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A GENERAL CONDITION FOR LIFTING THEOREMS

E. ARTHUR ROBINSON, JR.

Abstract. We define a general condition, called stability on extensions T of

measure preserving transformations S . Stability is defined in terms of relative

unique ergodicity, and as a joining property. Ergodic compact group extensions

are stable, and moreover stable extensions satisfy lifting theorems similar to

those satisfied by group extensions. In general, stable extensions have relative

entropy zero. In the class of continuous flow extensions over strictly ergodic

homeomorphisms, stable extensions are generic.

1. Introduction

In many cases, ergodic properties pass from extensions to factors. However,

the converse is rarely true. Ergodic properties usually do not lift form factors

to extensions unless the extension satisfies some additional conditions. It is

these additional conditions which we wish to study in this paper. We will refer

to such conditions quite generally as lifting conditions. Of course many very

specific lifting conditions exist, but they usually fail to be of much interest. The

point is to find lifting conditions which are as general as possible, both in terms

of how prevalent they are and how many ergodic properties they lift. The best

known example of the kind of general lifting condition we will be interested in

is for T to be a weakly mixing compact group extension of S. Such extensions

satisfy many "lifting theorems", i.e., a great many ergodic properties, including

mild mixing [29], multiple mixing [32], the K-property [26], and the Bernoulli

property [31], automatically lift from S to T. Moreover, at least within the
class of all group extensions, those which are weakly mixing are generic [20,

28].
In this paper we study a general condition for extensions T of S called sta-

bility which generalizes the condition of being a group extension. In particular,

every ergodic group extension is a stable extension, and like group extensions,

stable extensions satisfy many lifting theorems.

In Part I of the paper we define stability in terms of a more general property

of extensions: relative unique ergodicity. Group extensions are well-known to

be relatively uniquely ergodic, and it turns out that many of the proofs of lift-

ing theorems in the group extension case (at least implicitly) involve this fact.

However, even though a general definition of relative unique ergodicity is easily
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formulated, it is quickly seen that in itself it is insufficient to imply any lift-

ing theorems. Our definition of stability strengthens the definition of relative

unique ergodicity enough to overcome this insufficiency.

After defining stability we study the basic properties of stable extensions. An

important step is to characterize stability in terms of the theory of joinings.

This allows us to show that stability is essentially an isomorphism invariant

property (unlike relative unique ergodicity). The theory of joinings also pro-

vides an important link to lifting theorems. We show that many of the lifting

theorems already known for group extensions generalize to stable extensions,

and we obtain some new lifting theorems as well. In particular we obtain lifting

theorems for the .if-property, mild mixing, strong mixing, and partial mixing.

The question of whether or not the Bernoulli property lifts to stable extensions

remains open.

Among the ergodic properties which lift to stable extensions is a class of prop-

erties which behave like the K-property in the sense that their 'complements'

satisfy an analogue of the Pinsker Lemma. We call these properties natural

properties. Our study of natural properties leads us to consider Glasner's theory

of quasifactors [16]. In addition to the AT-property, natural properties include

weak mixing, mild mixing and, somewhat surprisingly, entropy zero.

In Part II of the paper we ask the general question, what extensions are stable?

It is easy and natural to generalize the proof that group extensions are stable

to the case of arbitrary distal extensions. We also study the special case of

compact affine extensions. We show that a compact affine extension is distal

if and only if it has relative entropy zero, or equivalently, the automorphism

involved has topological entropy zero. We then prove that in general stable

extensions have relative entropy zero. In particular, this raises the question of

whether stable extensions are really the same as distal extensions, leading us to

look for examples of stable extensions which are not distal.
In their paper On W1- [18], Glasner and Weiss show that the generic "flow

extension" T over an irrational rotation 5 is not distal and also satisfies a cer-

tain property which we call the GW-property. We show that the GW-property

implies stability, giving a negative answer to our questions. However, this an-

swer is not completely satisfying from the point of view of lifting theorems

because the examples produced this way always have an irrational rotation fac-

tor. Our major result in Part II extends the result of [18] to the weakly mixing

case. We show that the generic flow extension T of a weakly mixing transfor-

mation S is stable, assuming only that the flow involved is uniquely ergodic.

If the flow is also weakly mixing, then in combination with [18], we get weakly

mixing nondistal stable extensions.

As we noted above, our main goal in this paper is to examine the extent to

which more general sorts of extensions satisfy the kind of lifting theorems which
group extensions satisfy. A different approach to the same goal is pursued in
Rudolph's paper [33] on lifting the ^-property to certain R" and Z" action

extensions. Rudolph's results are both more and less general than ours. In

particular, he specifically uses the fact that the A>property and weak mixing

are what we call natural properties. However, the exact relationship between

Rudolph's results and ours remains unclear.

Because we prove a genericity theorem for stability, the results in this paper

are also related to the many results stating that ergodic properties lift to various
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sorts of "generic" extensions. An early example of such a result says that ergod-

icity and weak mixing lift generically to compact abelian group extensions [20].

Later more general examples of results of this type appear in [25, 17, and 28].

Part I. The properties of stable extensions

2. Preliminaries

2.1. Basic definitions. Our basic objects of study in this paper will be exten-

sions of measure preserving dynamical systems. Although many of our results

hold in greater generality (i.e., for actions of Z" and R"), we will regard a

measure preserving dynamical system as a quadruple (X, 38, p, T) where:

(i) (X ,33) is a standard Borel space, (cf. [23]), where 38 denotes the

Borel a algebra on X.
(ii) p is a probability measure on (X,38).

A triple (X, 38, p) consisting of a standard Borel space and a probability

measure is called a Lebesgue probability space} When no confusion can arise we

will sometimes denote (X, 38) or (X, 33, p) by X. The set of all probability
measures on (X, 38) will be denoted by X*.

(iii)  T is a Borel automorphism of (X, 38) which preserves the measure

p.

This means p(T~xE) = p(E) for all E £ B. Equivalently, p is T-invariant.

The set of all T-invariant measures p will be denoted by Xf . Sometimes for

simplicity we denote (X, 38, p, T) by T, or refer to T as a measure preserv-

ing transformation. A set E e 38 is T-invariant if T~XE = E. Two measure

preserving transformations (X,38, p., T) and (Y, srf , v, S) are isomorphic

if there exist invariant subsets Xq Q X, Y0 ç Y, with p(X0) = "(*o) = 1. and

a Borel mapping a : X0 -* ïo such that Sa = aT. We say a is an isomor-

phism from T to S. Two measure preserving transformations T and V on

the same space (X ,38, p) are equivalent if they are isomorphic via a = Id,
where Id denotes the identity map. If X^ = {p} then T is called uniquely

ergodic. Clearly if T is uniquely ergodic then it is ergodic. Unique ergodicity

is generally not an invariant of equivalence or isomorphism.

Suppose (X, 38, p) and (Y ,s/ , v) are Lebesgue spaces and n : (X, 38) —>

(Y,sf) is a Borel mapping, i.e. n~xsf ç 38 . We define n* : X* -> Y* by

(1) (n*p)(E) = p(<p-xE).

We say that n is a factor map if (n*)~x{v} ^ 0. We say n is measure

preserving if v = n*p. Notice that every measure preserving map is a factor

map. In this paper we consider only factor maps which are measure preserving.

For a measure preserving factor map n we let

X*\Y = {Ç£X*:n*Ç = v},

noting that p £ X* \ Y . The measures Ç £ X* | Y will be called a lifts of v .

'Our definition of a Lebesgue space, which is equivalent to (but not identical to) the usual

definition, follows [42]. The usual definition is the completion (X, B, p.) of (X, 3S) with respect

to the measure p..
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The most basic example of a factor map between Lebesgue spaces is the pro-

jection map to a coordinate in a product space. Let (Y, sé , l>) and (Z ,W, co)

be Lebesgue spaces and let (X, 38, p) = (Y, sé , v) x (Z , f7, of) be the prod-

uct space. Let n(x) = n(y, z) = y be the projection map to the first coordinate.

Clearly n is a measure preserving factor map. In this situation we have the

following well-known disintegration theorem.

Lemma 2.1. For any 8 £ (Yx Z)* \ Y there exists a mapping y i-+ 6y : Y —> Z*,

unique v a.e., such that for any bounded measurable function f

(2) [     f(y,z)d6= f [ f(y,z)ddy(z)dv(y).
Jyxz Jyjz

Given two measure preserving dynamical systems (X,38, p,T) and (Y,

sé ,v ,S), suppose n : (X ,38, p,T) -* (Y ,sé ,v) is a measure preserv-

ing factor map satisfying Sn = nT. We say that (Y, sé ,v , S) is a factor

of (X ,38, p, T), and (X ,33 , p,T) is an extension of (Y, sé , v, S). We

denote this by T -^> S or T —► S. For a given extension T A S, let us define

(3) xi i y = x* | y n x*T.

We call the measures p £ X} \ Y relative invariant measures.2

Now suppose T ^> S and V ^ S' are extensions. We say that the two

extensions are isomorphic if there exists an isomorphism a from T to V and

an isomorphism ä from S to S' such that an(x) = na(x), for all x in an

invariant set Xx = n~x(Y0), where Y0 is S the invariant set of full measure

from the definition of the isomorphism a .

