
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 330, Number 2, April 1992

THE KERNEL-TRACE APPROACH TO RIGHT CONGRUENCES
ON AN INVERSE SEMIGROUP

MARIO PETRICH AND STUART RANKIN

Abstract. A kernel-trace description of right congruences on an inverse semi-

group is developed. It is shown that the trace mapping is a complete n-

homomorphism but not a V-homomorphism. However, the trace classes are

intervals in the complete lattice of right congruences. In contrast, each kernel

class has a maximum element, namely the principal right congruence on the ker-

nel, but in general there is no minimum element in a kernel class. The kernel

mapping preserves neither intersections nor joins.

The set of axioms presented in [7] for right kernel systems is reviewed. A new

set of axioms is obtained as a consequence of the fact that a right congruence

is the intersection of the principal right congruences on the idempotent classes.

Finally, it is shown that even though a congruence on a regular semigroup

is the intersection of the principal congruences on the idempotent classes, the

situation is not the same for right congruences on a regular semigroup. Right

congruences on a regular, even orthodox, semigroup are not, in general, deter-

mined by their idempotent classes.

1. Introduction and summary

In 1953, Wagner [ 14] proved that every congruence on an inverse semigroup is

completely determined by its idempotent classes. The following year, Preston

[12] characterized those collections of subsets which arise as the idempotent

classes of some congruence, and referred to such collections as kernel normal

systems. Some twenty years later, in [ 13] Scheiblich introduced the kernel-trace

description for congruences on an inverse semigroup. By this time, it was well
known that every one-sided congruence on an inverse semigroup was completely

determined by its idempotent classes. In 1974, Meakin [7] provided a charac-

terization for right (left) kernel systems, the one-sided analogue of the kernel

normal systems of Preston. He also considered the trace of a right congruence,

and showed that every congruence relation on the semilattice of idempotents

occurs as the trace of some right congruence on the inverse semigroup itself.

As well, he established that every trace class of right congruences has a greatest

and a least element, and classified those inverse semigroups for which the trace

class of the equality trace is smallest possible, that is, consisting of e and 2?.

We present the kernel-trace approach to right congruences on an inverse semi-

group. It is shown how to contruct a right congruence upon being given its ker-
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nel and its trace. Right kernels are characterized, and necessary and sufficient

conditions are given in order that a right kernel and a trace form a right con-

gruence pair, that is to say, determine a right congruence having as its kernel

and trace the given right kernel and trace, respectively. The notion of a pseudo

right congruence pair turns out to be useful. A pseudo right congruence pair

consists of a full subsemigroup and a trace which together contain the infor-

mation to determine a right congruence having as its trace the given trace and

its kernel contained in the given subsemigroup, which is then referred to as a

pseudo kernel of the right congruence. Necessary and sufficient conditions that
a subsemigroup must satisfy in order that it be a pseudo kernel for a given right

congruence are established.

The kernel-trace description is utilized to describe all right congruences on
Clifford semigroups. Since Nico [8] has described all right congruences on the
bicyclic semigroup (see Duchamp [2] as well) and we on a Brandt semigroup

[10], we have a rich supply of examples.

For any inverse semigroup S with semilattice of idempotents E, we obtain

mappings from the lattice of right congruences on S to the lattice of con-

gruences on E and to the lattice of full subsemigroups of S by sending a

congruence to its trace and its kernel, respectively. It is shown that the trace

mapping is a complete n-homomorphism but not a V-homomorphism. How-

ever, the trace classes are intervals in the complete lattice of right congruences.

In contrast, each kernel class has a maximum element, namely the principal

right congruence on the kernel, but in general there is no minimum element in
a kernel class. The kernel mapping preserves neither intersections nor joins.

The set of axioms presented in [7] for right kernel systems is reviewed. A new

set of axioms is obtained as a consequence of the fact that a right congruence

is the intersection of the principal right congruences on the idempotent classes.
Finally, it is shown that even though a congruence on a regular semigroup

is the intersection of the principal congruences on the idempotent classes, the
situation is not the same for right congruences on a regular semigroup. Right

congruences on a regular, even orthodox, semigroup are not, in general, deter-

mined by their idempotent classes.

2. Preliminaries

Recall that for any subset X of a semigroup 51, the principal right congruence

Px on S is the greatest right congruence on S saturating X. If S is an inverse

semigroup, then aPx b if and only if for all u € S, au e X «• bu e X.

Throughout the paper, S shall denote an inverse semigroup, unless noted oth-

erwise. For any subset A of S, E(A) shall denote the set of idempotents of S

contained in A , with E{S) abbreviated to E. The lattice of right congruences

on S and the lattice of congruences on E shall be denoted by âê<ê'{S) and

W(E), respectively. The identity and universal relations on any set shall be

denoted by e and œ, respectively. In general, we shall follow [9] for notation

and terminology.

3. The kernel-trace description of a right congruence

After the necessary definitions, we present the principal result of the paper:

the kernel-trace description of right congruences on an inverse semigroup.
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Definition 3.1. For any right congruence p on S, ker p = \Je€Eep is the kernel

of p and tr p = p\e is the trace of p .

We shall show in this section that p is determined by the pair (ker p, tr p).

Lemma 3.2. For any right congruence p on S, ker p is a full subsemigroup of

S and tr p is a congruence on E.

Proof. If a p e and b p f, where e, / e E, then

ab p eb = bb~xeb p fb~xeb.

Definition 3.3. Let K be a full subsemigroup of S and t a congruence on E

satisfying the following two conditions.

