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A DEFORMATION OF TORI WITH CONSTANT MEAN CURVATURE
IN R3 TO THOSE IN OTHER SPACE FORMS

MASAAKI UMEHARA AND KOTARO YAMADA

Abstract. It is shown that tori with constant mean curvature in R3 con-

structed by Wente [7] can be deformed to tori with constant mean curvature in

the hyperbolic 3-space or the 3-sphere.

Introduction

In this paper, we will construct tori with constant mean curvature in the

hyperbolic 3-space. To be more precious, let T2 be a torus and / : T2 -+ R3
be an immersion with constant mean curvature constructed by Wente [7]. Let

f R3 (if k > 0),
R\k) = ( ,        ,       . ,      ,

\{*eK3:£L(*')2<^}    (if*<0)

be the Riemannian 3-manifold with the Riemannian metric

sk={—\—) è(<**'')2

of constant sectional curvature k . We will show that if / is generic, then for

a sufficiently small e > 0 there exists a local 1-parameter family of immersions

{fk : T2 -+ R3(^)}|i|<£ (fo = f) with the same constant mean curvature.

It should be noted that the induced metrics {fkgk}\k\<£ on T2 in this case
may not be conformally equivalent to each other. Recently Walter [6] gave

another construction of tori with constant mean curvature in the hyperbolic

3-space. But our construction is quite different and depends very much on an

idea "deformation of Lie groups".

Wente's construction in [7] is based on doubly periodic solutions of the sinh-

Gordon equation on R2. Even if k ^ 0, solutions of the sinh-Gordon give

rise to immersions fik : R2 —> R3(fc) with constant mean curvature. Though fk

may not be doubly periodic, it induces a representation pk : nx(T2) -* Gk such
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that for any a £ nx(T2), pk(a) preserves the image of fik , where

' SO(4) (if k > 0),

Gk = I SO(3) k R3    (if k = 0),

SO+(3,l)     (ifk<0),

which are the identity components of the isometry groups of the 3-dimensional

space forms. The necessary and sufficient condition for the image of fk to

be closed can be described in terms of the representation pk . To construct a
family of doubly periodic immersions, one difficulty arises from the fact that
the isometry groups Gk for k > 0, k = 0, and k > 0 are quite different from

each other.
In §§1-3, we introduce a differentiable structure on the set / = {(k, E): k £

R, E £ Gk} such that the family of representations pk : nx(T2) —> Gk c /

(k £ R) is smooth with respect to k . In §4, a criterion for the image of fk to
be closed can be taken depending smoothly on k, by virtue of the differentiable

structure. Using this criterion, the existence of a deformation fk with the
desired properties are shown in the last section.

The authors would like to thank all those who encouraged them and gave

them suggestions, and in particular Professors H. Ozeki and S. Nishikawa.

1. Decompositions of isometries

Let M3(k) be a complete simply connected Riemannian 3-manifold of con-

stant sectional curvature k , and Gk the identity component of the isometry

group of M3(k).

First, we suppose k > 0. In this case, Af3(/c) is the Euclidean sphere defined

by

(1.1) M\k) = \ l(xx,x2,x\ t)£R4 : Y(x¡)2 + t2 = ]- I= J '(xx,x2,x\ i)GR4 : ¿(x')
I ¡=i

and Gk = SO(4).  It is well known that for each E £ SO(4), there exists a
matrix P £ SO(4) such that

(1.2) P~xoEoP

/cos 6 -sinö       0 0     \
sinÖ cosö        0 0

0          0 cos v — sin v

V   0          0 sini/ cosí/ /

where e±l6 and e±w are the eigenvalues of the matrix E .

Next we consider the case k < 0. In this case, M3(k) is the hyperboloid in

the Minkowski 4-space L4 with the induced metric. That is,

(1.3) M\k) = i '(xx,x2,x\t)£-L4 : ¿(jc'')2 -12 = p i>ol

and Gk = SO+(3, 1). Unlike the case SO(4), not all matrices in SO+(3, 1)
can be normalized.

Lemma 1.1. Let

(1.4) N = {A£ SO+(3, 1) : all of the eigenvalues of A are 1 }.
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Then for any matrix E £ SO+(3, l)\N, there exists P £ SO+(3, 1) such that

i cos 0   -sin 9       0 0

(1.5) P~xoEoP = sinö     cosö 0 0

0 0       coshf    sinhi/

V   0 0       sinhi/   cosh v,

where e±w and e±v are the eigenvalues of the matrix E.