Note. This is more than just saying that T is isomorphic to T and S is

isomorphic to 5"'.

2.2. Some topological considerations. Every standard Borel space can be given
a compact metric topology compatible with its Borel structure (cf., [23]). Al-

though this topology is highly nonunique, there is a natural unique standard

Borel structure 38* on X*—it turns out to be the Borel structure induced by

the weak- * topology on X* corresponding to any compatible compact metric

topology on (X, 33), (cf., [37]). For a Borel automorphism T on a standard

Borel space (X, 33), we define T* : (X*, 33*) -> (X*, 33*) by

(4) T*p(E) = p(T~xE).

Then T* turns out to be a Borel automorphism of (X* ,33*).

Usually more topological structure will be necessary for our purposes. Sup-

pose (X ,33) has been given a compatible compact metric topology, and that

T is a measure preserving homeomorphism of X. We say that (X,33, p, T)

is a topological dynamical system. Clearly in this case T* is a homeomorphism

of X* in the weak-* topology. We say T is minimal if every point x £ X has

a dense orbit, and T is strictly ergodic if it is minimal and uniquely ergodic. In

many situations we may assume strict ergodicity without loss of generality: the
Jewitt-Kreiger Theorem [22] says that any ergodic transformation is isomorphic

to a strictly ergodic homeomorphism of a compact metric space. The following

more general result is due to Weiss [41].

2A slightly different notion of a relative invariant measure is studied in topological dynamics

(cf., [15]).
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Theorem 2.2. Every extension T -^ S, with T ergodic, is isomorphic to an

extension T -i S where V and 5" are strictly ergodic topological dynamical

systems, and the factor map %' is continuous.

Thus we may assume that an arbitrary extension T A S has a topological

model which is valid up to isomorphism. Fixing such a model, we will give

X* and Y* the corresponding weak-* topologies. This leads to the following

lemma.

Lemma 2.3. If T —> S is an extension with T ergodic, then there exists a

choice of metrics dx- on X* and dy on Y* such that the maps T*, S*, and

n* : X* -> Y* are continuous and affine.

Corollary 2.4. The sets X* \ Y, X*-, and Xj \ Y are closed and convex.

2.3. Skew-product extensions and cohomology. Given a measure preserving dy-

namical system (Y, sé , v, S) and a Lebesgue probability space (Z ,W, co),

let (X, 33, p) = (Y, sé , v) x (Z, W, eu). For each y 6 Y let Ry be a mea-
sure preserving Borel automorphism of (Z ,W, a)), where the dependence on

y £ Y is measurable in the sense that

(5) T(y,z) = (Sy,Ryz),

is a Borel automorphism. Then (5) defines a measure preserving dynamical

system (X, 33, p, T) which is called a skew-product extension. The following

standard result is usually attributed to Rohlin:

Lemma 2.5. Any ergodic extension V -> 5" is isomorphic to a skew-product

extension T -> S, of the form (5).

In spite of Lemma 2.5, the general skew-product extension (5) is seldom of

any practical use. More typically we have the following situation. Let G be a

locally compact group, and let (Z, W, to, hs), g £ G, be an ergodic measure

preserving action of G on a Lebesgue space. Given a mapping <p : Y —> G we

define a skew product

(6) T(y,z) = (Sy,h^z),

called an action extension. The map tp is called the cocycle of the extension.

A cocycle q> is called a coboundary if there exists a measurable function y/ :

Y —» G such that <p(y) = y/(Sy)y/~x(y) and two cocycles y>x and y>2 are

called cohomologous if <px(y) = yf(Sy)y>x(y)y/~x(y) for some y/ as above (these

equations are only required to hold mod v). If G is abelian we often switch

to additive notation. In that case two cocycles are cohomologous if they differ

by a coboundary. Some important special cases of action extensions are the

following:

(i) If G = Z, the group of integers, <p(y) = 1 for all y £ Y, and hx = R
then (6) defines the Cartesian product T = S x R.

(ii) If G is a compact metric group then it acts transitively on itself Z = G

by translation. This action preserves normalized Haar measure eu. In

this case T is a compact group extension and has the form

(7) T(y,g) = (Sy,<p(y)g).

(iii) If G = R, the group of real numbers, then hs is a flow and the corre-

sponding extension (6) is called a flow extension.
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3. Stable extensions

There are two equivalent ways to define stability: (1) via relative unique

ergodicity, and (2) as a joining property. Since each has certain advantages we

will discuss both of them. We begin with relative unique ergodicity.

3.1. Relative unique ergodicity. Suppose (X,33,p,T) and (Y, sé , v, S)

are measure preserving dynamical systems such that T is an extension of S

corresponding to a factor map % , or in other words T -^ S. Since we always

assume a factor map it is measure preserving, we have p £ X*-\Y. If p is the

only relative invariant measure, that is if

(8) X*T\Y = {p},

then we say the extension is relatively uniquely ergodic (or RUE for short). The

following examples illustrate this concept:

(i) The trivial extension T —> T is RUE.
(ii) If 5 denotes the trivial dynamical system (i.e., if S is the identity on

Y = {y}), then T -► S is RUE if and only if T is uniquely ergodic.
(iii) Let S and R be disjoint (cf., §3.5) measure preserving transformations.

If R is uniquely ergodic then S x R^ S is RUE.
(iv) The best known example of an RUE extension is given by the following

theorem:

Theorem 3.1 (Furstenberg [11]). If T —> S is an ergodic compact group exten-

sion (1), then T -+S is RUE with X*- \ Y = {v x eu}.

Proof. For any 6 £ X* \ Y, Proposition 2.1 implies

d = Jey(g)du(y).

Letting Rs(y, g') = (y, rgg') = (y, g'g) we have

(RS)*6 = j r*g6ydv(y),

so that by the uniqueness of Haar measure

8=' [(RS)*6dco(g)= f  f r*gdydco(g)dv(y)
/q\ J G J Y J G

=   / œdv(y) = v x eu.

Thus 8 is ergodic. It follows that 8 = 8 by the extremality of ergodic mea-

sures.   D

The next example generalizes Example (i) above.

(v) If T is uniquely ergodic then T -> S is RUE for any factor S.

In particular, using the Jewett-Kreiger Theorem [22], it is possible to construct a

strictly ergodic homeomorphism V isomorphic to any ergodic transformation

T. It follows that given any factor S of T, we have T ?-> S is a RUE extension

isomorphic to T -^ S, for n' = n o a~x, where a is the isomorphism from T

to V . Thus we have proven the following:
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Proposition 3.2. Any extension T —> S is isomorphic to an RUE extension.

Corollary 3.3. For any measure preserving system (Y ,sé ,v, S) there exists a

nontrivial extension T —> S which is RUE.

Proposition 3.2 shows that RUE is not an isomorphism invariant. In par-

ticular, this implies that in itself, RUE is not sufficient to imply any lifting

theorems.

Proposition 3.4. // S ¿s ergodic and T ^ S is RUE then T is ergodic.

3.2. The first definition of stability. In this section we introduce the property

we call stability together with a closely related property called self-stability. Both

of these properties are based on RUE, but turn out to be considerably stronger.

Definition 3.5. Let r —► S be an extension with T ergodic. If T xR^> SxR

is RUE for all R such that T x R is ergodic, then the extension T -> S is said

to be stable.

For a measure preserving system T let r(r) denote the rth Cartesian power

of T.

Definition 3.6. Let T —► S be an extension with S weakly mixing. The exten-

sion T —> S is said to be r-fold self-stable if T^ —> S^ is RUE. The extension
T —> S is said to be self-stable if it is r-fold self-stable for all r.

3.3. Basic properties of stable and self-stable extensions.

Lemma 3.7.
(i) IfT^S is stable then it is RUE.
(ii) If T -» S is stable and T x R is ergodic, then T x R^> S x R is stable.
(iii) If T -> S is stable and T is weakly mixing then it is self-stable.

(iv) If T -> S is 2-fold self-stable and S is weakly mixing then T is weakly
mixing.

(v) If T -+ S is r-fiold self-stable, then it is s fold self-stable for all s < r.

Proof, (i) Take R trivial, (ii) This is clear, (iii) By induction we may assume
jir-l) —> 5,(î_1) is stable. Then both of the extensions in

T{r) _ jir-l) xT^ jir-l) x S _^ S(r-l) xS = ¡¡¡(r) >

are stable and therefore RUE by (i). (iv) Self-stability for T -» S implies RUE
for T xT —> S x S, which implies T x T is ergodic by Proposition 3.4. (v) If
pr-i) _, 5(r-i) is not RUE then there exist Ptp'e (Xr-x)*\Yr-x with p¿p'.

It follows that p x v, p' xv £ (Xr)* \ Yr and p x v ± p' x v, contradicting

r-fold self stability.   G

Two open questions.

1. Does 2 fold self-stability imply self-stability?
2. Does self-stability imply stability?

3.4. Examples and counterexamples.

Corollary 3.8. An ergodic compact group extension T —> S is stable. A weakly

mixing compact group extension is self-stable.