(i) For all a e S, b e K, a>b and aa~x x bb~x imply that a e K.
(ii) For all a e K, e, f e E, e x f implies that aea~x x afa~x.

Then (K, x) is said to be a pseudo right congruence pair for S. If, in addition,
the condition

(iii) For every a e K, there exists b e S with a > b, aa~x x bb~l and
b~xeK

is satisfied, then (K, x) is said to be a right congruence pair for S. For a pseudo

right congruence pair (K, x), define a relation P(k,x) on S by

aP(K,z)b    <(=>    ab~l,ba~x£K,    ab~xba~x x aa~l,    baTx ab~x x bb~x.

We remark that, unlike the case for two-sided congruences on an inverse

semigroup, the explicit symmetry of the definition is necessary. For if K is not

an inverse subsemigroup of S, then there exists a e K for which a~x £ K.
Let b = a~xa. Then ab~x 6 K, ab~xba~x = aa~x and ba~xab~x = bb~x but
ba~x i K.

Proposition 3.4. If (K ,x) is a pseudo right congruence pair for S, then P(k,x)

is a right congruence on S which saturates K with

(1)    ter p(K t) - {a 6 K | there exists b with a> b, aaTxxbb~x, b~x e K}

and trace equal to x. Moreover, if {K\,x\) and (K2, x2) are pseudo right

congruence pairs for S with K\ ç K2 and X\ Cx2, then P(kx,x{) Q P(k2,t2)-

Proof. Let (K, x) be a pseudo right congruence pair and set p = P(k,t) ■ Since

K is full it follows that p is reflexive. Obviously, p is symmetric. We defer

the verification that p is transitive until after we have established that p is

right compatible. Assume now that a p b and let c £ S. We have

(ac)(bc)-x = acc~xb~x = {ab-x){bcc-xb~x)

and since ab~x e K and bcc~xb~x 6 E C K, it follows that (ac){bc)~x e K.

Similarly,
{bc){ac)~x = bcc~xa~x = (bcc-xb-x){ba~x) eK.

Next, we have

(ac)(bc)~x(bc)(ac)~x = acc~xb~xbcc~xa~x = ab~xbcc~xa~x

= (ab-xba-x)(acc-xa-x) x (aa-x){acc-xa-x)

= (ac)(ac)~x.
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By symmetry, it follows that

{bc)(ac)-x(ac){bc)-x x (bc)(bc)~x

whence ac p be. Thus p is a right compatible relation.

Let a p b and b £ K. Then by the definition of p, we have

ab~xba~l x aa~x   and   (ab~x)b £ K.

Now by Definition 3.3(i), a > ab~xb e K and aa~x x {ab~xb)(ab~xb)~l im-

plies that a 6 K. Thus p saturates K. Now, suppose that a p b and b p c.
Then ac~x p bc~x and bc~x p cc~x. Since cc~x e K and bc~x p cc~x, we

obtain bc~l e K and subsequently ac~x e K. Similarly, ca~x p ba~x and

ba~xpaa~x by saturation yield ca~x e K. Next, from cè_1èc_1 x cc~x we

obtain
(cô-1ôc-1)(ca_1ac_1) x (cc~x)(ca~xac~x) = ca~xac~x,

while from ba~xab~x x bb~x and cb~l £ ÍT, Definition 3.3(a) yields

(cb-xbc-x)(ca-xac-[) = {cb-x)(ba~xab-x){cb-x)-x x {cb-x){bb-x){cb~x)-x

= cb~xbc-x.

Thus we obtain

ca~xac~x x (cb~xbc~x)(ca~xac~x) x cb~xbc~x x cc~x.

In a similar manner, we obtain from Definition 3.3(a) applied to

bc~xcb'x xbb~x

and ab~x e K that (ab~xba~x)(ac~xca~x) x ab~xba~x, whence

ac~xca~x = (aa~x)(ac~xca~x) x (ab~xba~x)(ac~xca~x) x ab~xba~x x aa~x.

Thus a p c as required. We have now demonstrated that p is a right congru-
ence which saturates K.

It is apparent that fore,feE, e p f if and only if e x f whence tr p — x.
We let

L = {a e K | there exists b such that a > b, b~x e K, aa~x x bb~x}

and show that kerp = L. Let a G L so that for some b < a, we have
b~x e K and aa~x x bb~x . Let e = b~xb. We show that ape. Since

a £ L ç K, -we have aeei, ea-1 = ¿>_1 e AT, aea~x = bb~x x aarx

and ea~xae — e whence by definition of p, ape. Thus a e kerp and so

L ç ker /?. Conversely, let a e ker p. Then a/>e for some e £ E. Let
b = ae so that £ < a and as well, aa~~x p ea~x whence b~x — ea~x £ K.

Now compute bb~x = aea~x p ea~x p aa~x so that a £ L. Thus ker p ç L.

The last assertion of the proposition is immediate.

Theorem 3.5. If (K, x) is a right congruence pair for S, then P(k,x) is a

right congruence on S with kernel K and trace x. Conversely, if p is a

right congruence on S, then (ker/?, tr p) is a right congruence pair for S and

P = Pikerp,tr p) ■

Proof. Let (K, t) be a right congruence pair and let p = P(k,t) • Then by

Proposition 3.4, p is a right congruence with trace equal to x and kerp as

in (1). Thus ker/? ç K. Now let a £ K. Then by Definition 3.3(iii), there
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exists b £ S with b < a, b~x £ K and bb~x x aarx whence a £ ker/? by

Proposition 3.4. Thus K = ker/?.
Conversely, let /? be a right congruence on S and let K = ker/?, x = tr p.

