
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 330, Number 2, April 1992

AFFINE 3-SPHERES WITH CONSTANT AFFINE CURVATURE

MARTIN A. MAGID AND PATRICK J. RYAN

Abstract. We classify the affine hyperspheres in R4 which have constant cur-

vature in the affine metric h and whose Pick invariant is nonzero. In particular,

the metric h must be flat.

Introduction

In the affine theory of hypersurfaces, the affine hyperspheres are analogous to

the umbilic hypersurfaces in the Riemannian theory. Both are defined by the

condition that the shape operator is a constant multiple of the identity. Although

the list of umbilic hypersurfaces in real space forms is well known and can be

derived as an easy consequence of the Codazzi equation, the situation in affine

differential geometry is not so simple.

In fact, there are affine spheres whose defining equations involve arbitrary

smooth functions (see, for example, [5, §5]). Thus it is appropriate to use some
additional criteria to distinguish various classes of affine hyperspheres.

One approach is to restrict one's attention to so-called locally strongly convex

immersions with the result that the affine metric is positive definite. This is a
strong assumption and leads to general results. Such an approach has been taken

by Cheng and Yau [3] and others.
Our approach is to allow h to be indefinite but to arrive at a specific list of

examples characterized in terms of the geometry of h . In our previous paper

[5], we found the affine 2-spheres for which h is flat and U. Simon [8] has
settled the case of nonzero constant curvature. In the present paper we use

similar methods, along with the ideas of Yu [9], to study affine 3-spheres in

R4 . We will state our main result in §2 after some basic terminology has been

introduced.
In this paper all maps and manifolds are assumed to be smooth (C°°) and

all manifolds connected unless otherwise stated. The authors wish to thank

Professor K. Nomizu for helpful conversations during the preparation of this

paper, and the referee for pointing out a gap in the original proof which led to

the introduction of Lemma 5a.
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1. Affine hypersurfaces in Rn+X

Let /: M" —► Rn+X be an immersion. For any vector field £ transverse to

M, we decompose Dxf*Y into its tangential and transverse components as

follows:

(1) DxfiY = ft(VxY) + h(X,Y)¿l,

where D is the standard flat affine connection on Rn+X, and X and Y are

vector fields tangent to M. Nondegeneracy of h is independent of the choice

of £ and we take h to be nondegenerate throughout. £ determines a volume

form cu by co(Xx, X2, ... , X„) = det(Xi, X2,... , Xn, Ç) ; there is a unique

choice (up to a sign) of Ç such that co coincides with the volume element of

the nondegenerate metric h and Dx^ is tangent to M for all X tangent to

M. Such a choice of t\ (called the affine normal of the immersion) determines

a unique induced affine connection V and the corresponding h is called the

affine metric. (This metric is sometimes referred to as the Berwald-Blaschke

metric.) The shape operator S is defined by

(2) DxH = -fi(SX).

The difference between the induced connection V and the Levi-Civita connec-

tion V of the metric h is measured by the tensor K which is defined by

(3) KxY = VxY-VxY

for X and Y tangent to M.
As in Riemannian theory, (1) and (2) lead to Gauss and Codazzi equations

which in this case relate h , S, and the curvature tensor F of V. The cubic

form of the immersion is a symmetric (0,3) tensor C characterized by

(4) C(X, Y,Z) = (Vxh)(Y, Z) = -2h(KxY, Z).

It is a useful fact (called the apolarity condition) that each Kx has zero trace.

The (possibly indefinite) metric h may be extended in a natural way to the
algebra of tensor fields over M. A particularly important quantity is the Pick

invariant / defined by

n(n- l)J = h(K, K) = \ h(C, C)

and it is straightforward to show that

(5) traceRic = (n - 1) traced + n(n - l)J,

where Ric is the Ricci tensor of h. Finally, the curvature tensor R of h can

be expressed in terms of h,   S, and K by the formula

R(X,Y)Z = \(h(Y,Z)SX-h(X,Z)SY

+ h(SY, Z)X - h(SX ,Z)Y)- [Kx, KY]Z.

When S is a multiple of the identity, the hypersurface is called an affine
hypersphere. In this case we write S = XI and A is automatically constant. If

A is nonzero, the affine sphere is called proper; otherwise it is called improper.