Proof. Identify a point X = '(x1, x2, x3, t) £ L4 with a 2 x 2-matrix

x3 + i

x1 - ix2

x1 + ix2\

-x3 + t ) '

Then  SO(3, 1)   is isomorphic to   PSL(2,C) by the   2-fold covering  p:
SL(2, C) -» SO+(3, I) defined by p(a)X = a o X o la. It is easy to check

that

(cos «   -sin«       0 0    \
sin«     cos w        0 0

0 0 coshw    sinhw I '
0 0 sinhu   coshu/

where z = u + iv . On the other hand, p~x(N) c SL(2, C) consists exactly of

matrices which cannot be diagonalized. Combining these two facts, we obtain

the lemma.   D

Finally we consider the case k = 0. The following lemma holds:

Lemma 1.2. Let E be an isometry of R3(0) written as E = A + c (A £

50(3), c £ R3), and suppose A / id. Then there exists an isometry P such

that

(xx\      /cosö   -sinö   0\   /x'\ fO"
(1.7) PoEoP~x    x2     =     sinö     coso     0       x2    + t    O

VW      V   0 0        lAW \1
for ail x = '(x1, x2, x3) £ R3(0). Moreover, if E has such a decomposition,

then the e±l8 are the eigenvalues of the matrix A and ±t = (c, e), where e is
the unit eigenvector of A corresponding to the eigenvalue 1 and ( , ) denotes

the canonical inner product of R3.

Proof. Let P = P0 + p (P0 £ S0(3, 1), p £ R3). Then E has the expression
PoEoP-1 =i?e + Te3 of (1.7) CRöeS0(3, l),e3 = '(0,0, 1)) if and only if

(1.8) P0-xoReoP0 = A,

(1.9) /?ep + Te3-p = P0c.

It is obvious that P0 satisfying (1.8) exists. Hence, it suffices to show that the

existence of p satisfying (1.9). Note that if such a p exists, then the e±w are

the eigenvalues of A by (1.8) and, by (1.9),

t = (re3, e3) = (P0c, e3) = (c, ¿V'«^) = (c, e).

Now we put Pnc = '(a' > °2 > q3) • Then (1.9) is equivalent to

r = 0>   and    (<™8 " '     -?_», ) K) = K
sinö       cosd-l J\p2J     \a

Consequently, the desired t and p exist if Ö ^ 2nZ.   O
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2. The stereographic projections

Recall that

r (ifk>o),

{x£R3 :ZL(x')2<]kl}   (ifk<0)

is the Riemannian 3-manifold with the Riemannian metric

8k =    -k-     Y(dxi)2

of constant sectional curvature k .

Note that when k > 0, R3(k) can be understood as the image of the stereo-

graphic projection of M3(k) defined in (1.1) into the (x1, x2, x3)-plane from

the south pole (0, 0, 0,-l/vX). Similarly, when k < 0, M.3(k) is also
the image of the stereographic projection of M3(k) defined in (1.3) into the

(x1, x2, x3)-plane from the south pole (0,0,0, -l/y/\k~\).

Let y/k (k ^ 0) denote these stereographic projections. Then y/k and y/kx

are given, independently of the sign of k, by

(2.1) ^(x',x2,x3, 0 = —==--(x',x2,x3),
^/\k\t +1

(2.2) y/-\x\x\x^) = ——2\rx,x2,x\X^-j^-\ ,

where r2 = ^2i=x(x')2 . The Riemannian metric gk of R3(k) is nothing but the

one induced from the canonical metric of M3(k) by ipk . Therefore, isometries

of M3(k) can be regarded as isometries of R3(k).
Now we interpret the normalized isometries (1.2), (1.5), and (1.7) in terms of

the canonical coordinate system of R3(k). If k > 0, then a matrix E £ SO(4)
of the form (1.4) is expressed as

/x'\ /cosö   -sino      0
(2.3a)       y/koEo ip~x \ x2 \ = p \ sin6     cosö       0

\x3/ \   0 0       cosz;

p(l-kr2)
+

2s[k

where

(2.3b) p = 2{ 2\fkx3 sini/ + cos^(l - kr2) + (I + kr2) }~x.

