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GENERALIZED SZEGÖ THEOREMS AND
ASYMPTOTICS OF CUMULANTS BY GRAPHICAL METHODS

FLORIN AVRAM

Abstract. We obtain some general asymptotics results about a class of deter-

ministic sums called "sums with dependent indices," which generalize a classical

theorem of Szegö. The above type of sums is encountered when establishing con-

vergence to the Gaussian distribution of sums of Wick products by the method

of cumulants. Our asymptotic results reduce in this situation the proof of the

central limit theorem to the study of the connectivity of a family of associated

graphs.

Introduction

The origins of this work are in a series of papers: Breuer and Major [BM],

Giraitis and Surgailis [Gl] and especially Fox and Taqqu [F2], in which the

authors established convergence to the normal of certain sums by studying the

asymptotic behavior of their cumulants. In Fox and Taqqu [F2], an important

tool used was "the power counting conditions" (used by physicists in quantum

field theory), which ensure the convergence of integrals of the form

(U) /       dyx---dyc
J[o,i]c xx  ■■xE

where xe, e = 1, ... , E, are linear combinations with integer coefficients of

yx, ... , yc, taken modulo 1, and ze are positive numbers. Let

(xx,... ,xE) = (y\,... ,yc)M,

where M is the C x E matrix of the dependence. It was known that the

integral (1.1) converges if for any set of columns A of the matrix M, the

power counting conditions

(P.C.) J2ze<rank(A),        VAc{l,...,E]
e€A

are satisfied.
In this paper, and the paper [AB], we improve on the previous work in two

respects.
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(a) We showed in [AB] that under the conditions (P.C.), a Holder type in-

equality holds for integrals of the form (1.1). This in turns leads here to some

interesting asymptotic results related to a theorem of Szegö, presented in §1, A

andB.
(b) We note the existence in matroid theory of various formulae for the func-

tion r(A) in the R.H.S. of (1.2), which simplify the analysis of the conditions

(P.C.). An example is formula (1.13) in §1, C, applicable when the matroid is

induced by a graph.
Using the method of cumulants, in conjunction with the previously men-

tioned tools, we establish in §11 quite complicated central limit theorems for

sums of Wick products of Gaussian random variables.

The proofs of the results in §1 are given in §111.

In the companion paper [AF], we establish similar results for non-Gaussian

random variables, unfortunately under an assumption whose applicability is

difficult to check.

I. Generalized Szegö theorems

A. Sums with dependent indices. Let f(e\x), e — 1, ... , E, be E functions

on the torus [0, 1], extended periodically to the whole line, with f^ e LPe,

e = 1, ... , E . Let fk^ denotes the Fourier coefficients of fie)(x), i.e.:

(1.2) jf] = i e2nikxf(e)(x)dx,        e=l,...,E.
Jo

Definition. A sum with dependent indices is a sum of the form

(1.3) Sn = Sn(M,fW,e=l, ...,E)=     ¿     f¡l)---^\
jí ,...Jv = i

where M is a V x E matrix with integer entries and

(ii, ... , Íe) = Ui, ■■■ , jv)M.

The nullity of the map xM will be denoted by p (p — V - rank(Af)).
Throughout the paper, we make the assumption

,., for any row r in M, rank(Af) = rank(M \ r).

^   ' Assumption (A) implies p > 1.

Let now M* be an integer matrix representing the matroid dual to the ma-

troid of M, i.e., a matrix having the same number of columns E as M, and

such that the rows of M* form a basis in the subspace orthogonal to the rows

of M. The number of rows C of M* is thus C = E - (V - p).
(Our notation is inspired by the important particular case in which M is

the incidence matrix of a graph G with V vertices and E edges, C is the

maximal number of independent cycles in G, p is the number of connected

components of G, and the formula above is Euler's formula.)

For any set A c {I, ... , E} let r(A) (r*(A)) denote the rank of the set of

columns of M(M*) indexed by A. Let also ze = (pe)~x be the reciprocals

of the integrability factors pe. It turns out that the order of magnitude of the

sums S„(M), denoted by c*m(z) , depends on z = (zi,..., ze) and on the

rank function r*.
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Theorem 1. If the matrix M satisfies assumption (A), then

E

(1.4) \Sn(M, /'), e = 1,..., E)\ < cMna»V J] \\fe%e,
e=l

where cm is a constant, and
■

(1.5) ajii(z)=/i+     max       "S~\ze-r*(A)
AC{x--'E}leTA

B. The generalized Szegö theorem. It follows from (1.5) that

(1.6) P<aM(z)<V

and aM(z) = p iff ZAze < r*(A), VA c {1, ... , E} .
It turns out that when aji(z) = p, the inequality (1.4) is in fact tight, and a

Szegö type theorem holds for the sums Sn (M). Let

. E C

(1.7) I = I{M*,fW,e = \,...,E):= \fie)(xe)X{dyc,

where (xx, ..., xe) - (yx, ... , yc)M*, each xe being reduced modulo [0, 1].