A self-contained exposition of this foundational material on affine hyper-

surfaces may be found in Nomizu [6]. This source includes references to the

original work of Blaschke [ 1 ] and others.
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Specializing now to the situation in which we will be interested in this paper,

the following is immediate from (5) and (6).

Lemma 1. Let f: Mn —> F"+1 be an affine hypersphere so that S = XI. Suppose

that the affine metric h is of constant curvature a. Then

(5') J = a-X"

and is therefore constant. Also

(6' ) [Kx, KY]Z = (X- a)(h(Y, Z)X - h(X, Z)Y).

2. Examples and the main theorem

We now introduce the three examples we wish to characterize. They are de-

termined by three algebraic equations of degree 4. The solution to equations

(I) and (II) have more than one component. To avoid confusion, we take the

component containing a point with positive coordinates as our target hyper-

surface. All three examples are proper affine 3-spheres and each is flat in the

affine metric. Hence the Pick invariant is nonzero. The affine metric is positive
definite in (I) and Lorentz in (II) and (III). The equations are:

(I) XXX2X3X4 = 1 ,

(II) (x2 + x¡)(x¡-x2)=l,

(III) (x2 + x22)(x2 + x2) = l.

Our main theorem now characterizes these hypersurfaces as follows:

Theorem. Let f: A/3 —> R4 be an affine hypersphere with nonzero Pick invariant

and constant curvature a in the affine metric h. Then a = 0 and f embeds

M onto an open subset of one of the examples (I)—(III) modulo an affine trans-

formation of R4.

Yu [9] characterized (I) by assuming h positive definite, proving that a =

0, and then appealing to a general theorem of Li [4]. We apply the same

techniques to the indefinite case but then find (II) and (III) directly by solving

the differential equations. Our method can also be adapted to yield a direct

proof of Yu's result.

If the condition on J is omitted, the quadric hypersurfaces may be added

to the list. In the definite case, these are the only additional possibilities, as Yu

has noted. However, we cannot draw this conclusion in the indefinite case.

3. The Laplacian of the Pick invariant

In this section, we develop some general formulas for the Laplacian of the

Pick invariant of an affine hypersurface. For n = 2, these results may be found
in Blaschke [1, p. 211].

Lemma 2. Let f: M" —> Rn+X be a (nondegenerate) qffine hypersurface with

cubic form C, affine metric h, and Pick invariant J. Then
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(7) n(n -l)AJ = \h(A'C, C) + {h(VC, VC),

where A'C is the (0, 3) tensor field obtained by taking the trace of the second

covariant derivative of C. In terms of an orthonormal basis, {e¡},

A'C = Y,(V2C)(;ei;ei)h(ei,ei).

Proof. We start from the definition of the second covariant derivative

(V2J)(;Y;X) = Vx^YJ-%xYJ.

Noting that

4n(n- l)J = h(C, C)

we get

4n(n - l)(V2/)(; Y ; X) = Wx(2h(VYC, Q) - 2/z(V~^C, C)

= 2/z((V2C)( ; Y ; X), C) + 2h(VxC, VyC).

Taking the trace of both sides yields the desired formula.

Lemma 3. Let f: Mn —> Rn+X be an affine hypersphere whose affine metric h

has constant curvature a. Then

(8) A'C = a(n+l)C.

Proof. Let us use the following notation for the second covariant derivative of
C:

(V2C)(c7, V,W,Y,X)= {VxVyC-VvxYC)(U, V, W).

It is a fact due to Bokan, Nomizu, and Simon [2] that, for an affine hypersurface,

VC is symmetric in its four arguments if and only if the hypersurface is an affine

hypersphere. It follows that the (0,5) tensor V2C is symmetric in its first four
arguments. Permuting the last two arguments allows us to introduce a curvature

term. In other words,

(V2C)(U, V, W, Y, X) = (V2C)(T, V, W, U, X)

= (V2C)(Y, V, W,X, U) + (R(X, U)-C)(Y, V, W),

where R(X, U) acts as a derivation on the algebra of tensor fields of M.