Note that the singular point of y/koEoy/~x corresponds to the point in M3(k)

which is mapped to the south pole by E .
On the other hand, if k < 0, then a matrix E £ SO+(3, 1) of the form (1.5)
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is expressed as

/x'\ /cosÖ   -sinö       0
(2.4a)       y/koEoy/~x    x2 ) =P\ sinö     cosÖ 0

\x3/ \   0 0       coshí/

P(l-kr2)

2y/W\

where

(2.4b) p = 2{2y[\k\x3sinhv + coshv(l - kr2) + (I + kr2)}~x.

In (2.3) and (2.4), we now put

_ - —SMI    (if^>°)'
^^        (if k < 0),
tyl*l

and denote y/k o E o y/~x by Tk(6, t) . To determine i/ uniquely from x, we

assume that \v\ < n/2 if k > 0. Then 7^(0, t) is expressed, independently

of the sign of k, by

(2.6a)    7HÖ,t)(x2

where |t| < l/2y/\k\ for k > 0, and

(2.6b) #* = 2{ -4â:tx3 + (1 - 4/ct2)1/2(1 - kr2) + (I + kr2) }~x.

We also define Tk(6, x) and pk by (2.6a) and (2.6b) even when k = 0. Then

/¿o = 1 and 7o(ö, t) is identical with normalized isometry given by (1.7). Thus,

for each k £ R, we call Tk(6, x) a normal form of the isometry of R3(k).

3. A DIFFERENTIABLE STRUCTURE OF J"

Recall that Gk is the identity component of the isometry group of M3(k),

namely

' SO(4) (k>0),

Gk = I SO(3) x R3    (k = 0),

<SO+(3,l)      (k<0).

Let y = {(k, E) : E £ Gk} . Then each of the subsets

J^+ = {(it, E) £ S : k > 0} = (0, oo) x SO(4),

J- = {(k, E) £ J : k < 0} = (-oc, 0) x SO+(3, 1)

has the canonical differentiable structures as a product. In this section we shall

prove the following theorem.
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Theorem 3.1. There exists a dijferentiable structure on S whose restriction to

J?+ (resp. J2"-) is compatible with the canonical product structure of 'J^+ (resp.

S-).

Let y be a subset of J? defined by

y= S\{{k ,E)=:k>0andE£ SO(4) maps

the north pole of M3(k) to the south pole}.

For each (k, E) £ S , we put

(3.1) wi(E) = ¥ÍcoEoy,kx(0)       (i=l,2,3),

— (¥loEoWkx)(3.2) wjl(E) =

and define a map W : J" -* R13 by

(0)       (j,/ = 1,2,3),

ihVTW.   ■  ,   .   ,  , <= 1» 13W(k,E) = (k,Wl(E),w"(E))^]J=x^^ £

where y/k (k ^ 0) is the stereographic projection defined in §1 and y/o is

the identity map of M3(0). The map W is injective, since every isometry

E £ Gk is uniquely determined by the data (3.1) and (3.2). Moreover, it is

easily verified that the restriction of the map 3F|ynG   is an embedding for each

k £ R .
Now we introduce some terminology. Let U c R7 be an open subset. Then

an immersion <p : U —► R13 is said to be admissible if it satisfies (Image of tp) c

(Image of W). Then we have the following

Lemma 3.2. The image of W has a unique differentiable structure as an embed-

ded submanifbld of Rx3 such that any admissible immersion induces its local

coordinate system.

Theorem 3.1 can now follow easily from Lemma 3.2:

Proof of Theorem 3.1. Since W\jr+ and W\j- are locally admissible, the dif-

ferentiable structure on J2" induced by W is compatible with the canonical

product structures of J2""1" and <J~ . Thus J^ = J*" U J2""1" U/" has a differ-

entiable structure stated in the theorem with respect to the topology generated

by {J,J"+, S-}.   D

Before we prove Lemma 3.2, we define the following transformations of

R 3(k), which may have singular points when k > 0 :

