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FUNCTORS ON THE CATEGORY OF FINITE SETS

RANDALL DOUGHERTY

Abstract. Given a covariant or contravariant functor from the category of fi-

nite sets to itself, one can define a function from natural numbers to natural

numbers by seeing how the functor maps cardinalities. In this paper we answer

the question: what numerical functions arise in this way from functors? The

sufficiency of the conditions we give is shown by simple constructions of func-

tors. In order to show the necessity, we analyze the way in which functions

in the domain category act on members of objects in the range category, and

define combinatorial objects describing this action; the permutation groups in

the domain category act on these combinatorial objects, and the possible sizes

of orbits under this action restrict the values of the numerical function. Most of

the arguments are purely combinatorial, but one case is reduced to a statement

about permutation groups which is proved by group-theoretic methods.

1. Introduction

Let 9~Sf be the category of finite sets (with functions as morphisms). If F

is a covariant or contravariant functor from ¿FT? to TFS*, then the cardinality
of F(A) depends only on that of A, since F maps bijections to bijections;
hence, we can define a function a: co —» co by a(|^4|) = 1/^(^4)1. What properties

can be proved about a, given that it arises from some functor F in this way?
Can we find a necessary and sufficient condition on a for such an F to exist?

This question was asked by Bergman [4] as a goal to reach in the study
of the structure of functors from SFS? to 7FS?. Bergman carried out this

study far enough to settle the question for contravariant functors as well as

the case a(0) > 0 of the question for covariant functors; the remaining case,
however, presented additional difficulties. In this paper, using an independently

developed approach, we will give complete characterizations for both covariant
and contravariant functors. In order to do so, we develop results on the structure
of such functors which will be useful in further study even if no numerical

questions are involved.

We say that a function a: co —► co is represented (corepresented) by a co-

variant (contravariant) functor F: PS? -» PS? iff \F(A)\ = a(\A\) for all
A. It is not hard to see that the set of (co)represented functions is closed un-

der sums and products, since we can apply corresponding operations (disjoint

unions and products) to the (co)representing functors. Similarly, composing

two represented functions or two corepresented functions gives a represented
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function, while composing a represented function and a corepresented function

(in either order) results in a corepresented function. Trivial examples show

that constant functions are both represented and corepresented and the identity

function is represented. We now give three less trivial examples of covariant

functors from F'TF to ¡FS? which illustrate some of the features which can

occur; the general constructions we give later will be based on these examples.

(1) Fix a natural number k. Let FX(A) be the set [A]k of all fc-element
subsets of A , together with a separate element zA ; if /: A —> B , let

if x = zA or / is not one-to-one on x,

' x   otherwise
i(/)(*) = {^L

(where fux is the image of x under /).

(2) Let F2(A) be the set of all nonempty subsets of A ; if /: A -> B, let

F2(f)(x) = fx.
(3) Let F3(A) be the set of all odd-cardinality subsets of A ; if /: A -» B,

let F3(f)(x) be the set of all b £ B which have an odd number of
preimages in x under /.

These three functors represent the functions 1 + (¡J), Y!l=\ {") > and

J2 i<n i odd (/) ' respectively. Fi has a contravariant analogue which uses par-

titions into k nonempty sets instead of subsets of size k .

The definition of the collection of (co)represented functions involves the col-
lection of all functors from 7F7F to 7F7F, and this would seem to indicate that

the collection could be quite complicated. The following proposition, which is
proved at the end of this section, shows that, at least in one sense, this is not

the case.

Proposition 1.1. The set of (co)represented functions is closed in the space of
functions from co to co (under the product topology with co discrete).

This implies that the collection of (co)represented functions can be charac-

terized by a (possibly infinite) list of conditions, each involving only finitely

many values of the function. However, Proposition 1.1 does not guarantee that

this list can be given effectively. The search for explicit conditions led to the

constructions in §§2-4 of this paper, which finally yielded the characterizations

given in the following theorems. (Theorems 1. 2' and 1.3 show that the list of

unitary conditions can indeed be given effectively.)

Let A be the forward difference operator (so Aa(n) = a(n + I) - a(n) ), and

let Ak be the Â>fold iteration of A; then Aka(n) = Yl¡=0(-i)k~l(*)<*(« + 0 •

Let Snm^ and 7F„ denote the Stirling numbers of the first and second kinds,

respectively. (Recall that TF^ is the number of partitions of a set of size n

into exactly m nonempty subsets, and that the numbers S^ are the coefficients

in the inversion formula for the numbers J^"' [1, Chapter 24].) Also, define the

predicate (¡>(M, N, k', k) to mean that M can be expressed as a sum of zero

or more (not necessarily distinct) binomial coefficients (N¡), where 1 < i < ¿V

and either / < k' or / is an odd number less than k. (This makes sense

even if k or k' is co rather than a natural number.) If y: co —> co and

k, k' < co, define 3>(y ,k',k) to mean that <P(y( A/) ,N,k',k) holds for all
natural numbers N > k'.
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Theorem 1.2. The function a: co -> co is represented by a covariant functor from

7FS? to 7FS? if and only if at least one of the following holds:
(1) There is a positive integer r < a(l) such that, if we define ß: co —> co by

ß(0) = r and ß(n) = a(n) for n>0, then A^(0) > 0 for all k>0.
(2) a(0) = 0 and, if we define y(k) to be Aka(0), then y(k) > 0 for all k ;

furthermore, if we define ko, k^, and k'¿ to be respectively the least odd k such
that y(k) = 0, the least k > 0 such that y(k) = 0, and the least odd k > 1
such that y(k) < 1 (each of these minima is defined to be co if no corresponding

k exists), then <P(y, k'0, ko) and either <P(y, k'Q, k'0) or <P(y, k'Q', ko).

Theorem 1.3 (Bergman). The function a: co —» co is corepresented by a con-

travariant functor from 7FS? to 7FS? if and only if the following both hold:

(1) If there is an n such that a(n) = 0, then a(n) = 0 for all n > 0.

(2) For all n>0, £LoSnm]xa{m) > 0.

Easy arguments show that Theorem 1.2 is equivalent to

Theorem 1.2'. The function a: co -»• co is represented by a covariant functor

from 7FF* to !FS? if and only if at least one of the following holds:
(1) There is an integer m with a(0) - a(l) < m < a(0) such that, for all

k>0, Aka(0)>(-l)km.

(2) a(0) = 0 and, if we define y(k) to be Aka(0), then y(k) > 0 for all
k < co and the following hold for all k, k', and k" (including k = co if so
specified):

(a) If k is odd and y(k) = 0, then i>(y ,k,k).
(b) If 0 < k' < k, k' is even, y(k') = 0, and either k is odd and

y(k) = 0 or k = co, then <P(y ,k',k).
(c) If 1 < k" < k' < k, k" is odd, y(k") = 1, k' is even, y(k') = 0,

and either k is odd and y(k) = 0 or k = co, then either <P(y, k', k') or

®(y,k",k).

(The r in 1.2(1) and the m in 1.2'(1) are definable from each other by
the equation m + r = a(0) ; it is now easy to see that 1.2(1) and 1.2'(1) are

equivalent. As for the second parts, one just has to note that <P(y ,k',k) im-

plies <P(y, f, j) if / > k' and j > k and then consider the cases k'0 = ko
or k'Q < ko separately, with the latter case being divided into subcases k'¿ > &¿

and k'¿ <k'0,to see that 1.2(2) is equivalent to 1.2'(2).)
Under the standard inversion formulas, the conclusions of these theorems

correspond to statements that a is expressible as a (possibly infinite) sum of

certain basis functions. For the covariant version, define y(k) to be A^O) in

case (1). Then, in either case, we have y(m) > 0, and a(n) = J2m=o (mMm)

for all n > 0. So, except at 0, a can be expressed as a sum of functions

n !-•• (^) with coefficients y(m). The values y(m) can be chosen arbitrarily

if y(0) > 0 (case (1)); if y(0) = 0, some extra conditions are imposed (case

(2)). For the contravariant version, if we let y(n) = Y,m=o S»^a(m) - 0,

then a(n) = Y!'m=^nm)y(m), so a is the sum of functions n <-> <Fn{m) with

coefficients y (m) ; these coefficients are arbitrary as long as y(0) and y (I) are

positive (but otherwise y(n) must be 0 for all n > 0).

In §2 we will show the meaning of the numbers y(m) in terms of the structure

of the (co)representing functor. For covariant functors, if a is given such that
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y(0) > 0, we will be able to put together functors like Fx above to form a

functor representing a. Similarly, for contravariant functors, if a leads to y

with y(0) > 0 and y(l) > 0, we can use the contravariant analogue of Fx

(which corepresents 1 + S$ ^ ) to get a functor which corepresents a.

For covariant functors, if y(0) = 0, we use constructions based on F2 and

F3 ; these constructions are given in §4. Roughly, the reason for the restrictions

in (2) of Theorem 1.2' is that y(k) = 0 forces both F2 and F3 to be truncated

at k, y(k') = 0 forces F2 to be truncated at k', and y(k") = 1 forces either

F2 or 7*3 to be truncated at k" . The alternate functors we have to use once F2

or F3 is truncated represent functions with y(N) = (^) for some N and i.

The proofs in §§2-4 are purely combinatorial; in one case, however (the case

k' = 2 of condition 1.2'(2)(b)), combinatorial arguments alone do not suffice,

because the existence of certain strange permutation groups would allow us to

construct functors representing functions violating this condition. Therefore,

we must prove that such permutation groups do not exist; this proof is given in

§5.
An interesting consequence of these two theorems is

Proposition 1.4. (1) If a is a represented function, then either a(n) is a poly-

nomial function of n for n > 0 or limsup,,^^ \/a(«) > 2 (so a, in a sense,

grows at least exponentially).

(2) If a is a corepresented function, then either a is a finite sum of functions

n i-> TFn™"1 (so a(n) is constant for n>0 or grows exponentially) or

limsup(lna(«))/(«ln«) > 1
n—*oc

(so, in a sense, a grows as nn or n\ does, at least).

Proof. In both (1) and (2) we must show that, if y(m) > 0 for infinitely many
m, then the respective lim sup is large. For (1), if y(m) > 0, then a(2m) >

(2™) ; since limm^oo   y (2™) = 2 by Stirling's formula, we get the desired result.

For (2), we apply the easy estimate Fv^}n > mn with n ~ m In m ; if y(m) > 0,

then a(m+n) > m" , and limm-+00(lnmn)/((m+n)ln(m+n)) = 1 for the above

choice of « , so we are done.   Q.E.D.

The lim sup in the above is important; by making the m's where y (m) > 0

sufficiently sparse, we can make the corresponding liminf 1 in (1) or 0 in

(2). The explicit lower bound of 2 for the lim sup in (1) means that many

natural functions which grow exponentially (e.g., the Fibonacci sequence) are

nonetheless not representable.
Some minor notational matters: We will treat the natural numbers as finite

ordinals (i.e., each natural number is equal to the set of its predecessors). Let

[A]n denote the set of all subsets of A of cardinality n . A partition of a set A

is a collection of disjoint nonempty sets with union A ; let Part(A, n) denote

the set of partitions of A into n sets. The notations fuX and f~x"X stand

for the image and inverse image of the set X under the function /.