Then K is a full subsemigroup of 5 by Lemma 3.2 and x is a congruence

on E. Let a > b £ K and suppose that aa~x x bb~x. Then b = bb~xa and

aa~x x bb~x whence a p bb~xa and so b = bb~xa p a and hence a £ bp ç

ker/? = K. Thus Definition 3.3(i) holds for (K, x). Next, let a £ K and
suppose that e x f for some e, f £ E. Since a £ K we have ape' for some

e' £ E. Then ae /? e'e = ee' p fe' = e'f p af and so aea~x x afa~x. Thus

Definition 3.3(h) holds. For a £ K there exists e £ E with ape. Since

a p ea~xa, we may assume that e < a~xa, whence b = ae < a. Also from

ape we obtain b p e p a whence bb~x p aa~x. Moreover, aa~x p earx and

so b~x = ea~x £ K. Thus Definition 3.3(iii) is satisfied and so (K, x) is a

right congruence pair.

It remains to prove that p = P(k,z) ■ Let a p b. Then we have ab~x p bb~x

£ E and ba~x p aarx £ E whence ab~x, ba~x £ K and

ab~xba~x p bb~xba~x = ba~x p aa~x.

Thus ab~xba~x x aa~x. Similarly, we have ba~xab~x x bb~x and so

t*P(K,T)b. Therefore p ç P(k,t)- Now let api^^b. Then ab~x, ba~x

£ K and ab~xba~x x aa~x, ba~xab~x x bb~x. We have ab~xb p a and

ba~xa p b. As well, there exist e, f £ E with ab~x p e and ba~x p f.

Consequently, ab~xb p eb = be' where e' = b~xeb and ba~xa p fa =

af where /' = a~xfa. Thus a p ab~xb p eb p be' yields ae' p a. Then

b p ba~xa p af p ae' f and so be' p b . It follows that a p be' p b. We have

P(K, t) Q P and so equality prevails.

Definition 3.6. Given a right congruence /?, a full subsemigroup K of S for

which (Ä', tr /?) is a pseudo right congruence pair for S such that p = P(k,t)

shall be called a pseudo right kernel of /?.

We observe that necessarily each pseudo kernel of p contains ker/? and is

saturated by /?. Furthermore, by Definition 3.3(h), it consists of elements of
5e which normalize the trace of p.

Definition 3.7. For any x £ W{E), let yVT denote the normalizer in 5 of t,

that is,
Nx = {a £ S | e x f implies that aeaTx x afa~x}.

It is evident that for any congruence x on E, Nr is a full subsemigroup of

S.

Proposition 3.8. Let p be a right congruence on S with kernel K and trace x. A

subsemigroup T of S is a pseudo right kernel for p if and only if K ç T ç NT,

T is saturated by p, and for all a£S, a£T\K implies a~x £ T.

Proof. Let T be a pseudo right kernel for p. Then, as observed above, K ç

T ç 7VT and p saturates T. Let a £ T and suppose that a~x £ T. By

Proposition 3.4, taking b = a, we see that a £ ker/? = K. Thus a £ T\K

implies that a~x $ T.

Conversely, let T be a subsemigroup of S satisfying the conditions of the
proposition.  Let a > b £ T and aa~l p bb~l.  Then a p bb~la - b £ T
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and then since T is saturated by /?, we have a £ T. Thus Definition 3.3(i)

holds. Definition 3.3(h) is satisfied since T ç Nr and so (T, t) is a pseudo

right congruence pair. Now by Theorem 3.5 and Proposition 3.4, respectively,

we have /? = P(k,z) Q P(t,x)- Let a P(t,z) b. Then by definition, we have

ab~x £ T, ba~l £ T, ab-x{ab~x)-x x aa~x and ba-x{ba~x)-x x bb~x. If

ab~x £ T\K, then ba~x = (ab~x)-x i T, a contradiction. Thus ab~x £ K

and similarly ba~x £ K. By definition, we have a P(k,t) b, that is, a p b.

Thus P(t,t)Q P and so we have equality.

Proposition 3.9. Let {(Ka, xa) \ a £ A} be a collection of pseudo right congru-

ence pairs, and let K - (~}a€A Ka, x = (~)a€A xa . Then (K, x) is a pseudo right

congruence pair and p(KtX) = f\aeA p(Ka,xa) ■

Proof. This follows by direct computation.

We conclude this section with a description of the (pseudo) right congruence

pairs for S for which the trace is extremal.

Lemma 3.10. Let K be a full subsemigroup of S.

(i)   (K, e) is a pseudo right congruence pair for S, while (K, e) is a right

congruence pair if and only if K is an inverse semigroup.

(ii)   (K, ft?) is a pseudo right congruence pair for S if and only if K is

closed, while {K, ft?) is a right congruence pair for S if and only if K

is a closed inverse subsemigroup of S.

Proof, (i) To verify that Definition 3.3(i) holds for (K, e), let a > b £ K
and aarx = bb~x. Then a = aa~xa = bb~xa = b £ K. Since Definition

3.3(h) obviously holds, it follows that (K, e) is a pseudo right congruence pair

for S. Suppose now that (K, e) is actually a right congruence pair. Then

for each a £ K there exists b < a such that b~x £ K and aa~x = bb~x
by Proposition 3.4. Thus a~x = a~laa'x = arxbb~x £ Eb~x ç K since

a~lb £ E. It follows therefore that K is an inverse semigroup. Conversely,

if K is an inverse semigroup, then for any a £ K, we may apply Proposition

3.4 with b = a to see that a £ ker/?(¿ £) whence (K, e) is a right congruence
pair.

