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JUSTIFICATION OF MULTIDIMENSIONAL SINGLE PHASE
SEMILINEAR GEOMETRIC OPTICS

JEAN-LUC JOLY AND JEFFREY RAUCH

Abstract. For semilinear strictly hyperbolic systems Lu = f(x, u), we con-

struct and justify high frequency nonlinear asymptotic expansions of the form

ue{x) ~ YleWj(x, <p{x)/e),       Lue-f(x, u6) ~ 0.
J>o

The study of the principal term of such expansions is called nonlinear geometric

optics in the applied literature. We show

(i) formal expansions with periodic profiles  Uj   can be computed to all

orders,

(ii) the equations for the profiles from (i) are solvable, and

(iii) there are solutions of the exact equations which have the formal series

as high frequency asymptotic expansion.

1. Introduction

Formal asymptotic solutions are one of the most useful tools of applied math-

ematicians. For linear partial differential equations some of the formal expan-

sions have been molded into powerful tools which have transformed the subject

in the last twenty years. This paper is devoted to a rigorous justification of

some high frequency nonlinear asymptotic expansions. The study of the prin-

cipal term of the expansion is well-known in the applied literature and goes

under the name nonlinear geometric optics. The use of such expansions has

been widespread for quasilinear hyperbolic systems [HK, MaRo, HMR, DM].

In this paper we will show that for semilinear hyperbolic systems in several
variables and solutions with one phase, called oscillatory simple waves,

(i) the formal expansions can be computed to all orders, and

(ii) there are solutions of the exact equations which have the formal series as

high frequency asymptotic expansion.

Point (ii), is the main result. The analogous questions in the quasilinear context

have been studied by O. Gues [G] whose results are qualitatively similar.

Suppose that x = (xo, Xi, ... , x„), d = (d0, ... , d„) and

(1.0) L(x,d) = J2AJ^)dj + C(x),
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is a strictly hyperbolic N x N system with smooth matrix valued coefficients

and Xo timelike. The objects of study are solutions, formal or exact, to the

semilinear system

(1.1) Lu = f(x, u) + b(x).

The asymptotic solutions of interest are of the form

(1.2) ««(x)~ £*>£/,(*, *(x)/e),

solutions of

(1.3) LuE - f(x, ue) ~Y,eiBAx» <P(x)/e)-
;>o

Here <p satisfies the eikonal equation det(Lx(x, d<p(x)) = 0 where Lx de-

notes the principal symbol of L. The solutions represent high frequency waves

oscillating transverse to the level sets of <p .

The choice of the amplitude, 0(e°) as e —► 0, of u£ is crucial. Smaller

solutions yield essentially linear perturbation theory and larger solutions have

shrinking domain of existence as e —► 0 (see [JR3] for more detail).

The interaction of two oscillatory simple waves for 2x2 systems admit sim-

ilar asymptotic analysis and is discussed in §8. The 2x2 hypothesis eliminates

the possibility of new resonant phases. The interaction of three waves can be

radically more complicated [HMR, JR4] because of the possible creation of an

infinity of new phases. This problem is not as severe in one space dimension

[MaRo]. A justification of resonant expansions in dimension one is begun in

[JR1, 2] and completed, even in the quasilinear case before shock formation, in

[JMR].

2. Formal asymptotic solutions

This section begins the study of formal asymptotic solutions (1.2), (1.3). The

profiles Uj(x, 6) are smooth and 2n periodic in 6. One plugs (1.2) into the

equation (1.3) to derive a sequence of nonlinear integro-differential equations

for the profiles.
In §3 the unique solvability of these equations given appropriate initial data

is proved. Roughly speaking the equations are no harder to solve than the

Cauchy problem for L. On the other hand they are no easier to solve, so,

pseudodifferential symmetrizers are needed in the strictly hyperbolic case.

The crucial third step, which is the key point of this paper, is to show that

there are solutions of the associated Cauchy problem for L to which the formal

solutions are asymptotic. This is more difficult and is addressed in §§4 and 5.

For the first step one plugs in and expands f(Uo(x, cp/e) -\-) in a Taylor

series about Uq(x , cp/e) with leading term f(Uo(x, cp/e)). Setting the coef-

ficients of the powers eJ equal to zero for k = -1, 0 and k > 1 yields the

equations

(2.1) (J2Ajdj<p)ddU0 = 0   frome-1.

(2.2) L(x, dx)U0 - f(U0) -B0+(J2 Ajdjcp) deUx = 0   from e°.



SINGLE PHASE SEMILINEAR GEOMETRIC OPTICS 601

(2.3) L(x,dx)Uk- Duf(x, U0)Uk - Bk + (£ Ajdjcp) deUk+x

+ Fk(x,U0, ... ,Uk_x,B0, ... ,Bk_x) = 0   frome*,    k > 1.

Equations (2.1) to (2.3) are to hold for all values of x and 6 .

In order to have a solution Uq with nontrivial 0 dependence, which corre-

sponds to rapid oscillation when e tends to zero, equation (2.1) forces

(2.4) det(j2^jdj<p)=0,    and

(2.5) deU0£ke:r(£Ajdj<p).

Equation (2.4) is the eikonal equation. It asserts that dcp belongs to the char-

acteristic variety of L. In the applied literature this is equivalent to the state-
ment that dcp(x) satisfies the high frequency dispersion relation of the operator

L(x, d). Equation (2.5) expresses a polarization. Only certain components of
ue are highly oscillatory.

The eikonal equation has solutions uniquely determined on a neighborhood

of x with i(x) = 0 by values of <p\t=0 satisfying d<p(x) ^ 0. Fix such a

solution cp. Since the set / = 0 is noncharacteristic and the level sets of cp

are characteristic one can introduce new local coordinates, still denoted x,

such that Xo is preserved and cp(x) = x„ . After multiplication by A^x in the

new coordinates, L is still given by (1.0) with Ao = I. The matrix An has

one-dimensional kernel since the planes xn =constant are simply characteristic

[RR2]. A smoothly varying linear change of variable in C^ leaves Aq = I and

reduces An to the block form

(2.6) AH =
0    0

0   An

where A„ is a smooth invertible (N - I) x (N - I) matrix.

Introduce the notation [•] for the last N - 1 components of an Ar vector.

The polarization expressed in (2.5) is equivalent to dd[Uo] = 0. Equivalently,

(2.7) Uo(x, 6) = (U0x(x, d), C/02(x), ... , U0N(x)) = (U0x(x, 9),[U0](x)).

Let E denote the operator which averages in the 6 variable

(2.8) (Ew)(x)= (    w(x,d)dd/2n.
Jo

Let f denote the operator on Af tuples of functions of x, 8 defined by

(2.9) r = diag(7, E,...,E).

Thus If leaves the first component unchanged and averages the others.  The

polarization identity (2.5) has the following equivalent description:

£/0 e ker(7 - g) = RgfT).

In order to complete the determination of Uo one must use equation (2.2)

which involves both Ux and 7/0 • The key observation, and this is typical in

geometric optics, is that the operator on Ux is not surjective. A condition on

Uo is obtained by requiring that L(dx)Uo - f(Uo) - B0 belongs to the range of
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Andg . Thanks to the block form (2.6) this range consists exactly of functions

whose first component is zero and whose last N - 1 components have mean

zero. This is precisely ker(l?). Thus for Uq we have the system

(2.10) (/-r)£/0 = 0,    and

(2.11) g(L(x,dx)U0-f(x,U0)-B0) = 0.

Given Co satisfying these equations one obtains from (2.2) a formula for

dg[Ux], namely

de[Ux] = A-x[LU0-f(x,Uo)-B0].

Equation (2.11) asserts that the right-hand side has mean zero so it has a periodic

primitive in 6 . Denote by dgX the operator which chooses the primitive which

itself has mean zero. Let

/, =lx(x, U0,B0) = (0, d9-x(A-x[LU0 + f(U0) - B0])).

