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ON COMPACTLY SUPPORTED SPLINE WAVELETS
AND A DUALITY PRINCIPLE

CHARLES K. CHUI AND JIAN-ZHONG WANG

Abstract. Let • • • C K_ ] c Vq c Vx c • • • be a multiresolution analysis of

L2 generated by the mth order 5-spline Nm{x). In this paper, we exhibit a

compactly supported basic wavelet i//m(x) that generates the corresponding or-

thogonal complementary wavelet subspaces ... , W_ \, Wo, Wx, ... . Conse-

quently, the two finite sequences that describe the two-scale relations of Nm(x)

and i//m(x) in terms of Nm(2x - j), ;6Z, yield an efficient reconstruction

algorithm. To give an efficient wavelet decomposition algorithm based on these

two finite sequences, we derive a duality principle, which also happens to yield

the dual bases {Nm(x - j)} and {y/m(x - j)} , relative to {Nm(x - j)} and

{y/m(x - j)}, respectively.

1. Introduction

Let m be any positive integer and let Nm denote the mth order F-spline

with knots at the set Z of integers, such that

supp(A/m) = [0, m\.

More precisely, Nm is defined recursively by

(1.1) Nm{x) = {Nm-i*Ni){x)= [ Nm-i{x-t)dt
Jo

with Ni = X[o,\) ■ F°r anY k, j £ Z, we set

Nm,kJ(x) = Nm(2kx-j);

and for each k , let Vk denote the L2 -closure of the algebraic linear span

(Nm.kJ: j£l).

Here and throughout, L2 = L2(R). It is well known (cf. [4]) that these spline

spaces Vk, k e Z, constitute a multiresolution analysis of L2 in the sense that

(i)   -cK_,cK0cF,c-;
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(Ü)    ClOSL2 (IJfcgz Vk) = L2 ;

(iii)   flfcez vk = {0} ; and
(iv) for each k, {Nm.k¡: j £ Z} ¿s an unconditional basis of Vk .

Following Mallat [4], we consider the orthogonal complementary subspaces

... , W-x, Wo, Wx,... ; that is,

(v)   Vk+x = Vk®Wk,all k£%,

where the notation © stands for VkLWk and Vk+X = Vk + Wk. A trivial
consequence of (v) is that

(vi)   WkLWj,allk + j;

and in view of (i), (ii), (iii), and (vi), it is also easy to see that

(vii)   L2 = ®kezWk.

These subspaces Wk, k £ Z, are called the wavelet subspaces of L2 relative

to the B-spline Nm . The importance of the approximation properties (ii)-

(iii) and the wavelet properties (v)-(vi) is that every function / in L2 can be

approximated as close as we wish by some fk £ Vk , for a sufficiently large value

of k, and that fik has a (unique) orthogonal decomposition

(1-2) fk = gk-i + --- + gk-l + fk-i,

where gj £ Wj, j = k - I, ... , k - 1 , and fk_i £ Vk_¡, and where / is an
arbitrarily large positive integer, so chosen that || A-/II2 is as small as we desire.

We call (1.2) a wavelet decomposition of fk .

It is well known that the wavelet subspaces Wk , k £ TL, are also generated by

some basic wavelet in the same manner as that the spline subspaces Vk, k G Z,

are generated by the F-spline Nm . A standard technique to determine a basic

wavelet can be briefly summarized as follows (cf. [3, 4]). First, orthonormalize

{Nm,o,j}, yielding {/Vm;oj}; then find the two-scale relation of ZV,«;0,0 in

terms of {Ñm ; 1,_/} ; and finally alternate the signs of the coefficient sequence in

this two-scale relation in a clever way to yield the desired basic wavelet. In our

earlier work [2], we introduced a different approach and showed that the mth

order spline function

(1.3) nm(x)-=4mm](2x-l)

also generates Wo, and consequently all the wavelet subspaces Wk, k £ TL.

Here and throughout, L2m denotes the (2w)th order spline with knots at Z

that satisfies the interpolatory conditions

L2m(n) = ônyo,    n£l.

In the spline literature [5], L2m is called the fundamental spline of order 2m .