(ii) From the definition, (K, co) is a pseudo right congruence pair if and only

if K is closed. Suppose that K is closed. Then Proposition 3.4 immediately

establishes that kerp(K(J)) = {a £ K \ a~x £ K). Thus (K, ft?) is a right
congruence pair if and only if AT is a closed inverse subsemigroup of S.

4. Kernels and traces

The kernel-trace approach to right congruences would have little advantage

over the kernel system approach if one could not identify those full subsemi-

groups of S which appear as kernels of right congruences, and those congru-

ences on E which appear as traces of right congruences. As we remarked at

the outset, every congruence on E is the trace of some right congruence on S,

and there is a greatest and a least right congruence having a specified trace. We
present a kernel-trace description of the greatest and the least right congruences

having a given trace.

Proposition 4.1. Let x£W(E). Then {Nr, x) is a pseudo right congruence pair

for S and piN, iT) is the greatest right congruence on S with trace x.
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Proof. It is evident that Nx is a full subsemigroup of S and that Definition

3.3(h) is satisfied. In order to verify Definition 3.3(i), let a > b £ Nx and

aa~l x bb~x . We must show that a £ Nx. Let e x f. It follows from a > b

that b~xa is an idempotent whence

aea~x = {aa~x){aea~x) x (bb~x)(aea~x)

= beb~xaarx x beb~xbb~x = beb~x .

Similarly, afa~x x bfb~x. Moreover, beb~x x bfb~x since b £ NT. Thus

a £ Nx and so Definition 3.3(i) holds, whence (Nx, x) is a pseudo right con-

gruence pair.

Now let /? be a right congruence with tr p = x. Let K = ker /?. By Theorem

3.5, (K, t) is a right congruence pair with /? = P(k,x) • Let a £ K. Then by

Definition 3.3(h), we have a £ NT whence K ç NT. By Proposition 3.4 we

have pQp{Nr¡r).

We remark that in general, (7VT, t) is not a right congruence pair (that is to

say, in general ker/?(Arr T) c NT ). For example, let S be the orthogonal sum of

two copies of B2, say S = {0, a, a~x, aa~x, a~xa, b, b~x, bb~l, b~xb} and

let /? be the Rees right congruence on S modulo {0, a, aa~x} , a right ideal

of S. Then b £ N*T" but b £ ker/?.

Proposition 4.2. Let x £ W(E), and let

Nr = {a £ S I aa~x x e for some e £ E with ea = e).

Then (NT, x) is a right congruence pair for S and P(nx,t) is the least right

congruence on S with trace x.

Proof. It is obvious that E ç Nx. Let a, b £ Nx. Then there exist e, / £ E

with aa~x x e, bb~x x f and ea = e , fb = f. Thus

(ab)(ab)-x = aa-x{ab)(ab)-x x e(ab)(ab)~x

= {ea)bb~xa~xe = ebb~x x ef

and (ef)(ab) = f(ea)b = feb = ef whence ab £ NT.
Next, let a > b £ Nr with aarx x bb~x . Then there exists e £ E with

bb~x x e = eb. Since a > b we have bb~la - b and so (ebb~x)a - eb = e =

ebb~x, while aa~x x bb~x x e = ebb~x. Thus / = ebb~x satisfies aa~x x f —

fa and so a £ NT. Thus Definition 3.3(1) holds.
Now suppose that a £ NT. Then aa~x x e' = e'a for some e' £ E and so

for any idempotent e we have aea~x — aa~xaea~x x e'aea~xe' = e'e . Thus if

e, f £ E and e x f, then aearx x e'e x e'f x afa~x and so Definition 3.3(h)

holds. Consequently (NT, t) is a pseudo right congruence pair for S.

Now let /? be any right congruence with trace x. Let a £ NT and e £ E
with aa~x x e = ea. Then aa~x p e whence a p ea = e and so a G ker/?.

Thus NT ç ker/?. In particular, yVT ç ker/?^ T) and so by Proposition 3.4

we have Nr = ker/?^^) whence (A/T, t) is a right congruence pair. Now by

Theorem 3.5, p = P(k,t) and then by Proposition 3.4 we obtain P(Nr,r) Q P■

It follows that /?(jvr p T) is the least right congruence with trace t .

We turn our attention now to the problem of determining which full subsemi-

groups of S arise as kernels of right congruences. It is interesting to observe
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as a result of Lemma 3.10(i) that every full subsemigroup K of S is a pseudo

right kernel of some right congruence on S, namely P(K,e) • Thus the pseudo

right kernels of S turn out to be just the full subsemigroups of S.

Definition 4.3. A subset K of S is a right kernel in S if

(i)   K is a full subsemigroup of S,
(ii) for each a £ K, there exists b < a such that b~x £ K, and bx £ K

implies ax £ K for any x £ S.

Our goal is to show that a subset K of S is a right kernel in S if and only

if K is the kernel of some right congruence on S. Note that if K = ker/? for

some right congruence p, then p C PK .

Proposition 4.4. The following conditions on a subset K of S are equivalent.

(i)  K is a right kernel in S.
(ii)   K = ker/? for some p £ 3?&(S).

(hi)   K = kerPK.

