-+«*=«
0<9o,-,?*

qx\---qh\
-(qo

H-l/r

X\{qo+h+l)S((qo + h)\\l/2r'

2n) {   qQ\h\)   )

h

ndi^'-íiisr'ii^'Oiia)^

(essswpd\p\/dm)xí2r'(\\9\\anft)q°

E       \nE(Ti,Ti+x;Ji+x;r'6)\
7i+"+7*+i=0o  ^ /=0 '

2/rS 1/2

The first inequality in the above follows from [5, p. 82]. The last inequality

results from the Holder inequality, the Schwarz inequality, and D, H, I in § 1.

Since the right-hand side in the above last inequality is finite, we justify the

use of the Fubini theorem in step [2].

By the same method as in the proof of Theorem 2.1 of [8], (LooLxo---oLh)y/

is Bochner integrable. And by the same method as in the proof of Theorem 2.1,

(BS) f
Já.

Qo

\>'.>i.h+\

L0oLx o ■ ■ ■ o Lhd Yl P(Su)
M=l

is analytic in C+ and is strongly continuous in C+ . Thus h(Fn) exists for A

in C+ and it is given by (7). Moreover, we obtain (8) as in (10) except with X

replaced by |A|. Therefore, the theorem is proved.

Now, we treat the general case. Let n = p + v be in M(0, t)* with v =

Yfp-X œp^rP ■ And for h in N, let a be a permutation on {1,2, ... ,h} such

that  TCT(1) < Tff(2) < ••• < Ta{h).

Theorem 2.4. Suppose that 6(ip, •), p = 1, 2, ... , are essentially bounded.

Then the operator Ix(F„) exists for all X in C~ and for all X in C~,

n: 4«)-«IS   S   ^T7¿r
A=0 0o+-+«*=«   *1-       *"'   j,+-+h+,=qo

S
«07^0

X(BS) L
00

L0oL! o ■ ■ ■ o Lhd Y[ ß(Su)

10-Jl .¡h+\ u=\

where for each h in N, A9o;;-, ,...jh+l = {(sx, ... , sqo) £ (0,t)q° \ 0 < sx <

■■■ < Sj, < xa(X) < sh+x < ••• < sji+h < Tff(2) < ■■■ < sqo < t} and where for
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(ii, ... ,s,0)ëA?o;i.;itl and m £{0,1,2, ... , h},

Lm = [0(Tff(M))]*""> o Q/(s.i+...+jm+,_Mm)) o 9(sh+...+jm+x)

o • • • o 9(sj¡+...+jm+¡)o Q/(Mm+1)_ÎJi+...+J|fi+i).

(We use the convention Tff(0) = 0, tct(A+1) = t and [9(xa{o))]qm = l, an identity

map on LP>(RN).) Moreover,

(12) 1IWIIS^   E   ^ÄW)-„(<^M)"2'

\M\(ñ
\2n

n=0?o+--+«*=n

«*^0

(io+n+l)<5

ÍICIIo(T„(„), oills-MlöiT^), -)IU)"(*-]
n=l

x (esssupúí|/í|/í/m)?0^

x (ii0iU: „:00 E ]  il E(T"(") > Xa(n+\) i Jn+l \ r'S) >

2/r'i 1/2

jt+ — +jh+i=90      1=0

Denote this norm estimate by ß„(|A|).

Proof. It can be proved by the same method as in the proof of Theorem 2.3

by using the dominated convergence theorem and the ^o-nomial formula [6, p.

41].
Now, we prove the main theorem in this paper. Let Ao > 0 be given. Let

f(z) = 2~Jn=oanzn be an analytic function on C~^ such that ¿Zn=o \an\B„(\X\)

is finite for all A in C~ x . Let n be in M(0, t)*, 9 be in LaK n and let

F{y) = fih 19(s>y(svdr>^) for yin c-

Theorem 2.5. Suppose that 9(xp, •), p = 1, 2, ... ,   are essentially bounded.

Then h(F) exists for all X in C~ ^ and is given by

(13) Ix(F) = Y,anIx(Fn).
n=0

Moreover, for X in C~ x   the series Yln=oanh(Fn) converges in operator norm

and

(14) \Ix(F)\\<Y,\an\Bn(\X\).
n=0

>oo
Proof. Since ZZo\\"nh(Fn)\\ < E7=oK\Bn(\X\) for all X in C~ ̂ ,
Jj^Loanh(Fn) is in ¿2?(LP, LP'). And since 5„(|A|) is increasing as |A| f,

H^=oanh(Fn)   converges  uniformly  in   C~ k    for  fixed   Xx    in   (0,An).
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Let A be in (0, A0) and <p, y/ be in LP(RN). Then

(115)      /   [ / f^\anFn(X-x'2x + Ç)\)\<P(Z)\\v(*-l,2x(t)+S)\dmw(c;)
•Vue t^C° n=0

dmL{£)

oo „

<$>„i/ i9»«)i[A(i^i)]ki(í)í/wL(o
n=0 J*"

OO

<IMWIvIIj»£>i.I*i.(W).
n=0

Hence for mw x m¿-a.e.  (x, £) in Q x 1^,
oo

£ |flB| ̂„(A-1/^ + 01 |i»(i)ll!P(A-,/2*(0 + í)|
n=0

is finite. By considering ç? and y/ which never vanish one sees that
oo

Y,anFn(X-ll2x + Ç)

converges absolutely for a.e.- (x, Ç) in Q x R^. Consider a functional 4> given

by

®(<P)= f   9(t)(h(F)w){Z)dmL(Z)   for <p in LP(RN).

Then 4> is bounded and linear. Hence, by the Riesz representation theorem,

h(F)y/ is in Lp,(RN) and
00

<p(ço= / ç»(i)Êffl» / F.r'^+^r'^to+^^w)^©
•»V ^ V      -/Co /

. oo

= /    <p(Oj2an[h(Fn)v](Ç)dmL(c:).

Hence, for A in C~A) , /¿(F)^ = E^o^7^^)^ for a.e.-£ in R*, which

implies that IX(F) =' Y^=oanh(Fn) for A in C~ ^ . By Theorem 3.18.1. in

[5], Y^=oanh(Fn) is analytic in C+Ao, that is, 7A(F) is analytic in C+iAo.

Now, we claim that h(F) is strongly continuous in C~ í . Let 0 < \q\ < Xq

be given. Then for each y/ in LP(RN) and A in C+^x0+\q\)/2,

lim Ix(F)y/=  lim y~anIx(Fn)y/
k-*—iq X—* — iq '—'-10 X->- iq-

n=0

k

= lim   lim 'YjanIx(Fn)y/
k—»oo A—»—/o '—'

%=0

fc->oo '
= Jim ^a„/_,?(F„)^ = [Fiq(F)]y/

with all the limits in Lp'-norm. Thus, h(F) is strongly continuous in C~ x .

Therefore, h(F) exists for A in C~ Ao. Clearly, we obtain the norm estimate

in (14) and the series Y^L0anh(Fn) converges in operator norm. Thus the

proof of the theorem is complete.
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