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A PHENOMENON OF RECIPROCITY
IN THE UNIVERSAL STEENROD ALGEBRA

LUCIANO LOMONACO

Abstract. In this paper we compute the cohomology algebra of certain subal-

gebras L, and certain quotients Ks of the mod 2 universal Steenrod algebra

Q , the algebra of cohomology operations for //oo-ring spectra (see [M]). We

prove that

ExtLr(F2 , F2) 2 K_k+1,        ExtKs(F2 , F2) S L_s+X

with r, s integers and r < 1 , s > 0. We also observe that some of the

algebras L,, Ks are well known objects in stable homotopy theory and in fact

our computation generalizes the fact that H*(AL) S A°pp and H*(A<W) a¡ AL

(see, for instance, [P]). Here Ar, is the Steenrod algebra for simplicial restricted

Lie algebras and A is the i^-term of the Adams spectral sequence discovered

in [B-S].

1. Introduction

We recall that in [M] J. P. May introduced, for each prime p, an algebra

sfp generated by symbols Ps (s £ 17) subject to a generalized version of Adem

relations. We call sfp the mod p universal Steenrod algebra because, as shown

in [M], it is the algebra of cohomology operations in the category of //oo-ring

spectra, and most of the algebras of operations (in homology and cohomology)

which arise in algebraic topology can be obtained from sfp as subalgebras or

subquotients. For example, the algebra Aopp is contained in sép , the Steenrod

algebra A is a quotient of J^ , and the Dyer-Lashof algebra 3Î is a subquotient
of s/p . We focus our attention on the case p = 2 and write Q for the mod 2

universal Steenrod algebra.

In [L] the algebra Q has been studied, and an invariant theoretical descrip-
tion of ß has been given, generalizing some of the methods and ideas of W.

Singer [S]. In the present paper we would like to study the behaviour of the

cohomology algebras of some subalgebras and quotients of ß. As we will make

an extensive use of Priddy's results on Koszul algebras (see [P]), a section of

this paper will be devoted to a brief summary of the definitions and results that

will be needed in the sequel.
We find that there are two families of homogeneous Koszul algebras {Lr}r<x

and {Ks}s>o with the following properties. For each integer r < 1, Lr is a
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subalgebra of ß, and for each integer s > 0, Ks is a quotient of ß. We

compute the cohomology of all such algebras and prove the following

Theorem, (i) For each r<\, H(Lr) =i K-r+x

(ii) For each s > 0, H(KS) s L_í+1.

Some of these algebras are well known. For example L0 = Aopp and Kx = AL

where At is the Steenrod algebra for simplicial restricted Lie algebras. There-

fore, the above theorem generalizes a result of Priddy (see [P] and Corollary

4.2(i) below).

2. Koszul algebras

Let F be a field, J2" a subset of Z, and {x¡}iejr a set of symbols. We write

T for the free associative F-algebra over {x,},6Jr. T is a bigraded object: the

first grading is obtained by assigning length k to the monomials of the form

Xit ■ ■ ■ Xik (ix, ... , iK) £ J^ (repetitions are allowed), and the second grading is

given by the total degree of a monomial, where each generator Xf¡ is assigned

degree h. T is augmented by the natural projection e : T -> F . Suppose

now that B is an augmented F-algebra. A presentation

(1) n: T^B

is an augmented epimorphism for a suitable free associative F-algebra T onto

B.

Definition 2.1. B is a homogeneous pre-Koszul algebra if it admits a presen-

tation n such that the two-sided ideal ker(7r) is generated by elements of the

form

(2) X>**»**,       (ßi^F).
i

We set bj = n(x,). {¿>,},€jr is called a set of pre-Koszul generators for B. n

induces on B the length grading of T. If we also assume that in (2) the integer

k¡ + hi is constant, n also induces on B the grading given by the total degree

of monomials in 7. J? is therefore bigraded. We assume B is of finite type,

i.e., finite dimensional in each bidegree. The cohomology algebra associated to

B,

H(B)= ExtB(F,F),

is trigraded (by the homological degree first, and then by length and total degree).

Definition 2.2. A homogeneous pre-Koszul algebra B is a homogeneous Koszul

algebra if H(B) is generated, as an algebra, by any F-vector space basis of
monomials of Hx•x<*(B), or equivalently if Hr's'*(B) = 0 unless r = s.