Let us consider the F-spline series representation

(1.4) L2m(x) = YJ^f)N2m(x + m-j)
jei

and denote by

(1.5) A(z) = YJ*f)zi
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the symbol of the coefficient sequence. Then the interpolatory condition of L2m

at Z is equivalent to the identity

(1.6) A(z)B(z) = l,

where
m-\

(1.7) B(z)=    £    N2m(m + j)zJ

j=-m+l

is the F-spline symbol and is related to the well-known Euler-Frobenius poly-

nomial nm(z), of degree 2m - 2, by the identity

(1-8) B^=(2mhy.Z-m+ln^-

For more details, see Schoenberg [5] and our previous work [2].

The basic wavelet nm in (1.3) which was introduced in [2] (where the no-

tation \p is used) has exponential decay. In fact the exact exponent is given

by the magnitude of the closest root of Um to -1 (cf. [5, pp. 37-38] and [2,

(2.24)]).
In this paper, we give another basic wavelet y/m which has compact support

and generates Wo, and consequently all the wavelet subspaces Wk, k 6 Z.

The exact formula of our y/m will be given in the next section, where the

two-scale relation of y/m(x) in terms of Nm(2x - j), j £ TL, is also derived.

Hence, as in [2], together with the well-known two-scale relation:

m i    \

(1.9) AUx) = £2-w+1K)AW2x-;),

we have two finite sequences that yield a very efficient algorithm for reconstruct-

ing fik in (1.2) from its orthogonal components gk_x, ... , gk-¡, fk-i which

may have been "modified" (or "filtered" in such applications as signal process-

ing). To prove that y/m generates all of Wq , we even derive the decomposition

formula of Nm(2x - j) in terms of Nm(x - 1) and y/m(x - I), I £ Z, so that

as in [2] again, we have an algorithm for decomposing fk in (1.2) into the sum

of its orthogonal components gk_i, ... , gk-¡, A-/ •

A duality principle which essentially states that the pair of two-scale relations

can be used as the decomposition formula, and vice versa, will be introduced

in §3, where the solutions N„ and y/^ of the new (i.e. dual) two-scale rela-

tions are determined. It will be shown that N^ generates the multiresolution

spaces {Vn}, while y/%, generates the wavelets spaces {W„}. Hence, by us-

ing the spline A7^ and basic wavelet ip^ , we have two finite sequences that

yield a very efficient decomposition algorithm. In addition, it so happens that

'Nm(x-j)} gives rise to the dual basis of {Nm(x -j)}, and {ytm(x—j)} yields

the dual basis of {y/m(x - j)} . Consequently, every L2 function can be easily

decomposed as a direct sum of the compactly supported spline wavelets y/m-,k,j

which have very simple explicit formulations.

2. Compactly supported spline wavelets

Let m be an arbitrary positive integer which will be fixed throughout this

paper, and let Nm denote the wth order F-spline defined in ( 1.1 ) that generates

the multiresolution analysis (i)-(iv). We have the following result.
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Theorem 1. The mth order spline

.      2m-2

(2.1) M*) = 2¡¡¡=T E(-1)J^mO'+l)Ar^)(2x-7),

vvz'i/z support [0, 2m -1 ], ¿s a basic wavelet that generates Wo, and consequently,

all the wavelet spaces Wk, k £ TL.

We remark that
'1      for 0 < x < \ ,

\pi (x) = I -1    for \ < x < 1,

0      otherwise,

is the well-known Haar function.

Proof. It is clear that

supp y/m — [0, 2m - 1].