Proof. If T —> S is an ergodic compact group extension and T x R is ergodic,
then T x R -* S x R is an ergodic compact group extension, so it is RUE by

Lemma 3.1. The second statement follows from (iii) of Lemma 3.7.   G
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Not every RUE extension is stable. Consider for example (iii) in §3.1, taking

B = Qx Q. As we note below in Lemma 3.10, a Cartesian square can never be

uniquely ergodic. Thus let eu denote the product measure and let eui denote

any other Qx Q invariant measure. Both v x co and v x tox project to v,

which implies S x R —► S is not stable.

3.5. Some basic facts from the theory of joinings. In preparation for our char-

acterization of stability as a joining property, and subsequently the proofs of

lifting theorems we collect some basic facts and definitions from the theory of

joinings.

Suppose T = Sx x S2x ■■■ x Sr is a direct product of r measure preserving

transformations on the product Lebesgue space X = Yx x ■■ ■ x Yr. We define

(10) S{Sl,s2,...,sr) = x}\Yin — nxi\Yr.

The measures p £ f(S\, S2, ... , Sr) are called the joinings of Sx, S2, ... , Sr.

This idea is due to Furstenberg [10]. The set of joinings is never empty since

the product measure px x P2 x • • • x pr is always a joining.

Two measure preserving transformations Sx and S2 are called disjoint [10],

if Jr(Sx, S2) = {px x p2} , (i.e. the product is RUE with respect to both coor-

dinate projections).

Theorem 3.9 (Furstenberg [10]). If Sx and S2 are disjoint then Sx and S2 have

no common factors.

In particular, if Sx and S2 have a common factor S then ,f(Sx, S2) con-

tains nonproduct joining called the relatively independent joining, (cf., [13]).

Rudolph showed that the converse is false, [30].

Given a measure preserving transformation S,let Sx = S2 = ■■ ■ = Sr = S.

A joining p £ Jr(Sx, Si,..., Sr) is called an r-fiold self-joining of S, (cf.,
[30]). We denote the set of all r-fold self-joinings of S by J)-(S). In addition
to the product self-joining, other r-fold self-joinings always exist. For example

if n = («',..., nr) we define the nth off diagonal self-joining to be the unique

measure in ^r(S) satisfying

(11) An(Ax xA2 x---xAr) = v(Sn,AxnSn2A2n---nS"rAr).

We denote the set of all such joinings by /A(5). More generally, one can define

a class of joinings called products of off diagonal joinings, cf. [30]. Essentially

this amounts to a product of joinings of the form (12) on each of certain disjoint

collections of coordinate indices. In the case r = 2 we also write

(12) ASn(AxB) = v(SnAKB).

The existence of joinings of the type (12) has the following easy interesting

consequence.

Lemma 3.10. The Cartesian square Qx Q of a measure preserving transforma-

tion Q is never uniquely ergodic.

Note. If Sx and S2 are uniquely ergodic and disjoint then Sx x S2 is uniquely

ergodic.

3.6. Stability as a joining property. The following constitutes "second defini-

tion of stability" in terms of joinings.
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Definition 3.11. An extension T -> 5 is weakly stable if for every measure

preserving transformation R and every ergodic joining p of T and R, if
n*(p) = v x eu then p = p x co, where ñ:XxZ^>YxZ is defined

n(x, z) = (n(x), z).

One of the main advantages of weak stability is the following fact which sets

it apart from RUE.

Proposition 3.12. Weak stability is an isomorphism invariant for extensions.

Proof. Let T -> S and V —► S' be isomorphic extensions, with a an iso-
morphism from T to V, and with a the corresponding isomorphism from

S to S'. Let R be such that T x R is ergodic, and let ax = er x Id and

¿xi = a x Id be the corresponding isomorphisms from T x R to V x R and

S x R to S' x R. Now any two distinct joinings px and /?2 of T and R

are mapped by a\ to distinct joinings of T and 7?. Furthermore, if p is

any joining of T and i? which projects to the product joining v x eu of 5

and R, then er,*/? projects to the product joining v' x eu of S' and /?, since

er*(i/ x eu) = (â*i/ x eu) = (i/ x eu). It follows that T -> 51 is not weakly stable

if and only if 7"' -> 5"' is not weakly stable.   G

The next proposition describes the relation between weak stability and sta-

bility.

Proposition 3.13. An extension T -> S is stable if and only if it is weakly stable

and RUE.

The proof depends on the following lemma which is of some independent

interest.

Lemma 3.14. Let T A S be an RUE extension. Let R be a measure preserving

transformation and let T xR^ SxR. If p is a TxR invariant measure such

that n*(p)£f(S,R), then p£f(T,R).

In other words, RUE implies that joinings lift to joinings.

Proof. Let p be as above and let p' = n*(p). Let n:XxZ^YxZ, nx :

YxZ ^Y, n2:YxZ -+ Z , nx : X x Z -» X, and nz : X x Z -> X all be the

obvious projection maps. Now Kz = nx o ft, so that n\(n*(p)) = n\(p') = eu,

since p' £ f(S, R). Thus we have n*z(p) = co. Now n o nx = ity ° ñ , so

that n*n*x(p) = 7iyñ*(p) = nY(p') = v, again since p' £ ¿f(S, R). Thus, if

n*x(p) = p, then n*(p) = v . It follows by RUE for T A S that p' = p. Thus

n*x(p) = p. Thus p£f(T,R).   G

Proof of Proposition 3.13. Suppose T -^ S is stable. By (i) of Lemma 3.7,

T ^ S is RUE. Furthermore, if TxR is ergodic then by weak stability, v xca

lifts uniquely to px co.

Conversely, suppose T A S is weakly stable and RUE. Let p £

(X x Z)* |(FxZ) such that n*(p) = v x co. It follows from Lemma 3.14

that p £ </(T, R). By weak stability p = p x co, so that T x R —► S x R is
RUE. It follows that T -> S is stable.   G

Even though stability is not an isomorphism invariant for extensions, the

fact that weak stability is an isomorphism invariant means that to obtain a
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stable extension from a weakly stable one, we only need to construct an RUE

model for its isomorphism class. By Proposition 3.2, this is always possible. An

application of Theorem 2.2 yields the following.

Corollary 3.15. If T -> S is a weakly stable extension then there exists an

isomorphic extension V —> S' which is stable and topological.

4. Some lifting theorems

4.1. Mixing properties. Let "V denote the group of all invertible bimeasurable

measure preserving transformations of a Lebesgue space (X ,33, p). Let 27

denote the normal subgroup of Borel automorphisms equivalent to the identity.

Then % = W' ¡7% is the group of equivalent measure preserving transformations

of (X ,33, p). An ergodic property 3° is an isomorphism invariant subset of

^ (i.e., a conjugacy class of í¿), containing the set % of ergodic measure

preserving transformations. If T £ 3a then we say T has the property 3°.

A mixing property is an ergodic property which contains the weakly mixing

transformations W.
We are now ready to state and prove some lifting theorems. The general

format for such a theorem will be the following:

Lifting Theorem. Suppose S satisfies a mixing property 3° and T -> S is an

extension with some stability (i.e., maybe T —> S is stable or self stable). If T
is weakly mixing, then it also satisfies the property 3s .

As we noted in the introduction, theorems of this type are well-known in the

case of group extensions. We will see here how far these results extend to stable

extensions.

4.2. Lifting theorems for partial mixing and its generalizations. Let r > 2
be fixed. Let n = («',..., nr) be an r-tuple of integers and define ||n|| =

min,^ |«¡ -«■'I. We say a sequence {nk} of Muples is expandingif \\nk\\ —> oo.
Generally we denote a collection of expanding sequences of r-tuples by Sr,

where for example, ~Lr = Zr will stand for the collection of all expanding

sequences. In some cases it will also be convenient to let Zr denote a sin-

gle expanding sequence. Let (X, 33, p, T) be an ergodic measure preserving

transformation. We say T is r-foldpartially mixing on Xr if for each {n*.} e Tr

and Ai £33 we have

(13) limsup/i(7"lUi n---n T<Ar) > ßp(Ax) ■ ■ ■ p(Ar),
k—foc

for some ß > 0. If T is r-fold partially mixing on Xr, we define the mixing

number a = m(T, Er) to be the supremum of the numbers ß so that (13)

holds for each {mj 6 Xr. We also define m(T, Zr) = 0 if T is not partially

mixing, as for example if T has pure point spectrum. Thus clearly 0 < a < 1.

In the case a = 1 we say T is r-fold mixing on Zr.

Proposition 4.1. The transformation T is r-fold mixing on Zr if and only if for

every {n^} £ £r and A¡ £33,

(14) lim p(T<Ax D---nT<Ar) = p(Ax)---p(Ar).
k—>oo

We will prove this in the next section.
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For 0 < a < 1 and Zr let us define

(15) JrÇLr,a) = {T£%S:m(T,ïr)>a},

and J(ÇLr, 0) = {T e f¿ : m(T, Sr) > 0} . We now consider some well-known

special cases:

(i) Let I2 = Z2. Then since p(T"'Ax n T"2A2) = p(Tn'-n2Ax n A2),

the property Jf(J*2, 0) is the property partial mixing (cf., [8, 9]). In

particular, m(T, Z2) = a > 0 is a-mixing for r [9].