Write Ux = Vx+ lx defining Vx. Then deVx = 0 so Vx e ker(7 - g7). In
particular (7 - £>)U\ = (7 - W)lx is determined.

The decomposition Ux — Vx + lx reveals two distinct sorts of oscillation in

Ux. The term lx describes oscillations in the last N - 1 components, which

are inherited from the principal term Uq . The term Vx describes oscillations
in the first component, that is with the same polarization as t/n .

To complete the determination of Ux equation (2.3) for k = 1 is used. By

analogy with (2.10), (2.11) the <o projection of this equation is sufficient to

determine Ux. Thus the system for Ux is

(I-g)Ux=lx(x,U0,B0),

W(L(x,dx)Ux - Duf(U0)Ux - Bx) = 0.

In the same fashion equation (2.3) for k — 1  and k with k > 1  yields

(2.12) (I-Z)Uk = lk(x, U0,... , Uk_x,B0,... , Bk_x),

%{L(x,dx)Uk-Duf(x, U0)Uk - Bk - Fk(x, U0, ..., Uk_x)} = 0,

where

lk = (0, dgX(Ä'nx[LUk_x+DJ(x, U0)Uk_x -Bk_x -Fk])).

These calculations prove the following proposition.

Proposition 2.1. Suppose that Q is an open subset of Rn+X and <p £ C°°(Q: E)

satisfies (2.4) and dcp(x) ^ 0 for all x £ Q. The expansion (1.2) is a formal

solution to (1.3) if and only if (2.10), (2.11) and (2.12), (2.13) for all k > 1
are satisfied in Qx^j.

There is a version of this calculation for finite sums

M

(2.14) ue'M(x) = $>Jc/,(x, (P(x)/e).

;=o

Proposition 2.2. Suppose that Q is an open subset of W+x, cp £ C°°(Í2: E)

satisfies the eikonal equation (2.4), dcp(x) # 0 for all x £ Q, and u£'M is given

by (2.14) with profiles Uk £ C°°(Qx Sx). Then, the following are equivalent:
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(i) Lu*'M - f(x,ue>M) - E%0eJBj(x,(p(x)/e) = eMH(x, <p(x)/e) +

eM+lG(e, x, cp(x)/e), where H(x, 8), G(e, x, 8) are smooth and periodic in

8 and £77 = 0.
(ii) Uq satisfies equations (2.10), (2.11), and, for k = 1, ... , M; Uk sat-

isfies (2.12) and (2.13).

Example. The most interesting case is when M = 0 in which case Uq satisfies

(2.10), (2.11) and the residual in part (ii) is of the form 77(x, cp/e) with F 77 =
0.

3. Solvability of the equations for the profiles

Equation (2.10) shows that U0 is determined once F i/o is known. Equation

(2.11) is a semilinear equation. We will show that it is uniquely solvable on a

neighborhood of x with i(x) = 0 when the initial values of Uo on {/ = 0} xSx

are given. For k > 1 the value of (7 - &)Uk is determined by Uo, ... , Uk_x.

We will show that equations (2.12)—(2.13), which are linear in Uk , are globally

solvable, that is determine Uk from its Cauchy data on domains where Uq

is known. Thus the restriction on the domain of solvability comes from two

sources, the local solvability of the eikonal equation and the local solvability of

(2.11). One obtains profiles Uk defined on a neighborhood independent of k .

Since the construction of i7o is a local problem in a neighborhood of x, the

data of the problem may be changed outside a small neighborhood of x. Thus

one can suppose that

L(x, d) has constant coefficients for |x| > r > 0, is:

(3.1) strictly hyperbolic, A0 = I, and A„ is given by (2.6) with Än invertible.
(3.2) f(x, U) = 0 for |x|>r>0.
(3.3) <p = xn satisfies the eikonal equation for all x .

The semilinear equation (2.11) is solved by Picard iteration. The crucial

ingredient is a linear existence theorem. This same theorem directly solves

(2.13).

Proposition 3.1. Suppose that seR, T>0, (3.1), (3.2), (3.3) are satisfied,
and that B £ Lx([0, T]: HS(R" x Sx)) and a e HS(R" x Sx) satisfy %B = B

and %'a = a. Then there is a unique V £ C([0, T]: 77S(E" x Sx)) satisfying.

(3.4) (I-g)V = 0,

(3.5) gL(x,dx)V = B,    and

(3.6) V\t=0 = a.

In addition, for 0 < t < T, V satisfies

(3.7) \\V(t)\\HS(UnxS¡) <c(s, r)(||F(0)||//J(R„xSI)+ / \\B(a)\\HsiVxSI)da).
Jo

The one dimensional case, n — 1, is simpler than the case n > 1. The

reason is that in that case our special choice of coordinates quarantees that

[f, di] = [&, Axdx] = 0 so that % commutes with the principal part of L.

For n > 1 one always has [Ê?, d¡] = 0 for all j but generically [^, A¡\ ^ 0

for j > 1 so that [f, L] is an operator of first order.
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Proof of Proposition 3.1. Let x = (xx,...,x„), d = (dx,...,dn), D =

i~xd , and, A = A(x, d) = YJ\=\ Aj(x)°"j . Choose a symmetrizer R(x, D) £

C°°([0, T]: OpS°(Rn x E")) for the operator L, that is

R(t) = R(t)*       (*= adjoint w.r.t. L2(E") scalar product),

R(t) > ci > 0   for all / £ E,

Re(RA) = (RA + (RA)*)/2 £ C°°([0, T]: Op5°(E" x E")).

The usual choice for the principal symbol of R is 2J itj(x, ¿¡)*7ij(x, £) where

Uj are the spectral projections of A(x, £)   [T, p. 77].

Let (•, •) denote the scalar product in L2(R"xSx) and ||-|| the corresponding

norm. The basic energy estimate (3.7) for V £ Hx([0, r]xl"xS') is derived

as follows:

^-(R(t)V(t), V(t)) = (RtV, V) + (RVt, V) + (RV, Vt).

Thanks to the selfadjointness of R the last two terms sum to twice the real part

of (RV,, V). Note that Vt = %Vt = %LV - %AV = B-%AV. Thus,

Re(RVt, V) < -Re(R£AV, V) + c\\V(t)\\2 + \\B(t)\\ \\V(t)\\.

Therefore

d±(R(t)V(t), V(t))<-Re(RgAV, V) >+ c\\V(t)\\2 + \\B(t)\\ \\V(t)\\.

Then (3.7) for s = 0 follows upon integration if we can prove that

(3.8) |Re(7^F(/),F(f))|<c||F(/)||2.

In case L is symmetric hyperbolic one can take R = I and the proof of

(3.8) is elementary. Simply use the fact that J? is selfadjoint and &V = V to

write

Re(gAV, V) = Re(AV,£V) = ((A + A*)V, V)/2 < c\\V(t)\\2,

where the last estimate follows since A + A* is a differential operator of order

zero.

In the general case, write V = Vx + V2 with

H = ((K)1,0,...,0)   and    V2 = (0,[V]).

Then

(RWAV, V) = Y,(R%AVi. Vj) = E(*^. Vj) + EW^ - *)AV'. Vj)-

The first sum on the right is equal to (RA V, V) which has real-part bounded

by ||F(/)||2 since RA + (RA)* is bounded.
Since V2 does not depend on 8, the summands in the last term vanish if

i is equal to 2, since then (<§* - 7)^1^ vanishes. Similarly, if j = 2 write

(R(W - I)AVi, Vj) = (AVi, (r - I)RVj) and the right-hand member in the
scalar product vanishes.

The one remaining term is interesting. Write

(3.9) (RgAVi ,VX) = (RAVX,VX) + (R(I - ÏÏ)AVX, Vx).
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The real part of the first term on the right is estimated by c||Fi(/)||2 since

Re(7<^4) is bounded. Express the second term as

(3.10) 7-9 = diag(7 - E,1 -E, ... ,7 -E) + diag(£ - I, 0, ... , 0).

