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ISOMORPHISM INVARIANTS FOR ABELIAN GROUPS

D. M. ARNOLD AND C I. VINSONHALER

Abstract. Let A = (Ax, ... , An) be an «-tuple of subgroups of the additive

group, Q , of rational numbers and let G(A) be the kernel of the summation

map Ax © ■ ■ • © An —< J2 M and G[A] the cokernel of the diagonal embedding

f\A¡ —» Ax®- ■ -®A„ . A complete set of isomorphism invariants for all strongly

indecomposable abelian groups of the form G{A), respectively, G[A], is given.

These invariants are then extended to complete sets of isomorphism invariants

for direct sums of such groups and for a class of mixed abelian groups properly

containing the class of Warfield groups.

A central theme in the study of abelian groups has been the search for com-

plete sets of numerical isomorphism invariants for nontrivial classes of groups.

This quest has met with limited success in the case of torsion-free abelian groups.

A promising start was achieved by R. Baer [Ba] in 1937 with the classification

of completely decomposable groups, up to isomorphism, in terms of types of

rank-1 summands. However, notwithstanding the important breakthroughs of

the 1960s and 1970s, one could argue that, in terms of numerical isomorphism

invariants for torsion-free abelian groups, no significant extension of Baer's
results occurred until 1985, when F. Richman [Ri-1] classified the "doubly in-

comparable groups."

The groups studied by Richman are a class of Butler groups (pure subgroups

of completely decomposable groups) defined as follows. Let A = (Ax, ... , An)

be an n-tuple of subgroups of Q, the additive rationals, and G = G(A) be the

kernel of the map Ax © • • • © An -» Q given by ©a, -> £a,'• Define G¡j =

Gn(Aj®Aj) = {(a, -a)\a £ A¡r\Aj) , a pure rank-1 subgroup of G isomorphic
to Ai n Aj. The group G = G(A) is called doubly incomparable provided

type(G¡;) and type(6\/) are incomparable whenever {i,j} and {k, 1} are

distinct two-element subsets of {1,...,«}. Each doubly incomparable group

is strongly indecomposable.

In this paper we obtain a complete set of isomorphism invariants for all

strongly indecomposable groups of the form G(A) (Theorem 1.6). The iso-

morphism invariants for doubly incomparable groups occur as a special case.

Our characterization has several other consequences. First, a duality is applied

to obtain a complete set of isomorphism invariants for all strongly indecom-

posable groups of the form  G[A], the cokernel of the diagonal embedding
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Ax n • • • n An -» Ax © • • • © An (Theorem 2.1). Second, the global Azumaya

theorems in [AHR] are used to extend these invariants to complete sets of

isomorphism invariants for arbitrary direct sums of strongly indecomposable
groups of the form G(A) or G[A] (Theorem 3.4). Finally, valuated group

machinery developed by Richman in [Ri-2] is used to find complete sets of iso-

morphism invariants for a class of mixed groups containing the Warfield groups

(Theorem 4.4). Invariants for the last two cases are developed to reflect criteria

given in [AHR] for isomorphism of direct sums of objects in a category where

all indecomposable objects have endomorphism rings isomorphic to subrings of

Q.
A special case of Theorem 4.4 is a complete set of isomorphism invariants

for mixed groups H containing a nice subgroup K, such that K is a direct

sum of strongly indecomposable groups of the form G(A) (alternately, G[A])

and H/K is a totally projective torsion group.
Our notation and terminology follow [Ar] for torsion-free groups of finite

rank, and [AV-5] for Butler groups. A type is an isomorphism class of a subgroup

of Q. If T is a type and G is a torsion-free abelian group, the x-radical

of G is the pure subgroup G[x] = f|{Kernel f\f: G -» CT}, where Cr is a

subgroup of Q of type x, while the x-socle of G is the pure subgroup G(x) =

£{Image/|/: CT -> C7} . If M is a set of types, then G[M] = H{G[t]|t £ M}
and G(M) = ¿{G(t)|t e M}. Define rG[M] = rankC7[M] and rG(M) =
rank G(M). An epimorphism G —> H of torsion-free abelian groups is balanced

if the induced homomorphism C7(t) —► H(x) is onto for each type x.

Two finite-rank torsion-free abelian groups G and H are quasi-isomorphic

if G is isomorphic to a subgroup of finite index in H and quasi-equal if QG,

the divisible hull of G, is equal to QH, and there is a nonzero integer n

with nG ç H and nH c G. The group G is strongly indecomposable if G

quasi-equal to H © K implies that H = 0 or K = 0.

1. Strongly indecomposable groups of the form G(A)

An «-tuple A = (A\, ... , An) of subgroups of Q is trimmed if for each

i, A¡ = Y,{A¿ n Aj\j ¿ i}. As noted in [Ri-1], the assumption that A is
trimmed may be made without changing G (A), since if A1 = (A\, ... , A'n) is

the trimmed «-tuple defined by A\ = £{,4, n Aj\j ¿ i}, then G(A') = G(A).
In § 1, most «-tuples are assumed to be trimmed. It is easy to verify that A is

trimmed if and only if each projection G(A) -> A¡ is onto.

Lemma 1.1. Let A = (Ax, ... , A„) be a trimmed n-tuple of subgroups of Q

and G = G(A).
(a) [AV-1, Corollary 1.2] Inclusion of each G¡j into G induces a balanced

epimorphism 0{C7,7| 1 < i < j < n} —> G —> 0.
(b) [AV-3, Theorem 3] The group G is strongly indecomposable if and only

if for each type o¡ = type(^4,), G/G[o¡] ~ A¡. In this case, the endomorphism

ring of G is a subring of Q.
(c) [AV-3, Theorem 6] Suppose that A and B are trimmed n-tuples of sub-

groups of Q and that G = G(A) and H = G(B) are strongly indecomposable.