Proof of Proposition 1.1. Let TFtf be the full subcategory of 1F¿F whose objects

are the finite ordinals (natural numbers); for n £ co, let 7Ftfn be the full

subcategory of TFcf with objects 0, I, ... , n-l. We can define the notion of

a numerical function being (co)represented by a functor from TFtf to TFtf just
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as we did for FTF. We will show that any function which is a limit of functions

(co)represented by functors from FTF to FTF is itself (co)represented by a

functor from ¡Ftf to TFtf, and that any function which is (co)represented by a

functor from ¡Ftf to ¡Ftf is (co) represented by a functor from FTF to FTF.
Suppose a : co —* co is a limit of functions (co)represented by functors from

¡FTF to FF. Let T be the set of covariant (contravariant) functors G from
some ¡Ftfn to ¡Ftf such that G(m) = a(m) for all m < n. Then T has

a natural tree ordering ( G2 extends Gx in the tree iff G2 extends Gx as a

functor), and every level of the tree is finite (given the mapping on the objects

of Ftfn , there are only finitely many ways to define the mapping on the mor-

phisms). We now show that every level of T is nonempty. Given n £ co, there

is a function ß: co —> co such that ß\n = a\n and ß is (co)represented by a

functor 7": FTF —► ¡FTF. For each m < n , fix a bijection hm : F(m) —> a(m).

Then we can define a functor G: ¡Ftfn -» ¡Ftf by letting G(m) = a(m) and

G(f) = hko F(f) o h~x for f: m —> k ; G is on level n of 7.
By the König Infinity Lemma, T has an infinite branch; the union of the

functors along this branch is a functor G: Ftf -> Ftf which (co)represents a.

Now suppose G: Ftf -» y¿f (co)represents a. Then one could simply

use the fact that ¡Ftf is a skeleton of FTF [10, §IV.4] to get a functor from

y«^ to FTF (co)representing a, by composing G with a retraction from

FTF to y¿f ; however, it requires the axiom of choice (on a proper class or

on a subuniverse) to get such a retraction, and one can define a more natural

(co)representing functor F : FTF -» yj?7 directly as follows. First, assume G

is covariant. For a finite set B, define F(B) to be the set of all functions g

such that:

(1) the domain of g is the set of all bijections from B to \B\;

(2) g(h) £ G(\B\) for all h ;
(3) if h: B —►  \B\   and s: |2?|  —►  \B\  are bijections, then  g(í o h) =

G(s)(g(h)).

Clearly we can define g(h) arbitrarily for one such h, and then the third

condition gives a unique definition of g(h') for all other h', so \F(B)\ =

\G(\B\)\ = a(\B\). Now, if /: B -» C, we define F(f) by letting F(f)(g)(h) =
G(h o f o h'-x)(g(h')) for any g £ F(B) and any bijections h: C -» |C|,
A' : 5 —> |5|. This does not depend on the choice of h' since any other bijection

from B to \B\ will be of the form s oh' for some bijection 5: |5| -> |5|, and

(3) then ensures that we get the same value for F(f)(g)(h). It is now easy to

verify that F is a functor which represents a .

The contravariant case is similar; just replace g(s o h) = G(s)(g(h)) with
g(s c h) = G(s~x)(g(h)).   Q.E.D.

2. Control sets or partitions

In this section and the next one, when we are talking about a single fixed

(covariant or contravariant) functor F , we will often write A and / instead

of F (A) and F(f). For now, fix a covariant functor F: FTF -» ¡FS?.

Definition 2.1. If B is a finite set, A ç B, and x £ B, then x is controlled by

A iff, for any C and any p, q: B —> C, p\A = q\A implies p(x) = q(x).

Clearly every x £ B is controlled by B. Note that, if x £ B is controlled
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by A and f:B->C, then f(x) is controlled by /" A : if p, q: C -> D

agree on /" A , then po f and qo/ agree on ^4 , so p(f(x)) = F(po f)(x) =

F(« o/)(*) = $(/(*)).

Lemma 2.2. If i is the inclusion map from A to B, and x £ i " A, then x is

controlled by A. Conversely, if A ^ 0 and x is controlled by A, then x £ i"A.

Proof. The first part follows from what we just noted. Now suppose that x is

controlled by A and A ^ 0 . Let h: B —> A be a retraction (i.e., h(x) = x for
x £ A ). Then ioh and the identity map id# agree on A , so x = F(idB)(x) =

F(i o h)(x) = îh(x)) €ÎUA.   Q.E.D.

Lemma 2.3. If x £ B is controlled by A and by A', then it is controlled by
An A'.

Proof. Suppose x is controlled by A and by A', and p, q: B —> C agree on

An A'. Define r: B -> C so that r(y) is p(y) if y £ A, q(y) otherwise. Then

r agrees with p on A and with g on (B\A) U L4 Hv4') D ,4', so p(x) = r(x) -

q(x). Therefore, x is controlled by AnA'.   Q.E.D.

It follows that, for any x £ B, there is a least subset of B by which x is

controlled, namely Ç]{Aç B: x is controlled by A } ; call this set Bx .

Lemma 2.4. If f: B —> C is one-to-one on Bx, then C?, > = f" Bx .

Proof. Let A = Bx . If A = 0, then f(x) is controlled by f"A = 0 , so C>,x) =

0 = f"A; hence, we may assume A ^ 0. Let i: A^> B be the inclusion map,

and let g: fuA —> A be the inverse of f\A. Let n be a retraction from C to

f" A; then idÄ and io g on o f agree on ,4, so í(g(ñ(f(x)))) = x. Let ^4'

be a proper subset of / " A ; it will suffice to show that f(x) is not controlled
by A'. Since A' c /" A, g " A' c A = Bx , so there are maps p, q: B —> D

which agree on g"A' suchthat p(x) ^ q(x). Then poiogon and qoiogon

agree on A' but F(p oio go n)(f(x)) = p(x) ¿ q(x) = F(q oio go n)(f(x)),

so f(x) is not controlled by A'.   Q.E.D.

Lemma 2.5. There is a function y : co —» co such that, for any finite A ç B with

B nonempty, \{x £ B: Bx = A}\ = y(\A\).

Proof. It will suffice to prove that, if A ç B, A' ç B', B ¿ 0 ¿ B', and

\A\ = \A'\, then \{x £B:BX = A}\ = \{x £B':B'X = A'}\. Choose f:B^B'
and g: B' —> B such that f\A is a one-to-one mapping from A onto A' and

g\A' = (f\A)~x. By Lemma 2.4, / and g map the sets {x £ B: Bx = A}

and {x £ B' : B'x = A'} into each other. Since g o f agrees with ids on A,

g o f agrees with id- on {x £ B: Bx = A}, so / is one-to-one on this set.

Similarly, g is one-to-one on {x £ B' : B'x = A'}. Therefore, \{x £ B: Bx =

A}\ = \{x £ B': B'x = A'}\.   Q.E.D.

We say that the function y is realized by the functor F.

Lemma 2.6. If a: co —> co is represented by F and y : co —► co is realized by

F, then a(n) = £~=0 (nm)y(m) for n>0. If y(0) = 0, then a(0) = 0; if
y(0) > 0, then a(0) can be any natural number (i.e., if we change the value of
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a(0), the resulting function will also be represented by some functor that realizes

7).

Proof. If B ¿ 0, then

a(\B\) = \B\=Y,\{x£B-Bx = A}\ = £ y{\A\)
AÇB AÇB

CO CO CO       /, jji\

A;=0 AÇB k=0 k=0 V       '
\A\=k

If x £ 0 and i: 0 —> B is the inclusion map, then i(x) is controlled by

¿"0 = 0; therefore, a(0) ^ 0 implies y(0) ^ 0. Now, suppose y(0) / 0,
and suppose that ß: co -> co agrees with a everywhere except possibly at 0 ;

we will construct a functor G: FTF -> FTF which represents ß and realizes

y. Let G(B) = F(B) if B ± 0, and let G(/) = F(/) if /: B -» C and
B ¿ 0; this ensures that G realizes y and that |G(5)| = ß(\B\) for B ± 0.

Let <j(0) be any set of size ß(0). To define G(f) for /: 0 -> C, fix an
element z of F({1}) which is controlled by 0 (this exists because y(0)^0),

and let G(f)(x) = g(z) for any x £ (7(0), where g: {1} -> C. Since z is

controlled by 0 , (/(/) does not depend on the choice of g ; since g : {1} -» C

and h: C —► D give /z o g : {1} —► D, G respects composition. Therefore, G

is a functor representing ß .   Q.E.D.

Lemma 2.7. If y: co -> co and y(0) > 0, then y is realized by some covariant

functor F.

Proof. Define the functor F as follows: for any B, let

oo

F(B) = U ([B]m x y(m))

m=0

and, for any f:B-*C and any (W, i) £ F(B), let

nni>r.if>-{y~n,l> if/,so"e"to"oneonH''
I (0,0) otherwise.

It is easy to see that F is a functor and that B^w () = W, so F realizes

y.   Q.E.D.

It should be noted that many (if not most) functors are much more com-

plicated than the one constructed in this proof; the proof just gives a simple

functor which suffices for the desired existence result. The same note applies to

the other existence results we will prove.

If a function a : co —> co is represented by a functor F , then F realizes some

function y ; the two cases in Theorem 1.2 correspond to the two possibilities

y(0) > 0 and y(0) = 0. If y(0) > 0 and we define ß(n) to be y(0) if n = 0
and a(n) if n > 0, then ß(n) = J2m=o (mMw) f°r au< n » so tne standard

inversion formula gives y(k) = A^(0) and (1) of Theorem 1.2 holds. On the

other hand, if y(0) = 0, then we must have a(0) = 0, so A*q(0) = y(k) > 0
for all k. The proof that the rest of (2) of Theorem 1.2 holds in this case

requires more work and is given in §4.
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Conversely, if a: co -> co satisfies (1) of Theorem 1.2, then y(k) = Afc/?(0) >

0 for all k and y(0) > 0, so y is realized by some functor; then y(0) > 0

and a(n) = ß(n) = Ylm=o (mMm) ^or « > 0 > so Lemma 2.6 implies that a is

represented by some functor. If a satisfies 1.2(2), then we will see in §4 that

the function y defined by y(k) = Aka(0) is realized by a functor F such that

F(0) = 0 , so F represents a.

In the case of a contravariant functor F : FTF -> FTF, most of the preced-

ing lemmas and proofs go through in a dual form which closely resembles the

original. The results are stated below, but the only proofs given are those which

differ from the preceding proofs by more than simple arrow reversals. Again, if

we are talking about a fixed functor F , we will use B and / to denote F(B)

and F(f).

Definition 2.8. If B is a finite set, P is a partition of B, and x £ B, then x

is controlled by P iff, for any p, q : C -> B, if p and q agree modulo P (i.e.,

p-i "W = q~x " W for all W £ P ), then p(x) = q(x).

