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HARNACK ESTIMATES AND
EXTINCTION PROFILE FOR WEAK SOLUTIONS

OF CERTAIN SINGULAR PARABOLIC EQUATIONS

E. DIBENEDETTO AND Y. C. KWONG

Abstract. We establish an intrinsic Harnack estimate for nonnegative weak

solutions of the singular equation (1.1) below, for m in the optimal range

((N - 2)+/N, 1). Intrinsic means that, due to the singularity, the space-time

dimensions in the parabolic geometry must be rescaled by a factor determined

by the solution itself. Consequences are, sharp supestimates on the solutions

and decay rates as t approaches the extinction time. Analogous results are

shown for p-laplacian type equations.

1. Introduction

We will consider nonnegative locally bounded weak solutions of singular

parabolic equations of the type

ut-Aum = 0,       0<m<l, in 3f'(CiT),

u £ C(0, T; I4(Q)),        um £ L2(0, T; <:2(Q)),

and of the type

ut-di\(\Du\p-2Du) = Q,        l<p<2,

U£C(0, T; Lic(Çi))nL"(0, T; <P(Q)).

Here Q is an open set of R^, N > 1, 0 < T < oo, QT = Q x (0, T), and

D = (d/dxx, ... , d/dxN). The notion of local weak solution (subsolution,
supersolution) in the specified classes is standard and we refer to [6, 10, 13].

For these solutions we prove an intrinsic Harnack inequality, within the

ranges (N - 2)+/N < m < 1 for (1.1), and 2N/(N + 1) < p < 2 for (1.2),
and show that such ranges are optimal for a Harnack estimate to hold. Our

estimates are independent of local supbounds.

In addition we derive Lj^c estimates of the solutions over a compact set

7% c Qr in terms of their Lr(3i')-norm, over a larger set 317' c Qr, where

r > max {l;^^} for (1.2),     r>max{l;^l^}for(l.l).

We show that such an r is optimal for a supbound to hold. This is in contrast

with the heat equation (m = 1 in (1.1) or p = 2 in (1.2)) where bounds on the
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solutions over 3¡7, hold in terms of their Lr(3¡7')-norm for every r > 0 (see

Moser [17]).
The main results are stated in §2. Section 3 contains the statement and

proofs of the L^-estimates as well as comments on the Cauchy problem and

the extinction rate. The remainder of the paper is devoted to the proof of the

Harnack inequality.

2. The main results

The classical Harnack estimate for nonnegative solutions of the heat equation

(see Hadamard [9], Pini [21], Moser [17]), fails to hold for solutions of (1.2)

if p ^ 2 (see [6, 7] for counterexamples). However, when p > 2 an intrinsic

version takes its place, which reduces to the classical one when p = 2. The

main idea is to work with a time scale that "measures," the degeneracy of (1.2)

(see [7]). The singular case 1 < p < 2 presented unsuspected difficulties and is

left open.
By contrast, in the elliptic case the classical Harnack estimate holds for all

p > 1 (see Serrin [22], Trudinger [24]) and the theory is fairly complete. Ac-

cordingly, a second motivation of this work is to complete the corresponding

parabolic theory by proving a Harnack-type estimate for nonnegative solutions

of (1.1) and (1.2). We refer to [7] for further comments and a perspective on

this issue.

Equation (1.1) arises in plasma-physics [4, 5, 18] and it is referred to as the

fast-diffusion case (0 < m < 1) of the porous medium equation (m > 1).

There is an analogy between (1.1) and (1.2) both in terms of results (regu-

larity [6, 8, 13, 15], extinction time [3, 6, 13], growth conditions [8, 20]) and
techniques of proof. For example, when m > 1, the theory of an intrinsic Har-

nack inequality can be developed for (1.1) paralleling that of (1.2) for p > 2

(see [7]).
In this note we will work mainly with (1.1) and only briefly indicate how to

modify statements and proofs for the case (1.2).

2-(I). The intrinsic Harnack inequality. Let u be a locally bounded, nonnegative

local weak solution of (1.1) in CiT • Fix P0 = (xq, to) £ fir and assume

u(Po) > 0. For R > 0 we construct the cylinder

(2.1) Qr(u(P0)) = {Jx - x0| < R} x {t0 - [u(P0)]x-mR2, t0 + [u(Po)]x~mR2}.

By the results of [6], u is locally Holder continuous in QT so that u(Po) is

well defined.

Theorem 2.1. Assume that

(2.2) K = N(m- l) + 2>0.

Then there exist constants ö £ (0, 1) and C > 1 depending only upon N, m

such that

VPo £ fir,    Vi? > 0   such that Q^R(u(Po)) C fir ;

(2"3) u(Po) < C inf u(x, t0 + 0) ;        6 = S[u(Po)]x-mR2.
xeBR

Remark 2.1. The proof shows that the constants   C~x ,   ô   degenerate as

N(m-l)+2 -> 0 (i.e., ô , C~x (N, m) -> 0 as k -» 0). However, they are "sta-

ble" as m - 1, i.e., 5(N, m), C~X(N, m) -> S(N, 1), C~X(N, 1) £ (0, 1)



HARNACK ESTIMATES 785

5/rW0)]'

o ~~ '-fy V

I-*- R -*-1

(4R)2[u(P0)]x-m

4R

Figure 1

as m —► 1. Therefore letting m —> 1 in (2.3) we recover the classical inequality

of Hadamard [9] and Pini [21] for nonnegative solutions of the heat equation,

in the form of Krylov-Safonov [12]. See Figure 1.