Then G and H are quasi-isomorphic if and only if rG[M] = ry¡[M] for each

set M of types (equivalently, for each subset M of {type(4,-)|l < i < n} and

each subset M of {type(5,)|l < j < n}).



abelian groups 713

The last equivalence in part (c) is a stronger statement of the theorem which

appears in [AV-3], but is a direct consequence cf the proof given there.

E. L. Lady [La] has observed that if G is a Butler group, then G[a] is the

pure subgroup of G generated by {C7(t)|t y< a} . Therefore, in view of Lemma

1.1(a), if A is an «-tuple of subgroups of Q and G = G(A), then G[a] is the
pure subgroup of G generated by {G/7|type(G,;) <¿. o}.

For each type o and «-tuple A = (Ax, ... , An) of subgroups of Q there

is an equivalence relation on {1, ... , n} given by i is a-equivalent to j if

i = j or Gi¡ n G[a] ^ 0, where G = G(A). As noted above, G[a] is purely

generated by {Gw|typeGw ^ o} . Thus, i and j are u-equivalent if and only
if Gij n (Y,Gm) j¿ 0, where the sum is over a set of indices kl such that

type Gm 2< a. A simple induction argument then shows that i and j are

a -equivalent if and only if there is a sequence of indices i = i\,h,..., im= j

from {1, ... , «} such that type(G¿./) }< a for each (k, I) = (ir, ir+x), 1 j£

r < m. We employ both notions of a -equivalence in the sequel. Because a-

equivalence depends directly on the entries in the «-tuple A , it is convenient to

refer to o-equivalence classes in A and to say A¡ is cr-equivalent to Aj rather

than i is cr-equivalent to j. The history of a-equivalence may be found in

[AV-1, 2, 3].
If A is trimmed, G = G(A) is strongly indecomposable and a = type(^,)

for some i, then there are precisely two o -equivalence classes in A, {A¡}

and {Aj\j ^ i} (see Lemma 1.1(b)). More generally, if a is any type such

that rank G/G[ff] = 1, then there are precisely two cr-equivalence classes par-

titioning {Ax, ... , An} [AV-1, Corollary 2.1.e]. In particular, this is the case

if G is quasi- isomorphic to a strongly indecomposable group of the form

G(BX, ... , B„) and a = type(5,) for some i.
The basic strategy for deriving isomorphism invariants from the quasi-

isomorphism invariants given in Lemma 1.1 (c) is to embed G in

0{G/C7[(T]|rankC7/t7[<7] = 1, type G/G[ff] = a},

identify each G/G[a] with a subgroup of Q and show that a quasi-isomorphism

of G induces a "uniform" quasi-isomorphism on this direct sum of subgroups

of Q. The precise meaning of "uniform" will take some time to develop.

There is a canonical way to produce a rank-1 factor of G = G(A) from a

subset of {Ax, ... , A„}. If X is a proper nonempty subset of {1,...,«},

let DX[A] be the subgroup Y,{Aj C\ Aj\i £ X, j g X} of Q. There is an
epimorphism nx'-G(A) —► Ö^M] given by nx(ax, ... ,a„) = ^ÍaI* e X},
where (ax, ... , a„) £ G c Ax © ■ ■ ■ © An so that ¿^{a,] 1 </'<«} = 0. The

fact that %x is a well-defined epimorphism follows from Lemma 1.1(a) and

the observation that nx(G n (A¡ © Aj)) ^ 0 if and only if exactly one of i, j

belongs to X. If Y is the complement of X in {1,...,«}, then ny = -%x ■

If G = G(A) and a is a type such that rankC7/G[a] = 1 and typeC/G[cr] =
a, we may choose X so that {A¡\i £ X} is one of the two a -equivalence classes

in A . In this case we will write na = nx and Da[A] = Dx[A]. Plainly, Da[A]

is unique and na is unique up to sign. Moreover, kernel n„ = G[a] by the

definition of cr-equivalence and the fact that image na = Da[A] has type a.

(See also, [AV-1], Theorem 1.10 and Corollary 1.11(c).)
Given A, a trimmed «-tuple of subgroups of Q, and G = G(A), write

A[A] = {a\rankG/G[o] = 1  and type C7/G[cr] = o} ; and 6[A] = (Da[A]\o £
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A[A]), a vector of subgroups of Q. The vector 6[A] of subgroups of Q can be

multiplied by a rational number q by multiplying each group in the vector by

q . We then say that two such vectors 6 and 6' are equivalent and write 6 = 6'

if 6 = q6' for some nonzero rational q . The statement 6[A] = 6[B] subsumes

A[A] = A[B], since A[A] is the index set for 6[A]. The idea of equivalent

vectors of subgroups of Q goes back to Richman in [Ri-1].

If G = G(A), H = G(B), and f:G -> H is a quasi-isomorphism, then for
each a £ A[A] = A[B] there is a commutative diagram

G    -*♦   Da[A]

(da(f)) f I I da{f)
H    -+   D„[B]

where da(f) £ Q is chosen to make the diagram commute. Note that since

-na can be substituted for na , it is possible to take da(f) > 0. We will call

the set of positive rationals, {da(f)\<r £ A[A]} , the scalars associated with f.

The fundamental step in our development of isomorphism invariants is to

show that all the d„(f) 's are equal (uniformity).