Clearly every x £ B is controlled by the finest partition {{b}: b £ B}. If

x £ B is controlled by P and f:C—>B, then fi(x) is controlled by the
partition Pf = {f~x "W:vV£ P}\{0} .

Lemma 2.9. If P is a partition of B and e: B —► P is the canonical projection

(i.e., b £ e(b) for all b £B), then x £ B is controlled by P iff x £ ê " P.

Note that there is no exceptional case here, since for any partition P of any

finite set B we can find a function h: P —► B such that h(W) £ W for all

W £P.

Lemma 2.10. If x £ B is controlled by P and by P', then it is controlled by
the finest partition P" coarser than both P and P'.

(" P" is coarser than P " means that every member of P is included in some

member of P" . Note that we are using the term 'coarser' inclusively; that is,

P is coarser than P 7)

Proof. Two members a and b of B are in the same member of P" iff there

is a sequence a = ao, ax, ... , a„ = b for some (and hence for any sufficiently

large) n such that a2k and a2k+x are in the same member of P and a2k+x

and a2k+2 are in the same member of P'. It follows that, if p, q : C —> B

agree modulo P" , then there is a sequence p = po, px, ... , pn = q such that

p2k and p2k+x agree modulo P while p2k+x and p2k+2 agree modulo 7" ; this

gives p(x) = Po(x) = Pi(x) = •• • = pn(x) = q(x). Therefore, x is controlled

by P".   Q.E.D.

Hence, for any x £ B, there is a coarsest partition Bx of B by which x is

controlled.

Lemma 2.11. If the range of f: C -> B meets every member of P = Bx, then

c-fa) = Pf.

Lemma 2.12. There is a function y: co —> co such that, for any partition P of a

finite set B, \{x £ B: Bx = P}\ = y(\P\).

We say that the function y is corealized by the contravariant functor F .
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Lemma 2.13. If a: co -» co is corepresented by F and y : co -> co is corealized

by F, then a(n) = £™=0^(m)y(™) far n>0.

Proposition 2.14. The function y : co —> co is corealized by some contravariant

functor F iff either y(0) > 0 and y (I) > 0 or y(n) = 0 for all n > 0.

Proof. First suppose F corealizes y. If B and C are finite sets with B ^ 0,

then there is a function /: C —> B, so there is a function F(f) : F(B) —» F(C) ;

hence, y(\B\) > 0 implies F(B) ¿ 0, which implies F(C) ± 0. \f \C\ is 0
or 1, then the only way to have F(C) ^ 0 is to have y(|C|) > 0. Hence,
y(n) > 0 for some « > 0 implies y(0) > 0 and y(l) > 0.

Next, suppose y(0) > 0 and y(l) > 0. Define the functor F as follows: for

any B, let
oo

F(B) = U (Part(ß, m) x y(m))
m=0

and, for any f:C^B and any (P, i) £ F(B), let

ñ = f (Pf, i) if /* C meets all elements of P,

U)((   ,i))     \({C}\{0},O)   otherwise.

We easily verify that F is a contravariant functor and that ß(/>,) = P, so F

corealizes y.

Finally, if y(n) = 0 for all n > 0, then y is corealized by the contravariant

functor F defined by: F(7i) = 0 for B / 0, F(0) is any set of size y(0),
F(id0) = idf(0), and F(f) is the unique function from 0 to F(C) whenever

f:C^B, B¿0.   Q.E.D.

If the function a : co -* co is corepresented by the functor F, then F co-

realizes some function y: co -> co. Applying the standard inversion formula to

Lemma 2.13 gives Y,m=oS""^a(m) ~ 7(n) > ana< m particular a(0) = y(0) and

q(1) = y(l). It is now easy to prove Theorem 1.3 from Proposition 2.14.

The reason that the contravariant case is simpler than the covariant case for
this problem seems to be that a trivial partition has size 1, while a trivial subset
has size 0. If there are elements controlled by trivial sets or partitions, then we

are free to add elements which behave nontrivially at only one place; this is the

proof of Lemma 2.7 and Proposition 2.14. If there are no such elements, then

in the contravariant case only F(0) can be nonempty, so we can easily list all

of the possibilities; in the covariant case, F(0) = 0 , but the rest of the functor

could be quite complicated.

3. Control structures

Let F : FtF —► FTF be a fixed covariant functor. For any finite set B and

any x £ B, we have defined Bx to be the smallest set by which x is controlled.

If /: B -> C is one-to-one on Bx , then C?( , = f" Bx by Lemma 2.4; if / is

not one-to-one on Bx , however, we cannot determine C?, , from Bx in many

cases (as will be clear from examples to follow). We now define a structure

which will encode the value of C?(jc) for all such C and /.

Recall from §2 that, if /: B -► C and F is a partition of C, then we get

an induced partition Pf = {f~x " W: W £ F}\{0} of B. Let efP be the
canonical map from Pf to P (i.e., if x £ IV £ Pf, then f(x) £ efP(W)).
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Also, if P and n are partitions of B and n is coarser than P (i.e., each

member of P is included in some member of n), let ePu be the canonical

map from P to n (i.e., W ç ePn(W) for each W £ P ).

Definition 3.1. A control structure on a finite set B is a function h such that:

(1) the domain of h is the set of partitions of B ;

(2) for each P, h(P)cP;
(3) if n is coarser than P, then A(II) c ePn " h(P) ; and
(4) if n is coarser than P and e>n is one-to-one on h(P), then h(U) =

ePn"h(P).

Suppose x £ B. For any partition P of B , let h(P) = PgM, where g is the

projection from B to P ; then h will be a control structure on B, which we

call the control structure of x and denote by Kp(B)(x). The control structure

of x is enough to tell us what C>,x, is for any function / from B to C—the

function / induces a partition P on B (P = Uf, where Yl = {{c}: c £ C}),

there is a unique one-to-one function f':P^>C such that f = f' ° g with g

as above, and C¡-,x, = f " h(P) by Lemma 2.4.

If x £ B, f: B -» C, and /': C -» 7), then /'(/(*)) = f\f(x); this
indicates that we should be able to compute the control structure of f(x) from

that of x. Given a control structure h on B and a function f:B->C, define

a function A' by letting h'(P) = efPííh(Pf) for any partition P of C. It is not
hard to verify that h! is a control structure on C (when verifying (3) and (4),

it is useful to note that, if n is coarser than P, then epu ° efP = e/n o epfnf ),

which we denote by Q(f)(h).
The proof of the following proposition consists of straightforward verifica-

tions, so it is not written out here.

Proposition 3.2. (1) If Q(B) is the set of control structures on B, and Q(f):

Q(B) -> Q(C) is defined as above for f:B^C, then Q is a covariant functor

from FTF to FTF.
(2) If F is a covariant functor from FTF to FTF, and KF(B): F(B) -►

Q(B) is defined as above, then Kp is a morphism of functors from F to Q.

In the proof that Q is a functor, the only place where we used properties (3)

and (4) of a control structure h was in proving the same properties for Q(f)(h).

That is, if we had omitted these properties from the definition, Proposition 3.2

would still hold; these are just extra properties that happened to be true of

Kp(B)(x) for any x £ B . One might ask whether there are further properties

which could have been added to the definition of control structure; the following

proposition answers this question negatively.

Proposition 3.3. Kq is the identity morphism from Q to Q.

Proof. We must show that, for any finite set B and any h £ Q(B), KQ(B)(h) =

h. Let P be any partition of B, and let g be the projection from B to P ;

then Kç>(B)(h)(P) = Pç>(g)(h), so we must show that PQ(g)(h) = h(P).

Given W £ h(P), choose a set D and one-to-one functions p, q: P —► D

which differ at W but nowhere else. Let n = {{d} : d £ D} , and let j(d) = {d}
for d £D. Then

Q(p)(Q(g)(h))(U) = Q(p o g)(h)(Yl) = e{pog)„ " h(Upog).
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But it is easy to see that Upog = P and e(j,og)u — J°P, so Q(p)(Q(g)(h))(U) =

j " p " h(P). Similarly, Q(q)(Q(g)(h))(U) = j"q " h(P). Since j, p,
and q are one-to-one and p and q differ only at W, Q(p)(Q(g)(h))(U) ^

Q(q)(Q(g)(h))(U). But p and q agree on P\{W}; therefore, PQ{g){h) %

P\{W}, so W £ PQ(g)(h) • Since W was arbitrary, h(P) ç Fg^pj ■
Now suppose p, q: P -» 7) agree on /z(F). Let n be any partition of

7). Let n' be the coarsest common refinement of Up and II9 ; that is, n' =

{W n V: W £Y\P, Ken,}\{0}. Also, let F = {{W}: W £ P} and let
j(W) = {W} for W £ P. The following diagram will be useful:

B
ePn>

U'g
en'gWg

(n,)pig

'\ll< ?«np

n' n„ n
em' en'n„ epn

Since n^ is coarser than P = Pg, 3.1(3) gives h(Yl'g) C eP\\< " h(P), so

h(l\') = epw " S for some 5 ç h(P). If W and V are elements of h(P),
o g

then e~   ({W}) = e~   ({V}) <¿> p( W) = p(V), and the same holds for q ; since
rl lp rl lp

p and q agree on h(P),

e~PU {{W}) = e~   ({V}) * e~u ({W}) = e~   ({V})

*e~pn,({W}) = e~n,({V}).

Therefore, enup and ennq are one-to-one on e~n, " ; " h(P). We have j =

e ~ and Pg = P, so e^u, o j = egw ° £/>n; • Hence, en-np is one-to-one on

Cgiv " £/>it " A(F) 7) egn> " A(n^). Since egn is one-to-one, en<n,, ° egn' is

one-to-one on h(U'g). We also have en>np ° ^ir = ^n„ ° «h;(n,)f » so «ty(n,),

is one-to-one on A(II^). By 3.1(4), h((np)g) = en'(np)g " h(Wg). Therefore,

Q(p)(Q(g)(h))(U) = epn

= epn

= epn

= epn

= ePn

>Q(g)(h)(np) = ePnííegnp"h((Tlp)g)

^"en;(n,)/A(n;)

egnp " en's(Yi„)g " ePTVg " S

' egUp " etijdi,), "{W£ll'g: (3V£S) V ç W}

<egnp«{rV£(np)g:(3V£S)VçW}

= epn"{Wenp: (3V£S) g" V ç W}
= {W £U: (3V£S)p" g"VC W}

= {W £U: (3V£S)p(V)£ W}.

The same argument gives Q(q)(Q(g)(h))(U) = {W £l\: (3V£S) q(V) £ W}.
But p and q agree on h(P) D S, so Q(p)(Q(g)(h))(U) = Q(q)(Q(g)(h))(l\).
Since n was arbitrary, Q(p)(Q(g)(h)) = Q(q)(Q(g)(h)) ; since p and q were

arbitrary, Q(g)(h) is controlled by h(P). Therefore, PQ(g)(h) = h(P), as de-
sired.   Q.E.D.

