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TRACE FUNCTIONS IN THE RING OF FRACTIONS
OF POLYCYCLIC GROUP RINGS

A. I. LICHTMAN

Dedicated to the memory of I. N. Herstein

Abstract. Let KG be the group ring of a polycyclic-by-finite group G over

a field A" of characteristic zero, R be the Goldie ring of fractions of KG,

S be an arbitrary subring of Rnxn ■ We prove that the intersection of the

commutator subring [S, S] with the center Z(S) is nilpotent. This implies

the existence of a nontrivial trace function in Rnxn ■

1

Let G be a polycyclic-by-finite group, K be a commutative field of charac-

teristic zero. (Throughout this paper the term "field" is used in the sense of

"skew field.") It is well known that the group ring KG is semiprime Noether-

ian and hence has a Goldie ring of fractions which we denote by R. Let S

be a subring of the matrix ring Rnxn , Z(S) be its center and [S, S] be the

iT-subalgebra of R„xn generated by all the commutators [x, y] = xy - yx ,

x, y £ S. Our first main result is the following theorem which is motivated by

R. Snider's article [1].
The intersection

(1.1) [S,S]nZ(S)

is a nilpotent ring (see Theorem 3).  (It is known that (1.1) is a subring; the

proof of this fact is easy.)

We obtain immediately from Theorem 3 an affirmative answer to the ques-

tion, posed by R. Snider in [1]: Let G be a poly- Z-group, K be a commutative

field of characteristic zero, D be the field of fractions of KG. Does

(1.2) [D,D] #D?

In particular, does

(1.3) li[D,D].

We see thus that the relations (1.2) and ( 1.3) do hold in D. Furthermore, this

result implies that there exists a nontrivial trace function /: D -> D/[D, D],

defined by
_ t(d) = d + [D,D]
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and this function can be extended to a function T: Dnxn —► D/[D, D] by

t(dij) = Y,t(dii),
i

where (d¡j) is an arbitrary matrix from Dnxn (see [1-3]). Snider proved in [1]

the relation (1.3) and hence the existence of nontrivial trace functions in the

case when G is abelian-by-{infinite cyclic}.

The proof of Theorem 3 will be based on the following result (see Theorem

2):
Let K be an arbitrary commutative field and R be the ring of fractions of

KG and

(1.4) Xj       (j=l,2,...,m)

be given nonzero elements of KG. Then there exists an ideal C ç KG such that

the quotient ring (KG)/C is a finite-dimensional K-algebra K[G], generated

by a finite group G which is the image of G in (KG)/C. The homomorphism

a: KG -► K[G] is extended to a specialization 6: R -> K[G], whose domain

Ro contains the elements (1.4). Furthermore the elements Xj = 6(Xj) (j =

1,2, ... , m) are nonzero elements of K[G].
We will obtain one more result on specializations from R to algebras finite-

dimensional over their central subfields; this is Theorem 1 and its corollary. Let

H be a torsion-free normal subgroup of finite index in G such that H/Hx is

free abelian, where Hx is the Fitting radical of H. Then Theorem 1 essentially

states that there exists a G-invariant ideal A C KHX andan ideal B = (A)(KG)

such that the quotient algebra (KG)/B ~ K[H], where the group H is abelian-

by-finite; the images Xj (j = 1, 2, ... , m) of the elements (I A) are nonzero

in K[G] and a given element x¡ is regular in R iff its image x¡ is regular in

K[G]. Roseblade's Theorem 11.2.9 in [4] implies that the ideal B is localizable

in KG.
It is worth remarking that Theorems 1 and 2 provide a method for construc-

tion of specializations from R into finite-dimensional algebras over the same

field K ; they should be compared with the Reduction Theorem (see [5, Theo-
rem 4.1], [6], or [7, 4.2.1]) which gives specializations into algebras over fields

of finite characteristic (see a discussion on this in the book [7, p. 137]).

2

Throughout this section let D be a field, generated by a polycyclic-by-finite

group G. Thus, D is the field of fractions of its subring generated by the group

G; we denote this subring by T. Thus, T = Z[G] or T = ZP[G], depending
on the characteristic of D.

Lemma 1. Let (I A) be given nonzero elements of T. Then there exists an ideal

ACT such that the quotient ring T/A ~ rirxr- where T[ is a finite field and

the images of the elements (I A) are invertible in T/A.