The contribution of the first term on the right of (3.10) to the second term on

the right of (3.9) is equal to (Rdiag(7 - E)AVX ,VX). The diagonal operator is
a projection which acts only on the 8 variables so it commutes with R and A .
This yields the equivalent expression (RA(I - E)VX, (I - E)VX). Therefore,

|Re(JRdiag(7-7i)^F1, Vx)\ < c\\(I - E)VX\\2,

as above.
The final term is equal to

(HdiagOE-/,0,...,0),4Ki, Vx) = (Vx, Rx>x(x, D)(E - I)Ax>x(x, D)VX)

= ((E-I)VX,RX'XAX'X(E-I)VX),

since E commutes with the scalar operators Rxl and Ax'x. The symbol of

Rxx is real since R = R*. The expression ^ A) ' lfy 1S equal to the directional

derivatives along the rays on the characteristic surfaces <p =constant [RR2]. In

particular AX'X is real so AXj'xdj has imaginary symbol. Thus RX'XAX'X has

pure imaginary principal symbol and it follows that

\Re((E-I)Vx,Rx>xAx'x(E-I)Vx)\<c\\(E-I)Vx\\2.

This completes the proof of (3.8).
For general s and V £ 77i+1([0, 7]xR"x5'), (3.7) is proved in the same

way starting with j-t((\ - Ax,e)sV(t), V(t)).

The uniqueness part of Proposition 3.1 follows since if V satisfies the initial

value problem with a = 0 and 5 = 0 then solving for Vt using the differential

equation shows that V £ Cx([0, T]: 77i_1(E" x S1)) and the energy estimate

for 5 - 1 proves that V = 0. For later use, note that this uniqueness proof is

valid under the weaker hypothesis that V e L°°([0, T] : Hs(Rn x S1)).

To prove existence consider Vs the solution of

(3.11) Vts + gJ*AVs =B   and    Vs(0) = a,

JS(D) = exp(fiA^).

Since J6 is an infinitely smoothing approximation of the identity, the linear

ordinary differential equation (3.11) has a unique solution in

C°°([0, r]:77i(E" xS1)).

Repeating the derivation of the energy estimate (3.7) shows that Vs is bounded
in Cm([0, T]: Hs-m(Rn x Sx)) for m = 0, 1. Passing to a weakly convergent

subsequence yields a V with dtmV £ L°°([0, T]: Hs-m(RnxS1)) for m = 0, 1

which solves the limiting equation V, + ¡Ê?A V = B. The solution so constructed

satisfies estimate (3.7) inherited from the uniform estimates for Vs .

Since %B = B, multiplying the equation Vt + <E?AV = B by I -W implies
that d,((I -%)V) = 0. Since £a = a it follows that (7 - g)V\t=0 vanishes
and therefore (7-^)^ = 0.

To prove that V is continuous with values in Hs(Rn x Sx) choose a„ £
Hs+x(Rn x Sx) and Bv £ Lx([0, T]: Hs+x(Rn x Sx)) both invariant under %
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and converging to a and B in 77S(E" x Sx) and Lx([0, T]: 77S(E" x S1)),

respectively. The basic estimates shows that the solutions Vv are a Cauchy

sequence in C([0, T]: Hs) and converge to V in C([0, T]: Hs~x). It follows

that V is continuous with values in 77*.   Q.E.D.

Given the linear existence theorem above, the profile i/o is constructed as

the limit of the Picard iterates U% defined by

(7 - r)US = 0,        r US|,=o = U0\t=0 = given,

g(L(x, dx)US - f{x, £/£-') - B0) = 0.

If s > (n + l)/2 the map W i-> f(x, W) is a locally Lipschitzean map of

Hs(Rn xSx) to itself. This together with estimate (3.7) immediately yields con-

vergence of the iterates on a small time interval [0, To]. In the next assertions

h°°=n hs .

Theorem 3.2. Suppose that s > (n + l)/2, a0 £ 77s(E" x Sx),

B0£Lx([0, T]:Hs(RnxSx)),

and %a - a. Then there is a T0 £]0, T] and a unique solution Uo £
C([0,T0]: Hs(Rn xSx)) of (2.10), (2.11) with U0(0,-) = a. If the data
belong to H°°(Rn x Sx) and C°°([0, T0]: H°°(Rn x S1)) respectively, then the

solution Uo belongs to C°°([0, T]: H°°(Rn x Sx)).

Once i/o is determined on [0, To] the higher order profiles exist on the same

time interval by solving a linear equation.

Theorem 3.3. Suppose that s > (n + l)/2, ak e Hs(Rn x Sx),

Bk£Lx([0, T]:Hs(Rn xS1)),

%ak = ak,for I <k £N and Uo £ C([0, T0]: Hs(Rn x S1)) solves (2.10),

(2.11). Then for each k > 1 there is Uk £ C([0, T0]: Hs(Rn x S1)) a unique

solution of (2.12), (2.13) with &Uk(0, •) = ak . Iffor j <k the data belong to
H°°(Rn x Sx) and C°°([0, T0]: H°°) respectively, then Uj £ C°°([0, T0]: H°°)

for j <k.

Remarks. 1. The hypothesis of strict hyperbolicity is not really necessary. What

is needed is that the operator L be symmetrizable in the adapted coordinates

and that the level surfaces of cp be simply characteristic. Even the latter hypoth-

esis can be weakened. It suffices that the algebraic and geometric multiplicity

of ker(Li(x, dcp(x))) are equal and independent of x near x.

2. The regularity of the profiles Uk with respect to x and 8 have different

interpretations. Regularity in x measures the smoothness of the x dependence.
Regularity in 8 describes how rapidly the Fourier coefficients decay to zero
which dictates the distribution of energy over the high frequency harmonics. It

is natural to consider spaces of mixed regularity HS'P(R" x Sx) defined by the

norms

(3.12) \\W(x, 8)\\2HS.P = £ f\W{£t m)\2(\ + \Z\2)S(\ + \m\2yd^.
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The above theorems have natural Hs'p versions provided s > n/2 and p >

1/2. Such refinements enter in sum laws for interactions as in [JR2].

4. Rigorous asymptotics. I: Continuation problems

Combining the results of the previous two sections with the theory of strati-

fied solutions developed in [RR3], it is a simple matter to show that the formal

solutions

(4.1) jyC4(x,ç>(x)/e),

are asymptotic to exact solutions. Toward that end, suppose that

(4.2) Uk £ 77°°(7 x E")   satisfies (2.1), (2.2), and (2.3),    VÄ:eN,

where 7 c E is a compact interval. Theorems 3.2 and 3.3 allow one to extend

the Uk to solutions on a larger compact interval 7' with 7 c Int(7').

Suppose that the normalizations (3.1), (3.2), and (3.3) are satisfied. The

spaces 77J, of stratified distributions are defined as follows. Let Q. = 7 x E"

(respectively Q' = 7' x E") and

(4.3) d' = (d0,dx,...,dn.x),

be the derivatives parallel to the foliation by the level surfaces of the phase

cp(x) = xn . Then

(4.4) 77¿,(Q) = {u £ L2(Q) : \a\ < s => («3')Q« £ L2(Cl)}.

Given a formal series as in (4.1) there is a family ue(x) = u(x, e) which has

the series as asymptotic expansion. To prove that, use a variant of Borel's Theo-

rem to construct a U(x, 8, e) in /7°°(Q' x5'x[0, 1]) such that ö* U\e=0 = Uk

and moreover,

(4.5) U(x,8,e)~1£ehUk(x,d),

in the sense that for all M and 5

(4.6) U(x,8,e)-^ekUk(x, 8) = 0(eM+x)   inHs(Q'xSx).

Defining

(4.7) u(x, e) = U(x, <p(x)/e, e),

one has

M

(4.8) w(x,e)-^e':C/¿(x,^(x)/e) = 0(eA/+1)   in/7¿,(Q')   Vi, Ai.