Since the value of KF(B)(x) depends only on the behavior of F(f)(x) for

maps /: B -> C, we have KG(B)(x) = KF(B)(x) if G is a subfunctor of F
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(i.e., G(B) ç F(B) for all B and G(f) = F(f)\G(B) for all /: B -* C ) such
that x £ G(B). This will be useful in constructing examples; if x is a control

structure on B, then the subfunctor G of Q generated by x £ Q(B) will be

relatively simple, but we will still have Kg(B)(x) = x .

We now describe the analogues of Q and KF for contravariant functors.
These are not needed for Theorem 1.3, of course, but they may be useful for

further study of these functors.

Definition 3.4. A dual control structure on a finite set F is a function h such

that:

( 1 ) the domain of h is the set of subsets of B ;

(2) if A ç B , then h (A) is a partition of A ;
(3) if A' C A C B, and i: A' -> A is the inclusion map, then h(A') is

coarser than (h(A))¡; and
(4) if A' ç A ç B and A' meets all members of h(A), then h(A') =

(h(A))i.

Suppose x £ F(B). For any A ç B, let h(A) = AF^X\ where / is

the inclusion map from A to B ; then h will be a dual control structure on

B, which we call the dual control structure of x and denote by Kf(B)(x).

The dual control structure of x is enough to tell us what CF(^)(x) is for any

f.C^B: if A = fuC, then C^'« = (h(A))f.
Given a dual control structure h on B and a function /: C —► F, define

a function A' by letting h'(D) = (h(f"D))flD for any D ç C. Then A'

is a dual control structure on C, which we denote by Qd(f)(h). Again it is

straightforward to prove

Proposition 3.5. (I) If Qd(B) is the set of dual control structures on B, and

Qd(f): Qd(B) — Qd(C) is defined as above for f:C^B, then Qd is a
contravariant functor from FTF to FTF.

(2) If F is a contravariant functor from FTF to FTF, and KF: F(B) —►

Qd(B) is defined as above, then KF is a morphism of functors from F to Qd.

Proposition 3.6.  Kdd is the identity morphism from Qd to Qd .

Proof. We must show that, for any finite set B and any h £ Qd(B), KdQd(B)(h)

= h . Let A be any subset of B, and let i: A -» B be the inclusion map; then

KdQd(B)(h)(A) = ¿COW , so we must show that A&^W = h(A).

First, suppose h(A) is not coarser than A® W(A). Choose a, b £ A which

are in the same member of AQ (,)(/,) but not in the same member of h(A). Let

C = A U {c} for some c $. A , and define p, q : C —* A to be the identity on

A but send c to a and b, respectively. Then

Qd(p)(Qd(i)(h))(C) = Qd(iop)(h)(C) = (h((iop)«C))(iop) = (h(A))Uop)

and Qd(q)(Qd(i)(h))(C) = (h(A))(ioq) ; these partitions differ, since c is in the

same element as a in the former but not in the latter. But p and q agree mod-

ulo ¿COW, so Qd(p)(Qd(i)(h)) = Qd(q)(Qd(i)(h)), a contradiction. There-

fore, h(A) is coarser than AQ (,)(A) ; it remains to show that Qd(i)(h) is con-

trolled by h(A).
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Let C be a finite set, and suppose that p, q: C —> A agree modulo h(A).

Let D be a subset of C, and let D' = (p " D) u (q " D). By 3.4(3), h(D')
is coarser than (h(A))p , where /' is the inclusion from D' to A. Since /?

and # agree modulo h(A), p\D and q\D agree modulo /z(/l) and hence

modulo h(D'). It follows that p"D meets all elements of h(D'), so, by 3.4(4),
h(p " 7J>) = (h(D'))i>i, where /": p " 7) -> D' is the inclusion map. We now get

Qd(p)(Qd(i)(h))(D) = Qd(iop)(h)(D) = (h((iop)«D)){iop)W = (h(D'))pW.

The same argument gives Qd(q)(Qd(i)(h))(D) = (h(D'))q]D. But p\D and

q\D agree modulo h(D'), so Qd(p)(Qd(i)(h))(D) = Qd(q)(Qd(i)(h))(D).
Since D, C, p and # were arbitrary, Qd(i)(h) is controlled by h(A).   Q.E.D.

4. Definable sets and minimal sets

In this section we will complete the proof of Theorems 1.2 and 1.2' (except

for one group-theoretic result whose proof is given in the next section). Because

of the remarks following Lemma 2.7, this reduces to proving the following

characterization of realizable functions:

Theorem 4.1. A function y : co -* co is realized by some covariant functor if and

only if either y(0) > 0 or y satisfies the conditions given for y in 1.2(2) (or,

equivalently, 1.2'(2)).

The 'if part will be proved by an explicit construction at the end of this

section; for now we will work on the 'only if part. Again consider a fixed co-

variant functor F: FTF -> FTF. The action of the symmetric group Sym(F)
on a finite set B is mapped by F to an action of Sym(5) on F(B) ; the func-

tion KF(B): F(B) -» Q(F) preserves this group action. Therefore, the size of

the orbit of x £ F(B) under Sym(F) is a multiple of the size of the orbit of

h = KF(B)(x). Note that the set {x £ F(B): Bx = B} , which has cardinality
y(|F|) if F realizes y, is closed under the group action and hence is a union of

orbits. In order to prove (P(y(|F|), \B\, k', k), it will suffice to show that any

x in the above set lies in an orbit whose size is a multiple of ('*') for some

m > 0 which is less than k and either odd or less than k' ; this will follow if

we can show that the orbit of the corresponding h has size divisible by ('*').

We say that a subset A of B is definable from h £ Q(B) iff every mem-
ber of Sym(F) which fixes h also fixes A. In this case, if Sym(F)Ä and

Sym(F)^} are the stabilizers of h and A , respectively, within Sym(F), then

|Sym(F)Ä| divides |Sym(5)^}|, so the size of the orbit of h under Sym(F)
(which is n\/\Sym(B)f,\ ) is a multiple of the size of the orbit of A (which is

n\/\Sym(B){A}\ = Q).
Suppose \B\ > 1 and A is a control structure on B such that h(P) ^ 0 for

all partitions P of B. A minimal set for h is defined to be a nonempty set

TcB suchthat T £ h({T, B\T}) but V i h({T, B\T'}) for all nonempty
V c T. Since h(P) ^ 0 for all F, minimal sets for h exist. Note that the
union of all minimal sets for h is an example of a subset of B definable from

h (it is easy to see that, if T is minimal for h and 5 £ Sym(F), then s " T
is minimal for Q(s)(h) ); another example is the union of all minimal sets of

cardinality greater than 1.
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If h is as above and F is a partition of B, define Odd(/z, P) to be the

following assertion: for any partition n coarser than F (recall that this includes

the case n = F ), A(II) = {W £ U: \eF¿ " {W}\ is odd} .
Now consider the following statements:

Statement (not Theorem) 4.2. Suppose h is a control structure on B, \B\ > 1,

and h(P) ^ 0 for all P. Let A be the union of all minimal sets for h of size

greater than 1 if there are any; otherwise, let A be the union of all minimal sets

for h.

(1) If k > 1 is odd, and \h(P)\ ¿ k for all F, then \A\ < k.
(2) If k' > 1, and \h(P)\ # k' for all P, then \A\ is either less than k' or

odd.
(3) If 1 < k" < k', k" is odd,  \h(P)\ ¿ k' for all P, and there is no

partition P of B such that \P\ = k" and Odd(A, P), then \A\ < k'.
(4) If k" > 1 is odd, and every partition P of B such that \P\ = k" and

h(P) = P satisfies Odd(/z, F), then \A\ is either less than k" or odd.

These statements imply Theorem 4.1 :

Proposition 4.3. Suppose y: co -> co is realized by a covariant functor, and

y(0) = 0. IfStatement 4.2(1) is true (for all h), then y mustsatisfy 1.2'(2)(a) ;
if 4.2 (1) and 4.2 (2) are true, then y must satisfy 1.2'(2)(b) ; if 4.2 (1), 4.2 (3),
and 4.2(4) are true, then y mustsatisfy 1.2'(2)(c). In fact, if 4.2(1) is true

for a particular k, then y mustsatisfy 1.2'(2) (a) forthat k; corresponding

statements hold for the other parts of 1.2'(2).

Proof. Let F be a functor realizing y . If h = KF(B)(x) for some x £ F(B),

then the set A from Statement 4.2 is clearly definable from h ; by the remarks

following the statement of Theorem 4.1, it will suffice to prove certain cardi-

nality restrictions on A , since the size of the orbit of x will be a multiple of
(\Bh
\\A\) ■

For 1.2'(2)(a), the case k= 1 is trivial (if y(0) = y(l) = 0, then F(l) = 0,
so F(B) = 0 for all B by applying F to some /: F —► 1 ), so assume k is
an odd number greater than 1 ; it will suffice to show that y(k) = 0 implies

\A\ < k. Since F realizes y and y(k) = 0, we have |A(F)| ^ k for all
partitions F of B . (For any such F, if g: B —► P is the canonical projection,

then \Pg{x)\ = \h(P)\, so y(\h(P)\) > 0.) Hence, 4.2(1) gives \A\ < k, as
desired. Note that, as well as taking care of 1.2'(2)(a), this shows that \A\ < k

for the remaining two parts of this proposition (this is obvious when k = co).

Part (b) of 1.2'(2) is just as easy. Assuming 1 < k' < k, y(k') = 0, and
either k is odd and y(k) = 0 or k = co, we must show that \A\ is less than k

and either odd or less than k' ; the former follows from the preceding paragraph

and the latter follows from 4.2(2), since y(k') = 0 gives |A(P)| ^ k' for all P.
Now assume the hypotheses of 1.2' (2)(c). Let D be a fixed set of size k" ;

then y(k") = 1 implies that there is a unique element xo of F (D) such that

DXo = D. We now ask whether Odd(/z0, D) holds, where ho = KF(D)(xo) and

D = {{d}: d £ D}. This is relevant because, for any h as above, if F is a

partition of B such that \P\ = k" and h(P) = P, then Odd(A, F) holds if and

only if Odd(/z0, D) holds. (Since \P\ = \D\, there is a function / mapping

B onto D such that Df = P. This and h(P) = P imply Df(x) = D, so f(x)
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must be xo. Hence, Q(f)(h) = ho, and it follows immediately that Odd(h, F)

is equivalent to Odd(Ao, D).)

If Odd(/z0, D) does not hold, then Odd(A, P) does not hold for any P such
that \P\ = k" . Now 4.2(3) implies that \A\ < k'. Since h is arbitrary (but h0
is fixed), we have <P(y(|F|), \B\, k', k') by the usual reasoning.

On the other hand, if Odd(Ao, D) does hold, then Odd(A, P) holds for all
F such that \P\ = k" and h(P) = P. Now 4.2(1) gives \A\ < k as before,
while 4.2(4) implies that \A\ is either less than k" or odd. This is just what is

needed to prove $(y(|F|), \B\, k" ,k),so we are done.   Q.E.D.