Proof. Wehrfritz proved (see [8] or [7, 4.3.12]) that if R is a finitely generated

subring of D, then there exists an ideal C of R of finite index with f|^li Cn =

0; furthermore, every quotient ring R/C" (n = 1, 2, ...) is finite. We apply

this theorem to the subring S of D, generated by the elements x¡, xjx   (j =
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1,2, ... , m) and find an ideal B c S such that the ring S = S/B is finite.
Since the images of the elements Xj £ T (j = 1,2, ... , m) are invertible in

the finite ring S they must be invertible in the subring T/(TnB). We see now
that an arbitrary maximal ideal A D (T n B) satisfies the conclusions of the

assertion.

Remark. The current proof of Lemma 1 is somewhat shorter than the proof

given in the original version of the paper, where Lemma 1 was obtained as one

of the corollaries of the Reduction Theorem [5].

Now let n[C] be a domain, generated by a polycyclic-by-finite group G over

a finite field n. We see that U[G] ~ ZP[GX], where Gx is the subgroup of units

of n[C7], generated by G and the multiplicative group of n. We see thus that
Lemma 1 is true for this case, when T = l~l[G]. We will use it in this form in

the proof of Proposition 1 below.

Proposition 1. Let K be an arbitrary commutative field, G be a torsion-free

polycyclic group and let (1.4) be given nonzero elements of KG. Then there

exists a maximal ideal A ç KG such that the quotient algebra (KG)/A is

generated over K by a finite group G, the image of G under the natural homo-

morphism (KG) -* (KG)/A, and the images of the elements (I A) in the ring

K[G] are invertible.

Proof. We reduce first the proof to the case when the field K is finitely gen-

erated. Indeed, assume that the theorem is proved for this special case. Let

Kx be the finitely generated subfield of K, such that Kx G contains all the el-

ements (1.4) and Ax ç KXG be the ideal, which satisfies all the conclusions of

the theorem. Since

(KG)/(KAX)~K®((KXG)/AX),

we obtain an ideal KAX Ç KG such that the algebra (KG)/(KAX) is generated
by a finite group and the images of the elements (1.4) are invertible in it. Since

images of the elements (1.4) are invertible in the algebra (KG)/(KAX) they are

invertible in every simple homomorphic image of it; this implies easily that an

arbitrary maximal ideal A ç KG, which contains KAX , satisfies the conclusion

of the theorem.

We can assume therefore that the field K is finitely generated. Let K0 ç K

be a finitely generated subring such that K is the field of fractions of A"o. We

have the following representations for the elements (1.4)

(2.1) xj = Y^ Cijgi       (cu £K;j=l,2,...,m).
i

An arbitrary coefficient cy in (2.1) has a representation

(2.2) Cij = aijb-jX       (ay, btj £ K0).

We can find a maximal ideal 3s ç Ko which defines a p-adic valuation in Ko

and contains no one of the elements a¡j , b¡j in (2.2). If K& is the ring of

fractions of Ko with respect to 3d then all the coefficients Cy in (2.1) belong

to Kgn and hence

Xj£K^G       (j = 1,2, ... , m).

Now consider the natural homomorphism

(2.3) cp:K^G^(K^G)/(3>),
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where (3d) is the ideal of K&G, generated by the ideal 3° ç A>C7. We ob-
serve that the ring (K@G)/(3°) is isomorphic to the group ring TIG, where
n ~ (Kg>)I(3°) is a finite field and the elements cp(xf) (j = 1, 2,..., m)
are nonzero. Lemma 1 implies that there exists an ideal B ç FIG such that

(YIG)/B is a simple finite ring and the images x¡ of the elements cp(x¡) (j =

1,2, ... , m) are invertible in the ring (YIG)/B . This together with the homo-

morphism (2.3) implies that there exists a homomorphism

y/:KgG^ (UG)/B

such that the elements

Xj = w(xj)       (j= 1,2, ... , m)

are invertible in the ring (UG)/B ; clearly, (UG)/B is generated over n by the

finite group G = if/(G), i.e.,

(2.4) (nG)/ß ~ U[G].