(ii) For Z2 = Z2 it follows from Proposition 4.1 that ^#(X2, 1) is the
property (ordinary) strong mixing (cf., [38]).

(iii) More generally for r>2, ¿#(7J, 1) is the property r-fold mixing (cf.,

[38]).
(iv) Jf(Zr, a) is higher order partial mixing [7].

(v) For an increasing sequence {«¿J of positive integers let X2 = {(0, nk)}.

Then ^\%i, 1) is the property mixing on the sequence {nk} [6].

In [6], it is noted that T is weakly mixing if and only if there exists an

increasing sequence {nk} suchthat T is mixing on {nk} . It then follows from

a well-known result of Halmos and von Neumann that T is weakly mixing if

and only if it mixes on a sequence {«¿J of density 1. Clearly if T -^ S for

some S with discrete spectrum, then using sets of the form A¡ £ n~xsé ç.33

in (13), we have m(T, Zr) = 0 for any Xr. This proves the following lemma.

Lemma 4.2. For all 0 < a < 1, jf(Lr, a) is a mixing property.

Notice that if T -> S and T £ Jt(Lr, a) then S £ J?(ïr, a). The following
lifting theorem shows that if there is enough stability the converse also holds.

Theorem 4.3. Suppose S £ J£(?Lr, a). If T —* S is an r-fold self-stable ex-
tension, so that in particular T is weakly mixing, then T £ Ji(Lr, a). In

particular, m(T, Zr) = m(S, Zr).

Corollary 4.4. The following properties lift to self-stable extensions: (i) partial
mixing, (ii) strong mixing, (iii) r-fold mixing, (iv) r-fold partial mixing, and

(v) mixing on a given collection of sequences.

4.3. The proofs. The proofs of Proposition 4.1 and Theorem 4.3 are based on

the following lemma about self-joinings. The case £1 = Z appears in [21]. For

an expanding sequence Er = {ak} of Muples, let j£(T) denote the set of

r-fold off-diagonal self-joinings of T of the form

(16) A„k(Ax x A2 x ■ ■ ■ x Ar) = p(T<Ax n ■ ■ ■ D T"ÍAr).

The set ^(T) is given the subspace topology for the weak topology on the set

of all joinings.

Lemma 4.5. For an expanding sequence Zr of r-tuples, m(T, Xr) = a > 0 if

and only if every limit point of ß£(T) (in Jr(S)) is of the form

(17) ap^ + (l-a)p,

where p^ = px ■■ ■ x p and p is an arbitrary r-fold self-joining of T such that

p 1 p^.
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Proof. First we suppose that every limit point has the form (17). Then for any

subsequence {n^} of Zr such that the sequence {An/} converges, we have

lim An< (Ai x ••• x Ar)
A:—»oo      *

(18) = ap(r)(Ax x • • • x AT) + (1 - a)p(Ax x ■ ■ ■ x Ar)

> ap(Ax) ■ ■ ■ p(Ar).

Thus (16) and (18) imply that there exists a subsequence {n'k} such that

liminf p(T<Ax n • • • n T< Ar) = liminf A„, (Axx---x Ar)
k—>oo k—>oo        *

> ap(Ax) ■ ■ ■ p(Ar),

so that (13) holds.

Conversely, suppose liminf<._>00/i(r"*^i ("!••• PI Tni<Ar) > ap(Ax)■ ■ ■ p(Ar)

for all Ai £ 33 . Let £ be a limit point of Jg(T). Then

¿;(j4i x • •• x Ar) > liminfAn^! x ••• x Ar)
k—»oo

.... = liminf p(TnUxn---nT"ÏAr)
(19) A:—»oo

>a^(i4i)-"At(^r)

= ap{r)(Ax x---xAr).

Now // = Ç - a/i(r) is a priori a signed measure. However, by equation (19),

p'(Axx---xAr) > 0 for all rectangles Axx---xAr, so that p' is actually positive.

It follows that p' = (1 - a)u for some joining p. Thus c; = a«(r) + (1 - a)/>.

Finally let us suppose that a < 1 and pW and u are not mutually singular.

Notice that T is weakly mixing by Lemma 4.2 since a > 0, and thus p^ is

ergodic. By the ergodic decomposition theorem, we may assume without loss of
generality that p is also ergodic. Thus if p^ and p are not mutually singular

they are equal and a = 1.   G

Proof of Proposition 4.1. If (13) holds for a = 1, it follows from Lemma 4.5
that product measure is the only limit point. This clearly implies that the limit

(14) exists. The converse is obvious.   G

Proof of Theorem 4.3. It suffices to consider the case where Xr consists of a

single sequence, and m(S, Zr) = a > 0. We note that the natural factor map

n* : ,fr(T) —> <fr(S) is continuous. Let £, = lim^ooA^, i.e., a limit point

for Jg(T). Let A'k = n*r(Ak). Clearly A'k £ j£(S). It follows from the

continuity of n* that the limit ¿j' = lim/c_00AJ. exists and n*(Ç) = <f. Now

since m(S, 2r) = a > 0 and T —> S is r-fold self-stable, it follows from

Lemma 4.5 that

(20) f = a^r) + (l-a)p'.

Let y and p be any lifts of v^ and />' to ^(T) respectively. Since i>(r)

and />' are mutually singular, y and p must also be. Furthermore, by r-fold

self-stability y = p^ . It follows that ¿j = ap^ + (1 - a)/? where /¿(r) and p

are mutually singular. The theorem now follows from Lemma 4.5.   G

4.4. Two more applications. We conclude this section by describing two more

applications of 2-fold self-stability. Our first application is really a corollary of
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Theorem 4.3 in the case a = 1. Let a(T) denote the set of all sequences {nk}

so that T mixes on {nk}. Clearly a(T) is an isomorphism invariant of T.

By the comments preceding Lemma 4.2, a(T) ^ 0 if and only if T is weakly

mixing. The invariant a(T) was studied by Friedman [6].

Corollary 4.6. If S is weakly mixing and T —> S is a 2-fold self-stable extension

then a(T) = a(S).

Our second application is the following. Blum and Hanson proved in [3]

that an ergodic transformation T is mixing if and only if for the mean ergodic

theorem holds for every sequence {nk}. More specifically, we say a sequence

{nk} is a Blum-Hanson sequence if

(21) lim
N->oc

k=\

jjj:f°T«-jfdß = o,
2

for all / in L2(X ,38, p), where || • H2 denotes the L2 norm. Thus T is
mixing if and only if every sequence is a Blum-Hanson sequence. Jones [19]

showed that if T is weakly mixing, every sequence of positive upper density is

a Blum-Hanson sequence. The set of sequences for which (21) holds is clearly

an isomorphism invariant for T. Let us denote this set of sequences by y(T).

Friedman showed in [6] that (21) is equivalent to

1      N
(22) Jim w £ p(Tn>A n T»>B) = p(A)p(B),

j,k=l

rBH
for all A, B £ 33 . Let ^u{\2(T) denote the set of all joinings of the form

J_
/v2

(23) SN(A xfi) = i¿ p(Tn'A n 7"*£).

j,k=\

Using the same methods as in the proofs of Lemma 4.5 and Theorem 4.3 we
have the following:

Proposition 4.7. A sequence {nk} is a Blum-Hanson sequence for T if and only

if the only limit point for ¿f^\2(T) is the product joining px p.

Corollary 4.8. If T —► 5 is a 2-fold self-stable extension with S weakly mixing

then {nk} is a Blum-Hanson sequence for T if and only if it is a Blum-Hanson

sequence for S.

5. Natural properties and the generalized Pinsker lemma

The idea in this section is to try to exploit the following simple very general

lifting theorem.

Proposition 5.1. Suppose T -> S is a stable extension. If S 1 R and TxR is

ergodic then T _L R.

Let 3° be an ergodic property in W. We define the following related prop-

erties:

(i) Let 3°F to be the set of all S £ % such that T -> S for some T £ 3>.
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(ii) Let 3°F = (3°F)C, the complement of 3°F in í¿.

In other words, 3°F is the set of all T with no factors in 3a. Similar

definitions are obtained by substituting disjointness for the absence factors.

(iii) Let &>*- = {R £ V : R X T V7/ £ 30} .
Since disjointness is an isomorphism invariant it follows that 9o1- is an ergodic

property.

(iv) Define 3°± = (3*^ .
Furstenberg's theorem, Theorem 3.9, implies that 3s1- c 3BF . In general the

converse is false, (cf., [30]). However, for certain kinds of transformations the

converse is true.

Definition 5.2.

(i) A property € such that SF = ¿f-1 is said to satisfy a generalized Pinsker

lemma.
(ii) A property 3° is called a natural property if 3° = SF = (S1-, where

€ satisfies a generalized Pinsker lemma.

Recall that a measure preserving system T is said to have the AT-property,

denoted 3f, if it has no factors with entropy zero. In particular, if 27 denotes

the set of all ergodic transformations with entropy zero, then 317 = 2F . The

following lemma is called the Pinsker lemma, (cf., [36] for a proof).

Lemma 5.3 (Pinsker [27]). 3t = 2F= 2^ .

In particular, 3Í is a natural property.