The key remark is that the errors are estimated in the stratified space 77|,. In the

same way, one can construct b(x, e) with YiekBk(x, <p(x)/e) the asymptotic

expansion in 77J?(fi).
The construction of the formal solution guarantees that

(4.9) Lu(x, e) - f(x, u(x, e)) - b(x, e) = r(x, e),

with

(4.10) r(x,e) = 0(eM)   in #¿,(£2') for all s, M.
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Thus the formal solution is asymptotic to a family of functions u(x, e) which

are nearly solutions in the sense that their residuals r(x, e) vanish faster than

any power of e as e tends to zero.

Next we construct a family of exact solutions which is asymptotic to u(x, s).

This is a straightforward application of the results of [RR3]. Denote by a (resp.

a' < a) the left-hand endpoint of 7 (resp. 7'). Choose a smooth function x(t)

such that x vanishes for t > a and x = 1 for / < (a + a')/2. Define uE to
be the solution of the following continuation problem.

(4.11) Lu£ + f(x,uE(x))-b(x,e) = x(t)r(x,e),

(4.12) uE = u(x,e)   for a' < t < (a + d)/2.

The data ^r(x,e) for ue and r(x, s) for u(x, s) differ by 0(eM) in

(L°° n 77J,)(Q') for all s and M and the solutions u(x, e) are bounded in

(L°° n 77¿,)(f2'). In [RR3] (L°° n H$,)(Q!) well posedness is demonstrated.
It follows that ue exists on all of Q' and

uE - u(x, e) = 0(eM)   in (L°° n77J,)(f2')

for all 5 and M. Summarizing we have the following result.

Theorem 4.1. Suppose that (4.1) is a formal asymptotic solution, that is the

profiles satisfy (4.2). Then there is a family uE of functions depending smoothly
on e with values in L°°(Q.)r\Hg?(Q.) and satisfying.

(4.13) LuE+ f(x,uE(x))-b(x,e) = 0   inlxR",    and

M

(4.14) uE-J2skUk(x, <p(x)/e) = 0(eM+x)   in L°°(ft) n77J,(Q)   \ls,M.
k=0

This theorem shows that if Uo(x, 8) is a solution of the integro-differential

system (2.10)-(2.11 ) then Uo(x, cp(x)/e) is the leading term of the asymptotic
expansion of an exact solution.

5. The semilinear Cauchy problem for stratified solutions

In the last section it was shown that there exist exact solutions asymptotic

to the formal solutions. A more natural assertion would be that given a formal

solution, exact solutions whose data are asymptotic to the series ¿ ekbk(x, cp/e)

and J2 skYk(x > 9Ie) are asymptotic to the formal solutions. This is the content

of Theorem 6.1. Theorem 3.3 shows that for arbitrary bk and projections %yk,

such formal solutions exist.

For the proof it is necessary to extend the bounded stratified theory of [RR3]

in order to treat initial value problems. The modifications involve finding

strengthened forms of compatibility conditions which are propagated by the

evolution of L and are preserved under nonlinear maps. The end result is

improved control of the regularity of solutions in directions transverse to the

foliation by the level curves of cp .

Súpose that (3.1), (3.2), (3.3) are satisfied. Recall the definition of the strat-

ified distributions.

(5.1) d' = (do, dx, ... , d„-X),
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(5.2) H^(ÜT) = {u£L2(QT): \a\ < s => (d')au £ L2(ilT)},

where QT = [0,T]xRn. Similarly

(5.3) d" = (dx,d2,...,dn-x),

are the spatial derivatives in d'.

(5.4) Hsd„ = {g£ L2(Rn): \a\ < s =► (d")au £ L2(Rn)} = L2(xn: HS(R"-X)).

Even in the linear case, the initial value problem with stratified data, that is

g £ Hq„ , does not usually have a stratified solution. One expects N waves with

N different stratifications, one for each family of characteristic surfaces passing

through the initial foliation {/ = 0 and x„ = constant}. In the nonlinear case

these waves can interact to generate, by resonance, other waves and in general

the situation will be impossibly complicated [JR4]. To insure that only one

wave train emerges, compatibility conditions at t = 0 must be imposed on the

data.

Consider first the Cauchy problem

(5.5) Lu = b£Hsd,,    s>\,    and   u(0, ■) = g0 £ L2(Rn).

The solution belongs to C([0, T]: L2(Rn)) c C([0, T]: 3f'(Rn)). Note that

b £ Cs_l([0, T]: 2') so solving for ut using the equation one finds that u £

Cx([0, T]: 3P). Continuing in this fashion one shows that u £ Cs([0, T]: 2')

and that the derivatives gj = d/u\t=o for 0 < j < s are given by equations of

the form

(5.6) gj = dl~xb\t=o+   E   cmj(x,dx)gm,
m<j-\

with cmj of order m - j. A commutation argument [RR2, 3] yields the

following linear stratified existence theorem.

Proposition 5.1. Suppose ísN, be HSQI, g0 e L2(R"), and u e L2(QT) is the

solution of (5.5). If gj, defined by the formulas (5.6), satisfy

(5.7) %:gj£Hs-J   forj = 0, l,...,s,

then u£Hsd,. In fact d/u £ C([0, T]: Hsd~j) for j <s and

(5.8) \u(t)\s,d' < c (|M(0)|J>a- + j \b(a)\s,d, da\ ,

where c = c(s, T, L, cp) and

\u(t)\s,d, = y, ii(o'r«(oii^(.-).
\a\<s

Elements of the space Hsd, need be no better than L2 in x„ . In particular

they do not form an algebra no matter how large is s. In order to treat non-

linear problems we seek additional regularity in xn which is propagated by the

equation and preserved under nonlinear operations.
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Proposition 5.2. Suppose in addition to the hypotheses % of Proposition 5.1,

that

(5.9) d/b £ Lx([0, T]: C(xn: 77p,'-3/2(R£71)))   for 0 < ; < s - 1,

(5.10) ^€C(x„:77^-3/2(E^'))   /or; = 0, 1,..., s-1.

77z£« //je solution u to (5.5) satisfies:

s-\

u £ f) C'([0, 71: C(x„: ̂ '"^(R^1))).
;=0

Remark. There are estimates corresponding to the regularity of u . To simplify

matters consider the case where b and gj are bounded continuous functions

of xn so that the data naturally belong to Banach spaces denoted C(xn : •) the

symbol C indicating the set of bounded continuous functions. The norm is

then sup{||«(/)||: 0 < t < T} where

(5.12) ||«(/)|| = |«(r)ka' + sup \\u(t, x„)||ffs_;_3/2,R„-K.

A quantitative version of the proposition is

||K(0ll < c {\\u{0)\\ + J Y\\d/b(a)\\Q(Xn : „.-j-vi^-x^da

Proof. First we show that for the last N— 1 components of u, denoted [u], the

desired regularity follows from conormal regularity and the differential equa-

tion. Here one does not need Ws'_i = (5.9)—(5.10).

The differential equation can be solved for d„[u] by expressing the equation

as a linear combination of dt[u], d"u, and b . Proposition 5.1 implies that

s

u £ f| a([0, 71: L2(xn:Hsd-j(RxZx))).

7=0

Therefore

i-i

{dtu, d"u} c fi Cj([0, 71: L2(xn: H^'1 (Rnxñ1))).
j=0

Since b £ Hq, the standard trace theorem yields

j-i

b £ fi O([0, 71: L2(x„: 77^-1/2(E^'))).
;=o

This is better than the regularity of the derivatives of u above so <9„[w] has the

regularity of the latter derivatives, namely

i-i

dn[u] £ f) O([0, 71: L2(x„: //^-'(l^1))).
j=0

This together with (5.12) implies that

5-1

(5.13) [u]e f|^([0, T]:C(xn:Hsd-}-xl2(Rnx7,x))),

j=0
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which is one d" derivative stronger than the proposition requires.

Next the hypotheses (5.9), (5.10) and a transport equation are used to derive

the desired regularity of the first component of u. Recall that

YAlfldj = dt + Y4idj = dt+    £    A)>xd, = X%
\<j i<;<«-!

is a vector field tangent to the rays which sweep out the leaves of the foliation

by level surfaces of cp = x„ . There is not x„ component of X thanks to the
block form (2.6) of A„ . The first component of the equation Lu — b implies

that

Xux = combination of d"[u] and bx.