The last remark in the statement of Proposition 4.3 is needed; it turns out

that one subcase of Statement 4.2 is not true, and we will have to resort to other

methods to prove the corresponding part of 1.2'(2). The rest of Statement 4.2

will be proved using the following six lemmas; throughout these lemmas, assume

that A is a control structure on B, \B\ > 1, and h(P) ^ 0 for all F.

Lemma 4.4. (1) If T is a minimal set for B and P is a partition of B such

that T £P, then T £ h(P).
(2) If Px is a partition of a minimal set T for h into more than one subset,

P2 is a partition of B, and Px cP2, then Px c h(P2) (strict inclusion).

Proof. (1) Apply 3.1(3) to P and 1\ = {T, B\T} .
(2) Suppose U £ Px and U' = T\U. We know that the minimal set T is in

A({F,F\F}),soby3.1(3)atleastoneof U and U' is in h({U, U', B\T}).
If U i h({U, U', B\T}), then U' £ h({U, U', B\T}), so 3.1(4) gives
U' £ h({U', B\U'}), contradicting the minimality of T ; therefore, U £

h({U, U',B\T}). Similarly, U' £ h({U, U', B\T}). We also have B\T £
h({U,U',B\T}), since otherwise 3.1(4) would give U' £ h({U', B\U'}),
again contradicting the minimality of T. Now 3.1(3) gives

U £ h(Px U {B\T})   and   B\T £ h(Px U {B\T}) ;

since U was arbitrary, h(Px U {B\T}) = Px U {B\T} . One more application of
3.1(3) gives the desired result.    Q.E.D.

Lemma 4.5. If \B\ > k > 3 and the union of all minimal sets for h of size

greater than 1 has size at least k, then there is a partition P of B of size k

such that h(P) = P and some element of P is a proper subset of a minimal set.

Proof. Let S = {Tx, T2, ... , Tm} be a collection of minimal sets for h , each

of size greater than 1, such that | \JS\ > k and m is as small as possible (so

ILKSUF,})! < k for all i < m). If m = 1 , then we can let F be {B\TX}
together with a partition of Tx into k - 1 pieces, and Lemma 4.4(2) will imply

that h(P) = P ; so assume m > 1. Let bx, b2, ... , b¡ be a list of the members

of (J S, arranged so that the b 's not in Tm come first, followed by the b 's

occurring both in Tm and in some other T¡, and finally the b 's in Tm only;

in particular, we will have bx $. Tm and T,ç {bx, b2, ... , bk_x} for i <m.

Let W = B\{bx,b2,...,bk_x},andlet Ux = {{bx},... , {bk_x}, W}. If
h(Ylx) = Ylx, we are done, so assume this is not the case. In particular, this

implies B ^ (J S, since otherwise Lemma 4.4 would give h(Ylx ) = llx. For any

bj which is in T¡ for some /' < m , we have {bj} £ h(Hx) by Lemma 4.4(2);

hence, either W £ h(Ylx) or {bj} £ h(Ylx) for some bj which is in Tm but
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in no other 7}. By rearranging the list bx, b2, ... , bk_x, we may ensure that

either W £ h(l\x) or {bk_x} i h(Ux).
Now let

n2 = {{bi},...,{bk_2},wu{bk_i}}

and

n3 = {{bx},...,{bk.2},u,w'},

where U = Tm\{bx, ... , bk_2} and W = (B\Tm)\{bx, ... , bk_2}. If ; <
k - 2 and b¡ £ T¡ for some i < m, then {bj} £ A(Ili) as noted above, so

{bj} £ h(U2) by 3.1(4), so {bj} £ A(n3) by 3.1(3); if j < k - 2 and bj £ Tm ,
then {bj} £ h(U-¡) by Lemma 4.4(2). Lemma 4.4 also gives U £ h(U3). If
W £ A(n3), we are done, so assume W g h(Iïi).

Finally, let IL, = {{b2}, ... , {bk_2}, U, W'ö{bx}} and

n5 = {{b2},..., {bk_2}, U\{bk} ,{bk}, W'ö{bx}}.

(Since  \Tm\ >  1, we have either bk_x £ U or bk+x £ U, so U\{bk} is
nonempty.)  Then /z(Il4) = II4 by 3.1(4), so all elements of n5 other than

U\{bk} and {bk} are in h(U5) by 3.1(3). But U\{bk} and {bk} are also in
A(n5) by Lemma 4.4(2), so we are done.   Q.E.D.

Lemma 4.6. Suppose that n > 3, and h has the following property: for any

partition P of B, if \P\ = n and h(P) = P, then Odd(h, P) holds. Then the
union of all minimal sets for h having size greater than 1 has size less than n.

Proof. Suppose not; then Lemma 4.5 gives a partition F of B such that \P\ =
n, h(P) = P, and some W £ P is a proper subset of a minimal set. Then

the definition of minimality gives W £ h({W, B\W}) while Odd(A,F) gives
W £ h({W, B\W}), so we have a contradiction.   Q.E.D.

Lemma 4.7. Assume the hypotheses of Lemma 4.6, and also suppose that all

minimal sets for h have size 1 and that there are at least n of them. Then

the number of minimal sets for h is odd. Furthermore, one of the following two

cases holds:

(1) For every partition P' of B of the form {{bx}, {b2}, ... , {b„-X}, W}
where the sets {b¡} are distinct minimal sets, we have h(P') = P'. In

this case, n must be odd.

(2) For every such partition P', we have W £ h(P'). In this case, n is

even, the hypothesis of 4.6 holds vacuously (i.e., there is no partition P

of B such that \P\ = n and h(P) = P), and for any odd n" < n there

is a partition P" of B into n" pieces such that Odd(/z, F") holds (and

hence h(P") = P").

Proof. Let A = {b £ B: {b} is minimal}. Note that, for any S c A of
size n - 1, the sets {b} forb£S are all in h({{b}: b £ S} U {B\S}) by
Lemma 4.4(1). Say that such a set 5 is of type (1) if B\S £ h({{b}: b £
S} U {F\5}) ; otherwise, say that S is of type (2). The first step is to show that
either all sets S are of type ( 1 ) (we abbreviate this by saying "case ( 1 ) holds")

or all S are of type (2) ("case (2) holds").
Suppose this is not the case; say 51 is of type (1) and S' is of type (2). We

can get from S to S' by a sequence of operations, each of which replaces a

single member of the current set with an element of 5"' ; one of these steps must



FUNCTORS ON THE CATEGORY OF FINITE SETS 875

move from a type (1) set to a type (2) set, so there exist a type (1) set and a

type (2) set which differ only by one element. In other words, there exist a set

W c A of size n - 2 and elements b', b" of A\W such that W u {b1} is
of type (1) but W u {b"} is of type (2). But then the hypothesis of 4.6 gives
B\W i h({{b}: b £ W}(J {B\W}), while Definition 3.1(4) gives B\W £
h({{b}: b £ W} u {B\W}), so we have a contradiction. Therefore, either

case (1) or case (2) holds.

Let bx,b2, ... ,b¡ be a list of the members of A , where I = \A\. None of
what follows will depend on which particular listing is chosen, so if we prove a
fact about a partition defined from one such listing, the same fact will hold about

the corresponding partition defined from another listing. The main partitions

we will be working with are:

Pm — {Lm , {bm+x}, {bm+2}, ... , {bm+n-2}, Rm+n-X},

Bm = {7-m> {bm+\} ; {bm+2} , ••• , {bm+n-l} > R-m+n-l} >

where Lm = {bx,b2, ... , bm} and Rm = F\Lm_i. This definition for Pm

is valid if m + n - 2 < min(l, \B\ - 1), and the definition for P'm is valid if
m + n - 3 < min(/, \B\ - 1). Note that all of the members of Pm other than

Lm and Rm+n-X must be in h(Pm) by Lemma 4.4(1); the same holds for PL.

For now, suppose case (1) holds; then h(Px) = Px and, because Odd(A, Px)

holds, h(P[) = P[\{R„-X} . Clearly n must be odd, since otherwise Odd(A, Pi)
would give h({B}) = 0 . We now show by induction on m that h(Pm) is Pm

if m is odd, Pm\{Lm, Rm+n-i} if m is even, while h(P'm) is P'm\{Rm+n-2} if

m is odd, P'm\{Lm} if m is even. If h(P'm) = Pm\{Rm+n-2} , then Lm £ h(Pm)

by 3.1(3), and Rm+n-\ £ h(Pm) since otherwise 3.1(4) would give Rm+n-2 £

h(P'm), so h(Pm) = Pm ; now Odd(/z, Pm) gives h(PL+x) = Pm+x\{Lm+x}. On
the other hand, if h(Pm) = P'm\{Lm}, then we cannot have both of Lm and

Rm+„-i in h(Pm) because this would imply Odd(A,Fm) and hence Lm e

h(P'm), and we cannot have exactly one of them in h(Pm) because then 3.1(4)

would give h(P) = P, where

P = {{bm+\}, {bm+2}, ■■■ , {bm+n-2}> B\{bm+i, ... , bm+n-2}},

and this cannot happen for the same reason that it could not happen for P[

( P is just like Px except for a rearrangement of the listing of A ). Therefore,

h(Pm) = Pm\{Lm, Rm+n-i} , and now 3.1(4) gives h(PL+x) = Pm+l\{Rm+n-\} ■
This completes the induction.

If \A\ = / is even and A = B, then R¡ = {b¡} is in h(P¡_n+x) by Lemma
4.4(1), but the above gives R¡ $ h(P¡_n+x), a contradiction. If / is even and

A ^ B, then the above results give A(F/_„+2) = F/_„+2, so we get Odd(A, Pi-n+2)

and hence F/+1 e h({R¡+x, B\R!+X}), so some subset of R¡+x is a minimal set.
But F/+1 = B\A and A is the union of all minimal sets for h (of size 1, but

there are none of size greater than 1), so this is also impossible. Therefore, /

must be odd. This completes the proof of the lemma in case (1).

From now on, assume that case (2) holds; this gives h(Px) = Px\{Rn} and,

by 3.1(4), h(P[) = P[. Note that \B\ must be greater than n , since otherwise

Rn would be {b„} and would be in h(Pi) by Lemma 4.4(1). We now show
by induction on m that h(Pm) is Pm\{Rm+n-\} if m is odd, Pm\{Lm} if

m is even, while h(P'm) is P'm if m is odd, and Rm+n-2 £ h(P'm) if m is
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even. If h(Pm) = Pm, then Lm e h(Pm) by 3.1(3), and h(Pm) cannot be Pm
since otherwise we would have Odd(/z, Pm) and hence Rm+n-2 £ h(P'm), so

we must have h(Pm) = Pm\{Rm+n-i}; now 3.1(3) gives Rm+n-\ i h(p'm+i) ■

On the other hand, suppose Rm+n-2 £ h(P'm). Then Rm+n-X must be in

h(Pm), since otherwise 3.1(4) would give Rm+n-2 £ h(P'm). Also, we cannot

have Lm e h(Pm), since otherwise Odd(A, Pm) would give h(P) # P, where

F is defined as in the previous case; this is impossible because P is just like P[

except for a rearrangement of the listing of A . Therefore, h(Pm) = Pm\{Lm} ,

so h(Pm+l) = Pm+X by 3.1(4). This completes the induction.