There are several other well-known examples of natural properties and cor-

responding generalized Pinsker lemmas. Furstenberg [10] showed that the set

2 of transformations with discrete spectrum satisfies 21- = 3F , and so weak

mixing W = 3F is a natural property. P. Walters [39] studies rigidity, de-

noted here by 31, and showed that mild mixing Jf = 3îF (cf., [14]) is a
natural property since ^# = 31F = 31 ^ . We will discuss Walters' results in

greater detail below. Because of Proposition 5.1, natural properties satisfy the

following lifting theorem.

Proposition 5.4. Let 3s be a natural property and suppose S is weakly mixing

and satisfies 3° . Let T —> S be a stable extension. If T is weakly mixing then

it also satisfies the property 3°.

Corollary 5.5. The Lifting Theorem holds in the case of stable extensions for mild

mixing and the K-property.

K. Berg [1] proved the group extension case of Theorem 5.1 for the more

general notion of quasidisjointness. Walters [39] proved the Lifting Theorem

(Corollary 5.5) for mild mixing to group extensions. The fact that the K-

property lifts to group extensions is first proved in [26]. RUE based proofs of

the Lifting Theorem for the ^-property appear in [5 and 29].

5.1. Sequence rigidity and Walters' Pinsker lemma. In this section we look

more closely at Walters' results [39]. Let X denote a nonempty collection of

increasing sequences. Let 31(17) denote the set of measure preserving systems

T such that for all sequences {nk} £ X, T"k —> I in the strong operator

topology on L2(X, 33, p) ; that is:

(24) lim H/or*-/||2 = 0.
k—»oo

We define J7(J7) = (3?(1))F .
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Proposition 5.6 (Walters [39]). For any nonempty collection X of sequences, the

property 31(17) satisfies a generalized Pinsker lemma. Thus Jt(L) = (3H(I7))F =

(32ÇL))1- is a natural property.

Walters' proof of Proposition 5.6 depends on spectral theory. A different

proof will be given after Theorem 5.12 below.

Corollary 5.7. The properties J7(J7) satisfy the Lifting Theorem in the case of

weakly mixing stable extensions.

Walters obtained this result for totally ergodic group extensions [39].

5.2. A natural property which is not a mixing property. The following proposi-

tion provides a counterexample to the possible conjecture that natural properties

always involve 'more' mixing.

Proposition 5.8. The Bernoulli property 33 satisfies a generalized Pinsker lemma.

In particular, entropy zero 2 is a natural property.

Proof. We have 38^ ç 33F = 2 by Sinai's theorem. Also 33 c 3Z = 2L.
Since by a general result [10], 2 ç 2^ , it follows that 2 ç 33 L .   a

Corollary 5.9. If S has entropy zero and T —► S is a stable extension of S then

T has entropy zero.

5.3. Quasifactors and generalized Pinsker lemmas. In this section we consider

generalized Pinsker lemmas in terms Glasner's theory of quasifactors [16].

Let (X,33, p,T) be an ergodic topological dynamical system. Then X*

is compact and completely metrizable in the weak-* topology and 33* is the

corresponding Borel structure. Let T* denote the homeomorphism (4) of X*

induced by T on X, so that in particular,

i(foT)d8= í fd(T*8),
Jx JX

for all 8 £ X* and / e C(X), where C(X) denotes the set of real-valued

continuous functions on X. Given f £ C(X) we define /* € C(X*) by

f*(8)= [ fdd.
Jx

It follows that

(25) (foT)*=f*oT*

and

(26) LT(0)i<i/r(0).
Let X** denote the set of all probability measures on (X*, 33*). The set of

T* invariant measures on X** will be denoted by X" . Any X £ Xj* defines

a measure preserving dynamical system (X* , 33*, X, T*). A measure X £ X**

satisfies the barycenter condition [16] if for all / e C(X),

(27) / fdp= f  f*dX.
JX JX'

A dynamical system (X*, 33*, X, T*) which is ergodic and such that X satisfies

(27) is called a quasifactor [16] of (X,33, p, T). Glasner proves the following

results about quasifactors:



740 E. A. ROBINSON, JR.

Theorem 5.10 (Glasner, [16]).

(i) Up to isomorphism the quasifactors of T depend only on the isomor-

phism class of T.
(ii) For every factor S of a measure preserving system T there is a canoni-

cally associated isomorphic quasifactor S'.

(iii) Two systems T and R are disjoint if and only if T has no factor S

isomorphic to any nontrivial quasifactor Q of S.

We say that a property € closed under quasifactorization if (SqF = ef, where

SqF denotes the set of transformations isomorphic to a quasifactor of some

T £(S.

Proposition 5.11. A property S which is closed under quasifactorization satisfies

a generalized Pinsker lemma.

Proof. Suppose S = êQF. If T £ &F and T -» S then S £ S. For any
P £ € and quasifactor R of P, R £ S. This implies that R and S are not

isomorphic, (since S is closed under conjugation). Then by Theorem 5.10,

T X P, so T£â'-L. Thus SF ç ¿f-L and S is natural.   G

5.4. Quasifactors of sequence rigid transformations. In this section we recon-

sider the sequence rigidity properties 31(17).

Theorem 5.12. For any X ^ 0, the property 32ÇL) is closed under quasifactor-

ization.

Before proving the theorem we prove some lemmas.

Lemma 5.13. If (X*, 38*, X, T*) is a quasifactor of (X, 33, p, T) then for
every f £ C(X),

(28) /   \f*o(T*)"-f*\dX< [ \foT"-f\dp.
JX' JX

Proof. This follows from (25), (26), and (27).   G

Let A (X*) denote the algebra of functions generated by the functions of the

form f* for / e C(X).

Lemma 5.14. The set A(X*) is dense in LX(X*, 33*, X).

Proof. The functions g £ C(X*) are dense in LX(X*, 33*, X). Thus it suffices
to show that A(X*) is uniformly dense in C(X*), (since uniform convergence

implies L1 convergence). We have 1 e A(X*) since 1 = 1*, and A(X*)

separates points since the functions /* do. The lemma now follows from the

Stone Weierstrass Theorem.   G

Proof of Theorem 5.12. It suffices to prove the case where X consists of a

single sequence. We suppose R £ 3¿(L) and show that R* is also X-rigid.

Using the Holder inequality, it suffices to show that for any e  and for all

f £LX(X* ,33* ,X) we have

(29) ll/° (*•)"-/Hi <«,
for infinitely many n £ X. By Lemma 5.14, for any f £ Lx (X*, 33*, X) there
exists F £ A(X*) suchthat ||/-F||i <e/3. Since X is R* invariant, we have

\\fo(R*)n- F o (R*)"\\x <e/3,sothat

(30) ||/o (R*)" -f\\x< 2e/3 + \\F o (R*)" - F\\x.
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Now since F £ A(X*), there exist gkj£ C(X), k = I, ... ,m , I = I, ... ,

rm, such that

m

(31) Fiß) = zZ8*k,m-g*k,Tk{0)-
k=\

Then

\\Fo(R*y-F\\<YJ n&*./°(Ä*)"-n&*./
/=! 1=1k=\

m    rk

(32) <E£c*ä°(**)"-&mii
k=\ 1=1

m    rk

fc=i /=i

Letting L = ATXr¿. and ei = e/3L, choose «o so large that for all k, I,

\\g*kJo(R*)»-g*kJ\\x<Ex.

(29) then follows from (30) and (32).   G

An easy corollary of Theorem 5.12 is a new proof of Walters' Pinsker Lemma,

Theorem 5.6.

Proof of Theorem 5.6. This follows from Proposition 5.11 and Theorem 5.12.   G

Part II. Examples of stable extensions

6. Stability for distal extensions

Distal extensions provide a natural generalization of the notion of a group

extension. The general theory of distal extensions was independently studied
by Furstenberg [12], (cf., also [13]), and Zimmer [42, 43], (who used the term

'generalized discrete spectrum extension' instead of 'distal extension'). An im-

portant result in the theory is that distal extensions are built out of isometric

extensions, a kind of extension closely related to group extensions.

6.1. Isometric extensions. Let G be a compact metric group, let H be a closed

subgroup of G, and let G/H be the corresponding homogeneous space. Let

hg denote the natural transitive, measure preserving, isometric action of G on

(G/H, W, co), hg(gxH) = ggxH, where W is the standard Borel structure

on G/H and eu is the projection of Haar measure. For a measure preserving

transformation ( Y, sé , v, S) and cocycle cp : Y —* G the corresponding action

extension (6) is given by

(33) T(y, g H) = (Sy, cp(y)gH),

and is called an isometric extension.

There is a well-known alternative characterization of isometric extensions.
Suppose hg is a free transitive action of a locally compact group G on a com-

pact metric space Z such that for each g £ G, hg is an isometry. In particular
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this implies that G is compact and hg preserves a probability measure eu on

(Z, W), where as usual W is the standard Borel structure on Z. For any

measure preserving system (Y, sé , v , S) and cocycle cp' : Y —> G, let

(34) T'(y,z) = (Sy,hv'Wz)

be the corresponding action extension.

Lemma 6.1. If the action extension (34) satisfies the conditions above then there

exists a closed subgroup H of G and a cocycle cp : Y —> G so that the extension

T —> S defined by (33) is isomorphic to the extension V —> 5 defined by (34).