Condition (2.2) is equivalent to the range of m

(2.4)
(N-2)+

N
< m < 1

Remark 2.2. Such a range is optimal for (2.3) to hold, as shown by the following

argument. Solutions of the Cauchy problem

(ut-Aum = 0   inR*x(0,cx>),

\ u{',0) = UoeLl(RN)nLN^-m^2(RN),        Uo>0,

become extinct after a finite time T*, if k = N(m - 1) + 2 < 0, (see Bénilan-

Crandall [3]); i.e., there exists a time  T*  depending only upon N, m  and

H"olU(i-m)/2,R" suchthat

u(x, i) = 0,    Vi> T*, VxeR^,

and u(', t) is not identically zero for t < T*. The extinction profile, i.e., the

boundary of the set [u > 0] n {t > 0} is the hyperplane t = T* (see [6]). That

is, u(x, t) > 0, Vx £ RN , W <T* (see also Kwong [13] for a similar result in

bounded domains).
It was also shown in [3] that extinction cannot occur in finite time if k > 0.

If (2.3) were to hold for m < (N - 2)+/N, we could fix (xo, to) so that

T* - to = s £ (0, 1) is arbitrarily small and choose R so large that

Sux-m(xo,t0)R2 = e,

to get a contradiction.

When Í2 is bounded and dfi smooth, solutions of (1.1) with data u\da = 0

and u(-, 0) = uq £ L°°(Q) exhibit extinction in finite time for m in the whole

range 0 < m < 1 (see [3] and references therein). In such a case however R

cannot be taken arbitrarily large.
If there is a finite extinction time T*, then «(•, t) decays to zero as t —> T*

at the rate (T* - /)1/(1"'") (see §3-(II)).
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Similar results hold for the p-laplacian equation (1.2). Let « be a locally

bounded nonnegative local weak solution of (1.2) in ÇlT. Fix Pn = (xo, t0) £

fir, assume u(Po) > 0 and for R > 0 consider the box

(2.5) Qr(u(P0)) = {|x - x0| < R} x {to - [u(P0)]2-pRp, t0 + [u(Po)]2-pRp}.

It follows from [6] that u(Po) is well defined.

Theorem 2.2. Assume that

(2.6) K = N(p-2)+p>0.

There exist constants ¿6(0, 1), C > 1 depending only upon N, p such that

VP0 £ fir,    VÄ > 0 such that Q4R(u(P0)) c fir,

(2-7) u(Po) < C inf u(x,to + 6),        e = t0 + ô[u(Po)]2-pRP .
x€BR

The constants C~x and ö -> 0 as p —> 2N/(N + 1) but are ^stable''' as p / 2.

Also, (2.7) cannot hold if p < 2N/(N + 2) i.e., 7c < 0.

The last statement can be proved as before by making use of the finite-time

extinction property of solutions of the Cauchy problem associated with (1.2)

with initial data u0 £ LX(RN) n LN^2-p'>lp(RN). This property in turn can be

proved by a simple adaptation of the arguments of Benilan-Crandall [3] (see

also Herrero-Vasquez [11]).

The proofs of Theorems 2.1 and 2.2 are more involved than that of their
"degenerate" counterpart in [7]. The two main ingredients are the local Holder

continuity of solutions and an expansion of the positivity set of the solutions

"sidewise" i.e., along the space variables only.

Local Holder continuity has been established in [6] and exploits a special

space-time configuration (see §5 and Appendix A). The expansion of positivity

is achieved by constructing suitable comparison functions (see §4 and Appendix

B), sensitive to conditions (2.2) and (2.6).

3. The Lj^-estimate

Let « be a locally bounded nonnegative local weak solution of ( 1.1 ) in Qt

and consider the box

QR = BRx{0,t},        BR = {\x\<R}.

After a suitable translation, we may assume Qur £ fir, provided R and

t > 0 are sufficiently small.
Let r > 1 be any number satisfying

(3.1) Kr = N(m-l) + 2r>0.

Theorem 3.1. Let r > 1 and 0 < m < 1 satisfy (3.1). There exists a constant
y = y(N, m, r) such that

Vt > 0,    VT? > 0 such that QAR c fir

(3.2) / f \2/Kr       ( t \1/(1"m)
sup u(x, t) < yt~N/Kr I sup  /    ur(x, t) dx )      + y   -57

x6BR \0<l<tJB2R / \K  /
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Remark 3.1. The proof shows that u could be a nonnegative subsolution. More-

over the pair of balls BR, B2R in (3.2) could be replaced by any pair BR, B(X+a)R ,

Vct > 0 with y depending also upon er, provided Q{X+a)R C fir •

Remark 3.2. The constant y —> oo as Kr = N(m - 1) + 2r -» 0. However it is

stable as m —> 1. The condition Kr > 0 is optimal for a supestimate to hold

(see §3-(III) below).
The theorem turns the qualitative information u £ L^Clj) into the quanti-

tative estimate (3.2). In particular solutions that can be constructed as L[oc(fi7-)-

weak limits of smooth approximations, satisfy (3.2).

In the next theorem, (3.4) holds for nonnegative weak solutions not neces-

sarily bounded, and VO < m < 1. Also (3.3) holds Vr > 1.

Theorem 3.2.  3y = y(N, m, r) such that

VO < t < co,    VR > 0 such that Q4R c fir,

(3.3)
sup /   ur(x, t) dx < y I /    ur(x ,0)dx + ( —

o<T<tJBR [Jb2r \K '

l/(l-m)

(3.4)

VO < t < oc,    VR > 0 such that Q c fir,

sup  /   u(x,T)dx<y\ /    u(x,t)dx+[ — \ \ ,
0<x<tJBR [Jb2r \k  ) J

where k = kx = N(m - 1) + 2 > 0.

Remark 3.3. The proof shows that the constant y —► co as m —> 1.

3-(I). L°°-estimates at the same time level. Of particular interest for the proof

of the Harnack inequality is the following supestimate obtained by combining

Theorem 3.1 and 3.2, under the assumptions

(3.5) r=l,        K = N(m-l) + 2>0.