Lemma 1.2. Let A = (Ax, A2, A3) and B = (Bx, B2, B3) be trimmed 3-tuples

of subgroups of Q. If G(A) and G(B) are quasi-isomorphic, then there is a
permutation p of {1, 2, 3} such that A¡ ~ Bp^ for each i. Moreover, if G(A)

and G(B) are strongly indecomposable, then A[A] = A[B] = {type(^,)|l < i <

3}.

Proof. By Lemma 1.1(a), G = G(A) is the rank two homomorphic image of

G12 © G23 © G13 ~ (Ax n A2) © (A2 n A3) © (Ax n A3) under the map induced by

inclusion of G¡7 in G. It follows, using the fact that A is trimmed, that the

rank-1 factors of G are, up to isomorphism, Ax = (Ax r\Ai) + (A\ ÍIA3), A2, A3

and Ax+ A2 + A3. Similarly, the rank-1 factors of H = G(B) are Bx, B2, B3
and Bx + B2 + B3. It is an easy consequence that, after rearranging, A¡ ~ B¡

for 1 = 1,2,3. The last statement of the lemma follows from Lemma 1.1(b).

Lemma 1.3. Let A be an n-tuple of subgroups of Q and G = G(A). For

any type a, let Xx, ... , Xr index the a-equivalence classes in A and let B =

(Bi,... , Br) with Bj = (£{,4,|/ £ Xj}) n (£L4il» 0 Xj}). Then there is
an isomorphism, G/G[a] ~ G(B), induced by the map G —» G(B) given by

(ax, ... , an) -* (bx, ... , br), where b¡ = £{a,|/ € Xj}. Moreover, A[B] =

{t e AL4]|t < cr} .

Proof. The fact that (ax, ... , an) -> (bx, ..., br) induces an isomorphism

G/G[o] ~ G(B) is a consequence of [AV-1, Theorem 1.10 and Corollary 1.11].

The result may also be shown via Lemma 1.1(a) and the definition of a-

equivalence. If x £ A[A] satisfies x < a, then plainly G[a] ç G[t] ; and

x £ A[B] since if H = G(B), then H/H[x] ~ (G/G[a])/(G[x]/G[a]) ~ G/G[t] .
On the other hand, if x £ A[B], then x < a since any rank-1 factor of G/G[a]

has type less than or equal to o . As before, this implies G/G[t] ~ H/H[x] and

x £ A[A].

The idea underlying the next lemma was first communicated to us by C.

Megibben (see Theorem 4.7 in [HM]).

Lemma 1.4. Let A be a trimmed n-tuple of subgroups of Q, n > 3, and suppose

that X and Y are the index sets for a partition of A. Denote x = typeD;^],
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where DX[A] = (£L4/|i £ X}) n (£{A¡\i £ Y}), and let

ff = type (^{^,1/6 7}).

Then for distinct indices i,j in X, type(A,C\Aj) ¿< a iff type(^,-PiAj) j< x.

Proof. Let a' = type(£{^/|/ £ X}) and note that inf{tr, a'} = x. Clearly,

p = type(Aj n Aj) ¿< a implies p •£ x. On the other hand, since p <o', p < o

implies p < inf{cr', a} = x.

Proposition 1.5. Let A = (Ax, ... , A„) and B = (Bx, ... , B„) be trimmed
n-tuples of subgroups of Q. Suppose G = G(A) and H = G(B) are strongly

indecomposable and f:G -» H is a quasi-isomorphism with associatedscalars

da(f). o £ A[A]. Then A[A] = A[B] and there is a positive rational d £ Q
with d = da(f) for each a £ A[A].

Proof. The fact that A[A] = A[B] is immediate, since G(A) and G(B) are

quasi-isomorphic. For the rest we use induction on the integer «. By mul-

tiplying / by a nonzero integer m we may assume that f(G) ç H, noting

that da(mf) = mda(f) for each a £ A[A]. We first consider the special case

A[A] = {type(^,)|l < i < n}. In this case, after rearranging, A¡ ~ B¡ for each

i by Lemma 1.1(b). It follows that for each l / 7, /(G(J) ç Hy , since G,; =
f]{G[type(Ak)]\k ^ i, k ^ j} (see [AV-3, Lemma 4]) and / preserves radicals.

If (a, -a) £ Gij, then f(a, -a) = (b, -b) £ H¡j . However, if cr = type(^;),
then by the diagram (da(f)), \a\da(f) = \b\. Similarly, if x = type(,4;), then
\a\dx(fi) = \b\. It follows that da(f) = dx(f) = \b/a\. Since a and x were

arbitrary elements of A[^], the proof is complete for this case. Included as

special cases are n = 2:AX = A2 ̂  Bx = B2 because A and B are trimmed;
and n = 3:AL4] = {type(^,)|/ =1,2,3} = {type(/J,)|/ = 1,2,3} = A[B] by
Lemma 1.2.

Having treated the above special cases, we may assume that « > 4 and that

there exists a type ffo £ A[A] = A[B] such that oo # type(^,) for I < i < n
with « > 4. Without loss of generality, let X = {1, ... , k} and Y =

{k+l, ... , n} index the two ffo-equivalence classes in A , with 2 < k < « - 2,

since ff0 t¿ tyve(Ai) for each i. If ax = type(£{^,|z e X}), then the ff^-
equivalence classes in A are the singleton sets {A¡} for i £ X and the set