Proof. If K = ker/? for some p £ 3?ff(S), then K C kerP* and K is
saturated by P* and so K = kerPK. Thus (ii) and (hi) are equivalent. We

show that (i) and (hi) are equivalent. Evidently, Definition 4.3(i) is a necessary

condition for each of (i) and (hi). We show that for a full subsemigroup K of

S,

kerPK = {a £ K \ there exists b < a such that b~x £ K,

and bx £ K implies ax £ K for any xe5}

whence the result follows. Let K be a full subsemigroup of S and let a £

kerPjt, so that a Pk e for some e £ E. Then ae Pk a and so for all x £ S,
ax £ K if and only if aex £ K. Let b = ae . Then b < a and since aarx £ K

we obtain b~x = ea~x £ K. Conversely, suppose that a £ K is such that there

exists b < a with b~x £ K and bx £ K implies that ax £ K for all x £ S.

We show that a Pk e = b~xb whence a £ kerP/f. By definition of P^, we

must show that for all x £ S, ax G K if and only if ex £ K. Let x £ S, and

assume that ax £ K. Then bx = bb~xax £ K, so that ex £ K since b~x £ K.

On the other hand, if ex £ K, then since a £ K we obtain aex £ K. But

ab~x = bb~x and so bx = ab~xbx = aex £ K and so by hypothesis we have

ax £ K, as required.

5. Kernel classes

The function p i-> ker p (p £ ¿%W(S)), called the kernel map, maps ¿%W(S)

onto the set of right kernels in S. The classes of the induced equivalence rela-

tion on ¿%"&(S) are called the kernel classes of S. The restriction of the kernel

mapping to the sublattice ^{S) of ^^{S) is a complete n-homomorphism of

^[S) onto the set of kernels in S (see [9, III.4.8]) and the equivalence classes

of W(S) under the induced equivalence relation are intervals. It is also known

(see [9, III.4.11]) that the restricted map is not V-preserving.
It turns out that the kernel map on right congruences does not preserve even

finite intersections in general. The problem of course stems from the fact that

an element a might be in the kernel of a right congruence, yet not be related
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to aa~x . It is obvious that if S is an inverse semigroup for which every right

congruence /? has the property that a £ ker/? if and only if a p aa~x, then

the kernel map in that case is a complete n-homomorphism from ^W(S) onto

the set of right kernels (see §8).
To illustrate the situation, consider the following example. Let B3 denote

the combinatorial Brandt semigroup with three nonzero idempotents. Then if

a £ B3, we see that K = E u Ra and L = E u {a, aarx, arxa, a~x} are right

kernels in B3 but K n L is not a right kernel in B3.

The kernel class of a right kernel K has a greatest element, namely Pk
whence each kernel class is closed under join, just as for congruences. However,

the following example demonstrates that in general, kernel classes are not closed

under intersection, whence in general, there is no least element for a kernel class.

In [8, Proposition 6.1], Nico describes all one-sided congruences on the bi-

cyclic semigroup 38. Let a, b be generators of 38 with ab — 1. Let a be
the right congruence given by bman a bpaq if and only either bman = bpaq or

n = q and m, p > I. Now let ß be the right congruence given by bman ß bpaq

if and only if bman = bpaq or m, p < 1 and n - m — q -p . Then for any

bman £ 38 , we have

(W)a = /<*"> ifm = °'
;       \L{bman)\{an}       ifm>0,

while the ^-classes are either singletons or of the form {an , ban+x} for n > 0.

Thus if we set /? = aV ß , then p is a right congruence with kernel 38 . As well,

Green's relation Sf is a right congruence with kernel 38 . However, Sfnp = a

and kera = (^\Äl)U{l}.
This example demonstrates why one cannot conclude from Proposition 3.8

that the kernel mapping is a n-homomorphism. The pair (38, tr(Sf n /?)) is

a pseudo right congruence pair which determines Sf n /? but it is not a right
congruence pair.

We remark that \î K is a full inverse subsemigroup of S, then by Lemma

3.10(h), (K, e) is a right congruence pair and so the kernel class of K is an
interval, namely [P(K,e) ,Pk]-

6. Trace classes

Motivated by the known results for the trace function on the congruence

lattice of an inverse semigroup (see [9, III.2.5]), we define a mapping p >->

tr /? for /? G 3?W(S), the lattice of right congruences on S. This mapping is
called the trace map on 3^^(S). The equivalence classes of the equivalence

relation induced on 3HW(S) by the trace map are called the trace classes. By

Propositions 4.1 and 4.2, trace classes are intervals in ¿%W(S). Recall the

definitions of yVT and ./VT from Propositions 4.1 and 4.2.

Definition 6.1. For any x £ W(E), let Trm,„ = P(n,,t) and xrmax = P(n*,t) ■

Proposition 6.2. The trace map is a complete n-homomorphism of 3?W(S)

onto W(E)  and for any p £ 3?W(S), the trace class of p  is the interval

[(Kp)rmin, (trp)rmax]-

Proof. That the trace map is a complete n-homomorphism follows immediately
from Proposition 3.9. The description of the trace class of a right congruence

is essentially Theorem 3.1 of [7].
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We remark here that while the trace classes do form complete sublattices

of 3?W(S), they fail to be modular sublattices, in contrast with the situation

for congruences (see for example [9, III.2.5]). In fact, Jones [5, 6] studied

inverse semigroups for which the trace class of s is semimodular, modular

or distributive. It was shown for example in [5, Corollaries 3.5 and 3.6] that
every combinatorial Brandt semigroup has semimodular trace class of e while

every combinatorial Brandt semigroup with more than four idempotents has

nonmodular trace class of e .