/x'\ /(1-4â:t2)'/2      0

Si(k, 0, t)    x2 \ =Pi[ 0 cos0

\x3/ V ° sin61

+ px(l-kr2)\ 0
Vo
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cos 0 0 - sin 0
S2(k,6,x) I x2 ) =p2 I     0      (l-4kx2)1'2        0

sinö cosö

+ p2(l-kr2){ x

S3(k,e,x)\ x2     =Tk(6,x)
xJ

= t¿3

0
0

cos 0    - sin 0
sin 0     cos 0

0
+ p3(l-kr2)

(l-4kx2)xl2      0

where |t| < l/2\fk for k > 0, and

/!,- = Pi(k, 0, t , x1, x2, x3)

= 2{-4A:TX/ + (l-4Â:T2)1/2(l-Â:r2) + (l+A:r2)}-1       (/= 1,2, 3).

By the same argument as that for S3(k, 0, t) = Tk(0, x) in the previous sec-

tion, we can show that ykx °St(k, 0, x) o ipk £ Gk (i = 1, 2). In fact, if k < 0
for instance, the corresponding three matrices in Gk are given by

t//kloSx(k, d,x)oy/k =

/'cosh v      0 0 sinhi/
0       cos0 -sinö 0
0       sinö cosö 0

V sinh i/O 0 cosh v.

\pk   oS2(k, 9,x)oy/k

/cosö       0 -sinö 0
0 coshi/        0 sinhi/

sinö       0 cosö 0
V   0 sinhi/        0 cosh v,

y/kx oS3(k, d,x)o\pk

/cosö -sinö       0 0
sinö cosö 0 0

0 0 coshi/ sinhi/
\   0 0 sinhi/ coshi/,

Gk   (k£ R) by

where x = (sinh v)¡2yj\k\ (cf. (2.5)).

Using these, we define a smooth map hk : R6

Mö'^ö3,!1,^3)

= ^-1o51(Â:,0,Tl)o52(Â:,0,T2)o1S3(Â:,0,t3)

o51(Â:,01,O)o>S2(rc,02,O)o53(Â:,03,O)o^.

Then one can easily verify that hk defines locally a diffeomorphism from a

neighborhood of the origin onto a neighborhood of the identity.

Proof of Lemma 3.2. Byjhe implicit function theorem, it is sufficient to show

that for each (k, E) £j^ , there exists an admissible immersion <p : U c R7 -►
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R13 suchthat (k, E) £ (Image of ç?). Since W\j+ and W\j- are locally

admissible, the existence of such a <p is obvious for (k, E) £ J"   (k ^ 0).

Now let (0, E) £ y. Then, since A0 : R6 -» G0 is surjective, there exists a

point a e R6 such that E e An (a). We define a smooth map <p : R7 -» R13

by

<p(k,6x,e2,d3,xx,x2, r3) = 2r(A*(a) ° A¿(0>, 02, 03, xx, x2, x3)).

Since W\gq is an immersion and ho is nonsingular at the origin, it is easy to

see that the rank of <p at the origin is 7. (We need not calculate the derivative

of <p with respect to k because both the domain and the range of (p have

the same parameter k.) Thus <p defines an admissible immersion on some

neighborhood of the origin such that (0, E) £ (Image of <p).

These results can be extended to a higher-dimensional case. In fact, let

Mn(k) be a complete simply connected Riemannian «-manifold of constant

sectional curvature k , and Gkn^ the identity component of its isometry group.

Then by the same argument as above a differentiable structure on J^") =

{(k,E): E £ Gk,k £ R} can also be introduced. Furthermore, Tasaki-

Umehara-Yamada [3] developed these results for symmetric spaces. We apply

these results to hypersurfaces in Mn(k) as follows. Let M be a compact hy-

persurface of M"(k). Then the induced metric g and the second fundamental

form A satisfy the Gauss and Codazzi equations:

(G«*)   R(X,Y,Z,W) = k{g(X, Z)g(Y, W) - g(X, W)g(Y, Z)}

+ h(X, Z)h(Y, W)-h(X, W)h(Y,Z)

(X, Y,Z,W £ TM),

(Co) (Vxh)(Y,Z) = (VYh)(X,Z) (X,Y,Z£TM),

where V is the Levi-Civita connection of g and R denotes its curvature ten-

sor. Now, let gk (k £ R ) be a smooth one-parameter family of Riemannian

metrics on a compact (n - 1)-manifold M and hk (k £ R) a smooth one-

parameter family of symmetric 2-tensors such that gk and hk satisfy (Gak)

and (Co) for each k . It then follows from the fundamental theorem for hy-

persurfaces that there exists an immersion fik : M —> Mn(k) whose induced

metric and second_fundamental form coincide with n*gk and n*hk respec-

tively, where n : M —> M is the universal covering of M. Note that each deck

transformation T of M preserves n*gk and n*hk and hence T extends to

an isometry of M"(k) by the rigidity of fik. Thus, for each k, we have a

representation pk : nx(M) —► Gk   . Then the following holds.