{A¡\i £ Y}. For i £ X, the singleton {A¡} is clearly a ff^-equivalence

class, since type(,4; n Aj) < type(^,) < o~x for all j. Moreover, by Lemma

1.4, the set {A¡\i £ Y} is a ox -equivalence class since it is a ffo-equivalence

class. If D = D„0[A] = (Y,i€XA>) n (E,ey^<); then by Lemma 1.3, G' =

G/G[ffAr] ̂ G(AX ,...,Ak,D). Also by Lemma 1.3, if A' = (Ax, ... , Ak, D),
then A' is trimmed and {tyve(D), type(^/)|/ £ X} ç A[A'] ç A[A]. Thus,
G' is strongly indecomposable by Lemma 1.1(b). Since the radical G[ox]

is preserved under quasi-isomorphism, / induces a quasi-isomorphism from

G/G[ox] to H/H[ox]. By Lemma 1.3, H/H[ax] is isomorphic to G(B') for
some (trimmed) tuple B' of subgroups of Q ; and B' must contain exactly

k + 1 entries because rank G/G[ox] = rank///H[ax] ■ As a consequence of the

various quasi-isomorphisms discussed above, / induces a quasi-isomorphism,

which we denote by /', from G(A') to G(B'). Moreover, by Lemma 1.3,

A[A'] = A[B'] = {a £ AL4]|cr < ax} ■  The induction hypothesis allows us to
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conclude that all the scalars associated with /' are equal. However, by the def-

inition of the isomorphisms G' ~ G(A') and H' ~ G(B') (Lemma 1.3), there

is a commutative diagram,

G(A)   -+   G(A')    -»     Da[A]     =     Da[A']
If If ida(f) ida(f)

G(B)   -»    G(5')    -»     Z)ff[5]     =     Da[B']

whenever a £ A[A'] = A[B']. This implies that the scalars da(f) are equal

for cr e {ty-pe(Ax), ... , type(^^), type(D)} . By replacing ax with ay in the

above argument, we can conclude that the scalars d„ are equal for

a £ {type(4t+1), ... , type(^„), type(TJ)}.

Since type(D) = ffo was an arbitrary element of AL4]\{type(v4i), ... , type(yl„)} ,

we may conclude that all the scalars d„(f) associated with f are equal.

We call the rational d in Proposition 1.5 the scalar associated with f.

Theorem 1.6. Let A and B be trimmed n-tuples of subgroups of Q such that

G = G(A) and H = G(B) are strongly indecomposable. Then G ~ H if and
only if 6[A] = 6[B] and rG[M] = rH[M] for all sets of types M c A[A] = A[B].

Proof. Let f:G(A)^G(B) be an isomorphism, and let d be the scalar associ-

ated with /. Then, since / is an isomorphism, diagram (da(f)) implies that

dDa[A] = Da[B] for all a £ A[A]. Thus, dS[A] = 6[B] and 6[A] = 6[B].
For the converse, note that by Lemma 1.1(c), the equalities rG[M] = rH[M]

imply that G and H are quasi-isomorphic. Let y/: G —> H be a quasi-

isomorphism and let d be the scalar associated with y/ (Proposition 1.5).

Let c t¿ 0 in Q be chosen so that c6[A] = 6[B]. We will show that the
quasi-isomorphism <p:G —► H given by tp = d~xcyi is an isomorphism. By the

choice of c, for each o £ A[A], there is a commutative diagram,

G    ^   Da[A]
<t> [ I c
H    -»    D„[B]

with c an isomorphism.   If we take a = type(2?,-), then Da[B] = B¡, since

B is trimmed. From the embedding H ®-^ 0 Da[B], it follows that <p(G) ç
Bx © • • ■ © Bn . However, since <p(G) is quasi-equal to H, mtp(G) C H for

some positive integer m . Thus, m<p(G) c H n m(Bx © • • • © B„) = mH by

purity of H in Bx © • • • ®Bn . Therefore, tp(G) C H. By symmetry, (p~x(H) =

dc~xy/~x(H) c G and <p is an isomorphism.

Remark. The results above hold (with exactly the same proofs) if we substitute

A[A] = {ff = type(Bx)\Bx is a subgroup of Q such that G = G(A) is quasi-
isomorphic to G(i?i, B2, ... , B„) for some B2, ... , Bn subgroups of Q} .

Consequently, our invariants for strongly indecomposable G(A) 's are a direct

generalization of those given by Richman for doubly incomparable groups (see

[Ri-1, p. 176, conditions (1), (2) and (3)]).

2. Strongly indecomposable groups of the form G[A]

In this section we apply a quasi-isomorphism duality that sends groups of the

form G(A) to groups of the form G[A], as described in [AV-4].
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If L is a finite distributive lattice of types, then an L-group is a pure subgroup

(equivalently, homomorphic image) of a completely decomposable group with

typeset contained in L. Define 5¿ to be the category with quasi-equality

classes of L-groups as objects and with morphism sets Q <8>z Homz(G, H).

Isomorphism in this category is quasi-isomorphism and (quasi-equality classes

of) strongly indecomposable L-groups are the indecomposable objects in Bl ■

For convenience, we often identify an L-group with its quasi-equality class in

BL.

Let a:L -* L* be a lattice anti-isomorphism of finite lattices of types and

write a(x) = x*. Such anti-isomorphisms are easy to find. Indeed, any finite

distributive lattice is isomorphic to a lattice of subrings of Q [Ri-3] and any

subring of Q is equal to a localization Z/> of Z . Then the map ZP —> ZP. ,

where P* is the complement of P in the set of primes, provides a lattice

anti-isomorphism.