We first show that y/m(x - j) is orthogonal to Vq . To do so, we recall that

m /    \

A4w)(x) = £(-iW7k*-;)
;=0 ^ J '

(cf. [1, Chapter 1]), where 3 denotes, as usual, the Dirac delta distribution.
Hence, by setting k = l2 - ¡i, we have

/oo
y/m(x-/i)A/m(x-/2)i/x

-oo

/_1 \j TOO

= E vn^îN^(J + 1) /     N^(2x - j)Nm(x - k)dx
j€Z J-°°

= E    92m-1    N2mU + 1) /       N2m(2x - ; + 2k)N{™](X)dx
jez J-°°

m    (_]\m+p /m\

= Ei2¿r- í    )Y/(-l)JN2m(J+l)N2m(2p + 2k-j) = 0
p=o ^p ' jez

for all k , or all lx and l2 , since the positive and negative terms exactly cancel

one another as follows:

E(-1)'A'2m(; + l)A2m(2p + 2k - j)
j&L

= E N^m(2j + l)N2m(2p + 2k- 2j)
jez

- Y, N2m(2j)N2m(2p + 2k-2j+l) = 0.
jez

To verify that y/m is in Vx, we need the spline identity

m /    \

(2.2) <)(x) = ^(-iyr)/Vm(x-;)
j=o ^J '
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(cf. [1, Chapter 1]).   So, putting (2.2) into (2.1), we arrive at the two-scale

relation:

(2.3)

where

(2.4)

3m-2

£
n=0

¥m(x) = E QnNm(2x - n)

Qn
(-1)«rE (7) aw«-;•+!)•

;=0 V J '

Finally, to show that i//m generates all of Wo, we derive a decomposition

relation; that is, we determine two I2 sequences {an} and {b„} suchthat

(2.5) Nm(2x-l) = ^2ai_2nNm(x - n) + Y^bi-2„Wm(x - n)
nez nez

for all / £ TL. These two sequences have to depend on the sequences {pn}

and {q„} that define the pair of two-scale relations (1.9) and (2.3), where the

notation

(2.6) On = |

2~m+x (m)   for0<n<m,

for the coefficients in (1.9) is used. Of course, it follows from (2.4) that qn = 0

for n < 0 or n > 3m - 2. To determine {an} and {bn} in (2.5), it is more

convenient to use Fourier transform representations. To do so, we need the

notations:

(2.7)

Hence, by setting

(2.8)

3m-2

P(z) = YiPnZn,     Q(z) = £ qnz" ,

n=0 n=0

G(z) = 1£anz-",    H(z) = Y,bnz-n.

nez nez

z = e '2 ,

the Fourier transform representations of the identities (1.9), (2.3), and (2.5)

become

(2.9)

(2.10)

and

(2.11)

Ñm(co)=l-P(z)Ñm(^),

(¡im(co) = \Q(z)Ñm(^),

Cr ,   .     H(z) + H(-z) ^  .   .
Nm((0)+ ' -LWm(0)),

r Ir,  ,co\_G(z) + G(-z)
2   m\2J~ 2

lft (co^_G(z)-G(-z)
I 2   m\2)~ 2 ""•v-/ ■ 2

~   .   .     H{z)-H{-z)~ ,   ,
Nm(co)+ .    —L¥m(co),

respectively, where the first identity in (2.11) is the Fourier transform repre-

sentation of the identity (2.5) for even /, and the second identity in (2.11)
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corresponds to odd values of / in (2.5). By using (2.9) and (2.10), the pair of

identities in (2.11) can be written as

(2l2) (P(z)G(z) + Q(z)H(z) = 2,

[ '    ' \P(z)G(-z) + Q(z)H(-z) = 0.

Hence, solving for {an} and {bn} in the decomposition relation (2.5) is equiv-

alent to solving for G(z) and H(z) in (2.12). From (2.6) and (2.4), it is clear

that

(2.13) P(z) = 2-m+x(l + z)m   and

j-m+\

(2.14) Q(z)={2m_iy(l-zrnm(-z),

which are polynomials of degrees m and 3w - 2, respectively. The following

identity for the Euler-Frobenius polynomials Y\m of degree 2m - 2, which was

derived in [2], facilitates our solution for G(z) and H(z) :

(l + z)2mUm(z)     (l-z)2-Um(-z) _^2m

( ' znM(z2) Zlïm(z2)