Theorem 2. Let M satisfy assumption (A), and let fle\x) £ LPe, e = 1, ... , E,

where Lp denotes the closure of trigonometric polynomials in the Lp sense, i.e.:

ifP Ie oo,

ifp = oo.
(U) L,-{^    I
If cxmCz) - p, or, equivalently,

(1.9) £ze<r*(,4),        VAc{l,...,E},
e£A

then,

(1.10) ±Sn(M)-> cMI(M*)

(the constant cm is defined in 2.8).

Note. The conditions (1.9) imply that the R.H.S. of (1.10) is well defined and a
continuous multilinear functional, by the "generalized Holder inequality" (see

Theorem 1 of [AB]).
The method used in proving Theorem 2 yields also

Corollary 1. If aM > p and /(<?) 6 tPe, for e = 1, ... , E, then

(1.12) Sm(M) = o(na").

C. Graph sums. An interesting special case of a sum with dependent indices

is that in which the dependency matrix M is associated with a graph. Let

G - (T~, %) be a directed graph with V vertices, E edges, and p components.

For any v £CV and e £ f, let

0 if v $. e,

Mv, e = {     1     if v is the end point of e,

1 if v is the start point of e.
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In this case, we will denote the sums (1.3) by Sn(G), and call them "graph

sums." Since this M represents the cycle matroid of the graph (see Bixby [B,

p. 350], or Welsh [W, pp. 171-172]) its dual is the bond matroid. Let c(A)
denote the number of components in the graph (T~, A) it is known that the

rank function of the bond matroid is given by

r*(A) = \A\-c(%\A) + p,

where c(l? \ A) denotes the number of components left in G after the edges

indexed by A have been removed. (This formula follows for example from the

formulas

r*(A) = \A\-r(M) + r(M\A)

and r(A) = V - c(A), of [W, p. 35, (2.1.5) and p. 29, (1.10.5)].)
Formula (1.5) becomes then in this case

(1.13) ota =     max
AC{\,...,E}

C(r\¿)-£(i-ze) .

eeA

It is basically the use of this formula that makes the deriving of our C.L.T.'s

in the next section simpler than the similar results of previous authors. One

can think of formula (1.13) as of a "game of breaking the graph:" removing an

edge e "costs" 1 - ze, and breaking a new component brings a "benefit" of 1;

aG is then the maximal profit possible.

We point out now the particular form Theorems 1, 2 and Corollary 1 take in

the case of graph sums.

Theorem 3. Let Sn(G) be the graph sums associated to a graph G, let p denote

the number of components of the graph, let C = E-(V-p) denote the maximal

number of independent cycles of G and let M* be a C x E matrix defined as

follows: select a maximal set & of C independent cycles in G, assign them
arbitrary orientations and let, for c = I, ... , C and e = 1, ... , E,

0 ifeic,

1 ife £ c, and their orientations coincide,

-1     ife £ c, and they have opposite orientations.

(M*)c,e = {

Then

(a) |5„(t7)|<cG«^nf=1ll/(e)IU-
(b) If, moreover, f) e LPe, for e = I, ... , E, and VAc&,

(1.14) £(l-ze)>c(G\¿)-/i,
eeA

we have

E C

(1.15) ±-Sn(G)^I(G):= I      t\f(e)(xe)\\dyc,

where x = yM*.

(c) If aG> p, then S„(G) = o(«"G).

Note. Theorem 3(b) was first obtained in [AB]. Two particular cases of it were

already well known: (a) when the graph G is a cycle, and /^ = • • • = /(£),
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Theorem 3(b) reduces to a well-known result of Szegö (improved in [A]) on

the trace of a product of Toeplitz matrices, (b) When E = 2, Theorem 3(b)

reduces to the classical Parseval relation (see Katznelson [K, p. 35]).