Proposition 3.3. The family of the representation

pk:nx(M)^G{kn) c^{n)       (k £ R)

depends smoothly on the parameter k with respect to the differentiable structure

ofjrW.

Proof. We confine our discussion to the case n = 3 . But the following proof is

valid also for the higher-dimensional case. Let p £ M and choose a reference

point q0 £ n~x(p). Then each deck transformation T determines uniquely a
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point q £ n~x(p) such that T(q0) = q. If we normalize y/k ° fk(q0) = 0 and

take a frame (ex, e2) of (M, gk) at p , then the isometry Ek corresponding
to T satisfies

Ëk(0) = Wk o fk(Q),       dËk(cl%) = {,,

d(Ëk o y/k o fik)[(dn-\(ej)] = d{ytk ° fk)[{dx-l)t{ej)]   0 = 1,2),

where Ek = yk°Eko\¡/kx : R3(k) -> R3(k) and £ is the unit normal vector field

of fio . Since the coefficients of the Frenet equation with respect to the canonical

coordinate system of R3(k) depends smoothly on k, so does y/k ° fk : M —►

R3(k). Thus (3.3) implies that W(Ek) e R13 is smooth with respect to k.

So, by the definition of our differentiable structure of J2", Ek depends smoothly

on k.   D

4. Smoothness of Normal form

Let

JV~ = {(k, E) £jr : k < 0 and all the eigenvalues

ofE£SO+(3, l)are 1},

yT° = {(0, E) £ J" : E is the identity or a translation of R3},

J7+ = {(k, E)£jf : íc>Oand0 >v or cosí/ <0

in the decomposition (1.2) of £ e 50(4)},

and define a closed subset in J2" by

(4.1) Jf =J7-UJrr(iUjf+.

Then for each (k, E) £ J^X/V there exists (k, P) £ J2" such that

(4.2) p-xoEoP=Tk(6,x),

where 7^(0, t) is the normal form defined in §2. In § 1 it was proved that 0 and

x are determined up to Z 2-ambiguity^In this section, we will see that locally

0 and x are smooth functions on Jr\yf with respect to the differentiable

structure defined in §3.

Theorem 4.1. Let (k, E) £ ^\J7. Then there exists a neighborhood U c

^f\J7~ of (k, E) such that, by taking suitable branches, 0 and x in (4.2) are

defined as smooth functions on U.

If k t¿ 0, the theorem is obvious. So we may assume k = 0. Since each

E £ Go\yy° is equivalent to a normal form T0(a, ß) (a, ß £ R , a £ 2nZ)

by (4.2), it is sufficient to prove the following lemma.

Lemma 4.2. Let ^ : R7 -» S be a map defined by

W(k, 01, 02, 03, t\ x2, x3) = Sx(k,ex,xx)oS2(k, O2, x2)oTk(83,x3)

oS2~x(k, d2,x2)oS7x(k,6x,xx).

Then the Jacobian of %7 does not vanish at the point (0,0,0,a,0,0,/?) (a £

2n1).
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Proof. Consider the map W o <% : R7 -» R13 Then

d(k,w',wJl)
ranY(d(W o SSf)) = rank

= 1+ rank

d(k, e1, e2, e3, xl, x2, x3)

d(wi, wJ')

k=o«3(0',02,03,T1,T2,T3)|

at the point (0,0,0, a, 0,0, ß). By a straightforward calculation, the deriva-
tives on the right-hand side are given by

dw ' = (0, -/?, 0, 0, 1 - cos a, sin a),

dw2 = (-/?, 0, 0, 0, - sin a, 1 - cos a),

dw3 = (ß,ß,0,2ß,2ß,l),

dwxx = (0, 0, -sin a, 2 cos a, 2 cos a, 0),

dw2X = (0, 0, cos a, 2 sin a, 2 sin a, 0),

dwx3 = (-sina, -1 + cosa, 0,0,0,0),

dw23 = (-1 + cos a, - sin a, 0, 0, 0, 0),

which yield

,    (d(wx ,w2,w3,w11 ,w13,w23)}      _ . .,
det{ c3(0i,02,03,t';t2,;3) })=*™°v-«»°)2>

(d(wx ,w2,w3,w2x ,wx3,w23)}        0        .. ,,
det{      a(0',02,03,r.,r2,;3)    J}=-8cosa(l-cosa)2.