Lemma 3.3. Let (3.5) hold. There exist a constant y = y (m , N) such that

VO < t < oo,     VR > 0 such that Q4R C QT,

(3-6) _m„( t      ,      .,  ,    ,\2/K        /iV/M
sup ¡

x€BR

sup u(x, t) < yt~N/K ( /    u(x,t)dxdt\     +y(-p)

Remark 3.4. The interest in (3.6) is that the sup of u over a ball BR at some

level t > 0 is estimated in terms of the L1(54Ä)-norm of u at the same level

t. It is precisely this particular feature that will make possible the proof of the

Harnack inequality.

We will use this fact in the following form. Assume the cylinder

Q(4R,4) = B4Rx{-4,0}

is all contained in the domain of definition of u. By Theorems 3.1 and 3.2:

V-2<t<0,

(3.7) / r \2/«        / i \»/(i-m)
\\u(-, t)\\oo,br < 7   sup   [ /    u(x,T)dxj     +y[-R2)
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By (3.4) we conclude that

V-2<t<0,

(3 8) ft \2/K
N-.TJIIoo.i^yiy    u(x,0)dx\     +yR2«m-l\

Remark 3.5. The constant y depends only upon N and m. It follows from

Remarks 3.2 and 3.3 that y -» oo as either k —> 0 or m -> 1.

3-(II). Rate of extinction. Suppose u is a nonnegative local weak solution of

(1.1) in some domain contained in Q x R+, and assume there exists a finite

extinction time T*. This occurs for all 0 < m < 1 in bounded domains and

for N(m - 1) + 2 < 0 in the whole RN (see [3]).
Applying (3.4) to u within the box

Q(T*) = B4Rx(T*-t,T*)cÇîxR+,

we obtain

i/(i-m)

(3.9) I  u(x,t)dx<y(^F^j
IBR

Jloc
Thus the L\0C(Q.)  norm of u(-, t)  decays to zero as t —> T*  at the rate

(7/* _ f\i/(i-m) _

If in addition k = N(m - 1) + 2 > 0, by combining the sup estimate of

Theorem 3.1 with (3.4) we have

Corollary. Let N(m - 1) + 2 > 0 and assume T* > 0 is a finite extinction time

for u. Then 3y = y(N, m) such that

VÄ > 0,    V/ such that B4R x (2t - T*, T*) c fi x R+ ,

(3.10) ,r_,y/(i-m)
||«(-, 0iloo,ßÄ < 7 (^—rJ—J

3-(III). The Cauchy problem with data in L¡0C(RAr). We may combine Theorems

3.1 and 3.2 to deduce existence of locally Holder continuous solutions for the
Cauchy problem.

Consider the Cauchy problem

' u, - Aum = 0 in ST = RN x(0,T),

(3.11) I u(-, 0) = u0(x) £ L[0C(RN),    u0>0,

0<T <oo, r>l.

If r > 1 satisfies (3.1) we may construct the solution by approximating u0, in

L[0C(R"), with Uo,n £ C^(RN), n £ N satisfying

/   ur0ndx<y      ur0dx,    VR > 1,    « = 0,1,...,
JBR JBR

for some constant y = y (m, N). Then if (x, t) —> u„(x, t) are the correspond-

ing solutions of (3.18) with «o replaced by «o,« , we deduce from Theorems

3.1 and 3.2 that 3y = y(m, N), such that

Vi>0,     VR>0,     V«GN,

(3 12) / f \2/Kr       ( t N 1/(1_m)
sup un(x,t) <yrNlK' i       ur0dxj      +y{z2
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Thus {u„} are equi-bounded over compact subsets of R^ x (0, co) and by the

results of [6] are equi-Hölder continuous. This suffices to prove existence of

solutions. The initial datum is taken in the sense of Lf^R^). Uniqueness can

be shown by a technique similar to the one in [8, 10].

Remark 3.6. When w0 6 L¡0C(RN) existence and uniqueness of solutions is due

to Herrero-Pierre [10]. The point here is to show that a precise local integrability

of the initial datum u0 (i.e., u0 £ Lrl0C(RN)) yields locally bounded and locally

Holder-continuous solutions.
The order of integrability of uq to ensure a C£c-solution is sharp as shown

by the following example.
Consider the function

S(X) = Lsns¿¿¿L ' «6(0,1),   fl,,fl2>l,
_ (e2-lxl2)?

|xHln|x|

and set

Z(x, t) = (I - ht)+g(x),        h>0.

We observe that if a2 > 1, g £ LX(RN) but g £ L[(K(RN), Vr > 1 .

Lemma3.3. Assume m = (N-2)/N, N > 3. Theconstants e e (0, 1), ax, Ü2,
h > 1 can be chosen depending only upon N so that

(Zt-AZm<0   a.e. RN x (0, oo),

I Z(.,0) = *(•).

Now the Cauchy problem associated with (1.1) and initial datum u0 = g has

a unique weak solution u satisfying

u>Z   W>0,

by the comparison principle (see Herrero-Pierre [10], Pierre [20]).   Thus if

t £ (0, l/h), liminf^^ow^» t) = oo .
The proof of the lemma is given in Appendix C.

3-(IV). Proof of Theorem 3.1. Let ere (0, 1] be fixed and consider the sequence

of radii and time levels

Rn = R(l + o2-"),        tn=l-(l-a2-n).

Set

Bn = BRn,        Qn = Bnx(tn,t),        « = 0,1,2,...,

and let (x, t) —> Ç„ (x, t) be a nonnegative piecewise smooth function in Q„

that equals one on Q„+x, vanishing on dB„ and such that

2«+i 2"+2
\DU<^,       0S(..,S—.