Another important difference between congruences and right congruences on

S is that the trace map on right congruences is not a V-homomorphism. An

example is given in [10] of two right congruences on a Brandt semigroup having

universal join, yet one right congruence is idempotent separating and the other

has exactly one nontrivial trace class, and that class has just two elements.

Yet another difference occurs in the interplay between the congruence lattice

structure and the max operator. This can be illustrated with the aid of the
following result.

Lemma 6.3. Let x £ W(E). Then x is normal if and only if ker xrmax = S.

Proof. Suppose that x is normal. It is immediate from the definition of NT that

NT — S. This fact together with Proposition 3.4 implies that keTxrmax = S.

Conversely, if ker xrmax = S, then since tr xrmax = x, we see that (S, x) is a

right congruence pair whence by Definition 3.3 it follows that x is normal.

We may now demonstrate that iÇt' does not imply that xrmax ç x'„\ax,

unlike the situation for congruences on an inverse semigroup. For example, if

x = e and x' is a nonnormal congruence on E, then x ç t' while ker xrmax = S

and ker x'„\ax ̂  S and so we conclude that xrmax £ x'„\ax .

Normality of a congruence x can also be described in terms of rrm;„ . Ob-

viously, if xrmin is a congruence, then x is normal. That the converse is also

true is a consequence of the next result.

Proposition 6.4. Let x be a congruence on E, and let

N(x) = {a£S\exf implies aea~x x afa~x and a~xea x a~xfa).

Then N(x) is the greatest full inverse subsemigroup of S with respect to which

x is normal, and xrmi„\N(X) is a congruence on N(x).

Proof. It is evident that N(x) is the greatest inverse subsemigroup of S con-

tained in NT and that N(x) must therefore be the greatest inverse subsemigroup

of S with respect to which x is normal. It remains to show that xrmin\N(x) is a

congruence on ./V(t) . Let Tm;„ denote the least congruence on 7V(t) with trace

the normal congruence x. Since tr(Trm,„|Ar(T)) = x = tr xm¡n , it follows from

Theorem 3.5 that if ker(Trmi„|jv(T)) = kerrm/„, then xrmin\N(t) = rmin. Let

a £ kerxmin. Then (see [9, III.2.4]) there exists e £ E with ea = eaa~x

and exaa~x . Let / = eaa~x. We have fa = f and f x aa~x whence

a £ ker(xrmin\N(z)). Conversely, suppose that a £ ker(xrmin\n(z)) ■ Then for

some f <a~xa we have a xrmin f whence af, fa~x £ Nx and afa~x x aa~x,

fa~la = f. Let e = afa~x . Then ea = af £ NT whence there exists e' £ E

with e'ea = e' and e = eaa~x x e'. Thus e" = ee' satisfies e"a - e" and
e" x e = afa~x x aa~l , whence a xmin aa~x and so a G kertm¡„ . We have

ker(xrmin\N,T)) = kerim;„ , as required.
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Corollary 6.5. Let x be a congruence on E. Then x is normal if and only if

Xrmin is a congruence.

7. Right kernel systems

Each congruence on an inverse or even regular semigroup is completely deter-

mined by its idempotent classes. Specifically, on any semigroup each congruence

can be written as the intersection of the principal congruences on the different

congruence classes. For a regular semigroup, it is fairly straightforward to show

that each congruence is the intersection of the principal congruences on just the

idempotent congruence classes. The notion of specifying a congruence on an
inverse semigroup by giving its idempotent congruence classes was introduced

by Preston [12]. He gave the name kernel normal system to a collection of

subsets of an inverse semigroup which constituted the idempotent congruence

classes for some congruence, and he presented an independent set of axioms

that a collection must satisfy in order to be a kernel normal system. In [7],

Meakin has carried out the same program for right congruences on an inverse
semigroup.

Definition 7.1 (see [7, Definition 2.1]). A collection sf = {Aa \ a £ A} of
subsets of S is called a right kernel system of S if it satisfies the following

conditions:

(i) Aa n Aß = 0 for a, ß £ A, a ¿ ß ,

(h) EÇK = [JaeAAa,
(hi) EnAa¿0 for a G A,

(iv) for each a £ K and a £ A, there exists ß £ A such that Aaa ç Aß ,

(v) for each a £ S, a £ Aa and aa~x £ Aß implies that Aaa~x ç Aß ,

(vi) for a £ S, jSeA with aa~x £ Aß , if Ka~x UAß±0 then a £ K.

Meakin [7, Theorem 2.1] shows that sf is a right kernel system of S if and

only if sé is the set of idempotent classes of a right congruence on S. We

offer another set of axioms which characterize right kernel systems. Depending
on the problem under study, this list may be more convenient to use than that

given in Definition 7.1. This alternative axiom set amounts to requiring that

each Aa be a congruence class of the principal right congruence on Aa , and for

each Aß in the collection, Aa should be contained in a class of the principal

right congruence on Aß .

Proposition 7.2 (cf. [1, Theorem 10.4]). Let s/ — {Aa \ a £ A} be a collection

of subsets of S. Then sf is a right kernel system if and only if sf satisfies (i),

(h), (hi) of Definition 7.1  and the following condition:

(vii) for all x G S, a, ß G A, Aax r\Aß^0 implies that Aax ç Aß .