Proposition 6.2. If T —► S is an ergodic isometric extension then T —> S is

RUE and stable.

The proof that T —> S is RUE follows from Lemma 3.1 and the next lemma.

The proof of stability is the same as the proof of Corollary 3.8.

Lemma 6.3 (Zimmer [42]). If T —> 5" is an ergodic isometric extension then

there exists an ergodic compact group extension U —► S such that U —> T —> S.

6.2. Distal extensions. An extension is a distal extension if it is isomorphic to

an extension built up by induction as follows (cf., [43]):

(i) An isometric extension is distal.

(ii) If U -> T and T —> S are distal then the composition U —► S is distal.
(iii) If Ti+i -> T, are distal and T -> T¡ for all i £ N then T -> Tx is

distal.
In the case (3) T is called an inverse limit of the sequence T¡.

Lemma 6.4. Distal extensions are RUE and stable.

This follows from [29] where it is shown that RUE extends to inverse limits

of RUE extensions and from the definition of stability in terms of RUE.

6.3. Affine extensions. In this section we consider a different generalization of

group extensions.

Starting with the same set up as in (7), we let a be a continuous automor-

phism of G. An a-affine extension is a skew product of the form

T(y, g) = (Sy, cp(y)a(g)).

Note that since a preserves eu, v x co is T invariant. The following theorem

extends a result in [29].

Theorem 6.5. Let T—> S be an ergodic a-affine extension. Let h(a) denote the

topological entropy of a. The following are equivalent:

(i)h(a)=0.
(ii) T —> S is a distal extension.

(iii) T —> S is RUE and stable.

Proof. First we observe that, as in the group extension case, RUE is equivalent

to stability for a-affine extensions. In [28] we showed that (i) is equivalent

to (iii) using an argument based on arguments of Walters, [39]. Thus (i) is

equivalent to (iii). That (ii) implies (i) is well known: h(a) = h(T\S), the

relative entropy of the extension, and h(T\S) = 0 for distal extensions. Thus

it suffices to show that (i) implies (ii). The proof is based on further arguments

from [39].
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Walters shows in [40] that an arbitrary a-affine extension T —> S with

h(a) = 0 factors into an inverse limit of three special types of a-affine ex-

tensions:
1. G is a compact abelian and a" is unipotent for some « ,

2. G is finite, and
3. G is a compact simple Lie group.

Thus it suffices to show that extensions of each of these three types are distal.

Type 1. Further arguments in [40] show that an extension T —> S of this type

factors into series of extensions of the following more special type:

1'.   G is compact abelian and a is unipotent.

Thus it suffices to consider extensions T —> S of the type 1'. Note that a is

unipotent if ak = Id for some k. Thus we have

(35)  Tk{y 'z) ={Sky ' ^~1};)(a ° vKsk~2y^ ■ ■ ■ (a"_1 ° <p)(y)ah(z))

= (Sky,cp'(y)ak(z)) = (Sky,cp'(y)(z)),

which implies that Tk -+ Sk is a group extension and thus distal. It follows us-

ing Zimmer's characterization of distal extensions in terms of separating sieves

[43], that T -* S is a distal extension.

Type 2. Every finite extension is distal.

Type 3. In this case there exists k so that ak is an inner automorphism, [40].

Thus there exists h £ G such that ak(z) = h~xzh . By (35) we have

Tk(y,z) = (Sk,<p'(y)h-xzh).

Letting Wyz = cp'(y)h~xzh, we observe that Wy is an isometry for all y. It

follows from Lemma 6.1 that Tk —> Sk is an isometric extension and thus

distal, so that T —> S is a distal extension.   G

7. The relative entropy of stable extensions

The purpose of this section is to prove the following general result, already
suggested by Corollary 5.9 and Theorem 6.5.

Theorem 7.1. If T —» S is stable or 2-fold self-stable then T —» S has relative
entropy zero.

Let h(T | S) denote the relative entropy of the extension T —> S, (cf. [35]).

If h(T\S) > 0, then by Thouvenot's Relative Sinai Theorem [35] there exists

an isomorphic extension V —► S' with V —> B x S' -+ 5", where B is a

Bernoulli shift of entropy h = h(T\S). This reduces Theorem 7.1 to the next

lemma.

Theorem 7.2. The extension S x R —> S is not 2-fold self-stable. If R is weakly
mixing, the extension S x R -» S is not stable.

Proof. Assume without loss of generality that S x R is weakly mixing on YxZ .

Then
(SxR)x(SxR) = (SxS)x(RxR)^SxS,

is not RUE since by Lemma 3.10 Rx R is not uniquely ergodic.

Similarly in the second case, since R is weakly mixing it suffices to show

that (S x R) x R = S x (R x R) -> S x R is not RUE. Clearly v x co x co £
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(Yx(Zx Z))* | Y x Z , and we claim that also v x ARi £ (Y x (Z x Z))* \YxZ.

But this just amounts to

(v x AR7)(E xFxZ) = co(E)ARi (F x Z) = co(E)v(F n Z)

(    ' = co(E)u(F) = (co x u)(E x F).    G

8. A STABLE EXTENSION WHICH IS NOT DISTAL

Throughout this section (X ,33, p, T) and (Y, sé , v, S) will denote topo-

logical dynamical systems such that n : X —► Y is a continuous measure pre-

serving factor map. We say T is a topological extension of S. For a continuous

ergodic flow (Z, %?, co, hs) on a compact metric space, and cp £ C(Y), we let

X = Y x Z and define the flow extension

(37) T9(y,z) = (Sy,h^z).

Notice that T9 is a product measure preserving homeomorphism. We denote

the set of all (additive) coboundaries cp(y) = y/(Sy) - y/(y) with continuous
transfer function y/ by 33 ç C(Y), and denote the uniform closure of 33 by

33. Notice that if cp £ 33 then ¡Y cp dv = 0, a fact which remains true if v

is replaced any other »S invariant measure. In general 33 is not closed. The

following result is due to Glasner and Weiss [18].

Theorem 8.1. Suppose S is strictly ergodic and let hs be a continuous weakly

mixing flow. Then there exists a dense G¿ subset 3îoÇz33 such that if cp £3lo,

the corresponding flow extension Tv is a relatively weakly mixing extension over

S.

We say that the "generic" flow extension by a weakly mixing flow is relatively

weakly mixing. In particular, Theorem 8.1 says that genetically T9 is not a

distal extension of S.
Now for an arbitrary topological extension (X, 33 , p, T) of (Y, sé , v , S)

let us consider the homeomorphism T* induced by ion I*. Clearly X* \ Y

is a closed T* invariant subset of X*, which contains the fixed point p. As-

sociated with this fixed point is the T* invariant measure Sß , i.e. the point

mass at p. In [18], Glasner and Weiss studied the situation in which this is

the unique invariant measure—that is, when T* is uniquely ergodic on X* \ Y.

We will call this property of T —> 5 the GW-property. The following result

relates the GW-property to stability.

Proposition 8.2. If a topological extension T of S has the GW-property then it

is a stable extension.

The proof is very similar to the proof of Proposition 2.1 of [18].

Proof. Let T -^ S be a topological extension with the GW-property. Clearly

the GW-property implies RUE, and thus by Proposition 3.13, it suffices to show

that T -^ S is weakly stable.
Suppose (W,W, co, R) is such that T x R is ergodic. Let ïï(x, w) =

(n(x), w) = (y, w), so that T x R ^ S x R. Let p be a joining of T and R

so that ñ*(p) = v x co. We need to show that p = px co.

By Lemma 2.1 we have

(38) p = /   pwdco(w).
Jw
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Projecting p to S x R we have

(39) «*(/>)= / n*pwdco(w).
JW

Since K*(p) = v x co, the uniqueness of the decomposition (39) implies that

Tt*(Pw) = v for co a.e. w. Thus we can define a map Ç : W —» X* \ Y by

Ç(io) = uw and let X = Ç*(co). The TxR invariance of p implies that

T*Pw = Prw , from which it follows that T* o £ = £ o R. Thus A is a T*

invariant measure on X* \ Y. By the GW-property for T -^» S, X = öM . This

implies that pw = Ç(w) = p for eu a.e. w , and by (38) we have p = pxco.   G

Note.   (X*, 33*, X, T*) is a quasifactor of T.
The difference between the GW-property and stability is not very great. The

GW-property requires that the product joining lift uniquely from S to T

whether or not it is ergodic, but stability only requires that the product joining

lift uniquely if it is ergodic.

Theorem 8.3 (Glasner and Weiss [18]). Let S be an irrational rotation on the

circle Y and let h*_ be a strictly ergodic flow on Z . Then there exists a dense

G s subset 3îxç_33 such that if cp £3lx then the corresponding flow extension

T9 has the GW-property.

In particular, Theorem 8.3 provides a negative answer to the question "is

every stable extension distal?" by showing that the generic flow extension over

an irrational rotation is stable but not distal. This follows from Proposition 8.2

and Theorem 8.1. However, Theorem 8.3 is somewhat unsatisfactory from our

point of view because it fails to produce any new lifting theorems; the extensions

produced are never weakly mixing. Our main result in this section corrects this

problem. It is a generalization of Theorem 8.3 to the case where S is weakly

mixing:

Theorem 8.4. Let (Y, sé ,v , S) be a weakly mixing homeomorphism and let

(Z, W, co, hs) be a continuous uniquely ergodic flow. Then there exists a dense

G¿ subset 3? ç 33 such that for cp £ 3? the corresponding flow extension T9

has the GW-property.