Consider also the sequence of increasing levels

kn = k(l- 2^7 j,        « = 0,1,2,...,

where k > 0 will be chosen later.
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First write (1.1) in the form

(3.13) -%1/w-Aü = 0,        v = um.
at

In the weak formulation of (3.13) take testing functions (v - kn)9J~xÇ2, q > 1,

to be chosen, and integrate by parts over Q„ . Setting

(3.14) wn = (v-kn)fCn,

we obtain by standard calculations

k(\-m)lm   sup     Í   w2^)dx+   if    \Dw„\2dxdT
t„<T<tJB„ JJq„

sg(¿+i«fc-a)/¿.
If ||m||^'q < t/R2 there is nothing to prove. Otherwise we rewrite (3.15) as

k(l-m)lm   sup    j   w2tt)dx+   if   \Dwn\2dxdt
,-.,,, tn<T<tJB„ JjQ„

^      ' v22n rr

JJQn-\

By Holder inequality and the space-time version of the Gagliardo-Nirenberg

multiplicative inequality (see [16, p. 74]) we get

(3.16)
N/(N+2)

|2/(/V+2)

(3.15)
w2_x dxdx.

r r / r r \ 'vM'v+¿;

jj  w2n dxdx < (jj wfN+2)'Ndxdx\ \A

{( f \2/Niff ^»/(N+2)
<        sup   /   w2(x)dx)       (¡I   \Dwn\2dxdx)\ \An

[\t„<1<tJB„ ) \JJQn /J

where

(3.17) An = {(x,t)£Q„\v(x,t)>kn}.

From this and (3.15')

(3.18)

jjQ   W2„dxdx< ^||M||Jo-,e0^((1-m)/"î)2/(A,+2)  (//e       ^2-i) \An\2«N+2).

Since

//     w2_xdxdx>2^n+x^k9\An\,
JJo»-t

we obtain from (3.18)

(3.19)
v  l+2/(JV+2)

jjQ wldxdx < ^f ll«llL-,mQo^((1-m+r)/m)2/(N+2) (jjQ

where we have set

(3.20) r = mq,        do = 4x+<"^N+2).

wn-\
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From the recursive inequalities (3.19) it follows by virtue of Lemma 5.7 of [16,

p. 96], that ¡Jq w2dxdx ->0 as n-»oo provided k is chosen to satisfy

ff v" dx dx = cffN+2t^+2^2k^x-m+rym\\u\\^){N+2)/2.
J J On'Co

With these choices it follows that

y

(3.2i;
MIoo.Ox, <

a(N+2) t(N+2)/2
^(LL/(x-t)dxdi

-, l/(l-m+r)

X \\U
,(l-m)(N+2)/(2{l-m+r))
'oo,ßo

Consider the increasing family of radii

Rs = R'£2-i,        s =1,2,
i=0

let Qs be the family of cylinders defined as before and set

Ys = IMIoo.ß, •

Applying (3.21) to the pair of boxes Qs c Qs+X for which a = 2_(i+1), we
obtain

Ys<

y2s(N+2)     rt

/   /    W(x,
Jo Jb™

x)dxdx
1/(1-m+r)

Y(N+2)(l-m)/(Kr+(N+2)(l-m))
*s+l

[*N+2V2 Jo Jb»

If Kr = N(m - 1) + 2r > 0, by Schwarz inequality, Mv £ (0, 1)

Ys < uYs+i +y(N,m,r, v)di  r{N+2)/2

d. = 22<"+2>/*'

Iteration of these inequalities yields

ff   ur(x,
JO  JB1R

x)dxdx
2/Kr

-(N+2)/2 /   /    ur(x, x)dxdi
Jo Jb2K

2¡k,

||M||oo,e* - Yo < vsYoc + y(N, m,r,v)

s

x^2(vd*y,        s =1,2,....
r'=0

Choose v = l/(2dt) so that jyi=0(vdt)' < I and let s —* oo to obtain

\\u\\oo,QR<7(N,m,r)-m-[ sup /    ur(x,x)dx
t"/Kr    \0<T<tJß2R

Because of the interpolation technique y —► oo as Kr —> 0.

3-(V). Proof of Theorem 3.2. For « = 0, 1, 2, ...  let

n

Rn = R2_^2~l,       Bn = BRn,

i=0
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and let x —> Çn+i(x) be a smooth cutoff function in Bn+X that equals one on

Bn and such that
2«+l "fin

|/X„|<—,        \l^n\<y—.

By a Steklov time-averaging we can rewrite (1.1) as

(1.1)* ^uh-A(um)h = 0   a.e. fir,

where V/ e L/0C(Qr), h £ (0, T), see [16]

1   /•'+A
fih(x,t) = Jij      f(x,x)dx,        t£(0,T-h).

Multiply (1.1)/, by urh~xÇn, integrate by parts over Bn+X x (x, t), Vt g (0, t)

and let h -» 0 to obtain

(3.22)

1/      Ur(x,t)Cn+ldx+    4mjr-\]     f f      \Du^-X^'2\2C2n+xdxdx
r Jb„+x (m + r- l)   7T 7b„+1

= -/     z/(x, x)Çn+xdx + ,     , „—7T /   /     um+r-xAÇn+xdxdx.
r JBn+x (m + r-l)JT JBn+¡

Proof of (33). Set

H„ = sup  /   ur(x ,x)dx,       H0=       ur(x ,0)dx.
o<t<í Jb„ Jb2R

Then from (3.22)

(3.23)
"}2n   / \     ft  /   r \{m—l+r)/r

<H0 + y2¿"   —       K
,r   \ l/r

RKr  I        "n+l

Finally applying Young's inequality we get the recursive inequalities

(3.24)

Hn < vHn+x+y(m, N, v)2^nl(\-m)
Ho+*RKr

{r   \l/(l-4

^e(0,r

By choosing v sufficiently small this implies (3.3) by an interpolation argument

similar to the one above.

Proof of'(3.4). From (3.22) with r = 1

(3.17) Hn < ¡    u(x,t)dx + -^ i   j     um(x,s)dxds.
Jb2R k   Jo Jb„+i

The proof is concluded by interpolation since 0 < m < 1 .

Remark 3.7. Inequality (3.4) is due to Herrero-Pierre [10] by a different proof.

Inequality (3.3) for r ^ 1 seems to be new.