Since R has constant curvature a, we can compute

(R(X, U) ■ C)(Y, V, W)

= -C(R(X, U)Y,V, W)-C{R{X, U)V,Y, W)

-C(R(X,U)W,Y,V)

= -a(h(U, Y) C(X, V, W)-h(X, Y) C(U, V, W)

+ h(U, V) C(X, Y, W)-h(X, V) C(U, Y, W)

+ h(U, W) C(X, Y, V)-h(X, W) C(U, Y, V)).

We now must take the trace. This can be done using indices in a tedious but
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straightforward way. However, it is perhaps more instructive to give an "invari-

ant" calculation and we shall do this. We look at the curvature term first. It is

possible to isolate its dependence on Y by writing

(R(X, U)-C)(Y, V, W) = h(Y(U, V, W, X),Y),

and then we need only compute the trace of the mapping

{X^T(U,V, W,X)}.

Now

T(U, V, W, X) = -a(C(X, V, W)U-C(U, V, W)X -2h(U, V)KWX

+ 2h(X, V)KVW -2h(U, W)KvX + 2h(X, W)KVV)

from which the trace is

-a(C(U, V, W)-nC(U, V, W) - 0 + 2h(Kv W, V)-0 + 2h(KvV, W))

= a(n + l) C(U, V, W).

We now look at the other term. First define T by

(VyC)(X ,V,W) = h(T(X,V,W),Y).

Then it is not difficult to check that

(V2C)(X, V,W,Y,U) = h((VvT)(X, V,W), Y).

We complete the proof by showing that the trace of the map

{X-*(VVT)(X,V,W)}

is 0. To this end we note that

(VVT)(X, V,W) = Vu(T(X, V,W))- T(VVX, V, W)

- T(X, VuV, W) - T(X, V, VuW).

Using (4) and the fact that V^ acts as a derivation and commutes with con-
tractions, one can verify that for any X,  Y, and Z

T(X,Y,Z) = -2(VYK)ZX.

On the other hand,

(VYK)z = Vy(Kz)-K~yZ,

trace Vy(Kz) = V y (traced) = 0 = traced- z

by the apolarity condition. Thus, for any Y and Z ,

trace{X^ T(X, F,Z)} = 0

and the last two terms of (9) each contribute 0 to the trace. Furthermore, writing

f(X) = T(X, V, W)

we have

0 = V[/(trace f) = trace(Vvf) = trace{X -> (Vvf)(X)}

= trace{X -> Vv(f(X))} - trace{X -» f(VvX)}

= trace{X-^Vv(T(X, V, W))} -trace{X ^ T(VVX, V, W)}.
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Thus the first two terms of (9) taken together also contribute 0 to the trace.

This completes the proof of Lemma 3.

Corollary. Under the conditions of Lemma 3, if h is positive definite and a>0,

either C must vanish identically or a must be 0 and VC must be zero.

Proof. The Pick invariant J is constant. Substituting the result of Lemma 3

in (7) yields

a(n+l) h(C, C) + h(VC, VC) = 0,

from which the result follows.

4. Components of the cubic form

Notation. If {e¡} is an orthonormal basis, the coefficients of the brackets of the

various Ke¡ are defined by

[Ke¡, Ke7\em = 22[Kei, Kej]kmek

(summation over k ). C(et, e¡, ek) will be written CiJk and (V<,mC)(£,, e¡, ek)

will be written C¡jkm . This last notation is used only in Lemma 9.

In this section we list the basic identities satisfied by the components of the

cubic form of an affine hypersurface in R4 for which the affine metric h is

Lorentz. We use an orthonormal basis {ex, e2, e-¡} with ex timelike, and e2

and e-i spacelike. From the relationship between C and K in (4) we get the

following:

4[Ke¡, Ke2]X2 = (Cxxx + CX22)CX22 - (Cxx2 + C222)CXX2

- C113C223 + ^123'(10.1)

(10.2)

(10.3)

(11.1)

(11.2)

(11.3)

(11.4)

(11.5)