Let

U = M S x ■ ■ ■ x J?       («-copies)
n>0

be the set of multi-indices, and let â§ be an F-vector space basis of monomials

for B . If bix ■ ■ ■ bik is a monomial, we write

bi = blx ■ ■ ■ bik,
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where I = (ix, ... , i^) £ U, and we say that the multi-index I is the label of

the monomial b¡. Let S = {I £ U\ b¡ £ 38} . The pair (38, S) is called a
labelled basis for B . If B is a homogeneous Koszul algebra and (38, S) is a

labelled basis for B, the generating relations for B can be written as

(3) bhbk=  J2 f(h,k,i,j)bibj,       (h,k)£jFxJF, f£F .
(ij)es

Let 38* denote the dual basis of 77% . If b¡ £ 38 , we write a(I) or a(ix, ... , ik)
for its corresponding dual element, i.e.,

a(I) £ Hom(B, F),

and we have

(a(/)'^>=\0   if/eS-{/}.

Let us write a, for the cohomology class of the cocycle [a(i)] in the cobar

construction.
The following theorem, due to Priddy [P], is very useful and easy to prove.

Theorem 2.3. With the notation used above, if B is a homogeneous Koszul alge-

bra, (38, S) is a labelled basis, and (3) represents the generating relations, then

the cohomology algebra H(B) is generated by the classes a,, /e/, subject to

the following relations:

(4) ataj =    ^2    f(h,k,i, j)ahak       ((i, j) £ S) .
{h,k)iS

We remark that the set U is totally ordered, by length first and then lexico-

graphically.

Definition 2.4. A labelled basis (38, S) is a Poincaré-Birkhoff-Witt (PBW) basis
if the following two conditions hold:

(i) If I, J £ S, then either (I, J) £ S or else the label of each monomial
appearing in the expression of b¡bj as a linear combination of elements of 38

is strictly greater than (/, J).
(ii) Let k > 2. Then (ix, ... , ik) £ S if and only if for each j < k we have

{ii,..., ij)eS, (ij+i,... ,ik)£S.
Here (I, J) indicates the multi-index obtained by juxtaposing J to I.

Theorem 2.5. If B is a homogeneous pre-Koszul algebra and it admits a PBW-

basis, then B is a homogeneous Koszul algebra.

Theorem 2.6. If both B and H(B) are homogenous Koszul algebras, then

H(H(B)) S B .

For proofs of Theorems 2.5 and 2.6, see [P].

3. The algebra ß and other related algebras

From now on we will only consider F2-algebras. Here we are going to outline

a short description of the mod 2 universal Steenrod algebra Q. For more details

and an invariant theoretical description of ß, see [L].

Let T be the free associative algebra on generators {x¡}¡ez » and let D : T ->
T be the derivation defined by setting D(x,) = x¡-i, i £ Z. We write Dj for

Do-oD ( ./-copies), and D° for the identity map.
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Definition 3.1. We set ß = T/I, where / is the two-sided ideal of T generated

by all the elements of the form Dj(x2i-iXi), j > 0, / £ Z.

Theorem 3.2 (see [L]). ß can be presented by generators x¡, i £ Z, and rela-

tions

(5) x2k-i-„xk = ]T f "~ j ~J ) x2k-X-jXk+j_„       (n>0, k£Z)

(which we call generalized Adem relations).

If / = {ii,..., in),   ij € 2, is a multi-index, we write x¡  instead of

x,-, • • • x¡n. We recall that the set of admissible monomials

33 = {x¡\ n > 0 , ij> 2ij+i   for each j = I, ... , n - 1}

is a linear basis for ß.

Definition 3.3. For each r £ Z we let Lr be the subalgebra of ß generated by

Xr , Xr— i ,  Xr—2 , . •. .

Proposition 3.4. For each r < 1, Lr can be presented by generators xr, xr_ i,

xr-2, ... and relations

(6) X2k-X-nXk = 2_j\ j ) x2k-\-jXk+j-n

(n>0, k<r, 2k- 1 -n < r).

Proof. We observe that since k < r < 1, we have 2/c - 1 < k and thus

2k - 1 - j < k < r   for each j .

Moreover, the binomial coefficient (n~x~J) does not vanish only if 0 < 2j <

n - 1. In particular, we have j < n , and therefore

k + j - n < k < r   for each j < n .

Now we let L'r be the algebra presented by generators y,, / < r, and relations

(7) y2k-\-nyk = Y,{~ j   J ) y2k-i-jyk+j-n

(k,2k-l-n<r, n > 0).