Now take a minimal left ideal V in the matrix ring II[C7] ; this ideal affords

a representation p of the group G and p(UG)~U[G]. Let K0 be the p-adic

completion of Ko, (n) be the maximal ideal of Ao ■ Since G is polycyclic,

the group G is solvable and Fong-Swan's Theorem implies that there exists a

AoC7-module V , free over Ao, such that V/(n)V ~V. (In fact, this theorem

is proven in [9, 22.1] for the case when the group is p-solvable and Ko contains

a primitive root of degree (G:l) from 1 but the last condition is unnecessary

(see [10]); this can be shown also by a standard argument based on the Galois

theory.) If X is the representation afforded by V and X(KqG) =s R then

R/(nR) ~ n.[C7] ; it is important that the ideal nR is quasiregular in R.
There exists therefore a system of homomorphisms

(2.5) KoG ̂  K0G ±R^ Yl[G]

where Xx and X2 are homomorphisms of ÁValgebras.

The homomorphism

(2.6) X2XXX : K0G -» n[C]

maps the elements (1.4) into invertible elements Xj (j = 1, 2, ... , m). Since

the kernel of X2 is a quasiregular ideal we conclude easily that the images of

the elements (1.4) under the homomorphism

(2.7) XXX : K0G -* R

are invertible elements of R. Since the field^ of fractions of Ao coincides

with K we see that the field of fractions of A"0 is isomorphic to the /?-adic

completion A" of A" ; homomorphism (2.7) is extended to a homomorphism of

A-algebras

(2.8) p:KG-^KR.

Since the algebra KR is generated over K by the finite group_G, we see that

the A-algebra p(KG) is also generated over K by the group G, i.e.

(2.9) p(KG) ~ A"[C7].
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The homomorphism (2.8) carries out the elements (1.4) into invertible elements

of KR ; we obtain therefore that the images of these elements under the homo-

morphism (2.9) are invertible elements of K[G]. We found thus a homomor-

phism

KG -> (KG)/A ~ K[G]

which maps the elements (1.4) into invertible elements of K[G]. We can as-

sume, of course, that K[G] is simple, i.e. the ideal A is maximal. The proof

is complete.

3

Let G be a polycyclic-by-finite group, p(G) be the Fitting radical of G. It
is not difficult to verify that G contains a torsion-free normal subgroup H of

finite index such that the quotient group H/p(H) is free abelian; it is more

convenient to denote the subgroup p(H) by Hx. We observe that if A is an

arbitrary (/-invariant ideal of KHX then B = A(KG) is an ideal of KG and

(KG)/B ~ K[G], where the group G is an extension of the normal subgroup

Hx by the group G/Hx ~ G/Hx. Thus, the algebra K[G] is isomorphic to

an appropriate cross product of the algebra K[HX] and the group G/Hx and

K[H]~K[HX] *(H/HX).

Theorem 1. Let K be an arbitrary commutative field, charA^ = p > 0, and

assume that nonzero elements (IA) of KG are given. Then there exists a G-

invariant ideal A ç KHX and an ideal B = (A)KG such that

(i)  The image H\ of the group Hx under the natural homomorphism

<p:KG^(KG)/B~K[G]

is a finite p'-group and hence the group H is finite-by-free abelian. Fur-

thermore, there exists a free abelian normal subgroup N ç G of finite

index, which is contained in H and central in it, and whose elements

are linearly independent over K ; hence K[N] is isomorphic to the group
ring KN.

(ii) The images

Xj       (j =1,2, ... ,m)

of the elements (I A) are nonzero elements of K[G].  Furthermore, a

given element Xj in (1.4) is regular in KG if and only if its image x¡

is regular in K[G].

(iii)  The ideal B is localizable in KG.

Proof. Let gi, g2, ■ ■ ■ , gn be a transversal for H in G. The group ring KH

contains no zero divisors of A" G and we can form the ring R of fractions of

KG with respect to the set (KH)\0. If D is the field of fractions of KH then
R ~ D ®KH KG and the transversal gx = 1, g2, ■■■ , gn gives a basis of the

left vector space R over D.

We can assume without loss of generality that the set ( 1.4) contains regular

elements and these are the first mx elements

(3.1) -*T , -^2 , • • • , -f/Mi •
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These elements must be invertible in R ; this implies easily that there exist

nonzero elements x'j   (j = 1, 2,..., mx) in KG such that

yJ = x'jXj£(KH)\0   (j=l,2,...,mx),

x'jXj = 0   (j = mx + 1, ... , m).