There is a duality F = F(a):BL —> Bl defined by F(G) = H (more pre-
cisely, the quasi-equality class of H), where QH = (QG)* = Hom^QG, Q),

QH[x*] = QG(x)1 = {f£ (QG)*\f(G(x)) = 0}, and QH(x*) = QG[x]± for
each x £ L. If f:G -► H, then F(f) = f*:H* -> G* is the restriction of
f*:(QH)* -* (QG)* to F(H). Moreover, F sends a rank-1 group of type

x to a rank-1 group of type x* ; G(AX, ... , A„) to G[F(AX), ... , F(A„)] and
conversely; and sends balanced sequences in BL to cobalanced sequences in Bl

and conversely. An exact sequence 0—> G —> H —y K —>0 in Bl is balanced if

0 —► G(t) —> H(x) -» K(x) -+ 0 is exact in BL for each x £ L and cobalanced

if 0 -» G[t] -* H[x] -> K[x] -> 0 is exact in BL for each x £ L. We will
call F the duality defined by a. A complete discussion of this duality may be

found in [AV-4].
The duality F , being defined only up to quasi-isomorphism, will not suffice

for isomorphism invariants. However, F can be employed to dualize Proposi-

tion 1.5, a quasi-isomorphism result which is the key to the proof of Theorem

1.6.
The following notation is dual to that of § 1, and the proofs of results cor-

responding to results in §1 can also be dualized (see [Le] for details). For

G = G[A] = (Ax © • • • © An)JDiag(A), denote G'> = G/\mage(@ Ak\k ¿ i, j)
and let 7i'->: G -» GiJ be projection. Note that G'j is a rank-1 factor of G with

type equal to type(A¡ + Aj). The «-tuple A is cotrimmed if the image of each
A¡ is pure in G[A]. If A is an arbitrary «-tuple, there is a cotrimmed «-tuple

B with G[A] = G[B].
For each type t there is an equivalence relation, called x-equivalence, on

{Ax, ... , An} defined by (1) A¡ is r-equivalent to A¡ and (2) A¡ is r-equiv-

alent to Aj if there is a sequence i = ix, Í2, ... , ik = j of distinct integers

from {1, ... , «} such that x £ type(G!r'r+') for 1 < r < k . This equivalence

relation is distinct from that defined in § 1.

Let A be a cotrimmed «-tuple of subgroups of Q. If X is a proper subset

of {1,...,«} , define DX(A) = f[{A¡ + Aj\i £X,j&X}CQ. There is a pure
embedding px:DX(A) -> G = G[A] given by px(a) = (ax, ... , a„) + Diag(^),
where a¡ = a if i £ X and a¡ = 0 otherwise. It is easy to check that if Y is

the complement of X in {1,...,«} , then DX(A) = DY(A) and px = -py ■
In particular, if x is a type such that rank(G(r)) = 1 , there are precisely two
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T-equivalence classes, indexed, say, by X and Y. If, in addition, type G(t) =

T, denote DX(A) by DT(A), and px by px, noting that px is uniquely defined

up to sign. The case typeG(r) = x occurs, for example, when t = type ,4, for

some i.

Define A(A) = {r|rankG(T) = 1 and typeG(t) = t} and 6(A) = (Dx(A)\x £
A(A)). The objective of this section is to prove the following theorem.

Theorem 2.1. Let A = (Ax, ... , An) and B = (Bx, ... , Bn) be cotrimmed
n-tuples of subgroups of Q such that G = G[A] and H = G[B] are strongly

indecomposable. Then G and H are isomorphic if and only if 6(A) = 6(B)

and rG(M) = rn(M) for each M ç A(A) = A(B). Moreover, the endomorphism

ring of G is a subring of Q.

The fact that the endomorphism ring of a strongly indecomposable group of

the form G[A] is a subring of Q follows from Lemma 1.1(a) and the fact that
the duality F maps G[A] to G(F(A)).

Given a trimmed «-tuple A = (Ax, ... , A„) of subgroups of Q, let L(A)

be the finite lattice of types generated by {type(^,)|l < i < n} under sups and

infs. As noted above, there is a lattice of types L*(A) and an anti-isomorphism

a:L(A) -» L*(A) with q(t) = x*. For each i, choose a subgroup A* of

Q such that type(A*) = type(^,)*. Denote A* = (A*,...,A*n) and note

that L*(A) = L(A*) and that F(A¡) = A*, where F = F(a):BL{A) -» BL(A.)

is the duality defined by a. Let Lq(A) be the lattice of subgroups of Q
generated by the A¡ 's and extend the mapping A¡ -> A* to a correspondence

*: Lq(A) -> Lq(A*) by sending sums to intersections and intersections to sums.

In general, the correspondence *:Lq(A) -> Lq(A*) is onto, but not one-to-one.

Clearly, the lattices Lq(A) and Lq(A*) contain representatives for each type in

L(A) and L(A*), respectively. The correspondence * just described is called
a duality on A induced by a .

Lemma 2.2. Let A be a trimmed n-tuple of subgroups of Q and let a: L(A) ->

L*(A) be an anti-isomorphism of lattices of types. Then there is a duality *

on A induced by a such that A* is cotrimmed. Moreover, if X is a subset of

{1, ... , «}, then the maps nx:G(A) —> /J>xM] and px'-Dx(A*) —> G[A*] are
dual. That is, F(nx) = Px • where F is the duality defined by a.

Proof. The fact that * can be chosen so that A* is cotrimmed is a consequence

of the fact that if A is any «-tuple, then there is a cotrimmed «-tuple B such

that G[A] = G[B]. The rest of the lemma is a straightforward exercise in vector

space duality, recalling that F(G(/4)) = G[^4*].

The key to the proof of Theorem 2.1 is the next proposition, which is the

dual of Proposition 1.5.

Proposition 2.3. Let A and B be cotrimmed n-tuples of subgroups of Q such

that G[A] and G[B] are strongly indecomposable and suppose that f: G[A] —►

G[B] is a quasi-isomorphism. Then there is a nonzero rational d such that for

each a in A(A) = A(B), the following diagram commutes.