Because of the interpolation technique y —> oo as m —> 1.  A similar be-

haviour of y occurs in [10].
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Remark 3.8. Results in all analogous to the ones above hold for weak solutions

of the /7-Laplacian equation ( 1.2) and can be proved by following the arguments

of [8].

4. Local subsolutions

The main feature of our proof of the Harnack inequality consists in ex-

panding the positivity set of u both in the direction of increasing times and

"sidewise" in the space variables. This will be accomplished by constructing

two suitable local subsolutions of (1.1). It is precisely in this construction that

the range of m given by

(4.1) K = N(m- 1) + 2 > 0,

comes into play.

Let b, k, p, 6 > 0 and consider the cylindrical domain with annular cross

section

(4.2) Q(e) = [^km~x <|x|2< l}x{O,0}.

Consider the function

k(l - |x|Q)2/m

(4J) y^ut--W)'^'     a>°-

Lemma 4.1. The constants b, a> 0 can be chosen so that

(4.4)

\fk>0,        \fp>0,        tkm~l<l,        d = mini{l~™)fiK;kx-m\ ,

y/t-Ay/m <0   a.e. Q(6).

Proof. Set

p = \x\,        \z\=kx-mbÇ,        9- = (l + \z\),

km ,
W = ==—7T,-t, V = (l-pa)í, Wm = WV .

Since \pm is radial A\pm = (\¡/m)" + ^-J^(\pm)', where the derivatives are meant

with respect to p.

By direct calculation

(4.5)

2«z    (w\ \z\
w' =

1 - m \p

2m    ( w \ \z\ (  2m   \z\     ,      2
+ 1-7=

1 - m \p2J y VI -mP
v' = -2apa~x(l - pa)+,Í4 6) [v' = -2ap-

K ' ' 1 v" = -2a(a - l)pa~2(l - pa)+ + 2a2p2a-2 .

Form the expressions (y/m)' = w'v + wv', and (y/m)" = w"v + 2w'v' + wv"
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using (4.5)-(4.6) and compute

2m   (w\ \z\    ( »r , 2W      \Z\■N+1 + -—y+ i
1 - mSr

-1\
1 - m \p2

(4-7) + TJ^a {%) wpa{l - pa)+ - 2a{a - 1} Q?) pa{x - pa)+

+ (N-l) -2a\~)pa(l-p-)+ + 2wa p2 „2a-2

Drop the last nonnegative term and observe that the first term in brackets on

the right-hand side of (4.7) equals

«->■{■
■N +

1 -m&

We obtain

.   m ^    2m   (w\ \z\ xr        2Aym > -,—- [ — ) -=\v { -N +

(4.8)
1 -m \p2J y

+ 2a(j^p°(l-pn + {-l

We impose on \z\ to be so large that

1 - my,

4m   \z\

mJ
yV + 2 -}■

■N + 2     \z\      N(m-l) + 2

(4.9)
i-my

> K -

1 - m

2

(i -w)y

(l-m)y

>0.

Next we choose a so that the second term in brackets on the right-hand side

of (4.8) is nonnegative. This is accomplished as follows.

f     ,      /   ir        2     \z\\     2(2m-l)|z|     .
{■■■}= [-N+--y ] + A--bè + 2-

>

1 -my

2(2«j- l)\z

l-m   y

1 -m   y
+ 2-a.

If m > j we take a = 2.IfO<m<¿ we estimate

{■••}>-2 +
2m

1 - m
+ 2-a,

and we take a = 2m/(I - m).
Combining these calculations we have

for all \z\ so large that (4.9) holds. Next calculate

k(l - pa)2¡m      \z\      wx/m   ]z[ 1

^ ~ (l - W)yi/(i-m)+i T - T^«7uy 7 '



HARNACK ESTIMATES 795

and combine with (4.10) to obtain

(4.11)

^*(y/) = [y,t-Ay/mfp2{
\z\wv

< w(i-m)imBÍ _ 2m (-N + —?—JjH < \ - 2m (k - -—*—=) ,
t       V       l-myy-fe       v    (i-m)yy

since
flJ(i-«)/«£! = fe'"mV/? = 1  i^i   < I

í       ¿y      ô \z\ +1 - ô "

From the definition of the cylindrical domain Q(9) in (4.2), \z\ =kx~mb\x\2/t

> p/t so that 1/y < t/p. These remarks in (4.11) give

r*.*/   x      1 4m/
-S" V  < r + ñ-r- - 2mK ■

b     (1 - m)p

To prove the lemma we choose

(4.12) ff = £«£(lpm) è = _L_
4 WK

4-(I). Scaling and comparison. The constants Z> > 1, a > 0 being fixed, the

functions

,A*n        < .    ^ k(Xa-\x-x*\a)2¿mX-2<*/m .     n

(4.13) n(x -x.;t-t.)={l + kl_mb]x _ x<|2/+ _ u))m_m) ,    X>0,

are subsolutions of ( 1.1 ) in the annular cylindrical domain

(4.14) QÍX) = | À2pkbm  ' < |x - x» |2 < X2\ x {i., u + X26},

provided p is chosen to satisfy

(4.15) pkm~x/b<l.

On the parabolic boundary of QlA) we have

(i) For |x-x,|2 = X2pkm~x /b, U<t<U+X2Q, y/x(x - xj - tt) <k,

(ii) For ¡x - x»|2 = X2, U<t<tt+ X2d , y/x = 0,

(iii) For t = U , >Px = 0.

Thus if u solves ( 1.1 ) in a domain containing giA) and if

X2ukm~l
(4.16) u(x,t)>k,        |x-x»|2 = —i-r-,     t, < t < U + X2d,

then by the comparison principle

(4.17) u>Wx   inßiA).

For remarks on the comparison principles see Appendix D.

4-(II). Time expansion of positivity. The next subsolution of (1.1) will be em-

ployed to expand the positivity set of u in the direction of positive /.

Let po > 0, k > 0, set

(4.18) S(t) = (-j^L + p2) ,        i>0,
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and consider the function

<4-19> «*'>>=sw*(l-m)t •
where ß, £ > 1.