Hence, d% is nondegenerate at (0, 0, 0, a, 0, 0, /?), since a $. 2n1 .   D

By Theorem 4.1, we may_regard 0 and x as globally defined functions Ö :

S\AT -» R/27TZ and x : ̂ XAf -» R .

5. Deformation of the immersion

Let Q(a0. bo) = (-ûo > ̂ o)x (-¿o » ¿to) be a rectangular domain of R2 . Then
the Dirichlet problem of the sinh-Gordon equation

(5.1) Aco + cosh co sinh co = 0

on Q(ao, bo) has a unique positive solution coo if fln-2 + b^2 > 4n~2 [7, 1,

2]. By the odd reflections about dCl(ao, bo), this solution can be extended to

a doubly periodic solution coo of (5.1), which has a rectangular fundamental
domain. To get solutions with twisted fundamental domain, we can perturb ¿Jo

in the following fashion.

Lemma 5.1 [6, Theorem 1]. For sufficiently small ao, bo > 0, there exist a
neighborhood U of (ao, bo, 0) £ R3 and a smooth function co(u ,v; a, b, c)

on R2 x U which satisfy the following conditions:

(1) For each (a, b,c) £ U,  co(u, v; a, b, c)  is a solution of (5.1) on

R2.

(2) Let pi = (2a, 0) and p2 = (2c, 2b). Then

(5.2) co(u + Pi ; a) = &>(u + p2 ; a) = w(-u ; a) = -oj(u ; a),

where u = (u, v) and a = (a, b, c).

(3) oj(u,v; ao,bo,0) = co0(u, v).
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Let a)(u, v) = co(u, v; a, b,c) be a doubly periodic solution determined

as above. Define the first fundamental form ds2 by

e2(ü
(5.3) ds2 = 4{H2 + k)(du2 + dv2),

and the second fundamental form A = hxxdu2 + 2hx2dudv + h22dv2 by

He2w cos2£
«n =

4(H2 + k)     4(H2 + ky/2,

CS4Ï h sin2jg
(   ' l2~  4(H2 + ky/2'

He2w cos 20
¿22 =  A/rr,   ,   ,x +4(H2 + k)     4(H2 + kyi2'

Then it is not hard to see that for H =1/2 and k > -1/4, ds2 and A sat-
isfy the Gauss and Codazzi equations in R3(k). Hence, by the fundamental

theorem for surfaces, they determine, up to an isometry of R3(/t), an iso-

metric immersion fk = fik(a, b, c, /?): (R2, ds2) —> R3(k) with constant
mean curvature H = 1/2. Since the Frenet equation of fik with respect to

the canonical coordinates on R3(k) depends smoothly on k , the immersion

fk(a, b, c, /?) : R2 —► R3(ä:) also depends smoothly on the parameters a, b,

c, ß, and k.
Since co has the doubly periodicity condition (5.2), there exist motions

Ei = Ei(k,a,b,c,ß)   (i = 1, 2) of R3(k) such that

(5.5)        fk(u + 2Vr,a,b,c,ß) = Eiofk(a;a,b,c,ß)       (i=l,2).

It follows from Proposition 3.3 that E¡(k, a, b, c, ß) (i = 1, 2) are smooth

with respect to the parameters a, b, c, ß , and k .

Properties of the immersions fik = fk(a, b, c, /?) at k = 0 are carefully

analyzed by Wente [8], in which those of the form fo(a, b, 0, 0) (a~2 + b~2 >
4n~2) whose images are compact are called symmetric examples. The existence
of symmetric examples has been shown in Wente [7], Abresch [1], and Walter

[5]. Now we assume that fio(ao, bo, 0,0) yields a symmetric example. Then
we may put

^(0,00,00,0,0) =

£2(0,a0,¿>o,0,0) =

where n < a < 2n and a £ 2nQ  (see [1, 8]).