4[Ke¡ , ATe3]i3 = (Cm + Cu^Cm — (Cm + Cm)Cxx-i

- C112C233 + C123 ,

A[Ke2 , Kei]2i = (C222 - C233)C233 - (C223 - C333)C223

- C122C133 + c123,

4[Kei , Ke2]X3 = (Cxxx + Ci33)Ci23 - (Cm + C233)Cn3

- Cxx2C22i + C123C122,

4[Ke¡ , Kei]23 = (C122 - Ci33)C223 - (^222 ~ C233)Ci23

- C112C123 + C113C122 ,

4[Ke2 , Ke3]iî = (CXX2 + C233)Ci33 - (C113 + C333)Ci23

- C122C233 + C223Q23 ,

4[Ke2 , Kej]X2 = (C112 + C222)Ci23 - (C113 + C223)Ci22

- C233C123 + C133C223 ,

4[.fvÉ,1 , Kei]x2 = (Cm + Ci22)C[23 - (Cm + C223)Cil2

- Cil3C"233 + C123C133 ,
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/i i fí\ 4I^i ' ^*3]23 = (Ci22 - Ci33)C233 + (C*333 ~ C223)Cl23
- C112C133 + C113C123 ■

In the case of an affine hypersphere with constant affine curvature, Lemma

1, (6') may be used to turn the above formulas into a set of identities for the

coefficients of C. We state these identities, along with the apolarity condition,
as follows:

Lemma 4. Let f: M3 -> F4 be an affine hypersphere so that S = XI. Suppose

that the affine metric h is a Lorentz metric of constant curvature a. Then

(i) The right sides of equations ( 10.1 )—( 10.3) are all equal to X- a. Further-

more, the right sides of (11.1)—( 11.6) are all equal to zero.

(ii) The apolarity condition takes the form

(12.1) Cxxx=CX22 + Cm,

(12.2) Cn2 = C222 + Q33 ;

(12.3) C113 = C223 + C333.

5. Computation of A/

The purpose of this section is to study hypersurfaces satisfying the hypotheses

of the main theorem and, by a suitable choice of orthonormal basis of each

tangent space, make the form of the Cijk as simple as possible, eventually

showing that VC = 0. Since the development is rather lengthy, we will break

it up into a sequence of lemmas.

Lemma 5. Let f : M3 -* R4 be an affine hypersphere whose affine metric h is
a Lorentz metric of constant curvature with nonzero Pick invariant. At any point

of M, the tangent space has an orthonormal basis such that two of the three

components of the form Cm are zero.

Proof. Denote by V the tangent space at the point in question. Let

B = {x£ V \ h(x, x) = -1}

and let F+ be a component of B on which g(x) = C(x, x, x) achieves at

least one nonnegative value. If the value 0 is achieved, let ex be a point where
this occurs. Then, on the spacelike plane orthogonal to ex, we may choose an

orthonormal basis {e2, e^}. If C333 = 0 we are finished. Otherwise, let

e2 = cos 6e2 + sin Qe^,        £3 = - sin de2 + cos 0e3

and note that

C(ê3, e-}, êi) = - sin3 8(C222 - 3C223 cot 0 + 3C233 cot2 8 - C333 cot3 6)

so 6 may be chosen to make C(ë3, £3, £3) = 0.

Now assume that g(x) > 0 on B+ . Let ex be a point where the minimum is
achieved (see Lemma 5a below). As in the previous paragraph, choose {e2, £3}

so that C333 = 0. For X tangent to F+ at ex, Xg = 3C(X, x, x) at x = ex.
Setting X = e2 and X = e3 in turn yields that Cm and Cm both vanish.

We now show that C222 must vanish. Assume not. Since C333, Cm, C112

are all zero, the apolarity conditions reduce to

Cm = C122 + C133,       C222 = -C"233>       C223 = 0.
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Thus formulas (10.1)-( 10.3) yield

(13)        (Cm -f- Ci22)Ci22 = (Cm + Ci33)Ci33 = -2C222 - C122Q33,

while formulas (11.1)—(11.6) give (twice each)

Cl 11 C123 = 0 ,       C222Cl23 = 0,       (C122 - Ci33)C222 = 0.

Using the fact that neither Cm nor C222 can be zero, we see that Cm =

2C122 = 2C133 and substituting this in (13) gives

CU1 + 2C222 = 0,

a contradiction. This completes the proof of Lemma 5.

In Lemma 5, we deferred the proof that g achieves a minimum on B+,

since it is somewhat technical and would make the proof of Lemma 5 too long.