Differentiating (5.13) yields

j-i
(5.14) d"[u] £ fi a([0, 71: C(x„: 77^3/2(E^1))).

7=0

This and the hypothesis (5.9) show that

{d"[u],bx}cC(xn: 77^3/2([0, T]xRx7,x)).

Thus for ux one has an initial value problem

(5.15)
Xux £ C(xn: 77j:3/2([0, 71 x E^1)),        ux\t=0 £ C(xn: Hsd73/2(RX7X)).

The right-hand side of the transport equation belongs to

Lx([0, T]: C(xn: Hsd7y2(Rnx7x))).

Integrating yields u £ C([0, T]: C(x„: Hsd~V2(Rx7x))), the variable x„ being

viewed as a parameter. Similarly, differentiating the transport equation with

respect to time and using (5.10) for the initial condition yields

dtjux£C([0,T]:Hsa-j-3/2(RxZx))   for j = 0, ..., s- 1.   Q.E.D.

Remark. If s - 3/2 > (n - l)/2 the solutions u are bounded and continu-

ous. This provides a good L~x invariant algebra in which to study semilinear
problems.

For nonlinear problems it is important that our solutions be bounded so

that f(x, u) makes sense. In the next computation Q = ÍV =]0, T[xR" . If

u £ 77J,(Q) n L°°(Q), the inequalities of Gagliardo-Nirenberg imply that

\a\ <s^(d')au£L2s/M(Çl).

For |a| < s, let v = (d')au so v £ L2s/|a| and vt £ L2î/dal+1) so tie

C([0,T]: 3f'(Rn)). In addition, ôf|u|' = pv\v\p-2v, £ L'(fi) for p =

(2s-l)/\a\ so \\v(t)\\ij, £ C([0, 71). It follows that v £ C([0, T]: LP(R")) so

(5.16) \a\ < s => (d')au £ C([0, 71: L{2s-X)'^(Rn)).

In particular, a necessary condition on {gj} so that they be the traces of an

element of Hsd, n L°° is

gj £ Hsd7,i(Rn) n L{2s-x)/j(Rn)   for ; = 0, 1,..., s.

We will construct solutions with greater regularity than 77J, n L°° and for that

there are correspondingly stronger conditions on gj . A lifting, which is needed
to find a first approximation to initiate Picard iteration, is provided by the next

lemma.



612 J.-L. JOLY AND J. RAUCH

Lemma 5.3. Suppose that s, a £ R and

(5.17)
gj£HsdT,J(Rn),        ]<s,    and   g¡ e C(xn: H°-J(Rnx7x)),        j<s-l.

Then there is a

S 5-1

(5.18) we r|C''(E,: 77^'(E"))n f| CJ(R,:C(xn: Ha-J(RX71))),

;'=0 7=0

such that d¡ u\t=o = gj for j = 0, Ï, ... , s. The lifting u can be chosen so that

the map {gj} >-* u maps bounded sets to bounded sets.

Remark. If s > n/2 then u £ HSQI n L°° .

Proof of the lemma. Choose cp £ C^(Rn~x) such that cp(t¡") = 1 if |£"| < 1.

The lifting u is defined by

û(t,xn,t:") = <p(tnYJgj(xn,ntjij\
;=0

where ~ denotes partial Fourier transform with respect to x".   Then u £

C°°(R,: <9"(RX)) and d,ju\t=o = gj thanks to the choice of <p .
To verify (5.18) calculate the derivatives

s        /

dlü = E E vm,i,j(tngj+i-m(x„, n,
j=0 m=0

where we have set gj = 0 for j > s and

""■U«'«">- InWJmyJ. E (O^XO.
\a\=m

Therefore,

«['y-'o/ß = E ^m,/,;(0J'-m((r)T-y-/+m^+/-m(X„ , {"))•
j,m

For t = 5 (resp. a) the term in parentheses belongs to L2(E" ,,,) (resp.

Q(x„ : L2(EÎ,71)). The factor in front of the parentheses is a sum of terms of

the form

tJ(t"Y-m(Z"r*(tZ"),        \a\ = m,

where the value of <P is clear. Since the support of the <P term is contained

in \t¿¡"\ < c, the expressions are uniformly bounded for /, £" e E x E"_1 and

the result follows.   Q.E.D.

The solutions constructed below belong to

C(t: 77|,(E") nÇ(E")) n C(t: L2(Rn)).

If s > n/2, the Galiardo-Nirenberg inequalities imply that

V|q| <s,        dau£C(t: Hsd7H(R")nL2s'^(Rn)).
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Leibniz' rule shows that the set of such functions is invariant under the map

u >-* f(x, u). In the same way if s > (n + 2)/2, C(t: C(xn: 77^3/2(E"-'))) is
invariant under the map u i-» f(x, u).

The derivatives d/u(t) of solutions constructed below are continuous func-

tions of time with values in Ys-j where the spaces Y take account of the shift

in the indices in % and ^¡_x :

Y0 = L2(R"),    and
(5 19)

Ys-j = Hsd7J(Rn) n C(xn : HS-J-3'2(RX71)),       0 < ; < s - 1.

Thus

5

(5.20) u£Bs = f]a([0,T]:Ys.j).
j=o

Gagliardo-Nirenberg implies that if5>(« + 2)/2, then

V|a| < s,        daue C(t: L2s^(Rn) f) C(x„: L^-^^ÍR"-1))).

If b £ Hq,(ÇÎt) and u £ Bs is a solution to Lu = f(x, u) + b, u\t=o = go,

then f(x,u) belongs to Cs~x(t: 3i'(Rn)) and formula (5.6) with b replaced

by b + f(u) together with the remark in the previous paragraph permit one to

compute inductively the derivatives dju\t=o = g}■, for j < s - 1, in terms of

£o and b.

Theorem 5.4. Suppose that N 9 s > (n + 3)/2 and go £ Hsd,,(R") satisfies

(5.21) for0<j<s,        gj£Ys-j,

where gj are determined as above. In addition suppose that

(5.22) d/b£Lx([0,T]:Ys_j)   forj<s.

Then there is a T e]0, T] and a unique

5

u £ Bs = fl C^([0, 23: Yt-j) c 7/|, n L°°(QZ),
;=0

satisfying

(5.23) Lu = f(x,u) + b   in]0,T[xRn   and   u(0,-) = g0.

The time of existence T is bounded away from zero on bounded sets of data

normed in the natural way associated with the hypotheses. The map {b, gj} >-> u

is a uniformly Lipshitzean function of the data from such bounded sets to Bs.

If the data satisfy (5.21), (5.22) with s replaced by s' > s then the solution
belongs to CJ([0, T]: Ys>-j) for all j < s'.

Proof. Let «' en^o^^ Ys-j) be a lifting of the gj as provided in Lemma

5.3.
For v > 2 define u" inductively by

Luv =f(x,uv~x) + b   in]0,T[xE"   and   uv(0,-) = g0.
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It follows inductively that

5

f{x, u"-x) + beÇ\ O([0, 71: Y,-j),    and
7=0

dtUv\t=o = gj   for j < 5-1.

Thus the hypotheses of Lemmas 5.1 and 5.2 are satisfied and

5

uveC]a([0,T]:Ys.j).
7=0

The estimates of Lemmas 5.1 and 5.2 together with estimates for f(x, uv~x)

which make quantitative the invariance of Ys under nonlinear maps show that

there is a T > 0 so that the uv converge in C'([0, T]'- Ys-j) to a solution u

of (5.23). The dependence of T and u on the data are proved in the standard

manner.

Uniqueness of bounded solutions of (5.23) is classical.   Q.E.D.