Now let
n n

Xj =  / ,, Caj&a ) Xj =  y ^ Caj&a

(3.3)

(Cccj, c'aj £ KH ; a = 1,2, ... ,n;j = 1,2, ... ,m)

be the representations of the elements Xj, x'¡   (j = 1, 2, ... , m). Let

(3.4) cx,c2,...cr

be all the nonzero coefficients cy in (3.3). Let h¡ (i £ I) be a transversal for

Hx in H and

(3.5) cß = YlWi       (Kß £KHx;ß=l,2,...,r).
i

Similarly, we have for the elements jy in (3.2)

(3.6) yj = J2Pijhi       (pa £ KHX ; j = 1, 2, ... , mx).
i

Apply now Proposition 1 and find a maximal ideal A ç KH such that (KH)/A

~ K[H], where H is a finite group and for all the elements Xtß , p¡¡ from (3.5)

and (3.6) the images of the elements

(3.7) gä^ißga, Sälßijga       (a=l,2,...,n)

are invertible in K[H]. Let

n

(3.8) Ax = f| g77xAgo ,        A2 = AXHKHX,        B = (A2)KG.
a=\

Clearly, Ax is a C-invariant ideal of KH and as a result of this A2 is a G-
invariant ideal of KHX. Hence B is anjdeal in KG. We have already pointed

out that the quotient ring (KG)/B ~ K[G], where the group G is an extension

of the group Hx by the group G/Hx ~ G/Hx ; the group G/Hx is an extension

of the free abelian group H/Hx by the finite group G/H. On the other hand,

we obtain from (3.8),

(3.9) (KHx)/(KHxnB) ~ (KHX)/A2 a (KHx)/(KHxnAx).

The first relation in (3.8) shows that the image of KH under the natural homo-

morphism (KH) -> (KH)/AX is a subdirect sum of the rings (KH)/(g~xAga)

(a= 1,2,...,«) which are isomorphic to the simple artinian ring (KH)/A ~

K[H] ; a routine argument (see [5, Lemma 2.9]) implies that in fact (KH)/AX

is a direct sum of rings isomorphic to K[H]. This, together with the relation
(3.9), implies first of all that the group Hx which is the image of Hx under

the homomorphism KG -+ (KG)/B, is finite. Furthermore, the images of the
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elements (3.7) under the homomorphism KH -> (KH)/A are invertible. This

implies that the elements

(3.10) Xiß,    pa

become invertible modulo the ideals g~xAga (a = 1,2,...,«) and hence

they are invertible modulo the ideal Ax = f|"=1 gäxAga . Since the elements

(3.10) belong to KHX the second and the third relations in (3.8) imply that they
are invertible modulo the ideal B . We have already observed that the image of

KH in (KG)/B is isomorphic to

(3.11) K[H]~K[HX]*(H/HX).

Since the group H/Hx is free abelian and all the elements

Xiß,    Jiij       (i= 1,2, ... , «)

are invertible in K[HX] we conclude easily that the elements

(3.5') cß = YJißhi       (ß = \,2,...,r)
i

and

(3.6') y~j = ¿2'Íiijhi       (7 = 1,2,...,«])
i

are regular in K[H]. Since K[G] is a free K[H]-modnle a routine argument

shows that these elements are also regular in A"[G]. We obtain from (3.3)

n n

(.•*••* J q=1 a=\

(caj, ~cf~ £ K[H], a = 1, 2, ... , « ; j = 1, 2, ... , m).

Since the elements (3.5') are nonzero we obtain from (3.3') that x¡ ^ 0

(j —1,2,..., m). The relations

(3.2') yj=xi-Xj       (j =1,2,..., mi)

imply, via the regularity of the elements (3.6'), that the elements x¡ (j =

1,2, ... ,mx) are regular in K[G]. Similarly, the relations Xjx'j = 0 (j =

mx + 1, ... , m) imply that the elements Xj (j = mx + 1, ... , m) are zero

divisors. We completed thus the proof of statement (ii).