Claim. If U CV ÇA, \U\ = 2, \V\ < n , and F is a partition of B such that
U and B\V are in F, then U i h(P).

Proof. We may choose the listing bx,b2, ... ,b¡ of A so that U = {bx, b2}
and V ç Ln. Since \B\ > n, P2 is defined, and the above results give U £

h(P2). But F is coarser than P2, so 3.1(3) gives U i h(P).   Q.E.D.

We now show that, for any partition n of B such that Rn £ Yl, we have

h(U) = {U £ U: U ¿R„ and \U\ is odd}. Create a new partition F of F
by breaking up each U £ 11 other than R„ into pieces of size 2, together

with one piece of size 1 if \U\ is odd. Then 3.1(3) applied to Px and F
gives Rn $. h(P), the Claim implies that no set of size 2 is in h(P), and

Lemma 4.4(1) forces all of the leftover pieces of size 1 to be in h(P), so h(P)

is the set of these leftover pieces of size 1. Now 3.1(4) applied to F and n

shows that h(Yl) is as stated.
It follows immediately that n must be even, since otherwise A({L„_i, Rn})

would be empty. Since n is even, the hypothesis of 4.6 can only hold vacuously;

if there were a partition F with \P\ = n and h(P) = P, then Odd(A, F) would
give h({B}) = 0.

Next, suppose n" is an odd number less than n, and define F" to be
{{bx}, ... , {bnii-X}, Rn"} ; the property we need to show for F" is equivalent

to the statement that, for any n coarser than F" , A(II) = {U £ Ö: |f7 n L„»|
is odd} , since each element of F" contains exactly one element of Lnn . Given

such a n, let U be the element of n including F„« , and create a new par-

tition n' from Ü by breaking U up into U nL„_i and R„. Then W £\\
is in A(n') if and only if W ^ R„ and \W\ is odd. But the elements
bn"+\, bn><+2, ... , b„-X are in the same element of n', and there are evenly

many of them, so they cancel each other out; that is, W is in IT iff W n L„»
is odd. Now 3.1(4) implies the same result for n, as desired.

It remains to show that / = \A\ is odd. If / is even and A = B, then

we get R¡ £ A(P/_„+1) since / - n + 1 is odd; but this is impossible, since

Lemma 4.4(1) gives R¡ = {b¡} £ A(F/_„+1). Finally, suppose that / is even but

less than \B\. Let

S = {{bi-n+3, bi-n+4}, {¿/-«+5 > Vn+ó}, • • •. {¿>/-i, Mi-

Then 3.1(3) applied to Pi-n+2 gives L/_„+2 ^ A(5'U{L/_„+2, F/+1}). Also, no
member of S can be in h(S U {L¡_n+2, F/+1}), since otherwise 3.1(4) would

imply that this same member is in h(S U {L¡_n+2 U F/+1}), contradicting the

Claim. Therefore, 3.1(3) gives L¡ $ h({L¡, R¡+x}), so F/+1 £ h({L¡, R¡+x}),
so some subset of F/+1  is a minimal set.   But, as before, this is impossible
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because R¡+x = B\A and A is the union of all minimal sets. This completes

the proof of Lemma 4.7.   Q.E.D.

Lemma 4.8. If k is an odd number such that \h(P)\ ^ k for all P, and all
minimal sets for A have size 1, then there are fewer than k minimal sets for

A.

Proof. Suppose not; then k > 1 since A({F}) = {B}, so the hypotheses of

Lemma 4.7 are satisfied for n = k (the hypothesis of 4.6 holds vacuously).

Since n is odd, it must be case (1) of the conclusion that holds; but then any

F' as in this conclusion satisfies |A(F')| = \P'\ = k, a contradiction.   Q.E.D.

Lemma 4.9. If k is an odd number such that \h(P)\ ^ k for all P, and \B\ > k,
then there is a set C ç B definable from h such that \C\ < k and either \C\

is odd or h({{a} : a £ C} u {B\C}) = {{a} : a £ C} .

Proof. Proceed by induction on k (which, as noted in the preceding lemma,

must be at least 3). Let A be the union of all minimal sets for A of size greater

than 1, if there are any; otherwise, let A be the union of all minimal sets for

A . Then A is nonempty and definable from A , and Lemmas 4.5 and 4.8 imply

that \A\ < k ; also, by Lemma 4.4, {{a}: a £ A} ç h({{a}: a £ A}\JP) for any
partition F of B\A . If \A\ is odd, or if_F\^ £ h({{a}¿a £ A}U{B\A}), then

we can just let C = A . Otherwise, let F = B\A and k = k - \A\, and define

h £ Q(B) by h(P) = h({{a}: a £ A} U F) r^F._Then \h(P)\ ¿ kfor all F.
Apply the induction hypothesis to get a set C ç B definable from A such that

\C\ < k and either \C\ is odd or h({{a): a £ C} U {B\C}) = {{a}: a£~C};
then let C = C u A.   Q.E.D.

Proposition 4.10. Paris (1), (3), and (4) of Statement 4.2 are true for all k, k',

and k" ; and part (2) is true for all k and all k' > 2.

Proof. Let B, A , and A be as in Statement 4.2.
If k > 1 is odd and |A(F)| ^ k for all F, then Lemma 4.5 gives \A\ < k if

there is a minimal set of size greater than 1, while Lemma 4.8 gives \A\ < k if

all minimal sets have size 1; this proves 4.2(1).

Now consider the case k' > 2 of 4.2(2). If there is a minimal set for A of

size greater than 1, then \A\ < k' by Lemma 4.5; if not, then either \A\ < k' or

\A\ is odd by Lemma 4.7 with n = k' (the hypothesis of 4.6 holds vacuously).
Therefore, \A\ is as required.

If the hypotheses of 4.2(3) hold, then the conclusion of Lemma 4.7 fails for

n = k', so one of the hypotheses must fail; but the hypotheses of 4.6 hold

vacuously (there is no F such that \P\ = n and A(F) = P ), so either there
is a minimal set for A of size greater than 1 (in which case Lemma 4.5 gives

\A\ < k' ) or all minimal sets have size 1 but there are fewer than n of them

(which gives \A\ < k' immediately). So \A\ < k' in any case.

Finally, assume the hypotheses of 4.2(4). If there is a minimal set for A of

size greater than 1, then \A\ < k" by Lemma 4.6 with n = k" ; if all minimal

sets for A have size 1, then \A\ is either less than k" or odd by Lemma 4.7

with n = k" .   Q.E.D.

This suffices to prove all of Theorem 4.1 except for the case k' = 2 of

1.2' (2)(b). Unfortunately, the remaining part of Statement 4.2 is not true; in

fact, there are control structures A such that |A(P)| is never 0 or 2 but no set
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of odd cardinality is definable from A . To see this, we will construct a control

structure A on the set F = {1, 2, 3, 4, 5, 6} . For any partition F of F , let

A(F) = F if \P\ ¿ 2. If \P\ = 2, say F = {U, V}, then look at the pairs
{1,2}, {3,4}, and {5, 6} , in that order; if any one of these pairs is included

in U or in V, then let W be the one of U and V which includes the first

such pair, and let A(F) = {W} . Otherwise, let W be that one of U and V

which contains zero or two members of {1, 3, 5} , and again let h(P) = {W}.

It is easy to show that A is a control structure on F, and |A(F)| ^ 2 for all

partitions F of F. But A is fixed under the subgroup

{idB,(12)(3 4),(12)(5 6),(3 4)(5 6)}

of Sym(F), which fixes no subset of F of odd cardinality (because such a subset

must split one of the pairs {1,2}, {3, 4}, or {5,6}), so no such subset is

definable from A . Such an example can be constructed on any C such that \C\

is even and at least 6 ; in fact, we can just use Q(f)(h) for some one-to-one

fi-.B^C.
So we must look for an alternative proof of the numerical results we desire by

looking more directly at the stabilizer G = Sym(F)A for A £ Q(B). If |A(F)|
is never 0 or 2 for any partition F of F, then, whenever A is a nonempty

proper subset of B, h({A, B\A}) must be either {^4} or {B\A} ; in either

case, if s £ Sym(F) is such that s " A = B\A, then s fi G. So G contains
no permutation which maps a nonempty set to its complement; it is not hard

to show that this is equivalent to stating that every element of G has a cycle of

odd cardinality (e.g., a fixed point). (If s is a permutation with no odd cycle,

then color the elements of each cycle alternately black and white to partition

F into two sets that s interchanges. If s has a cycle of odd length m, b is

a member of this cycle, and A is a subset of F such that s " A = B\A , then
b £ A iff b = sm(b) £ B\A iff b £ A, a contradiction.) Now consider the
following two statements:

Statement 4.11. If G is a subgroup of Sym(F) such that every element of G

has an odd cycle, then ('^') divides |Sym(F) : G\ (i.e., \G\ divides k\(n - k)\)

for some odd k < \B\.

Statement 4.12. If G is a subgroup of Sym(F) such that every element of G

has an odd cycle, then <P(|Sym(F) : G\, \B\, 2, co).

Clearly Statement 4.11 implies Statement 4.12. It turns out that Statement

4.12 is just what we need:

Proposition 4.13. The statement "If y : co -* co is realized by some covariant

functor F and y(0) = 0, then y satisfies 1.2'(2)(b) for k' = 2 and all /c" is
equivalent to Statement 4.12.

Proof. First, suppose G ç Sym(F) is a counterexample to Statement 4.12;

clearly \B\ > 2. Since no element of G maps a subset of F to its complement,
there is a (7-invariant way to choose one member from each pair {A, B\A}

for A ç B. (The orbits of subsets of B under G come in complementary

pairs; just choose one orbit from each pair.) Define A £ Q(B) by: if \P\ ^ 2,

then A(F) = F ; if \P\ = 2, then A(F) = {A}, where A is that member of F
which is chosen above. Let G' be the stabilizer of A in Sym(F) ; then G is a
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subgroup of G', so |Sym(F) : G'\ divides |Sym(F) : C7|, so it is not true that

<D(|Sym(F):G'|,|F|,2,ft;).
Let F be the subfunctor of Q generated by A. Then F(C) = {F(f)(h):

f:B^C}, and CF(f)(h) = f« h({f'x " {c}: c £ /" F}) (since KF(C)(x) =
x for x £ F(C)). If / is not one-to-one, then 0 < |Cf(/)(/,)| < \B\ and

\CF(f)(h)\ / 2; if / is one-to-one, then \CF^n)\ = \B\. Therefore, if y: co -> co

is the function realized by F , then y(0) = y(2) = 0, y(m) = 0 for m > \B\,
and

y(|F|) = \{x £ F(B): Bx = B}\ = \{F(f)(h): fi£ Sym(B)}\ = |Sym(F) : G'\,

so 4>(y(|F|), \B\,2,co) fails. Therefore, y violates 1.2'(2)(b) for k' = 2
where k is either co or any odd number greater than \B\.