An important class of data b, g which are compatible in the sense of (5.7),

(5.21), (5.22) are the data associated with the asymptotic solutions of §§2 and

3. Consider

(5.24) bE = 770(x, cp(x)/e) + ■■■ + sMBM(x, <p(x)/e),

and with x = (xx, ... , xn),

(5.25) gE = y0(x, <p(0, x)/e) + ■■■ + eMyM(x, <p(0, x)/e).

It is clear that for any regular Bj and y¡ and any M and 5 the bs, gc satisfy

the compatibility conditions for each e > 0 fixed.

We ask under what conditions are the compatibility conditions satisfied uni-
formly in e as e tends to zero. That is we ask that bE and gE satisfy (5.21) and

(5.22) with norms uniformly bounded as e tends to zero. The condition (5.22)

is automatic, however the other requirement places rather strong conditions on

the profiles bj, and y¡ .
Recall from (2.10) and (2.12) that in order for gE to be the trace at / = 0

of a formal solution ^2sJUj(x, cp(x)/e), the sum stopping at j = M, it is

necessary and sufficient that

r<™ it  x\v     J°   for/c = 0> and
(5.26) (I-s)yk = <

I lk(x, y0, ... , yk-X,B0, ... ,Bk_x)\t=o,        \<k<M.

Proposition5.5. IfyJt Bj belongto H°°(R"xSx) and H°°(ÇlTxSx) respectively
satisfy (5.26), then for any s < M + 1, the data gE and bE defined by (5.24),
(5.25) satisfy the compatibility conditions (5.7), (5.21), (5.22) uniformly as e
tends to zero.

Proof. Denote by Uq, ... ,Um the profiles determined locally in time by the

data Bj , y¡ . Theorems 3.2 and 3.3 show that such profiles exist once (5.26) is
satisfied. Let

(5.27) uE = U0(x, <p(x)/e) + --- + eMUM(x, <p(x)/e).

Then Proposition 2.2 shows that with H(e,x, 8) e H°°([0, l[xQr x Sx),

(5.28) LuE = f(x,uE) + bE + eMrE,        rE = H(e, x, <p(x)/e).
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Let vE be the smooth local solution of

(5.29) LvE = f(x, vE) + bE,        vE\l=0 = gE.

In local coordinates with cp = xn, the desired conclusion is that there is a

constant c such that

(5.30) l|fl/t;«(0)||y,_, <c   for0< j<s   and   ee]0,l].

From the definition (5.27) of uE it follows that an analogous estimate with

vE replaced by uE is valid since the derivative dt annihilates cp. Equation

(5.28) then shows that the data be + eMrE and gE are uniformly compatible.

The strategy from here it to compare d/uE(0) and d/vE(0) for j < s.

Since u£ = vE at t = 0 the equations (5.28), (5.29) yield

(5.31) dt(vE-uE)\t=0 = eMrE\t=o-

Differentiating the equations (5.28), (5.29) with respect to / and subtracting

yields

d2(vE - uE)\t=0 = Diffx(dt,dx)(f(vE)-f(uE) + eMrE),

where Diffi denotes a linear differential operator of degree 1. Since uE = vE

at / = 0 this simplifies to

df(gE)(dtvE - dtuE) + Diffjiô,, dx)tMf.

When the derivatives in the last term fall on <p/e, the power eM is reduced to

eM-1   T/hus for any s an(j j = o or j = 1,

(5.32) dtJ(vE-uE)\t=0 = O(eM+x-J)   in Ys.j,

uniformly as e tends to zero.

For general j one has

d/(ve - uE)\t=0 = EHff/_i(ft, dx)(f(vE) - f(uE) + eMrE).

The estimate (5.32) follows by induction for all 0 < j < M + 1. The com-
patibility conditions require only derivatives up to order j. Thus this estimate

together with estimate in (5.30), with v replaced by u, complete the proof of
uniform compatibility.   Q.E.D.

Example. For M = 0, the condition in (5.26) reduces to (1 - f )yo = 0. A

direct computation yields dtuE = s~xAndeyo+ bounded terms. The condition

in (5.26) for M = 0 is seen to be equivalent to compatibility up to order

5= l+iV7= 1.

We believe that this equivalence is valid for all M.

6. Rigorous asymptotics. II: Initial value problems

In this section we show that for a formal solution £ ekUk(x, <p(x)/e), exact

solutions whose data b(x, e) and g(x, e) are asymptotic to the data of the

formal solution have the formal series as asymptotic expansion. This achieves

the goal set out at the end of §5.

As in §4, given profiles Uk e H°°(ClT x Sx) Borel's Theorem allows us to

construct U(x, 8, s) in H°°(ÇlTxSx x[0, 1]) and u(x, e) = U(x, <p(x)/e, e)

such that
M

(6.1)        u(x,e)-Y,ekUk(x,<p(x)/E) = 0(eM+x)   in Hsa,(ÇlT)   Vs,M.
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In order to apply Theorem 5.4 it is important to notice that the error is small

in C(xn : Ha(Rx,,)). In fact u(x, e) can be chosen so that for all s, j, T

M

(6.2) u(x,e)-Y,£kVk(x,<P(x)/e) = 0(eM+x)   in a([0, T}: Ys).

In the same way one can construct b(x, e) with the asymptotic expansion

ZekBk(x,<p(x)/e) in C\CJ(YS).
The construction of the formal solution guarantees that

(6.3) Lu(x, e) - f(x, u(x, e)) - b(x, e) = r(x, e),

with

(6.4) r(x, e) = 0(eM) in Cj([0, T] : Ys),    for all j, s, M.

Theorem 6.1. Suppose that Uk,Bk e 77°°(Qr x Sx) satisfy (2.10) to (2.13)

and u(x, e), b(x, e) are asymptotic to £ ek Uk and Y, ekBk as above. Let uE

be the solution of the initial value problem

(6.5) LuE = f(x, uE) + b(x, e),       uE\t=0 = u(x, e)\t=0.

Then, for e sufficiently small uE exists on Qt and (6.1) holds in the sense that

for all j, s, M,

M

(6.6) uE-Y,ekUk(x,<P(x)/e) = 0(eM+x)   in O([0, T]: Ys),

where Ys is defined in (5.19).

Proof. Fix an s > (« + 3)/2. Proposition 5.5 shows that the data d/bE and

d/uE\t=o for j < 5-1 are bounded in L'([0, T]: Ys-j) and Ys-j respectively.

Thus there is a Tx e]0, T] such that the initial value problems (6.5) are

solvable on [0, Tx ].
For the second step suppose that T £]0, T] and one has a solution uE £

Cj([0,T]:Ys-j) for 0 < ; < s - 1. For 0 < / < T write

M / M \

uE-Y,£kUk(x, <p(x)/e) = (uE-u(x,e))+ I u(x, e) - £Vf4(x, 0)1 .

The second term is estimated in (6.2). For the first use the fact that the map

b, gj i-> u in Theorem 5.4 is Lipshitzean together with the equations in (6.3)

to show that for 0 < / < Tx

(6.7) ||d,V - u(x,e))(t)\\r^ < c£ ||ö/r(x, e)||L,{[0,r] : yf_v) = 0{e°°).

j

This proves the desired asymptotic expansion up to time T, in particular up

to time Tx.

Choose R so large that for e < 1 and 0 < j < s - 1, d¡bE and

d{(bE + r(x, e)) lie in the open ball of radius R in Ll([0, T]: Ys-j). Increas-

ing R, if necessary, one has d/u(x,s) in the open ball of radius R in

C([0, T]: Ys-j) for 0 < j < s - 1 . R can be chosen independent of T-

The above estimate shows that if uE £ C([0, T]: Ys-j) for 0 < j < s - 1

then there is an n > 0 so that for e < nx the data at time T lies in the ball of

radius R and the right-hand side bE + r also lies in the ball of radius R. Thus
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there is a ô > 0 independent of T so that for e < n the solution extends to

[0,min(T + ô, T)].
The first step justifies the asymptotic expansion for 0 < / < min(T + ô, T)

and shows that there is an n2 < nx so that the solution extends to

[0, min(X + 20, T)].