DM)    ^    G[A]
d I If

Da(B)    -    G[B]
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Proof. Let a:L(A) —► L(A*) with a(x) = x* be an anti-isomorphism and

Lq(A) —> Lq(A*) a duality on A induced by a, as defined above. Since each

type(5,) £ A(B) = A(A), B¡ is isomorphic to a group in Lq(A) . Thus, we

may choose B* in Lq(A*) such that type(/J,)* = type(B¡) and set B* =

(B*, ... , B*). Then F(f) = /*:F(H) -> F(G) is a quasi-isomorphism with
F(G) = G(A*) = G* and F(H) = G(B*) = H*. By Proposition 1.5, there is a
scalar d* such that the following diagram commutes.

G*    e-%    ®{Da.[A*]:a*£A[G*]}

(2.3.1) Î/* U*
H*    -»    0{ö(7.[5*]:ff*6A[//*]}

©?ta

Note that to make the diagram commute using a single scalar öf*, it is necessary

to make the proper choice of sign on the various na . Applying F~x = F(a~x)

and Lemma 2.2 to the diagram (2.3.1), we obtain a commutative diagram

®{DM):o£A(A)}    e4"     G

id if

@{Da(B)-0£A(B)}    -     H

This completes the proof.

The proof of Theorem 2.1 is now a straightforward dualization of the proof

of Theorem 1.6, using the above proposition and the dual of Lemma 1.1(c).

The latter result appears as Corollary I in [AV-4].

3. Direct sums of strongly indecomposable groups

In this section isomorphism invariants for strongly indecomposable groups of

the form G(A) or G[A] are extended to isomorphism invariants for arbitrary

direct sums of such groups. This is not automatic, as direct sum decompositions

into strongly indecomposable groups of the form G(A) or G[A] need not be

unique up to isomorphism and order. There is, however, a "local" uniqueness

which is described next.
Let G and H be finite rank torsion-free abelian groups such that End(G)

and End(H) are (isomorphic to) subrings of Q. Then G and H are isomor-

phic at a prime p if there are homomorphisms f:G —> H and g:H —► G such

that both fg and gf are integers relatively prime to p—in particular G and

H are quasi-isomorphic.
Let C be a class of finite rank torsion-free abelian groups with endomorphism

rings subrings of Q. A finite rank torsion-free abelian group H with End(H)

a subring of Q is locally in C if for each prime p in End(H), there is a G

in C such that H is isomorphic to G at p. The class C is said to be locally

closed if End(H) is a subring of Q and H locally in C implies that H is
isomorphic to a group in C.

Lemma 3.1 [AHR]. Let C be a class of torsion-free abelian groups of finite rank

with endomorphism rings subrings of Q.

(a) // A © B = 0{C,|i G /), with each C, in C, then A = @{Aj\j £ J} for
some set J with End(Aj) a subring of Q and Aj locally in C for each j £ J.

(b) Two groups 0{C,|/' G /} and (B{Dj\j g J}, with each C, and Dj in C,
are isomorphic if and only if for each G in C and prime p, there is a bijection
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from {i G 7|G ¿s isomorphic to C, at p} to {j £ J\G is isomorphic to Dj

at p}.

Two classes C are of interest here: the class of strongly indecomposable
groups of the form G(A) and the class of strongly indecomposable groups of

the form G[A]. In either case, the endomorphism rings of groups in C are

subrings of Q (Lemma 1.1(b) and Theorem 2.1). Summands of direct sums of

groups in C are again direct sums of groups in C provided that C is locally

closed, by Lemma 3.1(a). The next lemma shows that this is, in fact, the case

for the classes we are considering.

Lemma 3.2. The class of strongly indecomposable groups of the form G(A) (re-

spectively, G[A]) is locally closed.

Proof. The proof for groups of the form G(A) is given in [AV-2, Proposition

3.4]. The proof for groups of the form G[A] is dual and, as such, is omitted.

As a consequence of Lemmas 3.1 and 3.2, isomorphism invariants for direct

sums of strongly indecomposable groups of the form G(A), respectively G[A],

can be given. First we must translate the isomorphism invariants (given in

Theorems 1.6 and 2.1) for the strongly indecomposable G(A) 's and GL4]'s

into a form suitable for this context. Our treatment follows that presented in

[Ri-1]. We give an explicit argument for direct sums of strongly indecomposable

groups of the form G (A) and leave the analogous definitions and results for

direct sums of strongly indecomposable groups of the form G[A] to the reader.

If A is a trimmed «-tuple of subgroups of Q, define a matrix EA with rows

indexed by types a £ A[A] and columns indexed by primes p as follows. For

each such a and p , let e(a, p) be the infimum of the set of all integers m

such that pma/b £ DM] f°r some integers a and b relatively prime to p.

Set EA = (eap), where eap = e(a, p) - min{e(r, p) ^ -oo|t g A[A]}. The

pth column of EA specifies the relative positions of the groups Da[A]p, the

localization of Da[A] at p, as subgroups of Q.

In contrast to doubly incomparable groups, the strongly indecomposable

G(A) 's are not known to be classified up to isomorphism by equivalence classes

of the vector 6[A] alone. To utilize Theorem 1.6, the vector r[A] = (rG[M ]\M c

A[A]), where G = G(A) and rG[M] = rank G[M], is also needed.