We define a homomorphism y : L'r -^ Q by setting y(y¡) = x¡, i < r. Clearly

Im(y) = Lr. Moreover, y is a monomorphism. In fact, if y £ L'r is a polyno-

mial expression of the y¡ 's and x = y(y) = 0 in Q, this means that we can

apply generalized Adem relations to the inadmissible pairs xaXb appearing in
some of the monomials in x, and after applying finitely many such relations

we find that jc = 0, in ß. All such relations are also available in L'r, so y = 0

in L'T, i.e., y is a monomorphism and L'r = Lr.      D

Remark 3.5. For r > 2, Proposition 3.4 is false. For example, take r = 2. In

ß we have

(8) -£2X2 = X3X1 .

Hence

X2X2X1 = Xt,xxxx =0   in ß
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as xxxx = 0. L2 is a subalgebra of ß, thus

X2X2X1 =0   in L2

and it is not possible to obtain such a relation in L2 by handling relations of

the form (6) (with r = 2 ), as in L2 relation (8) is not available (x^ £ Li) ■

In [BG] an algebra A was introduced. We look at the opposite of A. A

is presented by generators A,-, / > -1, and relations

A(p,q) = 0,       p,q>0,

where

A(/>, q) = 22 ( j j t-2q+j-\Ap+q-J-
7>0

The algebra Aopp (the opposite of the algebra A defined in [B-S]) is a subalgebra

of A      and is presented by generators A,, z > 0, and relations

X(p,q) = 0,        p>0,q>0.

Proposition 3.6. (i) Lx £ X°PP.
(ii) L0^Aopp.

Proof. An isomorphism cj> : A -*■ Li (which restricts to an isomorphism

Aopp —> L0 ) is given by setting 0(A,-) = x_;.  4> is well defined, as

4>(X(p,q)) = Y2 \j ) X-2q-j+lX-p-g+j+l = DP(xX-2qXX-q) .

The inverse of </> is also well defined, as it is easy to check.     □

Proposition 3.7. For each r < I, Lr is a homogeneous Koszul algebra.

Proof. By Proposition 3.4, for each r < 1 Lr is a homogeneous pre-Koszul alge-

bra. Moreover, the subset 38rç_38 consisting of all the admissible monomials

x¡ with Xj < r for each j is a PBW-basis, as it is easy to check.      D

Remark 3.8. ß fails to be a homogeneous Koszul algebra, because it is not of

finite type.

For each 5 £ Z, let us consider the two-sided ideal

I(s) = (Xs-X , Xs-2 , Xs-3 , .. . ) Ç Q .

Definition 3.9. For each 5 e Z we define an algebra Ks by setting

Ks = Q/I(s) .

Proposition 3.10. For each s > 0, Ks is presented by generators xs, xs-X,

xs+2,... and relations of the form (5) with k >s and 2k - 1 - n > s, where a

summand x2k-X-.jXk+j_n in the RHS of (5) is taken to be zero if k + j -n < s.

Proof. Clearly Ks is presented by generators x¡, i > s, and relations of the

form (5), modulo xa = 0 if a < s. Therefore Ks is presented by generators

Xj, i > s, and relations of the form (5), with 2k - I - n > s, k > s, modulo



818 LUCIANO LOMONACO

xa = 0 if a < s, plus, possibly, relations of the form (5), with 2k — 1 - n < s

or k < s, modulo xa = 0 if a < s, having some nonvanishing summands on

the RHS of (5). We want to show that these latter relations do not actually

occur. In fact, if k < s , for each j such that (n~x~J) /Owe have 2j < n-l,

hence j < n and k + j-n<k<s, therefore each summand on the RHS

of (5) vanishes in this case. On the other hand, if 2k - 1 - n < s, and we

assume k + j - n > s and 2/c - 1 - j > s, we would have k > s + n - j, i.e.,

2k >2s + 2n- 2j . But we know that, in order for ( "_1_/ ) ^ 0, we must have

j < n - 1 - j, i.e., 1 < n - 2j . We would get

2k > 2s + n(n -2j)>2s + n + l

and therefore

2/c - 1 - n > 2s > s       (as 5 > 0),

a contradiction.     D

Let us define an algebra A by the presentation

A = (Sq° ,Sqx,Sq2,...\ SqaSqb = £ ( b~} ~.j ) Sqa+b^Sq^,

a < 2b, a, b > 0

We observe that the Steenrod algebra A can be obtained as a quotient of A

by adding the extra relation Sq° = 1 . The Steenrod algebra for simplicial

restricted Lie algebras Al can also be obtained as a quotient of A by adding

the extra relation 5"^° = 0 .

Proposition 3.11. (i) K0 = A.

(ii) KX^AL.

Proof. Let us consider an Adem relation

(9) SqaSqb = £ (b~* ~.J) Sq'+^SqJ,        a<2b.

As a < 2b, we can write a = 2b - 1 - m for a suitable nonnegative integer m .