Proof. It follows from [7, Theorem 2.1] that if sf is a right kernel system,
then (vii) holds. For the converse, it is sufficient to show that there is a right

congruence /? for which sf = {ep \ e £ E}. Let /? = f]a€A Pa, where for

convenience we denote the principal right congruence on Aa by Pa . For ß g

A, choose e £ Aß n E and suppose that ape. Then for all x £ S and
a G A, ax £ Aa if and only if ex £ Aa . Since e £ Aß , it follows that a £ Aß

whence ep ç Aß.  Conversely, let a £ Aß.  For x £ S, if AßX n Aa ^ 0,
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then AßX C Aa whence ax G Aa if and only if ex £ Aa . Thus a Pa e for all

a G A and so ape. Thus Aß ç ep. This establishes that sf is the collection

of idempotent classes of p.

We conclude with an example showing that a right congruence on a regular

semigroup need not be determined by its idempotent classes. Construct a four

element orthodox completely regular semigroup as the direct product of the

cyclic group of order two and a two element right zero semigroup. The equiva-
lence relation whose only nontrivial class contains the two nonidempotent ele-

ments is a right congruence each of whose idempotent classes is a singleton, as

is the identity relation.

8. Right congruences on a Clifford semigroup

Recall first that Clifford semigroup is a synonym for semilattice of groups.
In a Clifford semigroup S, we have aa~x = a~xa for all a £ S. We shall write

a0 = a~xa for convenience.

Proposition 8.1. The following statements hold for any Clifford semigroup S.

(i) For p £ 3fW(S) and a,b £S, we have

a p b & ab° p ba°, a0 p b°

and ker p = {a £ S \ a p a0} .
(h) A pair (K, t) is a right congruence pair for S if and only if

(a)   K is a full inverse subsemigroup of S,

(ß)   x is a congruence on E,

(y)   a£S,e£E,a°xe,ae£K^a£K.

In such a case, for any a, b £ S, we have

a P(k,t) b ■& ab~x £ K, a0 x b°.

(hi) A subset K of S is a right kernel in S ¿fand only if K is a full inverse

subsemigroup of S.

(iv) If x £ ^(E), then xrmin = imin and xrmax = xmax .

Proof, (i) If a p b, then ab° p bb° = b p a = aa° p ba°,

a0 = aa~x p ba~x = (ba°)a~x p (ab°)a~x = a°b°

and analogously b° p b°a° so that a° p b°. Conversely, if ab° p ba° and

a0 p b°, then

a = a°a p b°a = ab° p ba° = a°b p b°b = b.

If a p e, where e G E, then

a = aa° p ea° = aea~x p ea~x p aa~x = a0.

(h) Let (K, t) be a right congruence pair for S. By Theorem 3.5, there

exists /? G 31W(S) such that K = kerp and x = tr p. Let a £ K. Then by
part (i), a p arxa and so aa~x p a~l. Thus A" is a full inverse subsemigroup

of S. This establishes (a) ; item (ß) is obvious. Let a £ S, e £ E, a0 x e



RIGHT CONGRUENCES ON AN INVERSE SEMIGROUP 929

and ae £ K. Then a = a°a p ea = ae p (ae)° and thus a £ K, whence (y)

holds.
Conversely, assume that (a), (ß) and (y) hold. If the conditions of Defini-

tion 3.3(i) hold, then with e = b° we obtain a £ K by (y). Hence Definition

3.3(i) is satisfied; part (h) holds trivially; part (hi) holds since K is closed under
inverses. Therefore (K ,x) is a right congruence pair for S.

Now suppose that (K, x) is a right congruence pair for S and let a, b £ S.
By part (i), it suffices to prove that ab~x p (ab~x)° if and only if ab° p ba° ,

which follows easily.
(hi) Let K be a right kernel in S. Then by Proposition 4.4, K = ker p

for some /? G 3ê'W(S). Now by part (h) (a) we have that K is a full inverse

subsemigroup of S. Conversely, if AT is a full inverse subsemigroup of 5, then

by Lemma 3.10(i) it is the kernel of a right congruence on S.

(iv) Let t G ^(E). By Corollary 5.5, we know that xrmin is a congruence

on S since x is normal in S, whence t>ot;„ = Tm;„ .

Finally, since xmax ç xrmax always holds, it suffices to show that xrmax ç

Xmax ■ Let a Xrmax b. By part (i), we have a0 xrmax b° and thus a° x b°.

But then for every e G E, we have aea~x x beb~x and so a xmax b (see [9,

III.2.4]).

We note that Clifford semigroups whose right congruence lattices satisfied
certain conditions were discussed in [3].

9. All right congruences are two-sided

We characterize here all inverse semigroups for which every right congruence

is two-sided. This is the semigroup analogue of the condition on a group that

every subgroup be normal. Note that for a relation /? on S, the relation /?mv

defined by a /?inv b if a~x p b~x is a left congruence on S if and only if p is

a right congruence on S. Thus the requirement that every right congruence be

two-sided is equivalent to the requirement that every one-sided congruence be

two-sided.
For any nonempty subset X of S, let px denote the right congruence on S

defined by a px b if Xa — Xb.

Lemma 9.1. Let e £ E and let H be a subgroup of He . The right congruence

Ph is idempotent separating if and only if S is a monoid and e is the identity

ofS.

Proof. Suppose that pn is idempotent separating. Since x pu ex for every

x £ S, we obtain that f = ef for every f £ E. Thus 5" has identity e.