The proof of the following lemma can be found in [1].

Lemma 4.2. The numbers Ç, ß > 1  can be chosen a priori only in terms of
m, N so that

(4.20) Vk,p0>0,        <p,-A(pm<0,    a.e.RNx(o,^—-^\.
V        mi    J

Remark 4.1. The constants í, ß are "stable" as m —> 1.

4-(III). Subsolutions of the p-Laplacian equation. We construct here analogues

of the functions ip and cp . Let b, k, p, 9 > 0 and consider the cylindrical
domain with annular cross section

(4.21) ß(0) = {-£z-xkp-2 < \x\p < l} x {0, 6},

where p, b, k are so that pkp~2/bp~x < 1.
Consider the function

k(\ - \r\hp/{p~X)
(4.22) ¥ = [1 _,_ /c(2-p)/(p-l)¿,(|_xrjp/?)l/(p-l)](p-l)/(2-í.) •

Lemma 4.3. The constant b = b(N, p) can be chosen a priori only dependent

upon N and p, so that

(4 23)
VA; > 0, V/i > 0 satisfying (4.22),

% - div^DV^DV) < 0   o.e. Q(6),        6 = mini (y\      ß; k2~p \ .

The proof is similar to that of Lemma 4.1 and we postpone it to Appendix

B.
The analog of the function cp in (4.19), for equation (1.2) is

iMp-i)t0P«/(p-D

d>(x,t)-

(4.24) RW{P-1)

\p\i/(p-i)
1

R(t)

(¿ + ^).
¿2~P

where k,b ,£,, ß, po are positive numbers.

Lemma 4.4. The numbers b, Ç, ß > 1 e:a« be chosen a priori only in terms of

p, N, so that

(4.25) \/k, po > 0,    ®t-div(\D®\p-2D®)<0,    a.e.RNx\0,
k2-"^

The proof is analogous to that of Lemma 3.1 of [1].

Remark 4.2. Also t,, ß are "stable" as p —> 2 .
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5. Space-time configurations

Locally bounded weak solutions of ( 1.1 ) are locally Holder continuous in the

interior of their domain of definition, VO < m < 1. When m > (N - 2)+/N,

i.e., k > 0, this result exploits a space-time geometry whose precise configura-

tion is needed in what follows.

Let (x ,1) £ ÇlT, Rq > 0, BRo = {\x -x\ < Ro} and consider the cylinder

QRo = BRo x {1 - co¡7~mRl ' '} ' wnere ojo> 0 is any number satisfying

(5.1) ess sup « < cúq.

For each (x, 7) £ fir, VRo > 0 such a cylinder can be constructed (see [6])

provided Ro is so small that QRo c fir .

Proposition 5.1. There exist numbers no £ (0, 1), Co  depending only upon

N, m satisfying the following.
For given Ro, coo construct the sequences

(5.2) Rn = C77nRo,        co„ = rjocon-x,    «=1,2,...,

and the family of nested cylinders

Qn = BRn x{t- co\-mR\ , 7}.

Then

(5.3) ess ose w < eo„ ,        «=1,2,....
Qn

The proposition will be proved in Appendix B.

The construction in (5.1)—(5.3) implies the Holder continuity of u via an

interpolation argument (see [6, 16]). In particular we have

3 a constant A = A(N, m) such that VO < p < R0,

(5.4)
ess osc u(-, t) < Acoo ( ■£- )   ,

b„ \Ro)

where a = - logCo n0 .

Remark 5.1. The constant A can be quantitatively determined a priori only in

terms of Co, ?/o •

Remark 5.2. The proof in Appendix B shows that

(N-2)+
Co(N, m) —► oo   as m

n0(N, m) -> 1      as m

N

(N-2)+
N      '

i.e., as k = (N(m — 1) + 2) —> 0. However, such constants are "stable" as

m -» 1, i.e., C0(tV, m) -* C0(N, 1) < oo and n0(N, m) - r¡0(N, 1) £ (0, 1)

(see also §l-(iii) of [6]).
Even though local solutions u of ( 1.1 ) with no sign restriction and for all m €

(0,1) are in C£c(fir) for some a £ (0, 1), the specific form of Proposition
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5.1 holds only for nonnegative solutions and for m > (N - 2)+/N, i.e., k > 0
(see Appendix B for further details).

6. Proof of the Harnack inequality

We let w be a nonnegative locally bounded weak solution of ( 1.1 ) in Q^.

Let Po = (xo, to) £ fir , assume that u0 = u(Po) > 0 and construct the cylinder

QR(u(P0)) = {\x - x0| < R} x {to - [u(P0)]x-mR2, to + [u(P0)]x-mR2}.

We assume R is so small that Q4R(u(Po)) c fir • Without loss of generality we

may assume that (xo, to) = (0,0). The change of variable

x-x0 _        t - to _      u

c_ ~^~'    x~[u(Po)Y-mR2'      =wm'

maps Q4R(u(Po)) into Q4 = B4 x (-4, 4), and the transformed function v

satisfies
vr-Aivm = 0   inQ4,

v(0,0) = 1.

Denoting again with x, t, u the transformed coordinates and the new func-

tion, to prove the theorem it will suffice to show that we can determine a priori

constants yo, ô £ (0, 1) depending only upon N and m such that

(6.1) inf u(x, ô) > y0.
x€B,

6-(I). Locating the sup of u in Q4. For 5 £ (0, 1) construct the family of

"increasing" cylinders

Qs = {\x\ < s} x {-ôs, 0},

and the numbers

tV/^NIocca*      Ns = (i -i)-2/(1"m).

Remark 6.1. Since u £ L^c(Qt) , Mo = No and Ns -> oo as s -> 1, the

equation Ms = Ns has a largest root, say So ■ Thus

(6.2) MSo = (1 -So)-2/(i-),        M{x+So)/2 < 22/('-m)(l -So)-2/(1-",).