We now present this as Lemma 5a.

Lemma 5a. Assume the hypotheses of Lemma 5. In the tangent space at a fixed

point of M, let B+ be a component of B (the unit timelike vectors) on which

g(x) = C(x, x, x) is positive. Then g achieves a minimum on B+ .

Proof. Consider an orthonormal basis {ex ,^2,^3} with ex £ B+ , and e2 and

e-} spacelike. In terms of this basis, a typical point of F+ may be expressed as

x = (cosh u, cos 6 sinh u, sin 6 sinh u)

for 0 < 6 < 2n , u>0, and we may write

g(x) = Cm (cosh3 u + p cosh2 u sinh u + q cosh u sinh2 u + r sinh3 u),

where p, q, and r are analytic functions of 9. Note that Cxxx = g(ex) > 0.

Set t = coshu and s = sinhu = (t2 - l)xl2 for u > 0. For a fixed value of 8 ,

consider the positive function

h(t) = t3 + pt2s + qts2 + rs3,

which can be simplified to

h(t) = (1 + p + q + r)t3 -{(p + 2q + 3r)t + p(t),

where the remainder p is given by

p{t) = 2/(1+ s/tY + 7+1 V1 ~ 2(1 +s/t)J •

Since t > 1, we have

|/»(i)l<i(W + 2|r|)
and thus \p(t)\ < p, where 2p is the maximum of \p\ + 2\r\ over 6 .

We claim that h(t) goes to 00 with t and does so in a sufficiently uniform

way to force g(x) to have a minimum. Specifically, we will show that for any

positive number a there is a number in independent of 6 such that h(t)>a

for all t > to. This will allow us to choose a closed disk in B+ , centered at ex

outside of which g(x) > 2g(ex). The minimum of g on this disk will be the

global minimum of g .

In order to establish the required bounds, we prove the following claim. Note

we need to use the fact that the Pick invariant is nonzero.
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Claim. In the notation introduced above, we have l+p+q+r>0 and if

l+p + q + r = 0, then p + 2q + 3r < 0.

Proof of claim. We are interested in the behavior of g(x) along an arbitrary

geodesic of B+ with initial point ex. For the sake of this calculation, no

generality is lost in assuming that 0 = 0. The limit as t goes to oo of h(t)/t3

is I + p + q + r so this quantity is nonnegative. If it happens to be zero, then

taking the limit of h(t)/t shows —(p + 2q + 3r) to be nonnegative. Suppose

now that both 1+ p + q + r and p + 2q + 3r are zero. Then

0 = Cni(l +p + q + r) = Cxxx + 3CXX2 + 3CX22 + C222

and

0 = Cxxx(p + 2q + 3r) = 3C112 + 6C122 + 3C222.

Writing t = Cx 11 and a = C222 , we get

3Ci22 = t — 2rr,        3Ci n = o — 2t ,

and the apolarity condition gives

3C133 = 2(t + a) = -3C233.

Substituting in (10.1)—( 10.3) yields C333 = 0 and T + cr = 0, and hence C223 =

Cm by apolarity. From (11.1), we get Cm = -Cm and substituting back in

(10.1) gives 0. Since the Pick invariant J ^0, we have a contradiction. (It can

be checked that if J were allowed to be zero, any C satisfying the identities

we have derived in the present proof would satisfy all the identities summarized
in Lemma 4.)

The claim having been established, we return to the proof of Lemma 5a. Note

that the analytic function l+p + q + r has only finitely many zeros on the unit

circle, unless it is identically zero. Let 4ô be the smallest of the values taken

by -(p + 2q + 3r) on the zero set. If there are finitely many zeros, surround

each by a closed interval on which -(p + 2q + 3r) > 2ô. Then

(l+p + q + r)t2 -\(p + 2q + 3r)>ô

on the union sé of these intervals. This holds for all t > 1. Now let ß be the

minimum of (l+p + q + r) on the closure ¿¡8 of the complement of s/ . Let

2y be the maximum of \p + 2q + 3r\ on 3§ . Then

( 1 + p + q + r)t2 - \(p + 2q + 3r) > ßt2 - y > S

on â§ provided that t2 > (S + y)/ß. Choosing t0 to be the maximum of

(3 + y)/ ß , (p + a)/S , and 1 (or in case l+p + q + r = 0, t0 = (p + a)/a ), we
can conclude that

h(t) >ôt- p>a

for t > t0 . Note that to is independent of 6 . This completes the proof of
Lemma 5a.