To prove statement (iii) we observe that the ideal B = (A2)KG, where A2 is

an ideal in the group ring of the nilpotent group Hx. Since G is polycyclic-by-

finite Roseblade's Theorem 11.2.9 in [5] implies that B is localizable and (iii)

is proved.
We have already shown that (KH)/AX is a direct sum of rings isomorphic

to (KH)/AX ~ K[H], where H is a finite group and A is a maximal ideal of

KH. Hence the ring (KH)/AX is semisimple artinian. Furthermore, we have

a homomorphism

(3.12) K[H] -+ (K[H])/1X ~ K[H]/AX

and the second relation (3.9) implies that

(3.13) AxnK[Hx]=Ö.
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We have already shown that_the group Hx is finite. Assume now that

char AT = p and prove that p\([Hx] : 1). Indeed, we observe first of all that the

group Hx is nilpotent since Hx is. Assume now that p\(Hx: 1), let P be the

Sylow p-subgroup of Hx and let Hx ~ P x Q. The elements h - I (h £ P)

generate a nonzero nilpotent ideal in K[HX] because P is a normal subgroup

of Hx . Since K[H]/AX is semisimple we obtain from (3.12) that (h - 1) £ Ax

(h £ P) which contradicts (3.13). We proved thus that Hx is a finite //-group.

To complete the proof we need the following assertion which is part of

Lemma 3.2 in [5].

Lemma 2. Let K be an arbitrary commutative field and K[U] be a ring, gener-

ated by a group U, which is an extension of a finite group V be a polycyclic-by-

finite group U/V. Assume also that K[U] ~ K[V]*(U/V). Then there exists a

characteristic poly {infinite cyclic} subgroup F ç U of finite index such that the

elements of F are linearly independent over K and, hence, K[F] ~ KF.

Proof. Let F be a poly-infinite cyclic characteristic subgroup of finite index in

U. Then F f)V = I and it is not difficult to verify that the elements of F are

linearly independent over K[V] and hence over A".

We complete now the proof of Theorem 1. Since Hx is finite, H/Hx is free

abelian, and H is finitely generated we conclude that H/Z is finite, where Z

is the center of H. The relation (3.11) implies, via Lemma 2, the existence of

a characteristic subgroup F ç H of finite index such that A"[F] ~ KF . Take

now N = F nZ and statement (iii) follows. The proof is completed.

Let R and R be the ring of fractions of KG and K[G] correspondingly.

The ring R is isomorphic to the ring of fractions of K[G] with respect to the

subring AW ; since (G : N) is finite we conclude easily that R has a finite left

dimension over the subfield T = (KN)(KN)~X and as a result of it is finite-

dimensional over a central subfield Z_ç_ T. Furthermore, R is a homomorphic

image of a suitable cross product T*G/N ; when char A" = 0 this cross product

is semisimple artinian and so is R.

If now nonzero elements (1.4) in R are given then

(3.14) Xj = ajbjx       (aj £ KG; bj £ (KG)\0; j = 1, 2,... , m).

We apply Theorem 1 to the set of elements aj, bj £ KG (j = 1, 2, ... , n) and

obtain via well-known facts of the localization theory the following corollary.

Corollary. Let nonzero elements (3.14) in R be given. Then there exists a

localizable ideal B ç KG such that the elements (3.14) belong to the subring

SCR, obtained by the localization of the ideal B, and S/BS ~ R, where R is

the ring of fractions of K[G] ; the ring R has a finite dimension over its central

subfield Z . Clearly, the ideal BS of S is quasiregular,

Let Q be an arbitrary ring. We recall (see Cohn [11] and Passman [12])

that a specialization from Q on ring Q is a homomorphism a : Qo -> Q such
that ker a is a quasiregular ideal of Qo ; Qo is the domain of a . Theorem

1 thus gives a method for constructing specializations from the A"-algebra R

to algebras finite-dimensional over their central subfields. Another system of

specializations to algebras finite-dimensional over K is obtained from the fol-

lowing theorem.
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Theorem 2. Let R be the ring of fractions of KG and (3.14) be given nonzero

elements of R. Then there exists an ideal C ç KG such that the quotient

ring (KG)/C is a finite-dimensional A-algebra, generated by a finite group G,

which is the image of G in (KG)/C. The homomorphism a: KG -» K[G]

is extended to a specialization 6: R -> K[G], whose domain Ro contains the
elements (3.14). Furthermore, x¡ = Q(x¡) (j = 1,2,..., m) are nonzero

elements of K\G].