Indeed, with the aid of (2.15), it follows from (2.13) and (2.14), that

(2.,6) G(z)=_L(1+zr-TM£L

and

(2.17) H(z)=~{2rH'l)\l-zr
2"       v        '   zUm(Z2y

Recall from (1.6), (1.8), and (1.5) that

i v-2m+\ i _     ,   v
(2 18) _-_ = —_A(Z2) = _-_ST J»>) ̂ 2n-2m+\
[      ' znm(z2)     (2m-iy()     (2m-ly.

nez

Hence, in view of (2.16) and (2.17), the decomposition sequences {«„} and

{b„} in (2.5) and (2.7) are simply (finite) linear combinations of the sequence

{a„m^} which defines the fundamental cardinal spline L2m in (1.4). This com-

pletes the proof of Theorem 1.   D

Recall from [5, pp. 37-38] that the rate of decay of {a„m)} is 0(\rm\-XnX) as

|«| —► oo, where ri, ... , r2m_2 are the roots of U.m(z) labeled in decreasing

order:

r2m-2 < r2m-3 < • •• < rm < -1 < rm_x < • ■ • < rx < 0.

Hence, we have

(2.19) an,bn = 0(\rm\-^),        |n| - co.

Following our earlier work [2], we see that the two-scale (finite) sequences
{pn} and {qn} yield a very efficient reconstruction algorithm, while the decom-

position (exponential decay) sequences {an} and {bn} define a decomposition

algorithm. Since decomposition is usually more delicate than reconstruction, it

is important to have finite sequences with very small supports for the decom-

position algorithm while maintaining the certain order of smoothness of the
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"spline" and "wavelet" functions such as our Nm and y/m which are both in

Cm~2. A duality principle will be introduced in the next section to transform

the finite two-scale sequences {/?„} and {qn} into the desired pair of decompo-

sition sequences without leaving the spline and wavelet spaces {Vn} and {Wn}.
We remark that Daubechies' compactly supported (nonspline) wavelets [3] cer-

tainly yield finitely supported decomposition and reconstruction sequences, but

the supports of these sequences have to be quite large if a certain order of

smoothness (or regularity) is desired (cf. [3] for details). We will also see that
since our compactly supported spline wavelet \pm has a very simple explicit

formulation, this duality yields a very desirable decomposition of every L2

function into a direct sum of the wavelets Wm;k,j ■

3. A DUALITY PRINCIPLE AND DUAL BASES

As mentioned above, in this section we attempt to interchange the pair

({Pn}, {Qn}) of two-scale sequences with the pair ({a„}, {b„}) of decompo-

sition sequences. However, due to the two-scale property, we find it more con-

venient to carry a factor of 2. In other words, let us define

(3.1)

- P*(z) = 2G(z) = Y,PUn,
nez

Q\z) = 2H(z) = YJ<tnz\
nez

1 m

G*(z) = -P(z) = Y,a*_nz»,
«=0

. 3m-2

H*(z) = -Q(z)= Eè-^">
«=o

which is equivalent to setting

(3.2) p* = 2a_„ ,     q* = 2b-„ ,     a*_„ = \p„ ,     b*_n = \qn ,

where the sequences {a„}, {b„}, {p„}, and {qn} were defined in the previous

section. It is clear from the definitions (3.1) and (3.2) and the identities in

(2.12), that provided that the pair of two-scale relations

(3.3a)

and

(3.3b)

Ñ*m(co) = \p*(z)Ñ*m[^),

Fm(to) = \Q*(z)Ñ*m(^),

where z = e l<$ , have solutions N^ and y/^ that generate {V„} and {Wn},

respectively, the decomposition relation

(3.4) yy;(2x - /) = E jP2n-iNm(x - «) + E jQ2n-t¥m(x - n)
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is automatically satisfied. So, it is sufficient to study the relations in (3.3a) and

(3.3b), or equivalently, the relations

(3.5a) N*m(x) = Y/2anNn\(2x + n),
n

and

(3.5b) rm(x) = Y.lbnNm(2x + n).
n

To state the following result, we need the basic wavelet nm in (1.3) which was

introduced in our previous work [2] (where the notation y/ is used).