Lemma 6. Let f : M3 —» R4 be an affine hypersphere whose affine metric h is

a Lorentz metric of constant curvature with nonzero Pick invariant. At any point
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of M the tangent space has an orthonormal basis such that all three components

of the form Cm are zero.

Proof. Using the result of Lemma 5, there are two cases to consider. First

assume that C333 and C222 vanish. Since h is Lorentz, the apolarity conditions

are

Clll = C122 + C133 ,       Cm = C233,       C113 = C223.

We use these simplifications and (10.2)—(10.3) to get

C111C133 + C,33 - C113 - C112 + C123

= -Cm - Cm - CmCi33 + C123.

That is,

Ci33(Cm + C122 + C133) = 0;

in other words, Cm Cm = 0. By symmetry, we also have Cm Cm = 0.

Adding these equations, we have Cm = 0, as required. On the other hand,

if we assume that C333 and Cm vanish (where ex is timelike), the apolarity

conditions become

C122 = -C133 ,       C112 = C222 + C233 ,       C113 = C223.

Equating (10.1) and (10.2) gives C112C222 = 0 while (10.2) and (10.3) give

C233(C222 + C112 - C233) = 0,

that is, C222C233 = 0. Subtracting our two conditions gives C222(Cn2-C233) =

0 which means that C222 = 0.

Lemma 7. Let f : M3 -» R4 be an affine hypersphere with S = XI whose affine
metric h is a Lorentz metric of constant curvature a and nonzero Pick invariant.

Then at any point of M the tangent space has an orthonormal basis such that

all components of C vanish except (i) C112 = C233 in the case A - a < 0; (ii)
C123 in the case X — a > 0.

Proof. Start with the orthonormal basis constructed in Lemma 6. The apolarity

conditions take on the simple form

Ci22 = -Ci33,       Cn2 = C233,       CXXj = C22i,

and formulas (11.1)—( 11.6) now reduce to

CmCm = C112C122 = C113C122 = 0.

First consider the case where C112 i1 0. Then all components of C are zero

except Cn2 = C233 and possibly C123. We consider a translation (terminology

chosen by analogy with that used in hyperbolic geometry, see [7, p. 165] of the

form

ex = cosh 0 ex + sinh 9 e3,    e2 = e2,    e3 = sinh 9 ex+ cosh 8 e3.

Then

C(ex, ëi, e2) = cosh 20 Ci 12 + sinh 20 Cm ,

C(ëi, ê2, ëj) = sinh 20 Ci 12 + cosh 20 Cm-

In case (i), (10.1) gives -C212 + C223 < 0 and 0 may be chosen to make the

new Ci23 vanish while no new nonzero components are introduced. On the

other hand, if case (ii) obtains, we choose 0   to make CXX2 vanish.
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If Ci n t¿ 0 we merely switch the e2 and e-x, to reach the same conclusion.

However, if both C112 and Cm vanish, we use (10.1) to get

Cj22 + Cm = X- a.

Thus A - a > 0 and we may choose a rotation of {e2, e{} to make C122 = 0

so Cm is the only nonzero component.

Lemma 8. Let M" be a pseudo-Riemannian manifold. Any orthonormal basis

in the tangent space at a point Xq can be extended to a local orthonormal frame

field whose covariant derivatives with respect to the Levi-Civita connection all

vanish at xn.

Proof. Extend the basis vectors by parallel translation along each geodesic em-

anating from Xo.

Lemma 9. Let f : M3 —> F4 be an affine hypersphere whose affine metric h is

a Lorentz metric of constant curvature with nonzero Pick invariant. Let C be the

cubic form. Then VC = 0.