II. THE CENTRAL LIMIT THEOREM

Theorem 3 is a convenient tool for establishing central limit theorems by the

method of cumulants.

Corollary 2. Let Tn be a sequence of zero mean random variables, with cumu-

lants of all orders, for which

(2.1) cums(Tn)=Y,Sn(G),
Ge^s

where S„(G) are graph sums, and the summation runs over all G in a certain

family of connected graphs, ps. Then, if

(2.2) ote < s¡2,        VGeßs,

the central limit theorem Tn/o-Jh~ —> 7V(0, 1) holds, with a2 = J2cea21(G) ■

Proof. Here, u = 1, VC7 £ as. Note now that evxm.s(Tn/oJn) -> 62(s),
n—>oo

by applying Theorem 3(b) when 5 = 2, and 3(c) when s > 3 .
Corollary 2 may reduce the establishing of very complicated C.L.T's to some

simple "graph breaking" problems. We consider now two such specific situa-

tions.

Let X¡ be a 0 mean, stationary Gaussian sequence, with EX\ = 1, and

spectral function f(x) (i.e., EX^,Xk = / e2nikxf(x) dx), with f(x) £ Lp¡, let
a(x) £ LP2, with a(x) even and let dk denote its Fourier coefficients. Let

Zi := (p«)-1 > for 1 = 1,2.

We will present conditions on the z, which imply the C.L.T. For the follow-

ing two types of sums:

(2.3a) r„ = ¿:XJm):

j=i

(2.3b) Tn= J2 «j-k-xf, X<£>:
j,k=\

where : XJm) : , : XJm), X{kl) : denote respectively the mth Wick power of X¡

and the Wick product of X¡ m times and Xk I times, for a definition of the

Wick products, see [G2]; below, however, we will need only to use the fact that

the cumulants of Wick products can be conveniently expanded by means of the

diagram formula (see [G2, Theorem 4(IV)]).

Theorem 4. (a) If Tn is defined by (2.3a), and zx < 1 - l/m, then

Tn/Vh~^N(0,o2),

with a2 = £G^21(G).

Here, ps is the family of connected undirected graphs with s vertices each

having degree m.
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(°.£)

D„i.i

■tc(i _i i
m' 2 •

\    K    I'll'

\ (m + l)z.+2z7 = m + l- 1
\ l

\
-•-

F(l-L^.O)

Figure 1

"1 -z," edge

m "1 -z," edges / " 1 -z." edges edges cost 1 -z

edges cost 1 - z

-•  s pairs

Figure 2

(b) If T„ is defined by (2.3b), 2 < m < I, and(zx, z2) £ Dm¡ where

(2.4)    Dmj = {(zi,z2)e[0, l]2:z2< 1/2,

(m + l)zx + 2z2 < m + I - 1, mzx + 2z2 < m},

then Tn/y/n~ —> N(0, o2), with a2 = ¿^,Ge 1(G) (see Figure 1). Here, ps is

the family of all connected undirected graphs formed of s "horizontal" pairs of
vertices, each horizontal pair being connected by an edge with "price" 1 - z2, and

(m + \)s/2 "nonhorizontal"edges (i.e., which cannot connect two left vertices of

the same pair), with price 1 — z\, and arranged such that the left vertices of each

pair have all degree m + l, and the right vertices have degree I + 1 (see Figure

2).

Proof. Both (a) and (b) follow from Corollary 2.
One has to show first that (2.1 ) holds, where ps is the corresponding family

of graphs. We show now this in case (a) (case (b) requires only minor modifi-

cations). By the multilinearity of cumulants,

cumí(r„)=cum    ^:^:,...,^:4m):

Vi=i ¿=i

=      £     cums(:X^:,...,:X^).

j€{l,...,«}
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By the diagram formula (see Theorem 4(IV) of [G2])

(2.5) amH:Xf :,..., : X™)

¿^ % -A, '
/■={(A, .A,).■■■•Ukmi/1,Jimi/2))eP

where 3° is the set of partitions in pairs of the table

jx, ... , ji       (m times),

js, ... , js       (m times),

such that each pair connects two distinct rows, and no subset of pairs has as

union a subset of rows strictly included in {1,... , s} .