Corollary 8.5. If S and hs are both strictly ergodic and weakly mixing then the

generic flow extension T9 is stable and relatively weakly mixing. In particular,

there exist stable extensions of any weakly mixing transformation which are not

distal.

Proof of Corollary 8.5. Since distal extensions are not relatively weakly mixing,

the second statement follows from the first using the Jewett-Krieger Theorem

to insure that S is strictly ergodic.

The first statement follows from Theorems 8.1 and 8.4.   G

The proof of Theorem 8.4 takes up most of the remainder of the paper. Our

approach closely follows the powerful method developed by Glasner and Weiss

in [17] and [18]. We begin with the following ergodic theorem.

Lemma 8.6. Let R be an ergodic homeomorphism of a compact metric space V

preserving a probability measure y. Let W be another compact metric space,
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and let 8 £ (V x W)* | V. Then for any <j> £ C(V xV xW),

1     °°   f
lim- y^ /       <j>(RJv ,v,w) dd(v, w)

n—oo « + i ¿-~'jVxw
(40) j=oJV^

= 1 (t>(vx,v2,w)dp(vx)dd(v2,w).
JVxW JV

Proof. Let 8 = Jv8vdy(v) be the disintegration of 8 over y, (Lemma 2.1).

Let AR* denote the «th off diagonal measure (11) on V x V, and let

l_

« + 1
k=0

Let p„ = JVxV 8Vl dln(vx, v2) and p = ¡VxV8V2 d(pxp)(vx, v2). Then (40) is

equivalent to the weak-* convergence of pn to p, and it suffices to prove (40)

for a set & of functions with a dense span in C( V x V x W). In particular, by

the Stone-Weierstrass Theorem we can take & to be the set of all functions of

the form c/)(vx ,v2,w) = f(vx)g(v2)h(w), for f, g £ C(V) and h e C(W).
We have

/ f(vx)g(v2)h(w)dp„(vx,v2,w)
JVxVxW

(41) =/     f(vx)g(v2) [ h(w)d8V2(w)dln(vx,v2)
JVxV JW

f(vx)g(v2)dLn(vx,v2),-I  .
JVxV

where

g(v2) = g(vx)      h(w)d8V2(w).
Jw

Now since R is ergodic and /, g £ L2(V, y), we have

lim  /      f(vx)g(v2)dI,n(vx,V2)

1      °°    f
= lim7rrE / f(Rnv)g(v)dp(v)

-L f(vx)g(v2)d(pxp)(vx,v2)
VxV

= f(vi)g(v2)      h(w)d8Vl(w)d(pxp)(vx,v2).
JVxV JW

When combined with (41), this completes the proof.   G

Lemma 8.7. Let Y be a compact metric space with a nonatomic probability

measure v on Y. Let P CY be a Cantor set, (i.e., closed, perfect, and totally
disconnected) with v(P) > 0, and let L > 0. If v\p is the restriction of v to

P, then there exists a continuous map x : P —» [0, L], such that

(42) i*(v\P) = ds/L

where ds/L denotes normalized Lebesgue measure on the interval [0, L].
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This follows easily from the fact that any two Cantor sets are homeomorphic

(cf., [24]).
Let F £ C(X* \Y), e > 0, and define

(43)

¿fïT^-i^xeu)EF^ = \cp£33:
« + 1 ,

k=o

< e for some n > 1

where || • || denotes the sup norm on C(X* \ Y). Notice that cp £ 33 implies

cp = y/ oS - y/, for y/ £ C(Y). Clearly £> £ is open in C(Y).
Let {Fk} ç C(X* | Y) be an arbitrary countable collection of continuous

real-valued functions with a dense linear span in C(X* \ Y). Let

oo    oo

(44) ^=nri£i.'w
k=lj=l

Clearly 31 is G s , (although possibly empty a priori). Since the set of func-

tions for which ergodic averages converge uniformly is a closed subspace of

C(X* | Y), it follows that for any cp e 3Î the corresponding extension T9 of

S has the GW-property. We will complete the proof of Theorem 8.4 using the

Baire Category Theorem to show that 31 is dense in 33 . In particular we will

show that for a suitable choice of functions {Fk} , EFk i£ = 33 for each k .
First we take care of the choice of the functions {Fk} . Let D be a countable

dense subset of C(X). We define 3? to be the collection of all functions of the

form

(45) F(8) = fx*(8)f2*(8).-.f^(8),

m > 0, where f £ C(X) and as in §5.3,

(46) f*(8)=\fid8.
Jx

We define {Fk} to be the collection of all functions Fk£& with each f £ D.
By the Stone-Weierstrass Theorem, & generates a dense subspace of C(X*)

and thus C(X* \ Y). By (26), {Fk} still has this property, and it is also count-

able.
For y/ £ C(Y) we define a homeomorphism hv on Y x Z by

h^(y,z) = (y,h^z),

where hs is the flow from the statement of Theorem 8.4.

Lemma 8.8. Ifcp = y/oS-y/ is a coboundary then cp £ EF<£ if and only if

0 £ Epa^v)' ,e ■

Proof. If cp = cp' + y/oS-y/ then

(47) T^hVoT^oh-1".

Using (47) with (25), we have

f(t?8) = F((h*y o T;l o (h-vys)

= (F°(h*y)(T;i((h-*)*8)).
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Letting

Gj(8) = -r^-xYJF(T*9^d)-F(vxco),
;=0

and

G'A8) = -G'Á°) = ;tT7 ¿(F ° ̂ ^^'^ - F^v x ̂  '
7=0

then (48) implies

G'j((h-ryO) = Gj(e).

Since (h~v)* is a homeomorphism of X* \ Y, this implies

\\Gj\\ = \\G'j\\,

which implies cp £ Ep ,E if and only if cp' £ Epo^y ,e ■ m other words,

EF,e = EFoi//,£ + (y/oS- y/).

This implies cpx £ EF ^ if and only if cp\ £ EFoy/ ,£, where cpx = cp\ + y/oS- y/ .

The lemma follows by taking cp\ = 0.   G

To show 0 6 EFo^y)' ,e it is enough to show that for any S > 0 there exists

cp £ EFo(hvy £ with \\cp - 01| < ö . Thus the proof of Theorem 8.4 comes down

to the following lemma.

Lemma 8.9. Let k > 0 and ß £ C(Y). Then for any e > 0, ô > 0 there exists

a function y/ £ C(Y) so that for cp(y) = y/(Sy) - y/(y) £ 33

(i) \\<p\\ < ô, and

(ii) y>£EFk0{hß).>E.

Proof. Let F/.(8) = Fk((hf>)*8). Then by (25)

FL(8) = fix((hß)*8)f2*((h^yd) ■ ■ ■ fi((h^ye)

= (/ « hf>)*(8)(f2 o h'y(6) ■ • • (/„ o h'ne)

= (fiy(e)(f2r(8)---(f^y(8),

where f'(x) = f(h^x). Thus for simplicity we will drop all the primes from

now on, denoting F^ by Fk and /J by /}.
To show (ii) for a given cp, we need to show that there exists n > 0 such

that for all d,

(49) -±-rY,Fk(T;]e)-Fk(vxco)
1 "•" l 2=0

< e.

Since 8 £ X* \ Y, the product measure 8m £ (Xm)* | Ym , and we have the

disintegration 8 = ¡Y 8y(z)dv(z) and

(50) 8m = [  (8m)y(z)dvm(z),
JYm
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where y = (yx, ... , ym), and z = (zx, ... , zm). We have

-l-¿^(770) = ^j-fï(T;J8)fl(T;id)...f*m(T*9Jd)
+     ;=0 +     2=0

^ „4tE / fi(T}x)de I f2(TJx)dd--. [ fim(T'9x)d8
'        ;=n JX J X J X

= 77X7 E /   fi(Tjxx)f2(TJx2)---fm(Pxm)ddm(xx,...,xm)
(51) n + lUJxm

= 77XT¿/   / f(s}y,,h^1+^h-^zx)
n +  l   r-Jj Jym Jzm

■ ■ ■ fm(SJym, h^si+l^h-^hm) d(8m)y(z) dvm(y)

= VZjÍtí    [   <t>(Rjy,y,i)d(8m)y(z)dvm(y),
n + i r~z Jym Jzm

where

(52) cP(y,yV,z) = fix(yx,h^s^h-^hx)---fm(ym,h^sy^h-^w^zm),

and R = S x ■■ ■ x S. Notice that R is ergodic since S is weakly mixing. Using

(51) with Lemma 8.6 we have

(53) lim _L.¿F*(7;>0)= / /  <f>(y,v»,z)dvm(y)ddm(vl,z).
n-»oo « + l ^                      Jymxz'n Jym

Claim. There exists cp £33 satisfying (i) such that for all w and z,

(54) <e/2./    (¡>(y, vi,z)dvm(y)-Fk(u x co)
JYm

To see that the Claim proves the lemma it suffices to show that it implies (ii).
Since dm is a probability measure (54) implies that the double integral in (53)

is within e/2 of Fk(v x co). Thus if we pick « large enough that

2=0

is within e/2 of the right-hand side of (53), we have (49), from which (ii)
follows.