Proof. Choose any point Xo of M. Depending upon the sign of the Pick in-

variant, choose an orthonormal basis for the tangent space to M at xn as in

Lemma 7 and extend it locally as in Lemma 8. The identities associated with

(10.1)—(10.3) and (11.1 )—( 11.6) are now valid locally. Thus we differentiate
them and evaluate at xn. We separate the two cases and number each con-

dition to correspond to that of the identity from which it was derived. For

example, (10.1') is obtained by differentiating (10.1) and evaluating at xn. In

the following lines, the prime stands for differentiation with respect to any di-

rection, in particular the orthonormal basis at xo . Also, because the covariant

derivatives of the basis vectors vanish at xo , we have

Cijkm = (^emQ(ei> ei > ek) = Vem{C{e¡, <?/, ek))

at x0.

Case (i): X - a < 0.

(10.1') 2Ci12 + C222 = 0,

(10.2') C,'12 + C233 = 0,

(11.1') 2^,3 + ^3=0,

(11.3') 2CÍ33-CÍ22 = 0.

Combining these with (12.1)—( 12.3) it is easy to check that

Cm = C222 = C233 = 0,

3C223 = -6C113 = -2C333 ,

3C122 = 6C133 = 2C,n.

We want to show that all terms of the form C¡jkm vanish. Using the identities

just derived and the symmetry of the C¡jkm , we get

Can = 3Ci33i = 3Cii33 = -2C2233 = -2C2332 = 0,       Cm2 = C1121 = 0,

Cim = Cn3! = -jC2231 = -5C1223 = -C1333 = -3C1113,
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so that Ci in = 0.

Ci233 = Ci332 = 2C1222 = 2C222i = 0.

All other terms of the form C¡jkm can be shown to be zero in one step, as the

reader can readily verify.

Case (ii): A - a > 0.

(10,1') c,'23 = o,

(11.1') CÍ„+C,'22 + CÍ33 = 0,

(11.2') Cí,2 + C222-C233 = 0,

(11.3') Cíi3-C223 + q33 = 0.

Equations (11.1')—(11.3') along with the apolarity identities merely say that

C'm = 0 for all 1. To complete the proof in this case, just note that every term

of the form Quj vanishes so that if any index occurs three or four times, the

term vanishes. On the other hand, if exactly one index occurs twice, the term

is of the form Cm, and therefore vanishes. Finally,

C1221 = -C1331 = —C1133 = -C2233 = -C2332 = -C1122 = -C1221,

so the case of two repeated indices is also taken care of. We conclude that VC

vanishes at Xn . But Xn was an arbitrary point of M so VC = 0 everywhere,

as claimed.

Proposition. Let f: M3 —» R4 be an affine hypersphere with S = XI whose

affine metric h is a Lorentz metric of constant curvature a with nonzero Pick

invariant J. Then a = 0.

Proof. Applying Lemmas 9, 2, and 3 and using the fact that J is constant gives

us that

0 = AJ = \a(n + l)h(C, C)

at xo. Now h(C, C) is the sum of terms of the form

C2jkh(ej, e,) h(ej, ej) h(ek , ek).

We note that evaluation of h(C, C) involves only one term C123 in Case (ii)

and only two terms with the same sign in Case (i) since C212 and C233 both

have an even number of indices equal to 1. Thus, in either case, we must have

a = 0.

6. The main theorem

Theorem. Let f : M3 —> R4 be an affine hypersphere whose affine metric h is a
Lorentz metric of constant curvature. Assume that the (constant) Pick invariant

is not zero. Then M is related by an affine transformation to an open subset of

(X2 + x2)(x2 - X2) = 1

or

(x¡ + x¡)(x¡ + x¡) = 1.

Proof. Since a = 0, the local orthonormal frame of Lemma 8 may be taken

to consist of coordinate vectors ^-.   Because S = XI, we have t\¡ = -Xfi ,
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where the subscript i indicates differentiation with respect to u¡. Thus there is

a constant vector F £ R4 such that £ + Xfi = E. There is no loss of generality

in taking F to be the origin.
We first consider Case (i). Set b = \Cm so that X = -b2. Then using (1),

(3), and (4), we get

(16) fu=-bf2-b2f,    fX2 = bfi,    f3 = 0,

fin = b2f,    f23 = -bf3,    fii = -bf2 + b2f.