Theorem 2. The mth order spline

(3.6) N*m(x):=YJocf)Nm(x + m-j)
jez

generates Vq and satisfies the two-scale relation (3.5a), and the (spline) wavelet

(3.7) W*m(x) := -2~m+x £af)nm(x + m - j)
jez

generates Wo and satisfies the two-scale relation (3.5b).

Proof. It is clear that N„\ £ V0 and  y/m £ W0.   By using the interpolatory

property L2m(k) — 8k o , we also have, from (1.4),

(3.8) Y,cx{Jn)N2m(k + m-j) = Sk,0.
jez

Hence, it follows from (3.6) and (3.8) that

Y/N2m(i)K(x-i) = y£Y,aT)N^1)N^x+m -j~l)
I I   j

(3.9) = ̂  I E afN2m(k + m-j)\ Nm(x - k)

= 'YJo~k,oNm(x-k) = Nm(x),
k

so that A7^ generates Vq .  To verify that N^ satisfies the two-scale relation

(3.5a), it is equivalent to verifying (3.3a), or

Ñ*m(co) = G(z)Ñ*m(^).

This is certainly true since from (3.6), we have

(3.10) Ñ*m(co) = z-2mA(z2)Ñm(co),

so that it follows from (1.6), (1.8), and (2.16) that

Nm(co)_   1     A(z2)   Nm(co)=    1   p[z)A(z2)

#£(¥ )    zm   A^   M»(f )    2zm      A(z)

^ + z)m4^3¥rk = G(z).
2mzmV        ;   z-2m+2nm(z2)
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Similarly, as in (3.9), it follows from (3.7) and (3.8) that

Y,-2m-lN2m(l)ii/*m(x-l)

i

= E Eaim)A^(/)^(* + m-j-l) = nm(x).
i    j

Since nm generates W0 (cf. [2]), we conclude that y/^ also generates W0.

To verify the two-scale relation (3.5b), it is equivalent to verifying its Fourier

transform representation (3.3b), or

Fm(co) = H(z)Ñ*m[[^).

This can be seen by applying (2.15), (3.7) and (3.10). Indeed,

fa((o) = ^2-m+iz-2mA(z2)i}m(z)-
A/*(f) z-»A{z)N{!$)

A(z2)[\(l - z)mz-m+x]A(z)N(%)

2m-izmA(z)N(%)

a-zr   2   -(2m-iy.(i-zr
7ZTA\Z ) -2mz2m-l     V     I 2m zUm(z2)

= H(z).

This completes the proof of the theorem.   D

It turns out that this duality principle yields the dual bases of the F-spline

basis {A^x - j): j £ 17} and the basic wavelet basis {y/m(x - j): j £ Z} . For

this purpose, we have the following result.

Theorem 3. For all j, k e Z,

/oo
Nm(x + m- j)N*m(x - k)dx = Sj,k

■oo

and

/oo
y,m(x + 2m-l- ))yj*m(x - k)dx = ôjtk.

-oo

Proof. The proof of (3.11) depends on the Poisson summation formula which

yields

E Ñ2m(to + 2nj) = ^2 N2m(j)e-IJÍÜ

jez jez
(3.13) 2m

= z2^N2m(m + j)z2^ = -—
jez ny-z >

where z = e~'i   and the last equality is a consequence of (1.7) and (1.6).
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Hence, by applying (3.10) and (3.13), we have

/oo
N*m(x)Nm(x + m - k)dx

-OO

2nj_

2nJ_

oo

7V
mNl(co)Nm(co)ei(-m-^wdco

z-2mA(z2)(Nm(co))2eik(0dco

z-2mA(z2)Ñ2m(co)eik(0dco

2n(j+l)

z-2mA(z2)N2m(co)eikwdco

¡ez " 2nJ

2nJ_

[ * z-2mA(z2)eikw [ Y Ñ2m(co + 2nj) ) dco

J° \jez J

= ^j\*»dco = 6k,0.

_\_

2li

This verifies (3.11). To establish (3.12), we first observe that by applying the

two-scale relations to (3.14), we obtain

*.o=¿£L (^)(^w)^(f)M!)g-,("-fc^

= ¿|~ zmP(z)G(z)Ñt(^)Ñm(^)eik"dw.