(9) becomes

(10) Sq2b-x~mSqb = E (2è - 1~- m- 2/) ^"'"""W ■

Now we notice that

b-\-j      \=fb-l-j
2b - I - m - 2j J     \m + j - b

and set i — m + j — b. We make the above substitution in (10) to get

(11) Sq2b~x-mSqb = E (W "/ " ') Sqlb-x-iSqb+i-m .

After making this remark, it is easy to see that an isomorphism ip : A —> A^o

can be defined by setting y/(Sq') = x¡ . Moreover, ip induces an isomorphism

between AL and Kx .      D
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Proposition 3.12. For each s > 0, Ks is a homogeneous Koszul algebra.

Proof. For each s > 0, Ks is a homogeneous pre-Koszul algebra, because of

Proposition 3.10. Moreover, the admissible monomials which do not involve

generators x¡ with i < s form a PBW-basis.      D

Remark 3.13. For s < 0 such admissible monomials fail to form a basis, as

they are not linearly independent. For example, take s = -1 and consider the

relation

x-2xx = xxX-2 + xo-x-i    in ß,

which we write as

X—2XX + XXX-.2 = XqX-X     in ß .

As X-2 £ I(-l), we have

xox_i =0   in K-X

although xnx_i is admissible. Similarly, using the relation

X—^X\ = XxX-4 + XqX-3 + XXX—2     in ß ,

we find that

XoX-t, + XXX-2 = 0     in .rv_3.     D

4. Cohomology computations

Here we prove the result announced in the introduction.

Theorem 4.1. (i) For each r<l, H(Lr) =■ K_r+X.

(ii) For each s > 0, H(KS) =■ L_J+1.

Proof. We will prove (i) by a direct computation, using the machinery developed

in §2. (ii) will follow from Theorem 2.6. By Theorem 2.3, we have that

H(Lr) = / a,, i < r | aid] = ^2 f(k,m, i, j)akam ,
\ k<2m

i>2j, i, j,k,m<r\ ,

where f(k, m, i, j) is the coefficients of x¡x¡ in the admissible expression of

xkxm in Lr. As we have a relation for each monomial a/a, with i > 2j, we

write such a relation as

a2j+POij = ^2f(p, j, h)a2j+p-haj+h ,

where p > 0, j, 2j + p < r, and 2j + p - h < 2(j + h), i.e., p - h < 2« , i.e.,
p < 3h . Moreover, we must have j + h,2j+p-h<r,as a(2j +p - h) and

a(j + h) are required to be dual to elements of Lr. The scalar f(p, j, h) is

the coefficient of X2j+pXj in the admissible expression of x2j+p-hXj+h in Lr.

We write 2j + p - h as

2j+p-h = 2(j + h)-l-n,
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where n = 3h - 1 - p . As p < 3h , we have n > 0. We now look at the Adem

relation

(12) X2j+p-hXj+h = X2(j+h)-l-nXj+h

_v- fn-l-t\
~2-^\ t } X2U+h)-\-tXj+h+t-n

in Lr. We are looking for the coefficient of X2j+pXj in (12). In the RHS of
(12) X2j+pXj appears when h + t - n = 0. So its coefficient is

f(P>J>h)=(nZl)= (3«-l-p-«)

= \2h-l-p) = \p-h)

(which does not depend on j). The generating relations for H(Lr) are therefore

of the form

( ! 3) a2j+paj = E ( p _ n J a2j+p-haj+h ,

where we mean aq = 0 if q > r. We now define a homomorphism co :

H(Lr) -> AT_r+i by setting co(a¡) = X-¡+i. The relation (13) is mapped to

X-2j-p+lX-j+l =z2[p_hj X-2j-p+h+\X-j-h+l

(mod xq = 0 if q < -r + I).

If we set a = — j + 1 and è = p - h , the above relation becomes

v- (p-\-b\
x2a-\-pXa — 2_^ \ b I X2-a~l-bXa+b-P

(mod Xq = 0 if q < -r + 1),

which is a relation in K_r+X . Hence co is well defined and, in a similar manner,

we can check that the map œ : K-r+x —» H(Lr), which takes xc to a_c+i , is

also a well-defined homomorphism. Clearly W is the inverse of w and co is

an isomorphism.      D

As a consequence of the above theorem, using Propositions 3.5 and 3.11, we

find the following

Corollary 4.2. (i) H(AL) s Aopp ; //(Aopp) s AL .

(iï) H(Ä)^rPP ; H(TPP)^1.    D

Part (i) is the well-known result of Priddy mentioned in the introduction.
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