Proof. Apply first Theorem 1 and its Corollary and obtain a homomorphism

ß: KG^(KG)/B~K[G]

such that the elements (3.14) belong to the subring S ç R, the domain of the

specialization n : R —* R which extend ß , and

(3.16) Xj = n(Xj)^0       (j = 1,2, ... ,m).

We recall that G contains a free abelian normal subgroup N of finite index such

that K[N] ~ AW. Let T be the field of fractions of AW and gi, g2, ■ ■ ■ , gr

be a system of elements of G which form a basis of the left vector space R

over T. Let
r

(3.17) Xj = J2a'jg>      (üíjET; j = 1,2,..., m).

Let ax, Ü2, ... , as be all the elements of AW which occur in the numera-

tors and denominators of the nonzero elements a¡j in (3.17); clearly, every

element ak (k = 1,2, ... , s) has a finite number of C7-conjugates. Then ap-

ply Proposition 1 and find an ideal A ç AW such that the quotient algebra

(KN)/A ~ K[N] where Ñ is a finite group and

g~xakg i A       (k= 1,2, ... ,s; g£G).

Let Ax = Ç\ çA and C = AX(KG). The same argument as in the proof of

Theorem 1 shows that C contains no one of the elements (3.17) and K[G]/C ~

K[G], where G is a finite group.

The ideal C is localizable in K[G] ; this can be verified in a straightforward

way or obtained from Roseblade's theorem in [5]. We see therefore that the

homomorphism y: K[G] —► K[G] is extended to a specialization t: R -» K[G]

and

(3.18) Xj = T(Xj)¿0.

Finally, let C be the inverse image of the ideal C in KG. Clearly,

(KG)/C~(K[G])/C~K[G].

Furthermore, the natural homomorphism

a: KG^(KG)/C~K[G]

is a composition of two homomorphisms ß and y, which are extended to

specializations n and t correspondingly. We obtain from this (see [8, Chapter

6] or [11]) that a can be extended to a specialization xn = 6:   R -> K[G],
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whose domain contains the elements (3.14). The assertion follows now from

(3.16) and (3.18).

4

We will need in the proof of Theorem 3 the following fact:

Lemma 3. Let D be afield, x be a given matrix from Dnxn. Assume that D

has a system ofsubrings T¡  (i £ I) such that x £ (T¡)nxn for all i £ I and

(1) given any finite set of elements M CD there is a T¡ with M ç T,■,

(2) each T¡ has an ideal U¡ ̂  T¡ such that the image of the matrix x in the

quotient ring

(Ti)„x„/(Uj)nxn ~ (Tj/Uj)„xn is nilpotent. Then the matrix x is nilpotent.

Proof. Assume that x is not nilpotent and hence

(4.1) xn¿0.

The powers of x are linearly dependent over D ; there exists therefore elements

0¿dj£D  (j =1,2, ... ,r) such that
r

(4.2) ^djx"'=0      (1 < «i < «2 <•••<«, <«2 + 1).

j=i

Find in the system ofsubrings T, (/ e /) a subring T and its ideal U^ T such

that T contains all the elements d¡,d~x (j = 1,2, ... , r), all the nonzero

entries of the matrix x (and x") and the inverses of these entries. Since all

these elements are invertible in T and U ^ T, their images in T/U are

nonzero. Let X denote the image of a subset X ç Tnxn under the homo-

morphism (T)nxn —> (T/U)nxn . We see that the elements d¡ are invertible in

(T/U)„xn , the element x is nilpotent but

(4.3) xVÖ

and
r

(4.2') ^2djXnj=Ö.

7 = 1

Now let k be the smallest natural number such that xk = 0. It follows from

(4.3) that k > « . We multiply (4.2') on the right by xk~"l~x and obtain that

dxxk~x = 0. Since dx is invertible we see that xk~x = 0 which contradicts

(4.3). Thus assumption (4.1) leads to a contradiction, i.e., x is nilpotent.

The following fact is known (see [13, Lemma II.5.4]).

Lemma 4. Let U be a finite-dimensional algebra over a field K of characteristic

zero, Z be its center. Then the intersection [U, U] n Z is a nilpotent ring.

We can now prove our main result.

Theorem 3. Let G be a polycyclic-by-finite group, K be a field of characteristic
zero and R be the ring of fractions of KG. Let S be a subring of the matrix

ring R„xn , Z be its center. Then the intersection [S,S]nZ is a nilpotent ring.