Hence, by applying the other pair of two-scale relations, the first identity in

(2.12), and (3.14) again, we arrive at

/oo
y/m(x)Wm(x + 2m - 1 - k)dx

-oo

1       /-oo _

= ¿/     ipm(coWm(co)e-^2m-x-k^dco

- (_ir pjmQ(z)H(z)Nt[^)Nm{^)e^dœ
4n

-4r/_?™(!)M!)^-"^

= (-ir(2r52fc>o-^,o) = (-l)m4,0.     □
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As a trivial consequence of Theorem 3, we can now write down the dual
bases of the F-splines {Nm(x-j)} and the compactly supported basic wavelets

{y/m(x - j)} as follows. Let

(3.15) Ñm(x) = N*m(x - m) = E«f ]Nm{x - j)
jez

and

y}m(x) = (-l)my,m(x-2m+l)

(3-16) =^E«rw-m+.-i).
jez

Then by using the standard notation

/oo _f(x)g(x)dx,
-oo

we have

(3.17) (Nm(--j),Ñm(--l)) = ojj

and

(3.18) (¥m('-J),Wm('-l))=Sj,l

for all j, I £ Z. In addition, if we set

ÍNm,kJ(x) = Nm(2kx-j),

\ ¥m;k,j(x) = ¥m(2kX-j)

and

(320) (Ñm,kJ(x) = Ñm(2kx-j),

I ¥m;k,j(x) = ¥m(2kX-j),

then every spline function fik in Vk,  k £ Z, has the F-spline series represen-

tation

(3.21) fk = 2kY,(fk,Ñm;k,j)Nm;k,n
jez

and every f £ L2 has the wavelet decomposition

(3-22) /=   ^2   2k(f,¥m;k,j)¥m;k,j,
j,kez

where
;     2m-1+ j

s\xr}V)(y/m.kj) _2k '        2k

Of course the validity of (3.22) follows from the property (vii) of the wavelet

spaces {Wk} . It should be emphasized that the coefficients 2i(f,y/m.kj) in

(3.22) are the integral wavelet transforms

Wf.m-")'TaÜ{X)iilÁ^L)l'X
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of / with "window wavelet" function y/ evaluated at the dyadic points

(».«)- (é-2~k)-

Hence, the decomposition algorithm discussed in [2] can be used to efficiently

compute the integral wavelet transform of / at these dyadic points, and the re-

construction algorithm in [2] can be used to recover / from these values of the

integral wavelet transform of /. The only difference in applying the F-spline

and F-wavelet pair (Nm, y/m) from the orthonormal wavelets of Daubechies

[3], say, is that the dual y/m of y/m is used as the window wavelet function,

while orthonormal wavelets are of course self-dual. A disadvantage in our dual

approach here is that while the reconstruction sequences are finite, the decom-

position sequences are infinite although they have very rapid exponential decay.

An advantage of our wavelets y/m and y/m over the Daubechies wavelets is that

both y/m and y/m are either symmetric or antisymmetric, so that the filtering

process has linear phase, while the non-Haar compactly supported orthogonal

wavelets do not have this property. In addition, the symmetry of these "filter-

ing" coefficients facilitates implementation of the algorithms.

Final Remarks. Nonorthogonal compactly supported wavelets have also been

studied by P. Auscher in his 1989 Doctoral Thesis at the University of Paris-

Dauphine, without giving any explicit formulas. On the other hand, biorthog-

onal bases have just been constructed in June, 1990 by Cohen, Daubechies,

and Feauveau, and in the 1990 Doctoral Theses of A. Cohen and of Feauveau,

at the University of Paris-Dauphine and the University of Paris-Sud, respec-
tively. These bases functions are symmetric and have compact support, but

orthogonality between different scale wavelet layers is lost. Hence, the work of
the compactly supported wavelets y/m and their corresponding dual wavelets

\j/m in this paper can be considered as intermediate between Daubechies' com-

pactly supported orthogonal wavelets and the biorthogonal wavelets of Cohen,

Daubechies, and Feauveau. This interesting observation was pointed out by the

referee, to whom we are very appreciative.
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