Now suppose that Statement 4.12 holds, and let F be a covariant functor

realizing a function y such that y(0) = y(2) = 0. For the case k' = 2,

k = co of 1.2'(2)(b), it suffices to show that, if \B\ > 2, x £ F(B), and
M is the size of the orbit of x under Sym(F), then <P(A7, \B\, 2, co). Let
G Ç Sym(F) be the stabilizer of x ; then M = |Sym(F) : G\. For any A ç B
other than 0 or B, KF(B)(x)({A, B\A}) must be either {A} or {B\A} ;
hence, no element of G maps A onto B\A. Now Statement 4.12 implies

<P(|Sym(F) : G\, \B\, 2, co), as desired.
To prove that 1.2' (2)(b) holds for k' = 2 and any odd number k > 2 such

that y(k) = 0, we will show that, if \B\ > k and x, M, G are as above,

then <b(M, \B\, 2, k). Apply Lemma 4.9 to A = KF(B)(x) to get a set A C B
definable from A (and hence fixed under G) such that \A\ < k and either \A\

is odd or h({{a}: a £ A} u {B\A}) = {{a}: a £ A} . Let G' be the set of ele-
ments of G not moving any element of F\^4 (which is a subgroup of G ), and

let G" be the subgroup of Sym(^4) corresponding to G' ; then |t7'| = \G"\,

and \G : G'\ divides (\B\A\)\. If \A\ is odd, then <D(|Sym(F) :G\,\B\,2,k)
since (j^j) divides |Sym(F) : G\, so we may assume that \A\ is even. Since

y(0) = 0, A({F}) = {B}, so A # 0. For any A' ç A other than 0 or A,

h({A', A\A', B\A}) cannot contain B\A by 3.1(3), so it must be either L-4'}
or {^4\^4'} ; it follows that no element of G' (and hence no element of G" )

maps A' onto A\A'. Therefore, by 4.12, 0(|Sym(^) : G"\, \A\, 2, co),
and hence <P(|Sym(,4) : G"\,\A\,2,k) (since \A\ < k). Since \G\

divides \G"\(\B\A\)\, (¡*|)|SymL4) : G"\ divides Q|¿|!(|*V4|)!/|G|

= |Sym(F) : G\; since (¡*|)(W) = OfflZ™) for all m < \A\, we get
<P(|Sym(F) : G\, \B\, 2, k), as desired.   Q.E.D.

It also turns out that Statement 4.11 is true; the proof is group-theoretic

rather than combinatorial, so it is postponed until the next section. This result

and Propositions 4.3, 4.10, and 4.13 give one direction of Theorem 4.1; the

other direction follows from Lemma 2.7 and the following result.

Proposition 4.14. If y: co —> co satisfies the conditions given for y in 1.2(2),

then y is realized by some covariant functor F.

Proof. By Lemma 2.7, we may assume y(0) = 0. Define ko, k'0, and k'¿ as

in 1.2(2). The functor we construct will include two 'spines,' one of which is

a copy of the example F2 from § 1 truncated at k^ (or at k'¿ if k'¿ < k'0 < ko

and <P(y, /c¿, k'0) fails) while the other is a copy of example F3 truncated at
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ko (or at k'¿ if k'¿ <k'Q<ko and <P(y, k'0, k'0) holds). The rest of the functor
will consist of small pieces, each attached to one of the spines. If this spine

goes all the way up to N, then we can attach an extra piece at N so as to

increase y(N) by 1 without affecting any other values y(n); if the spine has

been truncated at k, however, then the piece we attach will increase y(N) by

(^) for some positive m < k , which will be odd for the second spine.

The given hypotheses allow us to choose numbers lnm £ co for n > m > 1

and jnmi £ {1, 2} for n > m > 1, i < lnm, satisfying the following conditions:

(i) y(») = E¡Ui/..«(£) for «>1;
(2) if ko < co, then lnm = 0 for all n > m > ko ;
(3) if k'0 > ko, then /„„ = y(n) for all n < ko, and j„mi = 1 for all

n, m, i ;

(4) if k'Q < ko, then l„m = 0 for all n> m> k'0 such that m is even;
(5) if /Cq" < ko and k'¿ > k'0 , then /„„ = y(n) for all n < k^ and for all odd

n such that k'0<n <ko, jmX = 2 for all odd n such that 1 < n < k^,
jnmi = 2 for all n > m > k'Q and i < lnm , and jnm¡ = 1 for all other

n, m, i ;
(6) if k'¿ < k'Q < ko and <P(y, k'0, k'Q) holds, then /„„ = y(n) for all

n < k'0, lnm = 0 for all n > m > k'0, and jnmi = 1 for all n, m, i;

and
(7) if *¿' <k0<ko and <D(y, *¿, k'Q) fails (so 0>(y, k'¿, ko) holds), then

/„„ = y(n) for all n <k'¿ , lnm = 0 for all n> m> k'¿ such that m is

even, jnnX = 2 for all odd n such that 1 < n < k'¿, jnmi = 2 for all

n>m>k'¿ and /' < lnm , and jnmi = I for all other n, m, i.

(Note that the hypotheses for these conditions mean that we only have to satisfy

(1) and (2) together with either (3) alone, (4) and (5), (4) and (6), or (4) and

(7). The cases where /„„ is specified to be y(n) are trivial. In the cases where
/„„ is specified to be 0, the hypotheses in 1.2(2) imply the existence of numbers

lnm meeting these conditions. The conditions clearly define jnmi uniquely for

each n, m, i7)
For any finite set B, let

F(B) = {(A,A',i):0¿A'CACB,  0<i< l\Am}.

The first spine will consist of the triples (D, D, 0) for \D\ below the trunca-

tion limit for F2 , while the second spine consists of the triples (D, D, 1) for

\D\ > 1 odd and below both truncation limits, together with (D, D, 0) for

all other odd |T>| below the truncation limit for F3 (i.e., when \D\ is 1 or

not below the truncation limit for F2). (Note that the triples ({b}, {b}, 0)
are in both spines.) All other triples (A, A', i) form the extra pieces added
on. (If such a piece includes a triple (A, Ä, i), it will also include all triples

(A, A", i), where \A"\ = \A'\; this will contribute'1 to y(\A\) if \A\ = \A'\,
more otherwise.) The number y^n^'i, indicates which spine (A, A', i) is at-

tached to. We can now write down the exact formula for F(f) for f:B—>C:

(faA,faA', i)   if f is one-to-one on A,

(D, D, 1) if / is not one-to-one on A, \D\ > 1,

and 7|d||d|o ¥" J\A\\A'\i >

(D, D, 0) otherwise,

F(f)((A,A',i))
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where

D=if"A' if J\A\\A-\i = I,

\{c£C:\A'n /"' " {c}\ is odd}   if jiAi[A.v = 2.

The proof that F is a covariant functor is tedious but straightforward, so

it is omitted. Given (A, A', i) e F(B), it is clear that (A, A', i) is con-

trolled by A . But if p, q : B -» C are one-to-one and p " A ^ q " A, then

F (p)((A, A', i)) / F(q)((A, A', i)) ; hence, B(AtA,j) = A. Therefore, the
number of elements x of F(B) such that Bx = A is 0 = y(0) if A = 0 and

|{L4, ¿', 0: 0 * ¿' ç A,  i< l\Am}\ = ¿ i}^)l\A\m = y(\A\)
m=\ ^      '

otherwise, so F realizes y.   Q.E.D.

We should again note that most functors do not look like the ones constructed

here; this construction just happens to suffice for the desired numerical results.

Note that the functor F constructed here satisfies F(0) = 0 ; of course, this

could have been arranged using Lemma 2.6 if it had not already been true. This

completes the proof of Theorem 4.1 and hence of Theorems 1.2 and 1.2'.

5. Proof of Statement 4.11

This section gives the proof of the following result:

Theorem 5.1 (Aschbacher). If G is a group of permutations of a finite set of
size n, and every element of G has an odd cycle, then the order of G divides

k\(n - k)\ for some odd k < n .

(Groups satisfying the hypothesis of Theorem 5.1 have been studied by Is-

bell [8] and others, but the question considered here did not arise.)
Aschbacher's proof of this theorem involved the classification of finite simple

groups. The proof given here combines Aschbacher's method with an approach
due to Peter Neumann which eliminates the need for the classification. The

terminology and most of the notation used here are those of Aschbacher [2]; all

group-theoretic results for which no references are given can be found there. A

few reminders: A 2-element of a group is an element whose order is a power of

2. A group action is transitive if it has only one orbit, primitive if it preserves

no nontrivial partition, and faithful if it has trivial kernel. If G is a group
acting on a set including a set Y, then Gy is the pointwise stabilizer of Y in

G (GY = {g £G: (Vy£Y) gy = y} ) and NG(Y) is the global stabilizer of Y
( NG(Y) = {g£G: gY = Y} ). If NG(Y) = G, then G/GY is isomorphic to a
permutation group GY on Y .

Assume throughout this section that X is a finite set of cardinality n , S =

Sym(X) is the symmetric group on X, and G is a subgroup of S.

We will use the following result, to be proved later:

Theorem 5.2 (Aschbacher). If G is a primitive permutation group on a finite set

X of size n and \G\ does not divide (n- 1)!, then one of the following holds:

(1) n is prime.

(2) G includes the alternating group on X.
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(3) n = 8 and G is isomorphic to the semidirect product of Z\ with its

automorphism group GL3(2). (This group is unique up to equivalence

of group actions.)

(A) n = 9 and G is isomorphic to the semidirect product of Z\ with either
GL2(3) or SL2(3).

(5)   n = 9 and G is isomorphic to the automorphism group of SL2(8).

Let Z\ • GL3(2) denote the semidirect product of Z\ with GL3(2). The
group action in (3) above is equivalent to the group of affine maps (linear maps

with constant term) from Z\ to itself; the subgroup Z\ is the group of transla-

tions jchx + c for c £ Z\. If c t¿ 0, then such a translation is a permutation

of Z\ with all cycles of size 2.

Lemma 5.3. The only normal subgroups of Z\ • GL3(2) are Z\ • GL3(2), Z\,
and {1}.

Proof. It will suffice to show that Z\ is the unique minimal normal subgroup

of Z\ • GL3(2) (since (Z\ • GL3(2))/Z| s GL3(2) is simple). Since GL3(2) is

transitive on the nonidentity elements of Z\ , Z\ is a minimal normal subgroup

of 7j\ ' GL3(2). Suppose K is a nontrivial normal subgroup of 77; it will be

enough to show that K nZ\ is nontrivial, since then it will have to be all of

Z\ by minimality. Let ag be a nonidentity element of K, where a £Z\ and

g £ GL3(2). If g is the identity, we are done; if not, some b £ Z\ is moved

by g, and then b~x(ag)~xb(ag) is a nonidentity element of KnZ\ (since Z\

is abelian).   Q.E.D.

We now proceed to prove Theorem 5.1 by induction on n . We may assume

that n is even (since otherwise we could take k = n) and greater than 2.