Proof. In order to prove Theorem 3 it is enough to prove that the ring [S, S]f)Z

is nil because a nil subring of a matrix ring over the artinian ring R must be

nilpotent.



POLYCYCLIC GROUP RINGS 779

Let thus z £ ([S, S]nZ), where S C Rmxm . There exist therefore elements

Uj, Vj £ S  (i = 1,2, ... , r) such that

r

(4.4) 5><,»i] = z.
i=i

Pick in R an arbitrary finite subset which has a form

(4.j) xx, X2, ■ ■ ■ , xk ;        Xj   , x^   , • - ■ , Xfc

and contains all the nonzero entries of the matrices u¡, v¡ (i = 1,2, ... , r)

(and of z). Apply Theorem 2 and find a subring T ç R and an ideal U Ç.T

such that elements (4.5) belong to T and r/t/~ A"[C7], where K[G] is a finite-

dimensional algebra over K. Relation (4.4) implies the following relation in

(T/U)mxm for the images of the elements u¡, v¡, z  (i = 1,2, ... , r):

r

(4.4') 5>,-,ÏT,] = z.
(=i

Since the element z commutes with all the elements ïï;, v¡ (i = 1, 2, ... , r),

we obtain from Lemma 4 that z is nilpotent. Lemma 3 now implies that z is
nilpotent which completes the proof of Theorem 3.

Corollary 1. Let the subring S in Theorem 3 be semiprime. Then [S, S]r\Z =

0.

Now let G be a residually torsion-free nilpotent group, A" be a commutative

field. Let

G = Nx D N2 2 ■ • •

be a series of normal subgroups in G such that every quotient group G/N¡

(i = 1,2,...) is torsion-free nilpotent and f]°lx N¡ — 1. It is not difficult

to define in G an order such that all the homomorphisms G -> G/N¡ are
homomorphisms of ordered groups (see [14]). Let K(G) be the appropriate

Malcev-Neumann power series ring and A be its subfield, generated by the

group ring. We will give now a sketch of proof of the following result.

Proposition 2. (i) If char A" = 0 then the conclusion of Theorem 3 is valid for

an arbitrary subring S C Anxn .

(ii) If K has an arbitrary characteristic then

(4.6) 1 i [A, A].

Proof. Let A, be the field of fractions of the group ring K(G/N¡). The results

of [ 14] imply that for every given / there exists a specialization 0, : A —> A,,

extending the natural homomorphism G —> G/N¡ and that for every given

elements of D,

Xl , X2 , . . . , Xk , Xj     , X2    , . • ■ , Xjç

an index i0 can be found such that for every i > i0 these elements belong to

the domain T, of the specialization 0,. Since Theorem 3 holds for the subrings

of (A,)„x„ we obtain now easily from Lemma 3 the statement (i).
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We prove now (ii). A routine argument reduces the proof to the case when

the group G is finitely generated; we can assume also that the field K is al-

gebraically closed. Assume that 1 £ [A, A], i.e. there exist nonzero elements

Uj, Vj £ A (j = 1, 2, ... , s) such that

(4.7) l = J2[Uj,vj].
7 = 1

Apply Proposition 2.8 in [15] and find a specialization n: A —> K[G] such

that K[G] is a simple algebra generated by a finite a-group G where q is an

arbitrary prime number unequal to char A" and the domain T of n contains

all the elements u,, v¡ from (4.7). The relation (4.7) now yields the following

relation in K[G],

(4.7') l = J2[üj,Vj].
7 = 1

Since K[G] is a simple algebra over an algebraically closed field K and q ^

char A" we obtain that K[G] is isomorphic to a matrix algebra of degree qm

over K. The relation (4.7') however is impossible in the algebra Kqmxqm since

the trace of the right side is zero whereas Tr(l) = qm / 0. This completes the

proof.

Since free groups and free soluble groups are residually torsion-free nilpotent,

we obtain that Propositon 2 is valid for the universal field of fractions of free

group rings or for Ore fields of fractions of group rings of free soluble groups.

The truth of (4.6) for a ring of fractions Ä ofa ring (KG)/P, where G is a

finitely generated nilpotent group, char A" = 0 and F is a prime ideal of KG,
was established by M. Lorenz in [16].
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