To prove the Claim, we worry first about (54), leaving (i) for last. Recall that

Fk(8) = f*(8) • • • fr*(8). For any given «i > 0, let ¿), be such that for all j,

(55) \fj(xi) - fj(x2)\ < ex,

whenever

(56) d(xx, x2) < Sx.

We suppose that 3S0 = {Pt ç Y : t = I, ... , N} is a finite collection of
disjoint subsets of Y, each of which is a Cantor set, and such that for all t

(57) diam(P() < Sx,
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and if F0 = (UjLi PtY , then

(58) v(P0)<e2,

for some given e2.   We will construct 3°o below.   We let 30 = 3a0U {Po},

l-^bl = Uli pt, and for each t = 0, ... , 2V, we let pt e Pt. We define

(59) Qt = Q(tl,...,tr) = Phx---xPlm.

We put 3 = {Qt}, €0 = {Qt : tj ¿ 0} and |#0| = IW0 Qt ■ We also put

qt = (ptl,Pt2, ■■■ ^PtJeQt-

Let us define f(y, z) = f(pt, z) for y £ Pt, w £ Y, and z £ Z. Since

each fj(y, z) is piecewise constant in y,

(60)

I fj(y,h^sy)h-'l'^z)diy(y)

= ¿Z"W I fj(Pt, h«s»h-*Wz)dv(y).
! JP,

Now it follows from (55), (56), and (57) that

\fj(y, h*W>h-*v'h) - fj(y,hv(Sy)h-^w)z)\ < e,,

for all w £ Y, z £ Z , and y £ \3°0\. This implies that if we define 0 like

4> in (52), but with each / replaced by f, then we have for all w, z, and

y € |¿b|,

(61) \(¡>(y, w, z) - 4>(y, w, z)| < Ci£2 < e/12,

provided we have chosen

(62) ei<e/12d.

The constant Cx depends only on the norms of the functions f , and comes

from the proof that multiplication is continuous. It follows from (58) and (59)

that ^""(l^oI) > 1 _ me2 ■ This together with (61) implies

(63)
/   <t>(y,w,z)dvm(y)- i   j>(y,yl,z)dvm(y)

Jym Jym

< £1 +«z||</>||£2 < e/12 + e/12 = e/6,

using (62), and provided £2 has been chosen to satisfy

e
(64) £2 <

\2m\\4>\\

Now let fj'(z) = fj(pt, z) = fj(p,, z). By the unique ergodicity of hs, for

any £3 > 0 there exists a positive real number L large enough that

(65) ijí* f>(h°z)ds- jj¡(z)dco(z) <£i,

uniformly in j and t.
Let us suppose that for each Cantor set P, £ 3°o, we have a continuous

function t» on S(Pt) which satisfies (42) from Lemma 8.7, where L is given

by (65).  We define x on |^bl to be t< on each set Pt £ 3so, and suppose
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that T : Y —> [0, L] is an arbitrary continuous extension of x \ ̂  . We define

yi — % o S~ ' so that y/ o S = x. Using a change of variables

/ fj(y,h'"^h-v^z)dv(y) =  [ f'(h^Sy)h-^wh)dv(y)
Jp, Jp,

(66) =  [ ff{h*W(h-*Wz))du(y)
Jp,

fmm-y/(w) z))

so that by (65) and (66) we have

(67) I f fj(y,h^h-^z)dp(y) - Í f/(zx)dco(zx)
I jp, Jz

L '

<£3,

for all / , w , v , and t ^ 0. Using the fact that f(y, z) is piecewise constant

in y, and summing (67), we have

(68)

5>(/>,) / f/(z)dco(z) = f f/(z)dco(z)

<e3:

= / fj(pt, z) dco(z) = /      fj(y, z) d(v x eu).
JZ JYxZ

Combining (60), (67), and (68) yields

(69)    I / fj(y, h«s»h-"Mz)di>(y) - I     f(y, z)d(v x co)(y, z)
\JY JYxZ

for all j . It follows from (69) that

.-rrn    /   ^(y> w,z)¿i/m(y)- /    /(yi, zx)---fm(ym, zm)d(v xco)m(y,z)
[ IV)    Jym Jx<"

< CxSi < e/6,

provided e$ has been chosen so that

(71) e2<e/6C,,

where Q is as in (61).
Now we concentrate on the right-hand side of (70). For y £ Pt, t ^ 0, we

have by (57),

d((pt, z),(y, z)) = d(pt,y)<ôx,

and it follows from (55) that

\fj(y, z) - fj(y, z)\ < ex,

for (y, z) £ \3°o\ x Z . This implies

y fj(y, z)dco(z)- I fj(y, z)dco(z)

< I \fj(y, z) - fj(y, z)\dco(z) < e, ,
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for all y £ \3°o\, which when combined with (58), implies

,-^ /      fj(y,z)d(vxco)(y,z)- ¡      fj(y,z)d(vxco)(y,z)
{l¿) JYxZ JYxZ

<e1 + ||/;||e2<£/(6C1),

by choosing £2 to satisfy

(73) £2 < e/6MCx,

in addition to (62). Here M is the maximum of ||/||. Then (72) implies

/    /i(Vi, Zi)---/m(ym, zm)d(v xco)m(y,z)
Jxm

- /    /i(Vi, zx)---fm(ym, zm)d(v xco)m(y,z)
Jxm

(74)

(75) <C,.(JL)=£/6.

We note that by (45) and (46), the right-hand side of (74) is equal to Fk(v x eu).
Thus, a combination of (61), (70), and (75) yields equation (54) of the Claim.

It remains to construct 3°o to satisfy equations (57) and (58), and x, to

satisfy (42) on each P,, so that <p = y/oS-y/ = x-xoS~x satisfies (i). Choose

a positive integer

(76) K > max
{;•¥}■

where 8  comes from (i), and L comes from (65).   By the Rohlin Lemma

there exist disjoint Cantor sets Ax, A2, ... , AKi with A¡ = Sj~xAx, such that

^(Uf=i Aj) > i -fi2/2. We partition Ax = [jf=1 AXJ so that for j = I, ... , K2,

i = 1,...,/, if AJti1 = SJ-xAx>i then diamLL;,,) < <5,. We define 3>¿ = {P¡ :
t > 0} = {Ajk : 1 < j < K2, 1 < i < J} . For P{ = A\t¡., we apply Lemma
8.7 to define functions x\ satisfying (42) on each P[. We can use Lemma 8.7

because S is weakly mixing, and this implies that v is nonatomic.
For P[, = Ajj = Sj-xAXJ = Sj-xP¡, where j > 1, we define

(77) <,=t;os-j'+1.

This defines x' on 3°0' in such a way that (42) is still satisfied, and we extend

x' in an arbitrary way to a [0, L]-valued continuous function on Y.

Finally we let

1 *_1
(78) T(y) = -5>'(S;y),

7=0

so that by (78) and (77), x = x' on all the levels of the Rohlin tower, except the

last K levels. In particular (42) holds on the first K2 -K levels. Thus if we let

3°o consist of the sets P[ in ^ which are subsets of the first K2 - K levels,

then (42) holds on 3°o. It follows from (76) that (58) is satisfied. Finally we
have by (78)

llpll = ||^oS-^|| = Ht-toS-'H

(79) =¿ii^-w °s-.„<^<á,

where (79) follows from (76).   G



A GENERAL CONDITION FOR LIFTING THEOREMS 753

9. Discussion

As we noted above, we have been unable to determine whether or not stable

extensions lift the Bernoulli property. This seems to come down to two ques-

tions. The first is to determine the degree to which the Bernoulli property can

be characterized in terms of joinings, a question already answered to a large

extent by Rothstein and Burton, [4]. The second question is whether stability

is a strong enough lifting condition for this purpose.

Clearly stability is not the strongest lifting condition satisfied by group ex-

tensions. For example, it is not sufficient to lift quasi-disjointness, a property
studied by Berg, [1, 2], which does lift to group extensions. (Quasi-disjointness

essentially amounts to disjointness modulo the maximal common discrete spec-

trum factor.) While it is easy to see how to strengthen the definition of stability

to deal with this case, the Bernoulli case is less clear. Moreover, there is good

reason to worry that a substantially different approach will be needed to han-

dle the Bernoulli case. Using techniques from [33], assuming only very mild

conditions on the cocycle, Rudolph [34] constructed examples of smooth flow

extensions to obtain K-transformations which are not even loosely Bernoulli.

A different area where it is unclear whether or not stability is sufficient lifting

condition is in the theory of ergodic multiplier properties (cf. [29]). Although

these properties are closely related to rigidity via [14], the lifting theorem for

ergodic multiplier properties is not known even in the case of nonabelian group

extensions. A related question is whether these ergodic multiplier properties are

natural properties.

Finally, since one of the main motivations for studying extensions is to be

able to construct examples, it would be useful to have some smooth examples

of stable extensions other than group extensions. This is probably possible,

although we have not yet tried it.
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