Note that the hypothesis that every element of G has an odd cycle is equiva-
lent to the statement that every 2-element of G has a fixed point. (A 2-element

without fixed points clearly has no odd cycles; if g £ G has no odd cycles, and

m is the largest odd divisor of the order of g, then gm is a 2-element without

fixed points.)
First, suppose G is not transitive; say X = Y U Z, where Y and Z are

disjoint C7-invariant nonempty sets. Let m = \Z\; then \GZ\ divides m\.
Also, Gz is faithful on Y, so, if every element of Gz has an odd cycle on

Y, then by the induction hypothesis there is an odd k such that \Gz\ divides

(n-m- k)\k\. But then |C7| = |GZ||C7Z| would divide N = m\(n - m - k)\k\,

which in turn divides (n~k)N = (n - k)\k\, as desired.

Similarly, we are done if every element of Gy has an odd cycle on Z . On

the other hand, if u £ Gz has no odd cycle on Y and v £ Gy has no odd cycle

on Z , then uv is an element of G with no odd cycle at all, a contradiction.

This completes the case where G is not transitive.

Next, suppose G is primitive. The group G cannot contain the alternating

group on X, since the alternating group contains elements with no odd cycles

(e.g., the product of a 2-cycle and an (n-2)-cycle). Similarly, G cannot be the

group in 5.2(3), since we have seen that this group contains elements with no

odd cycles. Therefore, Theorem 5.2 implies that |G| divides (n - 1)!, so we

are done (let k = 1 ).
Finally, suppose G is transitive but not primitive. Then there is a nontrivial
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C7-invariant partition of X ; since G is transitive, the partition must consist of

blocks of equal size. Fix such a partition F = {Xx, X2, ... , Xr} into r blocks

of size s so that s is as small as possible. Then n = rs and I < r, s < n . Let

M be the stabilizer NS(P) of P in S = Sym(Z), and let M¡ = SX\x¡ ; then

G < M, Mi* Sym(s), MP = MXM2 ■ ■ ■ Mr, and Mp s Sym(r).
Note that, for any positive integers a and b, we can consider the symmetric

group on ab objects and the subgroup which preserves some partition into b

blocks of size a ; this subgroup has order (a\)bb\, so (a\)bb\ divides (ab)\.

Since every element of G has an odd cycle on X, every element of Gp

has an odd cycle on F (if x is in an odd cycle of ^ on I, then the ele-

ment of F containing x is in an odd cycle of Gpg on P). By the induction

hypothesis, there is an odd number j < r such that \Gr\ divides (r—j)\j\. But

\Gp\ divides \MP\ = (s\)r, so \G\ = \GP\\GP\ divides (s\)r(r - j)\j\ =
(s\y~j(r - j)\(s\)Jj\, which in turn divides (n - sj)\(sj)l. We are now done if

s (and hence sj ) is odd, so assume that s is even.

By minimality of s, NG(X¡)Xí is primitive on X¡. Since Gp < G, (GP)Xi <

NG(Xi)x>. If \{Gp)x'\ divides (j-1)! for all /,then \GP\ divides ((s-l)!)r,
so G divides ((s— l)\)rr\, which divides (n-r)\, which divides (w-l)!,sowe

are done. So we may assume |(C7p)x,|, and hence \NG(X¡)Xi\, does not divide

(s - 1)! for some i. Now Theorem 5.2 implies that either Alt(X,) < NG(X¡)Xi

(where Alt(X;) is the alternating group on X,■) or s = 8 and Z\ • GL3(2) =

NG(Xi)Xi. Using Lemma 5.3 and the simplicity of Alt(X¡) if s > 6, we can

now conclude that either Alt(Xf) < (GP)X-, s = 4, or s = 8 and Z\ • GL3(2) S

(GP)X'. This has been shown for one value of i, but since Gp is transitive on

F it must hold for all /.
Next, we show that GX-x¡ = {1} for all i. Since GX-x¡ < NG(X¡),

(Gx-xt)x> <NG(Xi)x-,so (GX-x,)Xl must be either {1}, Alt(^), Sym(^),

Z\ • GL3(2) or its normal subgroup Z2 (with s = 8 ), or a nontrivial normal

subgroup of Sym(X,) or Alt(Xj) (with s = 4 ); in the latter case, we easily check

that Gx-Xi must include the permutations with cycle structure (a b)(c d). In

all of these cases other than {1} , Gx-x¡ contains an element with no odd cycle

in X¡. If this is true for one i, then it is true for all / ; if we choose one such

element for each /" and multiply them all together, we get an element of G with

no odd cycles at all, contradicting the choice of G. Therefore, Gx-x¡ must be
{1} for all i.

Claim,  s is 2, 4, or 8 (and hence p = 2).

Proof. Suppose not; then s > 6 (since s is even) and the commutator sub-

group Dj of M¡ is isomorphic to Alt(s), which is a nonabelian simple group.

Let D = DXD2-Dr and A = GnD. We know that 7>f' < (GP)Xi ; since

D¡ has no subgroup of index 2, it follows by induction on k that Dy' <

(G n A • • • DkMk+x ■ ■ ■ Mr)x'. For k = r this states that DXi < Ax>, so the
canonical projection from D to 7), maps A onto D¡. Now Lemma 1.4 of

Aschbacher and Scott [3] states that there is a partition Q = {Qx,... , Qt} of

{Dx, ... , Dr} such that A = Ax---At, where A¡ is a full diagonal subgroup

of (Qi) (i.e., for each Dj in Q¡, the canonical projection from A¡ to Dj is
a bijection). In particular, for each /' < t there is a 2-element g¡ of A¡ which

has no fixed points on any Xj such that Dj £ Q¡. (Given i, choose one such
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j , let A e Dj be a 2-element with no fixed points on X¡, and let g¡ £ A¡ be the

unique element which projects to A . To see that this g, has suitable projections

to the other elements of Q¡, we must see that the set of 2-elements of Alt(s)

with no fixed points is fixed under automorphisms of Alt(s). This is easy for

s > 6, since then conjugation by members of Sym(s) gives all automorphisms

of Alt(s) [12, §65]. For s = 6, note that the 2-elements of Alt(6) with no fixed
points are the products of a disjoint 4-cycle and 2-cycle, and these are just the

elements of Alt(6) of order 4.) Now g = gx ■■ ■ gt is a 2-element of G with no
fixed points, contradicting the choice of G.   Q.E.D.

Recall that \GP\ divides (r-j)\j\ for some odd j < r. Since GX-x¡ = {1},
\GP\ divides (sl)r~x, so |C7| divides

(s\y-xj\(r - ;)! = (s\y-xj\(s\y-J(r - j)\.

As noted before, (s\)r~j(r-j)\ divides (s(r-;'))!, so it divides (s(r-j) + l)\.

If we write (s\)J~xj\ as ab with a odd and b a power of 2, then a divides

((s - iy.)J~xj\ (since s is a power of 2), which divides ((s - I)!)7;!, which

divides ((s - 1)7)!, which divides (sj-l)\. Also, b divides (s\)j~x(j - l)\
(since j is odd), which divides (s(j - 1))!, which divides (sj - 1)!. Since a

and b are relatively prime, ab = (s\)j~xj\ divides (sj-l)\. Therefore, \G\

divides (sj - l)l(n - (sj - 1))!, which is the desired result because sj - 1 is
odd. This completes the proof of Theorem 5.1 assuming Theorem 5.2.

Proof of Theorem 5.2. Suppose G is as hypothesized, n is composite, and G
does not contain the alternating group; we must show that one of the last three

cases in Theorem 5.2 holds. It is easy to verify that any primitive group on four

elements contains the alternating group, so n must be greater than 4. Since

|C7| does not divide (n - 1)!, n does not divide |Sym(X) : G\, so there is a

prime power pa which divides n but not |Sym(X) : G\. Let F be a Sylow

p-subgroup of G, and let Q be a Sylow p-subgroup of Sym(X) including P ;
then \Q : P\ is the largest power of p dividing |Sym(X) : G\, so \Q : P\ < pa .

Now, Q has a subgroup R of order p"lp generated by n/p disjoint p-cycles

[7, §5.9]. Then R is isomorphic to ZnJp , and this isomorphism maps FnF to

a subspace F' of ZnJp of dimension k = n/p - logp \R : P n R\ > n/p - a. So

a > n/p - k ; since pa\n , p"lP~k must divide n/p , so pnlP~k < n/p . We can

now apply the sphere-packing bound from the theory of error-correcting codes

[11, Theorem 1.6], which states that an e-error-correcting p-ary linear code of

length m and dimension k (i.e., a subspace of GF(p)m of dimension k in

which every nonzero vector has at least 2e+l nonzero coordinates; here GF(p)

is the finite field with p elements) cannot exist unless pm~k > Yfr=o (^)(P~^Y \

comparing this inequality with the preceding one, we see that F' cannot even

be 1-error-correcting, so it must contain an element with exactly one or two

nonzero coordinates. Therefore, F (and hence G ) contains an element which

is a p-cycle or a product of two disjoint p-cycles.

If G is a primitive permutation group on n objects containing a /»-cycle ( p

prime), and G does not include the alternating group, then n < p + 2 ; this

is a result of Jordan (see Wielandt [16, Theorem 13.9]). But, in the present

situation, n is a composite multiple of p , so n>2p; this leads to p = 2 and

n = 4, which we have already eliminated. Therefore, P contains no p-cycle,

so Q ^ F and hence a > 1.
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So G contains a product of two disjoint p-cycles, and p2 divides |C7| (since

p2\n and G is transitive). If p is odd, then the main theorem of Praeger [14]

implies that p = 3, n = 9, and G is one of the possibilities listed in (4) and
(5). If p = 2, then Theorem III in §121 of Netto [13] states that n must be no
larger than 8, and since we have already ruled out n = 4 we must have n = 8.

Carmichael [5, Example 16, p. 165] lists the primitive groups of order 8; there
are seven of them up to equivalence of group actions, of which two contain the

alternating group and four have orders which divide 7!. The only remaining

possibility is the one given in (3).   Q.E.D.

6. Conclusion

In the course of settling the numerical questions posed in §1, we have devel-

oped some useful structure theory for functors on FTF, leading eventually to

the functor Q and the morphisms KF and their contravariant versions; these

results should be useful in the further study of such functors. For example, any

subfunctor of Q produces a corresponding subfunctor of F via KF . In par-
ticular, one can look at the subfunctors F„ of F consisting of those x £ F(B)

which are controlled by a set of size at most n ; these form an increasing se-

quence with limit F, and F„+1 can be described as an extension of F„ by a

relatively simple functor [4].

One can look at related types of functors, such as functors from FTF x FTF

to FTF or functors from FF to the category of finite sets with a distinguished

subset. (Or one can look at the category whose objects are finite sets but whose

arrows from A to F are arbitrary subsets of A xB , with composition defined in

the natural way.) Each such functor gives rise to a numerical function, and one

can again consider the problem of characterizing these functions. By developing

structural results analogous to the ones given here, one might be led to solutions

of these problems; and the numerical problems serve as a useful test case for
whatever structure theory is developed.

Some related work: Trnková [15] and Koubek [9] study the structure of

functors on the category of all sets, while functors between categories of finite-
dimensional vector spaces are examined by Epstein and Kneber [6].
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