Note now that the set of partitions 3 can be put in a 1 -to-1 correspondence

with the set of connected unoriented graphs J^ with 5 vertices of degree m

(one for each index jk, k = I, ... , s), by representing each partition pair

Uk, Ji) as an edge between the vertices associated to jk , j¡. Finally, note that

summing j in each term in the R.H.S. of (2.5) corresponding to fixed P yields

a sum of the form (1.3), with the matrix M being the incidence matrix of
the graph G, arbitrarily oriented (since rk (and ak in case (b)) is an even

sequence, Sn(G) does not depend on the orientation of the edges).

To end the proof, it remains now only to check that (2.2) holds. In case (b),

this is done in Lemma 1. We proceed now to show that (2.2) holds in case (a).

Since the function aG(zx) is increasing in zx, it will be enough to consider the

"worst" case zx = 1 - l/m.
Let the "profit" of a set of edges A be

p(A) = c{W\A)-Y,(l-Ze).
e€A

To find aG — maxp(yl), it is enough to find a set A which achieves the

maximum profit, and which is also maximal with respect to inclusion. We will

call such a set A a maximal optimal breaking, M.O.B.

We will show now that when the cost of breaking an edge, 1 - zx, equals 1 /m ,

the "total breaking" is the unique M.O.B. Indeed, suppose that after applying

a M.O.B., one vertex would be still connected to some others. Cut now all the

edges around this vertex. At a cost of no more than m x l/m, we increase the

profit by the least 1, contradicting thus that we had a M.O.B.

Finally, note that the profit of the M.O.B. at zx = 1 - l/m is p(<Ê?) -
s - ms¡2, l/m = s/2, and thus

aG(l-l/m)=p(8?) = s/2,        VG£%,

establishing thereby (2.2) and Theorem 4 in the case (a).

Note. Theorem 4(a) was obtained by Breuer and Major [BM]. We included

it here to illustrate the fact that our method reduces the quite involved initial

proof to the very simple "graph breaking" problem above. The "graph breaking"

problem in the more complicated case (b) can be also handled in a similar way.
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Lemma 1. Let % be the family of graphs of Theorem 4(b). Then V(zx, z2) e

■®m,/ (defined in (2.4)), and VC7 £ %, s > 2, we have

(2.6) aG(zi, z2)<s/2.

Proof. Since aG(z) is convex and increasing in z, it is enough to establish (2.6)

for the 3 extremal points of 2¡m t x :

F(l-l/m+l,0),        B(l-l/l,m/2l),        C(l - l/m, 1/2).

For the point F, one notes that since removing z2 edges costs 1, there can

be no profit in removing them. This in effect fuses together each horizontal pair

into a single point, of degree m + l, each edge having a cost of l/(m + 1), and

so we are back in the case of Theorem 4(a), and thus

aG(F) =s -
(m + l)s

(1-x.J-j.

m

2Î.

For the point B, we note first that the total breaking A = W achieves a profit

of 5/2 :

/i n\ cqp\    t      (m+l)sl       (.
(2.7) p(%) = 2s-y-—Y^~l~SY

Next, we show that I? is the (only) M.O.B. at this cost, i.e. there after the

removal of a M.O.B. there can be no component left which is not a singleton.

Indeed, note first that a nonsingleton component cannot contain only one of

the vertices of a "horizontal" pair, since by further disconnecting this vertex we

could increase the benefit by 1 at a cost of a most l\ , thereby increasing the

profit. Thus, the nonsingleton component has to be formed of a set of K "hor-

izontal" pairs, for some k . However, just like in (2.7), by totally breaking the

component one would increase the profit by k/2 - 1, and thus we cannot have

k > 2. Since clearly a M.O.B. cannot leave a one pair component unbroken,

it follows that the only components left can be singletons, and M.O.B. = %.

Hence, aG(B) =p{%) = s/2.
For the point C, the M.O.B. might depend on which particular graph in

&s,m,i we break. However, by an analysis similar with that of point B, one

can show that a M.O.B. has to break isolated all the points on the left side of

the graph. Let then ck be the number of components of k points on the right

side of the graph, and r the number of edges connecting two points on the right

side, left after the removal of a M.O.B. We have to show

aG (C)=s + 5>-
1=1

(m + l)s
— r

l_

m

s     s

2*2

or

Since

5> <\
Is
~2~r

l_

m

C\ + Í2c<<E£i id _ s

i=i 2'

it is enough to show that

(2.8)
mcx      (Is
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Let now b, d denote the number of edges in the initial graph with both

ends in the right side, and with ends on different sides, respectively. Thus,

d + 2b = Is. Also, let b' = b - r the number of edges with both ends on the
right side which have been removed by the M.O.B. We have

lcx<d + 2b' = d + 2(b -r) = ls-2r,

and thus (2.8) follows.   D

III. Proofs of results in §1

Proof of Theorem 1. We will need the following integral representation of S„ (M) :