Lemma 3.3. Let A and B be trimmed n-tuples of subgroups of Q such that

G(A) and G(B) are strongly indecomposable. Then the following are equivalent:

(i)   G(A)~G(B),
(ii)   6[A] = 6(B) and r[A] = r[B],

(iii)   A[A] = A[B], EA = EB and r[A] = r[B].

Proof, (i) if and only if (ii) is Theorem 1.6. (ii) if and only if (iii) has the same

proof as that of Theorem 2.1 of [Ri-1], noting that r[A] = r[B] appears in both

statements and that the pth column of EA specifies the relative position of the

groups Da[A]p in Q.

Denote by C the class of strongly indecomposable groups of the form G (A).

A direct sum of groups in C may be specified by a subfamily <p of {A\A is

a trimmed «-tuple of subgroups of Q with G(A) strongly indecomposable}.

Let G(cf>) denote 0{G(^)|^ G ç>}. Define TA = {(a, r)\a £ A[A], r = r[A]}
and associate with 0 the set ¿7~[<t)] = {TA\A £ </>}.   Note that, by Lemma
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1.1(c), the set TA determines G(A) up to quasi-isomorphism. Next associate

to each T in ^\4>] and prime p the multiset ^(T, p) = {EA(-, p)\A £ 4>,

and T = TA}, viewing EA(-, p) as a function from T to Z U {-00} with

EA((a,r),p) = EA(a,p) = eap. Here EA is the matrix (eap\a £ A[A],

p prime) defined prior to Lemma 3.3. Finally, regard ^ as a function from

the Cartesian product ¿7~[(f>] x {primes} into multisets of functions. As noted

in [Ri-1], the function ^ does not record the fact that the functions EA(-, p)

and EA(-, p') come from the same A in 4>. Thus the family {G(^)|^4 g <fi}
cannot be recovered from !T\§] and ^ , a reflection of the fact that noniso-

morphic multisets of groups in C can produce isomorphic direct sums.

Theorem 3.4. Let </> and (j)1 be families of trimmed n-tuples A of subgroups of

Q with G(A) strongly indecomposable. Then (¡){G(A)\A G (j)} is isomorphic to

®{G(A)\A G 4>'} if and only if F\</>] = ftf] and fy = fy .
Proof. In view of Lemma 3.1 (b), G(<f>) ~ G(<j)') if and only if for each trimmed

«-tuple B such that G = G(B) is strongly indecomposable and each prime p ,

there is a bijection from {A £ <f>\G is isomorphic at p to GL4)} to {A' £ <f>'\G

is isomorphic at p to G(A')} . But G is isomorphic to G(A) at p if and only

if TA = Tg and EA(-, p) = Eb(- , p), as can be seen by a proof analogous

to that of Lemma 4.3 of [Ri-1]. An appeal to the definitions of £7~[4>] and ^
establishes the theorem.

4. Isomorphism invariants for a class of mixed groups

In this section, machinery developed by F. Richman in [Ri-2] is used to

extend the isomorphism invariants given in §3 to isomorphism invariants for a

large class of mixed abelian groups. As in §3, the interested reader can dualize

our results involving strongly indecomposable groups of the form G(^4) to the

corresponding results for strongly indecomposable groups of the form G[A].

Suppose that G is a finite rank torsion-free abelian group with End(G) a

subring of Q. Define x to be the inner type of G, the infimum of the types
of pure rank-1 subgroups of G. It is part of the folklore of the subject that

G ~ U ® G', where G' is a torsion-free group whose inner type is the divisible

part of x (for each p the pth entry is 0 or 00, according to whether x is finite

or infinite at p) and U is a subgroup of Q with type equal to the reduced part of

t , i.e. there exists u £ U and a height vector h £ x such that p-height(u) = h(p)

whenever h(p) is finite, and p-height(u) = 0 whenever h(p) is infinite. Also,

G is strongly indecomposable if and only if G' is strongly indecomposable.

Finally, it is easy to check that G = G(A) for some «-tuple A of subgroups of

Q if and only if G' = G(A') for some «-tuple A' of subgroups of Q, where

if A' = (A\, ... , A'„), then A = (Ax, ... , An) with A¡ ~ U® A\.
Let Co be the class of strongly indecomposable groups of the form G(A),

for A = (A 1, ... , A„) a trimmed «-tuple of subgroups of Q such that f), A¡

is isomorphic to a subring of Q. This last condition guarantees that the inner

type of G(A) is divisible, i.e. the type of a subring of Q.
Each rank-1 torsion-free abelian group X can be identified with a valuated

cyclic group U = (x), for 0 ^ x g X, where the valuation on U is given

by the height of elements computed in X. This valuation on U is a special

valuation, as it is gap-free, vp(px) = vp(x) + 1. There is a notion of types of
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valuated torsion-free cyclic groups that extends the notion of types of rank-1

torsion-free abelian groups, as described in [Ri-2, p. 463]. For the remainder

of this section, type refers to the type of a valuated torsion-free cyclic group.

Let U be a cyclic torsion-free valuated group and H a finite rank torsion-

free group valuated by the height valuation. Then U ® H is a valuated group

with valuation given by vp(x ® h) = oc if vp(h) = oo and vp(x ® h) = vp(pnx)

if vp(h) = « is finite.
Define TF to be the class of valuated direct sums of valuated subgroups of

torsion index in groups of the form U ®G, where

(4.1) U is a cyclic torsion-free valuated group with reduced type, G G Co,

and inf{type(f/), inner type(G)} = type(Z).
It follows from the above remarks that all direct sums of strongly indecom-

posable groups of the form G(A) are included in TF . Furthermore, the en-

domorphism ring of each U ® G is a subring of Q, since the endomorphism

ring of each G in Co is a subring of Q by Lemma 1.1(b).
Define a category W as follows: the objects of W are valuated groups and a

morphism in W between valuated groups A and B is a homomorphism from

a valuated subgroup of torsion index in A to B. The category W is a valuated

group extension of a category defined by R. B. Warfield (see [Ri-4]).