Note that, since Ex (0, uo, bo, 0, 0) £ JV, Theorem 4.1 cannot apply di-

rectly. So we change a generator p! of the lattice Y = {pi, p2} for

P3 = Pi + P2

Let
E3(k,a, b,c, ß) = Ex(k,a,b,c, ß)oE2(k,a, b,c, ß).
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Then it is obvious that

(5.6) /¿(u + 2p3; a,b,c, ß) = E3o fk(u; a,b,c, ß).

Now we prove our main result:

Theorem 5.2. Let T2 be a compact 2-manifold with genus 1. Then for suffi-

ciently small e > 0, there exists a I-parameter family of immersions fk:T2—>

R3(k)   (\k\ < e) with constant mean curvature H = 1/2.

Proof. Using Theorem 4.1, we can define smooth functions 0, and f, (/ =

2,3) on some neighborhood of (0, ao, b0,0,0) £ R5 by

di(k,a,b,c,ß) = d(Ei(k,a,b,c,ß))

x¡(k ,a,b,c,ß) = x(E;(k ,a,b,c,ß))

Thus, to prove the theorem, it suffices to show that the set

{(k,a,b,c, ß)£U : d¡(k,a, b, c, ß) = a £2nQ

and xi(k, a, b, c, ß) = 0 (i = 2,3)}

defines a regular curve with respect to k through the point (0, uo, bo, 0, 0).

To see this, we define a map q> : U —> R5 by

(p(k, a, b, c, ß) = (k, 02, ö3, f2, f3).

In [8] Wente introduced functions 6X, 02, xx, and t2 of variables a, b,

c, and ß in such a way that E¡(a, b, c, ß) (i = 1, 2) are equivalent to

7b (0/, r,), for which he showed that

at (ao, bo,0,0). It is easily verified that these functions are related to 02 , 03,

f2 and t3 by

d2(0,a,b,c,ß) = 62(a,b,c,ß),

63(0,a,b,c,ß) = dx(a,b,c,ß) + d2(a,b,c,ß),

i2(0,a, b,c, ß) = x2(a, b,c, ß),

f3(0, a,b,c, ß) = xx(a,b,c, ß) + x2(a, b,c, ß).

Hence we have from (5.7)

,,,  v ,\d(k,92,d3,x2,h)\
rank(ap) = rank '

= 1 + rank

d(k,a,b,c,ß)   J
'¿>(02,03,î2,î3)

d(a,b,c,ß)
A:=0>

i   d(a,b,c,ß)   J

at (0, a0, bo, 0, 0). Thus <p~x(k, a, 0, a, 0) determines a regular curve on

some small neighborhood of (0, ao, bo, 0, 0) £ U.   □
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Corollary 5.3. Any open subset of the 3-sphere or the hyperbolic 3-space contains

a torus with constant mean curvature.

Proof. Let {fk : T2 —> R3(k)}\k\<E be as in Theorem 5.2. Then, for sufficiently

small e, the images {fk(T2)}\k\<E are uniformly bounded. Namely, fk(T2) is

contained in the ball of radius a with respect to gk for each k £ (—e, e),

where a > 0 is a universal constant.

Assume k < 0 and define

ï=J\k\ -(v;1 ° m-.t2 -> m\-\),

where y/k is the stereographic projection (2.1) and • is the scalar multiplication

in M3(k) c L4. Then / gives an immersion of T2 into the hyperbolic 3-

space Af3(-1) with constant mean curvature l/2y/]k\. Moreover, fi(T2) is

contained in the ball of radius y'Wß m M3(-l), since fk(T2) is bounded

by the ball with radius a.
Hence, taking a sufficiently small k < 0, we can find an immersion of T2

with constant mean curvature into the hyperbolic 3-space with sufficiently small

radius.

Similarly, assuming k > 0, we have the conclusion for the 3-sphere.   D

By using (5.7), the existence of nonholomorphic harmonic maps of tori gen-

erated by any lattice into the unit sphere has been shown in Umehara-Yamada

[4], which is based on the fact that Gauss maps of surfaces with constant mean

curvature in R3(0) are harmonic.
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