We now solve this system to find /. First note that

(fi-bf)i=0,        (f2 + bf)3 = 0,

so that there are functions a(u2, u3) and ß(ux, u2) such that

fi-bf = a,        f2 + bf=ß.

Thus

2bf=ß-a,        2f2 = ß + a.

Using these equations to simplify (16) yields

ßxx = -2b2ß,        a33 = 2b2a

from which we can write

a = A(u2) cosh(V2bu3) + B(u2) sinh(V2bu3),

ß = C(u2)cos(V2bux) + D(u2) sin(V2bux)

for suitable vector functions A, B, C, and D. However, by substituting in

the identity

a2 + ß2 = 2f22 = 2b2f=b(ß-a)

we can extract the fact that

A' + bA = B' + bB = C -bC = D' -bD = 0

and thus conclude that

a = A0e-b"i cosh(V2bu3) + B0e-bu* sinh^èz^),

ß = CoebU2 cos(V2bux) + D0ebU2 sin(V2bux),

where Ao, Bo, Co, and Do are constant vectors. These vectors must be

linearly independent, otherwise f(M) would lie in a hyperplane, contradicting

nondegeneracy. Thus, modulo the linear transformation that takes these four

vectors to the standard basis of R4, our hypersurface is nothing but the surface

(x2 + x22)(xj - X2) = I

parametrized by

x, = ebui cos(V2bux), x2 = eb"2 sin(V2bux),

x3 = e-bU2 cosh(V2bu3),       x4 = e~bU2 sinh(^bu3).

We now look at Case (ii). Set b = -\CX23 so that A = b2. Then (1) takes the
form

({1) f\\=b2fi,    fn = -bf3,    fx3 = -bf2,

fin = -b2f,    fi23 = bfi,    f33 = -b2f.
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Now make a coordinate transformation replacing u2 and u3 by (u2 - u3)/\[2

and (u2 + u3)/\[2, respectively. Then our equations become

fu=b2f,    fX2 = bfi2,    fi3 = -bfi3,

f22 = -bfi-b2f,    f23 = 0,    f33 = bfx-b2f.

By the same method as used in Case (i), we find that our hypersurface coin-

cides up to an affine transformation with the surface

(x2 + x2)(x| + x2) = 1

parametrized by

xi = ebu< cos(V2bu2), x2 = ebu< sin(V2bu2),

x3 = e~bU] cos(V2bu3),       x4 = e~bU] sin(V2bu3).

Although this characterization is only local, a connectedness argument such

as that used in [5] shows that for a given affine hypersurface /, the affine

transformation that works for an arbitrary small open set of M works for all

of M, so that we may say that / maps M onto an open subset of the target

space in question.

7. Further remarks

We have shown that a 3-dimensional affine hypersphere with Lorentz affine

metric of constant curvature and nonzero Pick invariant must be one of two spe-

cific hypersurfaces up to affine transformation. Is it possible that these two are

themselves equivalent? The answer is negative as the following lemma shows.

Lemma 10. Let C be a nonzero trilinear function on a three-dimensional Lorentz

vector space. Suppose that with respect to some orthonormal basis, only the Cx23

component of C is nonzero. Then there is no orthonormal basis with ex timelike

such that Cxx2 and C233 are the only nonzero components.

Proof. Let {e¡} and {e¡} be the respective bases. Then we may choose numbers

0   and 0   such that the intermediate basis {e¡} defined by

ex = cosh 9 ex+ sinh 9 e2,    e2 = sinh 9 ex+ cosh 0 e2,    e3 = e3

satisfies

è\=ëx,    ë2 = cos(f> e2 + sin 0 e3,    ë3 = - sin cj> e2 + cos <f> e3.

If Cijk and Cijk denote the components of C in terms of the respective

bases, then Cm = cos20 C123 = cos20 cosh 20 Cm. Thus cos20 must be

zero and hence sin 20 ^ 0. But

Cm = -sin0 C112 + cos0 Cm = cos0 sinh20 Cm

and

C112 = sin0 Cm = sin0 sinh20 Cm.

Since C112 ̂  0, we must have sinh 20 ^ 0. But CXX3 vanishes so cos0 = 0.

This contradicts the fact that sin 20/0 and completes the proof that our two

Lorentz target surfaces are distinct.
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