Repeating this process a finite number of times proves that there is a solution

on [0, T] and that the formal solution is asymtotic in the norms Ys.

It remains to show that the solution is asymptotic in the norms Ys> for

all s' > s. Applying the last statement of Theorem 5.4 shows that uE £

C'([0, T]: Ysi-j) for all j, s'. The second step of the present proof then

justifies (6.6) with 5 replaced by s'. As s' is arbitrary, the proof is com-

plete.   Q.E.D.

A subset of the above proof proves a Ys asymptotic expansion when the

profiles Uk belong to Hs(Q.t x Sx) instead of 77°° .
If Uo(x, 8) satisfies the integro-differential system (2.10)—(2.11) from the

formal asymptotics and y o = Uo\t=o we can choose yk for k > 1 so that

the hypotheses of Theorem 6.1 are satisfied. In fact the equation for i/o de-

pends only on 7i0. Given Bk for k > 0 (for example Bk = 0), then one

need only define yx, y2, ... inductively so that (5.26) is satisfied. Thus the

initial data for t/0 is the first term of an asymptotic expansion such that the

corresponding initial value problem has a solution with asymptotic expansions

t/0(x, <p/e)+ higher order terms.

It is important to note that this is different than saying that the solution

of the initial value problem with data Bo(x, cp/e) and yo(x, cp/e) is equal to

Uo(x, cp/e) + O(e) in 77J?(Qr) • In fact the latter assertion is false. It is even

false in the linear case. The reason is easy to understand. The solution of the

initial value problem will contain waves e V(x, <p;/e) + h. o. t. where the phases

cpj are the other solutions of the eikonal equation with the same initial data

as cp . The data Bo , yo satisfy only the first compatibility condition. For the

result of the last paragraph the initial data are modified by terms of order e,
so as to satisfy the compatibility conditions to all orders.

The data b(x, e) and «£|,=o in Theorem 6.1 converge weakly to

¡Bo(x,8)dd   and     Í U0(x, 8)\t=0d8

respectively. It is typical of strongly nonlinear problems that the weak limits

of the data do not determine the weak limit of the solutions. This is true for

our oscillatory solutions whose weak limit is / U0(x, 8)dd . The very simplest

examples show this.

Example. Suppose N = 1 and so x = (xo, Xi) e El+1 and consider the initial

value problem

ut + u2 = bE = B0(x, Xi/e)),        «£|t=0 = 0.

Equation (2.11) shows that the principal profile f70 satisfies

dtU0 + Ui = B0.

Suppose that 77o is independent of /. Then at / = 0 one has

U0 = 0,        d,Uo = B0,        d2U0 = 0,        d?Uo = -B¡.
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This yields the Taylor expansion at t = 0,

weaklimi/= Í U0(x,8)d8= (B0(x, 8)d8-(ti/6) ÍB$(x, 8)d8 + --- .

For t > 0 this is not determined by the weak limit of bE.

In the case bE = 0 and inhomogeneous initial data the formula

uE(t,x) = gE(xx)/(l-tgE(xx)),

shows even more directly that the weak limit of the solution is not determined

by the weak limit of the data even when gE - G(xx, xx/e).

A statistical approach to our oscillations would try to find a system to de-

termine the means and other moments of the limiting solution. It is typical

of such attempts that they lead to problems of closure. The equations for the

moments up to a certain order require knowledge of moments of higher or-

der. That oscillatory solutions have such closure problems is illustrated in the

example. Nevertheless the system of equations for the profiles yields a closed

description of their asymptotic behavior.

7. Propagation of oscillations along rays

Denote by & the foliation by level sets of the phase function <p. For

bounded stratified solutions, singularities propagate along the rays for L which

sweep out the leaves of & [RR2, 3]. This section contains analogous results

for oscillations. We work in the special coordinates with <p = x„ and An

in the block form (2.6).  The rays are then integral curves of the vector field

x = Y,Axfxdj.

Definition. Suppose that Uq £ C(QxSx). We say that the family Uo(x, <p(x)/e)

oscillates at x if and only if deUo(x, •) is not identically zero. Suppose that
ue = Uo(x, <p(x)/e) + o(e) in Lj^c(Q). We say that the family uE oscillates at

x if and only if r_/0 oscillates at x •

Since the last A^ - 1 components of dgUo vanish identically for formal

solutions of our semilinear equations, such a family oscillates if and only if the

derivative of the first component, dßU0x(x, •), is not identically zero.

Theorem 7.1. Suppose that U0(x, 8), B0(x, 8) e 77°°(Q x Sx) satisfy (2.10),
(2.11), that r is a connected arc of a ray in Q, and that de Bo vanishes on

T x Sx. If dßUo vanishes at xxSx with x £ T then dßUo vanishes identically

on r x Sx. In particular, if uE is an asymptotic solution such that B0(x, <p/e)

does not oscillate on Y then uE oscillates at all points of Y or at none.

Proof. Let v(x, 8) = dgU¿ . Differentiation of the first component of equation

(2.11) with respect to 8 yields

(7.1) Xv + c(x,8)v = deBx0 >x,

where c = dfx(x, Uo(x, 8)/dux . By hypothesis the right-hand side vanishes

on r x Sx. Integrating the differential equation in (7.1) along Y shows that for

any 8, v(-,8) vanishes for all x in Y if it vanishes at x.   Q.E.D.

Note that the coefficient c of the ordinary differential equation for deUo

depends on the values of Uq . Thus (7.1) is not a simple transport equation
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which determines de i/o directly. One must solve the integro-differential system

(2.10), (2.11) to determine U0 first.

8.  TWO WAVE INTERACTION FOR TWO SPEED SYSTEMS

The semilinear interaction of oscillatory wave trains can produce, via reso-

nance, oscillations with an infinite number of distinct phases and thereby defy

simple description [HMR, JR4]. One situation where no such resonant interac-

tion is possible is the transverse encounter of two oscillatory wave trains for a

2x2 strictly hyperbolic system. This is the oscillatory analogue of the simplifi-

cations which occur for the interaction of conormal singularities for two speed
systems [B, cas B, RR2, 3].

The description parallels the development in §§2 through 7 and will merely

be sketched. Suppose that L is a 2x2 strictly hyperbolic operator with Xo

a timelike variable. Suppose that <p¡, / = 1, 2, are two real solutions of the

eikonal equation such that d<p¡ are linearly independent. Denote by &[ the

foliations defined by the level sets of tp,.

If oscillations with respect to the two phases coexist on a region of space-time

then terms of the form expi(nx<px + n2cp2)/e will appear as source terms. If

nxn2 t¿ 0 then d(nxcpx + n2cp2) is noncharacteristic for L. In fact the plane

spanned by the dcpi intersects the characteristic variety of L in exactly the
lines through dcp¡ and zero. This suggests that terms like eexr>i(nxcpx+n2cp2)/^

will appear in the solutions. Superposition leads to the idea of searching for

asymptotic solutions of the form

uE ~ U(x, cpx (x)/e, <pi(x)/e),

with profile U(x, 8X, 82) 2n periodic in 8X and 82. More generally we seek

complete asymptotic expansions

oo

(8.1) uE ~Y^£kUk(x, cpx(x)/e, <p2(x)/e).

k=0

8.1. Formal asymptotics. Suppose that bE ~ YJekBk(x, cpx/e, cpï/z), and com-
pute formally a series in powers of e for LuE - f(x, uE) - be. Setting the

coefficients of the powers of e equal to zero yields

(8.2) Y,Y,AA*)dj9ideiUo = 0   from e"1,

(8.3) L(x ,dx)U0- f(x , t/0) - #o = E E Mx)dj9ide, U0   from e°.

The first equation is satisfied if both phase functions satisfy the eikonal equation

and

(8.4) dei U £ ker ( ^ Ajdjcpl )    for / = 1, 2.

This gives two polarization conditions on Co .

To continue the analysis it is convenient to introduce special coordinates.