Conversely, suppose that S is a monoid and that e is the identity of S. If

a ph b, then Sa — S Ha = S H ab = Sb and so a Sf b . It follows that pu Q
Sf whence /?# is idempotent-separating.

Lemma 9.2. If S is an inverse semigroup for which every nonidempotent sepa-

rating right congruence is two-sided, then S is a Clifford semigroup.

Proof. Let e £ E and let pe denote the right congruence p¡e}. If pe is idem-

potent separating, then by Lemma 9.1 e must be the identity of S. Otherwise,

pe is not idempotent separating and so by hypothesis, pe is two-sided. But then
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x pe ex implies that x~x pe x~xe and so ex~l = ex~xe for every x £S. But

then ex = exe for every x £ S whence x~xe — (ex)~x = ex~xe = ex~x for

every x £ S. Thus e is central and so S is a Clifford semigroup.

A non-Abelian group is said to be Hamiltonian if each of its subgroups is

normal. A Hamiltonian group is the direct product of a quaternion group with

an Abelian group in which every element is of finite order and an Abelian group

of exponent two (see for example [4, Theorem 12.5.4]).

Proposition 9.3. If S is an inverse semigroup with \E(S)\ > 3, then every non-

idempotent separating right congruence on S is two-sided if and only if S is a

Clifford semigroup in which every maximal subgroup is either Abelian or Hamil-

tonian.

Proof. Suppose first that every nonidempotent separating right congruence on

S is two-sided. By Lemma 9.1, S is a Clifford semigroup. Let e £ E and

let Ge denote the ^-class of e. Let H be a subgroup of Ge. Assume that

e is not the identity of S. Then by Lemma 9.1 we see that p = Ph is not

idempotent separating and so by hypothesis /? is a two-sided congruence on S.

But then p\ge is a congruence on Ge and so H is normal in Ge. Now assume

that e is the identity of S and consider the principal right congruence P# on

S. Since the Rees right congruence modulo S\Ge saturates H, if follows that

S\Ge isa P//-class. Moreover, since \E(S)\ > 3, we see that S\Ge contains at

least two idempotents and so P# does not separate idempotents. Thus Ph is

two-sided and so P//|g,, is a congruence on Ge whose idempotent congruence

class is H, whence H is normal in Ge .

Conversely, suppose that a1 is a Clifford semigroup in which every maxi-

mal subgroup is either Abelian or Hamiltonian. By Proposition 8.1(h) and [9,

III. 1.3], a right congruence pair (K, t) for S is a congruence pair if and only
if K is self-conjugate. But every inverse subsemigroup of S is self-conjugate

and so every right congruence on S is two-sided.

We remark that the nonidempotent separating right congruences do not pro-

vide enough information about the subgroups of S when S has too few idem-

potents. This is obviously true when 5 is a group. If S is a chain of two

groups with trivial structure homomorphism, then any right congruence which

identifies the two idempotents of S also identifies the top group with those

idempotents and so the subgroup structure of the top group is hidden from us

if we are only permitted to use nonidempotent separating right congruences.

Corollary 9.4. Every right congruence on an inverse semigroup S is two-sided if

and only if S is a Clifford semigroup in which every maximal subgroup is either

Abelian or Hamiltonian.

Proof. For the direct part, the only case to consider is that when \E(S)\ = 2.

The proof of Proposition 9.3 can be used since every right congruence on S,

idempotent separating or not, is two-sided.

The proof of the converse is the same as that of Proposition 9.3.

Corollary 9.5. An inverse semigroup S has no proper right congruences if and

only if S is either a finite cyclic group of prime order or a semilattice of order 1

or 2.
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10. Right congruences form a chain

We determine here all inverse semigroups whose right congruences are lin-

early ordered under inclusion. As we shall see, this is a very strong condition

indeed, for right congruences are abundant in almost every inverse semigroup. It

was shown in [7] that the lattice of idempotent separating right congruences on

S is isomorphic to the lattice of full inverse subsemigroups of S and we have

classified in [ 11 ] the inverse semigroups in which the full inverse subsemigroups

form a chain.

Proposition 10.1. The lattice of right congruences on an inverse semigroup S is

a chain if and only if S is isomorphic to a subsemigroup of (Zp°o)° for some

prime p.

Proof. Suppose first of all that 3êW(S) is a chain. For e G E, let pe denote

the right congruence on S given by a pe b if ea = eb. Let e, f £ E. Then

Pe and pf are comparable. Assume that pe Q Pf ■ Then from / pe ef we

obtain / pf ef whence / = ef. It follows that E is a chain. But now by

[11, IV.2.1], the subsemigroup of S generated by the nonidempotents of S is

a direct product of a chain Y and a group G, where G is a subgroup of Zp«,

for some prime p . As a consequence, S is a Clifford semigroup. Now for a
Clifford semigroup, every congruence on E is a normal congruence and so is

the trace of a congruence on S, whence W(E) must be a chain. This forces

|is| < 2. If \E\ = 1, then S is isomorphic to a subgroup of Zp°o for some

prime p. Suppose that \E\ = 2. Then there is a retraction of S onto the
bottom group. Let X denote the congruence induced by this retraction. Then

X identifies the two idempotents of S and so X <£. p, the Rees right congruence

of S modulo the bottom group. By hypothesis we have p ç X whence the

bottom group is a singleton. Thus S1 is a group with zero. Either the group is

trivial or else, as described above, it is a subgroup of Zpoo. In any event, S is

isomorphic to a subsemigroup of (Zpoo )° .

The converse is immediate.
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