Since u £ Cgc(fir), MSo is achieved at some point (x, 7) e QSo and in view

of (6.2)

(6.3) sup       w(x,7)<22/(|-w>(l-50)"2/(1_w)-

|*-3c|<(l-i0)/2

See Figure 2.

Remark 6.2. Here ô £ (0, 1) is a small number to be chosen and has the effect

of rendering "flat" the boxes Qs ; i.e., points in Qs, s £ (0, 1) are at most as

away from the hyperplane / = 0.

Lemma 6.1. There exist a small positive number e £ (0, 1) that can be deter-

mined a priori only in terms of N and m, such that

(6.4) u(x,t)>t(l-so)-2/{[-m),    V|x-x|<e(l-50).

Proof Set (1 - So)/2 = 4R and construct the box

Q^ = {|x-x|<4i?}x{7-4,7}.
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Figure 2

Apply to such a box the estimate (3.8) with the appropriate change of variables,

to obtain

supw(x, t) < y ( i  u(x,l)dx\     + yi?"2/(1_m),
Qr \jbr )

where

QR = {\x-x\<R}x{t-l,t}.

In view of (6.3) and the definition of R

(6.5) sup   u(x, t) < yx(l - s0)-2'{x-m),
ö(l-s0)/8

where yx = yx(m, N).
Next consider the cylinder

(6.6)
f QRo = {\x - x\ < R0} x ft - y\-m(l - so)-2R2o, 7},

\i?o = (16yS1-m)/2)-1(l-^o).

By virtue of such a construction we have

(6.7) Nloo,ÖRo<y.(i-*or2/(1-m),

and QRo  satisfies the space-time configuration of §5.   Therefore by (5.4) we

conclude that

VO < p < R0   V|x - x| < p,    at the level 7,

u(x,l) > u(x, 7) - Ayx(l - So)-2l(X-m) (j^j   .

Since u(x,l) = (l - s0)~2/{X~m), by taking p = nR0, n £ (0, 1) we find

w(x,7)>(l-50)-2/(1-m)(l-^iO,

V|x -x| < nRo = n(l6y\x-m),2)-x(l - s0),

and the lemma follows by taking n small enough.

6-(II). Time-expansion of positivity. The previous arguments are independent

of the number ô (see Remark 6.2). We will now determine S .
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\x\¿ = S(t)

X\\\\/\\\\\\\\\\\\\\\\\\\\\\l

(0,0)

25

T)R0 = £(\-s0)

6î„

Figure 3

Lemma 6.2. There exist small positive numbers Co, ô that can be determined a

priori only in terms of N, m, such that

(6.8)
w(x,/)>e-0(l-s0)-2/(1-m),

V|x-x| <e(l-s0),    Vr5</<2<?.

Proof. After a translation assume (x, 7) = (0, 0) and consider the comparison
function <p defined in (4.9) with the choices

k = \(l -so)-2l(X-m),       p0 = e(l-s0).

The function cp is a subsolution of (1.1) in RN x (0, 3ô) where

(6.9) 30 =
kx~mp2 _ e22-"-

m£, m£,

(mô2 \-m + i:

ß/m

For / = 0 by virtue of Lemma 6.1, u > cp and cp vanishes on |x|2 = S(t),

t > 0. Therefore by the comparison principle

u>cp   in {|x|2 <S(t)} x {0< t< 3(5}.

In particular for ô < t < 33 and |x| < e(l - so),

^(1 _Ä0)-2/(l-m)

U{X,t)-[3mS2i^) + l]il"> '

= co(l-5o)"2/(1-m).

In terms of the original coordinates

M(x,í)>C0(l-50r2/(1-m),

V7 + ô < t < 7 + 33.

|x -x| < e(l -so),

The location of 7 in the box QSo is only known qualitatively. However, as

7 ranges over (-ci, 0), the intervals [1 + ô < t < 1 + 33] have the common

intersection [6 <t <26] and the lemma is proved. (See Figure 3.)
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6-(III). The final step: sidewise expansion of positivity. Let Q* be the box (see

Figure 1)

Q*(x, S) = {|x - x| < s(l - Jo)} x {S. 2c5}.

We will expand the positivity set of u over the ball {|x| < 1} at the time level

t = 2S. For this it will suffice to prove that there exist a constant y o = yo(N, m)

depending only upon N and m such that

(6.10) u(x,2ô)>y0,    V|x-x|<2.

After a translation we may assume that the centre-bottom of Q* (x, S) is (0,0).

Consider the comparison function ip given in equation (4.3) with k =

Co(l - So)_2^1_m' > where Co is determined in Lemma 6.2.

Observe first that if y/ is a subsolution of (1.1) in Q(6), via the change of

variable x —> Xx, t -* X2t, the functions

■i-2almh-Cia       \v\a\^lm

(6.11) n =
(l+kl~>»b\x\2/t)l/(l-m)'

are subsolutions of (1.1) in the annular regions

(6.12) QW = \^-km~xX2 < \x\2 < X2} x {0, X26),

for the same values of b, p, 6 as determined in Lemma 4.1.

The number p here can be determined by imposing

p, m ,     e2(l -so)2      . b   e2

We choose

Í1      be2]
ß = mm\4>c^VJ>

and pick 8 according to (4.12). By further restricting either p or the number

ö of Lemma 6.2 we may assume that 6 = X2ô . Take X = 3 in (6.11). Then on

the parabolic boundary of ß(3) we have

(i)   \x\ = 3, 0 < t < 6, u(x, t) > i//i(x, t) = 0,
(ii)   ¡xj = e(l - so), 0 < t < 6 by Lemma 6.2,

VAX, t) < Co(l - s0)-2/{X-m) < u(x, t),

(iii) for e(l - j0) < |x| < 3, y/3(x, 0) = 0.

Therefore by the comparison principle for t = ô, V|x| < 2

,      ...      co(l-Jo)-2/(1-w)(3a-2Q)2/w3-2a/'" ...      .