Two valuated groups are isomorphic in W if and only if they have iso-

morphic full-rank valuated subgroups [Ri-4, Theorem 2.1]. In particular, any

element of TF is WMsomorphic to a direct sum of valuated groups of the

form U®G with U and G satisfying (4.1).
Define Mix(TF) to be the class of mixed groups H with height valuation

such that H has a valuated subgroup K in TF satisfying.

(4.2) K is a nice full-rank subgroup of H and H/K has a nice composition

series (there is a smooth ascending chain 0 c Nx c • • • C Na c • • • of nice

valuated subgroups of H/K whose union is all of H/K and such that Na+X/Na

is cyclic of prime order.

Lemma 4.3 [Ri-2]. Let H be an element of Mix(TF) and K in TF a valuated
subgroup of H satisfying the condition (4.2). Then the isomorphism class of
H, as an abelian group, is completely determined by the Ulm invariants of H

and the isomorphism class of K in W.

Proof. Recall that TF is the class of valuated direct sums of valuated groups

taken from the class D of subgroups of torsion index in groups of the form

U ®G satisfying (4.1). Each group in D is countable, each valuated subgroup

of a group in D is nice [Ri-2, Theorem 8.3], and D is closed under full-rank

subgroups. Furthermore, the endomorphism ring of each U ® G is a subring of

Q, the endomorphism ring of each such group coincides with its endomorphism

ring in W [Ri-2, Theorem 8.1], and the class of U ® G's is locally closed as

a consequence of Lemma 3.2. An application of the global Azumaya theorem

in the category W given in [AHR, Theorem B], shows that TF is closed in

W under valuated direct summands. Thus, [Ri-2, Corollary 6.6 and Theorem

5.3] can be applied to TF to show that the group isomorphism class of H

is completely determined by its Ulm invariants and its IF-isomorphism class.

Finally, H and K are isomorphic in W, which completes the proof.

As remarked above, K is isomorphic in W to a direct sum of valuated

groups of the form (7<8>G,with U and G satisfying (4.1) and each such U®G



ABELIAN GROUPS 723

has IF-endomorphism ring a subring of Q. The global Azumaya theorem in the

category W [ARH, Theorem D] gives a criterion for two direct sums of such

groups to be isomorphic in W, analogous to that given in Lemma 3.1. Our

final task is to specify a collection of isomorphism invariants for such sums, an

analog in W of the invariants for direct sums given in §3.

A direct sum of groups of the form U ® G satisfying (4.1 ) is determined by a

family SF of pairs (U, A), where U and G = G(A) satisfy (4.1). Denote by
G(!F) the valuated direct sum of the valuated groups {U ® G(A)\(U, A) £

y} . To each pair (U, A) g SF, associate the set of triples T[U, A] =

{(type(U), a, rL4])|ff G A[A]} , which specifies the quasi-isomorphism class of

the abelian group U® G(A). Then to the family SF we associate the set ¡Jgr =

{T[U, A]\(U, A) £ ¡F} . Finally, to each element T of ET<? and prime p , as-

sociate Jthe multiset g>(T, p) = {(V, p(A,p))\(U, A) £ F, T[U, A] = T} ,
where U is the class of all torsion-free cyclic valuated groups which are W-

isomorphicto U at p (see Theorem 8.2 of [Ri-2]), and y>(A,p) is the function

from T to Z U {-oo} defined by <p(A, p)(type(U), a, r[A]) = EA(a, p).

Let H be an element of Mix (r.F) and K, K' in TF valuated subgroups

of H satisfying (4.2). Write K = 0{<7 ® G(A)\(U, A) £ ¥} and K' =
0{(7®G(A)\(U, A) £ y} . Since K and K' are isomorphic in W, Theorems

8.2 and 9.3 of [Ri-2] and Theorem 3.4 above imply ¿7$- = 7>- and %&■ = %gr,.
Thus, these sets depend only on H and we may use the notation %H = <§? and

¡Th =!T?.

Theorem 4.4. Let H and H' be two elements of Mix(TF). Then H and H'
are isomorphic as abelian groups if and only if 5TH = ^h< . %h = %w and H

and H' have the same Ulm invariants.

Proof. Let K c H and K' c H' be nice subgroups belonging to TF and sat-

isfying (4.2). By Lemma 4.3, H and H' are isomorphic as abelian groups

if and only if H and H' have the same Ulm invariants and K and K'

are isomorphic in W. Write K = 0{c7 ® G(A)\(U, A) £ &} and K' =
0{f/®G(^)|(L/,^)Gy},where U and G(A) satisfy (4.1) for each (U, A)
in &~ U y. By [AHR, Theorem D], the groups K and K' are isomorphic

in W if and only if for each prime p and valuated group V ® G(B) satisfy-

ing (4.1), there is a bijection from {(U, A) £ 9~\U ® G(A) is isomorphic in

W to U ® G(B) at p} to {({/, A) £ ^'\U ® G(A) is isomorphic in W to
U ®G(B) at p} . However, by Theorems 8.2 and 9.3 of [Ri-2] and Theorem
3.4 above, U ® G(A) is isomorphic in W to V ® G(B) at p if and only if

T[U, A] = T[V, B] and (V, (p(A,p)) = (V, tp(B, p)). This completes the
proof.
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Furthermore, we recommend that paper to the reader for an approach to the

study of Butler groups via "equivalence theorems".
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