V E

(3.1) S„(M)= [       T[An(vn)f[f^(xe)dxe,
•AfUF^i e=i

where A„(x) = J2k=i e2nikx, and uv = ^eMv^exe: as in Lemma 1 of [AB],

(3.1) is obtained by plugging j e2nikXef(-e)(xe)dxe instead of fjf*1 in (1.3).

Let us note now that

(3.2) ^„l-, < k(s)nx~s,        to 6 [0,1),

where the constant k(s) increases with s and explodes at s = 1.

To prove Theorem 1, we apply now to the integral representation (3.1) the

generalized Holder inequality (Theorem 1) of [AB]. We get

ton
\\Pe '\sn(M)\< n ii^iii/^)!!!!^

t;=l e=l

<f[k(sv)nZ:Jx-^f[\\f(%e,
(3.3) ";'

v=l e=l

V sx, ... , sv £ [0, 1 ) so that the (P.C.) conditions for (ze, e = I, ... , E, sv ,

v = I,... ,V) and (xe, e = 1, ... , E, uv , v = I, ... , V) are satisfied.

Theorem 1 is then an immediate corollary of (3.3) and of

Lemma 2.
v

aM = min^(l - sv),

v=l

where the minimum is taken over all sx, ... , sy £ [0,1) so that (ze,e =

I,... , E, sv, v = I, ... , V) and (xe, e = I, ... , E, uv, v = I, ... , V)
satisfy the (P.C.) conditions. Furthermore, the minimizing (si, ... , sy) can be

chosen such that s¡ < 1 - 1 ¡V, Vi.

Proof of Lemma 2. Consider the matrix T representing the matroid (xe, e £

{1, ...,E}, uv, ve{l,...,V}):

T = (IE,M'),
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when /„ denotes the identity matrix over R" . We have to find

v
(3.4) min^(l - sv), under the (P.C.) constraints

v=l

Y,Sv<r(A,B)~Y,Ze,    VÄC{1.K}. V Ac{l, ..., E],
e€A

Sv>0,   V = 1, ... ,V .

Here, r(A, B) denotes the rank of the corresponding columns in the matrix

T. Letting

dß =     min
AC{\,...,E}

r(A,B)-J2ze
e€A

the constraints can be further written as

(Tsv>dB,       V5c{l,...,F},
(3.5) I ves

[sv>0, Vü.

Using the constraint for "V := {I, ... , V}, we get

v

(3.6) min^(l-sv)>V -d^.
v=\

The proof proceeds as follows:

(a) We find a point satisfying (3.5), where the constraints $2«=i sv = dy

holds, proving thereby that (3.6) holds with equality:

v

(3.7) min53(l-s„) = K-d^.

(b) We show furthermore that the point above can be chosen such that sv <

l = l/V,\fv.
(c) We show that r(A, T) - p + r*(A), which together with (3.7) leads to

the desired formula

v

min 5^(1 -sv) = p+     max
^ -4C{1.E]v=l

¿2ze-r*(A)
LeeA

(a) Note that the function dß is submodular, i.e. dßluB1 + ö?B,nÄ2 ^ dßx +dß2,

since the rank function r(A, B) is submodular. Thus, the polytope determined

by the constraints (3.5) is a polymatroid (see Welsh, 18, 3, Theorem 1); for this

type of polytopes, explicit formula for the vertices are available (see [W, 18, 4,

Theorem 1]); namely, for any permutation a = (ix, Í2, ... , iy), the formulas

sit = d{i¡}, sh = d{i,,i2}-d{i,y, ... , siv =d{i.,,»-</{,-,,...,,>_,} yieldavertex

5(<7) of the polytope. For this vertex, YZ=\ s^ — d<r > which establishes (3.6).
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(b) Note also that the vertex above satisfies s¡    = 0, since by assumption

(A),

dy = min
A

mm
A

(A,T)-^ze

e€A

r(A,<r\iv)-Y,ze
eeA

\'y

Let now a denote the cyclic permutation (2, 3, ... , V, I), and consider

the vertices 5(ct) , i — 1, 2, ... , V, where a' is the ¿th iteration of a. For

each of these V points, £¿1,(1 -4ff,)) = V-dy and sf] = 0.