Replacing g>¡ by -cp¡ if necessary we may suppose that cpx + <p2 is timelike for

L. New local coordinates are then defined by

Vo = ((P\ + 92)12,        Vi = (-cp\ + <Pi)/2.
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Thus without loss of generality we suppose that cpx = xo-xi and cp2 = xo + xx.

A smooth change of basis in C2 followed by multiplication of L on the left by

an invertible matrix valued function [RR2] reduces L to the form

1     0
(8.5) L = do + 0   -1

dx+T>iïïx(x,d").

Condition (8.4) then asserts that

(8.6) Uo(x, 8X,82) = (U0x(x, 8X), U¡(x, 82)).

This shows that the mixed phases exv)i(nX(px + n2<p2)/e with nxn2 ^ 0 do not

appear in the principal term. This agrees with the heuristic discussion which
suggested that they would appear at order e.

(8.6) implies that the right hand-side of (8.3) is equal to (de2U0x, öölf/02).

Introduce the averaging operator

(8.7) W = (E2,EX),        Ej(k(x,8x,82))= ¡n k(x,8x,82)ddj/2n.
Jo

Then the right-hand side of (8.3) belongs to ker(S'). The principal profile i/o

is determined by (8.6) and the integro-differential system

(8.8) ^(L(x,dx)Uo-f(x,Uo)-B0) = 0.

The conditions (8.4) and (8.6) are equivalent to

(8.9) (I-%)Uo = 0.

For k > 1, one finds equations

(8.10) (I-ïï)Uk = l(x,Uo,...,Uk_x,Bo,...,Bk_x),

(8.11) %(L(x,dx)Uk-DJ(x,Uo)Uk-Bk-Fk(x,Uo,...,Uk_x)) = 0.

The formalism has been presented so that the equations (8.8) to (8.11) resemble

(2.10) to (2.13). Note however that there are two angular variables 8j and

that the averaging operator from (8.7) is different from the averaging operator

defined in (2.8), (2.10).
The formulation of analogues of Propositions 2.1 and 2.2 is left to the reader.

8.2.  Solvability of the equations for the profiles. Altering L and /, one has

(3.1), (3.2), and (8.5) throughout R" .

Theorem 8.1. Theorems 3.2 and 3.3 are true if (2.10), (2.11), (2.12), and
(2.13)  are replaced by (8.8),   (8.9),   (8.10),   (8.11) and Sx   is replaced by
SxxSx.

Proof. As in §3, the key is to prove the energy estimate (3.7) for s = 0 and
solutions V £HX(Qr xSxxSx) to the analogue of (3.4) to (3.6). That estimate

is a consequence of the analogue of (3.8).

For symmetric hyperbolic operators the proof is the same one line as in §3.

In the general case begin by writing

(RgAV, V) = (RAV, V) + (R(g - I)AV, V).

The real part of the first term on the right is bounded by c\\V\\2 since RA +

(RA)* is bounded. For the second term, write V =VX + V2 with Vx = (Vx, 0)
and V2 = (0, V2). The terms to estimate are Re(R(g - I)AV¡, V¡).
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For / t¿ j, the expression vanishes. Consider for example the case i = 1, j =

2. Then A Vx is independent of 82 so is annihilated by E2 - I. Therefore

(R(^-I)AVx,V2)=[r   ¡j   (^0_7)   AVx,V2^j

=   AV, 0        0

0   (Ex-I)
RV2

Since RV2 is independent of 8X the last expression vanishes.

Next consider the case / = j = 1. The case i = j = 2 is similar.

(R(g?-I)AVX,VX)=(R   °Q   (£i°_7)   AVX,VX\=(RX>2(EX-I)A2AVX ,VX).

The last expression involves only scalar-valued functions. Next use the facts

that (Tii - I)2 = Ex - I and Ex commutes with 7*1,2 and ^2,1 to show that

the right-hand side is equal to ((Ex - I)VX, Rx>2A2j(Ex - I)VX).
To complete the proof it suffices to show that the principal symbol of RX<2A2X

is purely imaginary. Since the principal symbol of RA is antihermitian it

follows that (RA)X ;1 has purely imaginary principal symbol. Now

(8.12) (RA)X>X=RX>XAX,X+RX>2A2,X.

As in §3, do+^1,1 is the transport operator X plus lower-order terms and so has

purely imaginary principal symbol. Thus Ax>x and the first term on the right

of (8.12) have purely imaginary principal symbols. It follows by subtraction

that the second term on the right has purely imaginary principal symbol and

the proof is complete.   Q.E.D.

8.3. The striated Cauchy problem. The compatibility conditions needed for the

stratified Cauchy problem disappear in the present context. Data in Hsd„ n L°°

lead to the solution in 77|„ n L°°(Qr) provided that 5 is sufficiently large.

In [RR2, 3] such solutions are called striated. The explanation is that for two

speed systems such data launch waves oscillating transverse to the two foliations

!?~j which contain all the characteristic surfaces through the initial planes {/ =

Onxi = const}. If the system had more than two speeds then there would exist

other characteristic surfaces and compatibility conditions would be needed to
avoid the corresponding waves. For 2x2 systems we have the following result

from [RR3].

Theorem 8.2. Suppose that N 3 s > (n + 5)/2,

(8.13) ge77|„(E")nL00(E")   and   b £ L°°(ÇîT) nLx([0, T]: 77|„(E")).

Then there isa T£]0, T] and a unique u £ L°°(Qr) n C([0, T] : Hsd„ (Rn)) sat-

isfying (5.23). The time of existence T is bounded away from zero on bounded

sets of data normed in the natural way associated with the hypotheses. The

map b, g i-> u is a uniformly Lipshitzean map from such bounded sets to

L°°(ÇlL) n C([0, T]: 77|„(E")). If b, g satisfy (8.13) with an s' > s then

the solution belongs to C([0, T]: 77j'„(E")).

8.4. Rigorous asymptotics. Suppose that Uk and Bk belong to

77°°(Qr xSx xSx)   forO</c<oo
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and satisfy (8.8) to (8.11) so that J2 £kUk is a formal asymptotic solution with

source £ ekBk ■ Suppose that

(8.14) b(x,e)~^ekBk(x, <px(x)/e, <p2(x)/e),

in the sense that for all M and 5

M

(8.15) b(x, it) -Y,zkBk(x, <px(x)/e, <p2(x)/e) = 0(eM+x),

j=o

in Lx([0, 71: L°°(Rn) n77J„(E")). Similarly suppose that

(8.16) g(x',e)~ ^ekUk(x, <px(x)/e, <p2(x)/e)\l=0,

in L°°(E")n77J„(R") for all s.

Theorem 8.3. Let uE be the solution of the initial value problem

(8.17) LuE = f(x, uE) + b(x, e),        uE\l=o = g(x, e).

Then for e sufficiently small uE exists on Qr and

uE ~J2ekUk(x, <p\(x)/e, (p2(x)/e)

in the sense that the difference between uE and the sum for k < M is 0(eM+x)
in C([0, T]:L00(Rn)nHsd„(Rn)).

The proof and a finite expansion version analogous to Theorem 6.2 are exactly

as in §6.

8.5. Propagation of oscillations along rays.

Definition. The family U(x, tpx(x)/e, (p2(x)/e)) oscillates transverse to the
level surfaces of <px at the point x if and only of 3U/d8x(x, •, •) is not

identically zero. If uE ~ U(x, <px(x)/e, cp2(x)/e)) + 0(e) in L^c then f/£ os-
cillates transverse to the level surfaces of ç£>i at the point x if and only U

does.

Theorem 8.4. Suppose that U0, B0 £ H°°(Q.xSx xSx) satisfy (8.8), (8.9) and
T c Q /5 a connected arc of a ray on a level set of cpx. If dBo/ddx vanishes

identically on Y and dUo/d8x(x, -, •) vanishes identically at one x £ Y then

dUo/ddx vanishes identically for all x £ Y. In particular, if uE is an asymptotic

solution and Bo does not oscillate transverse to the level sets of <px along Y, then

uE oscillates at all points of Y or at none.
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