Letting now s = (l/V) £w=1 s^ , we obtain a point where the minimum is

achieved, and with all coordinates less than 1 - 1 / V.

(c) Consider the general formula dim(C U B) = dim(C) + dim(PB(C-1)),
where Cx is the orthogonal complement of C. We apply this to C

= span{«ij, ... , m'v}, where mi, ... , my are the rows of M, and B =

span(e,, i £ A), where e, is the rth unit vector. We get then

r(A,{l,...,V}) = r(T) + dim(Pspan(eiJeA)(sr,an(m\,..., m'y)1))

= V-p + dim(PspaD{e¡ !Í€A)(span(m\,..., m'y)1)).

The rows of M* form a basis for span(«?5, ..., m'y)1. A moment's thought

reveals that the dimension of the projection of the row space of M* on the span

of e¡, i e A, is given by the rank of submatrix of M* consisting of the columns

with indices i £ A, yielding thus the formula r(A, W) = V - p + r*(A).

Proof of Theorem 2. For a given matrix M, the sequence of multilinear func-

tionals

TH{fW,...,fW):=n-''Sn(M)

is, by Theorem 1, uniformly bounded on Lp, x • • • x LPe . In Lemma 3 below

we prove that (1.10) holds when /(e), e = I, ... , E, are the trigonometric

functions f^(x) = e2nikeX . By multilinearity this can be extended to the case

of trigonometric polynomials. These being dense in Lp we can use the uniform

boundedness of Tn to obtain (1.10) for all Lp functions.

Lemma 3. Let f(e)(x) = e2n,keX, e = I, ... , E, where k = (kx, ... , kE) is a

vector of integers. Let S{^(M), lW(M*) denote S„(M, f^ ,e= 1, ... , E)
and I(M*, /(e), e = I, ... , E) in this case. Then, Vk g Z, we have

(3.8) lim -¡-S{V(M) = cMI{]l)(M*),
n—»oo «A*

where the constant cm is defined in (3.11).

Proof. Note that the L.H.S. of (3.8) is

Snk)(M):=     ¿    Sk,(h)---SkE(iE)

(3-9) Ji,...Jv=i

= card{J6{l,...,«}K:j7V/ = k}.
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and the R.H.S. of (3.8) is

/«(AT) :=  /
J[0

„ItiíiíSl' d¡¡

(3.10) J[0>1]
f IniyM'V! d¡=l       ,

J     „re{M'k'=cp>}        - Mk€Ä(M)}
,1F

where B(M) denotes the subspace generated by the rows of M. (Note also at

this point that the R.H.S. of (3.8) is independent of the particular choice of the

matrix chosen to represent M*.)
We consider now three cases:

(a) if k i B(M), then we get 0 in both (3.9) and (3.10).
(b) The case k = 0. Note that since M is an integer matrix, the set K

of all integer solutions of )M = 0 is a module of rank p, contained in the

//-dimensional space N = {u: uM — 0}. We want to determine

S¡?](M) = card(ü: n [0, «f ) = card (¿ATI [0, if) .

Let m¿ denote the determinant of a basis of AT (= Lebesgue measure on N

of a basic cell of AT), let mx, denote the Lebesgue measure on N of A^O, l]v ,

and let

(3.11) cM = mx/mb.

An elementary consideration (tantamount to the definition of the Lebesgue mea-

sure) shows that the measures X„ defined on N by

QHXn(A) := mbn ß card   -K n A
v«

converge weakly to the Lebesque measure on N. Thus,

(3.12) ^Ml = -U„(A0-► cM.
n>* m¡, n^oo

(c) We consider now the last case, when k satisfies k £ B(M), but k ^ 0 ;

in this case, (3.12) holds again, since

S^lp(M)<S^(M)<S^(M),

where p  is the maximal coordinate of some fixed preimage  k'  of k  (i.e.

k'M = k).
Thus, in all cases, we have

S?(M)

n"

cMI{k)(M*).

Proof of Corollary 1. (1.12) holds when /(f?) are trigonometric polynomials (in

that case, aM - aM(0, ... , 0) = p, and by Theorem 2 we have S„(M) =

0(nß). The same approximation argument used in the proof of Theorem 2

allows us then to extend (1.12) to any functions /(e) £ LPe.
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