U{X ' S) * (l + Ml-^--^-4i/f)'Ai-) " 70(7V' m) ■

6-(IV). The case of m near 1. The previous proof makes use of (3.8) so that

the constants ô, yo in (6.1) tend to zero as m -> 1 (see Remark 3.5). We will

give a proof of (6.1) that holds only for m near 1 but it is "stable" for m —► 1,

i.e., ô(N,m),y0(N,m)^ô(N, 1), y0(N, l)e(0, 1) as m -> 1.
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Theorem6.1. Thereexists m» £ ((N-2)+/N, 1) andconstants y^ = y^(N,m»),

S* = ô*(N, m«) e (0, 1) jwc« that if m» < m < 1

u(x,ô,)>y^,    Vxeßi.

Proof. As before construct the family of increasing cylinders Qs = {\x\ < s} x

{-ôs, 0} and the numbers

A/^iiMiu.a,    Ns = (\-s)-y,

where y is a positive number to be chosen. The definition of the numbers Ns

differs from that in §6-(I) in the arbitrariety of the exponent y.

Since u £ L¡^c(íí», Mo = No, and Ns —► oo as s -> 1, the equation

Ms = Ns has a largest root, say Jo . Thus

(6.13) MSo = (I - s0)-y,        M{x+So)/2<2?(l-So)-?.

Since u £ C{L.(Qt), MSo is achieved at some point (x, 7) e QSo and in view

of (6.13)

(6.14) u(x,t)<2'>'(l-so)-y,    \x-x\<l—r^,    l-ô]-^<t<l.

Let
Ro = j2-t1-")/2(l - s0y{X-m)/2(l - Jo),

and consider the box

Q0 = {\x-x\<Ro}x{l-[2?(l-s0)-?](l-m)/2R2o,~t}.

Assume first Jo is so close to 1 that ô > ¡¡( 1 - Jo), so that from the definitions

of Qs, Ro we have Q0 c Q(i+So)/2 ■

By virute of (6.14) \\u\\OOtQ0 <2y(l - so)~y and ßo satisfies the space-time
configuration of Proposition 5.1. Therefore

V|x-x|</>,        |m(x,7)-M(x,7)|<^2''(1-jo)-5'('-|-^   .

By taking p = tjRo and then n sufficiently small we have

Lemma 6.1'. There exists a small positive number e £ (0, 1 ) that can be deter-

mined a priori only in terms of N, m such that

(6.16) u(x,l)>\(l-s0)~r,    V|x-x| <e(l-j0)(y(1-m)+2)/2.

Remark 6.3. The constant e depends upon y but it is "stable" as m —> 1 since

no use has been made of (3.8).

We now expand the positivity set of u by using the comparison function cp

in (4.9) with the choices

k = \(l-so)-y,        po = e(l-so)(y(x-m)+2)l1.

Proceeding as before we find

u(x, tx) > x(l - So)~y ,

\x-x\<(l+a)po = e(l+o)(l-so)(y{[-m)+2)/2.
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where er, x are numbers that can be determined a priori only in terms of N, m

and are "stable" as m —> 1.
We apply again the comparison function cp starting from the level tx , with

Po replaced by (I +a)p0 and k replaced by t(1 - j0)~'' , to obtain

M(x,i2)>T2(i-j0r3\

V|x - x| < (1 + a2)po = e(l+ a)2(l - So)W>-'»)+2)/2.

(618Ï / £2(l-j0)2(l+a)2T1-"'
(6-182) í2 = tl + -W^h^-•

By iteration we find a sequence of expanding balls

Bn = {|x - x| < e(l + a)n(l - so){y{X-m)+2)/2},        «=1,2,...,

and time levels

(6.19) io = h        *-i =tn + ffi.'ffil + cr)2»T('-)" ,
satisfying

(6.17„) u(x,tn)>xn(l-So)-y,    inB„.

We choose « so large that B„ covers the ball centered at zero of radius 1,

i.e.,

(6.20) e(l+CT)"(l-j0)(),(1-m)+2)/2 = 2,

where we have assumed, without loss of generality that the solution of (6.20) is

an integer « . Then from (6.17„) for |x| < 1

(6.21) u(x,tn)>xn(l-so)-y=(^)ly ^[Til + cT)2^1-'"^2»]".

Choose y so large to satisfy t(1 + a)2yl2, = 1. Then if m is so close to 1 as
to satisfy y (I - m) < 1, we obtain from (6.21)

,£s2yl(y(\-m)+2)

u(x, tn) > y0 = \^-j

It remains to estimate the time level /„ . From (6.19)

(6-22) tn=l+^-^±((l+o)2x^f-x\
S   i=\

Then if m is so close to 1 as to satisfy in addition (1 + er)2T(1_m) > 1 we find

from (6.22) and (6.19), (6.20)

_7    e2(l-Jo)2[(l + g)2T('-'">]"-1

"      + 2<1-"')m£ (l+cr)2T(1-'")-l

^-ô+2l^[rn{l'S0rïrm

>-S +
4 /£x2y/(y(l-m)+2)_1_ (i)

2V-">)m£, \2)
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To prove the theorem we choose ô so small that

4 /£s2y/(j.(l-m)+2)       ¿
-Ô +

Kl) =2=S*2(l-m)m£

Finally, the numbers ô, y being fixed, if ô < (1 - Jo) we have (1 - so)~y <

(2ô)~y. Therefore we have a quantitative estimate of the sup of u in the

cylinder Q0. We may assume without loss of generality that \ < Jo < 1.

Indeed if not, from the definition of the numbers Ms and Ns it would follow

that \\u\\00,Qi/2<2?.

In either case we conclude that there exists an absolute constant V such that

IMU,e1/2<F,      M(0,0) = i.

By the Holder continuity

u(x, 0) > Co , |x| < £o ,

where the numbers Co, £o depend upon V and can be a priori determined by
applying Proposition 5.1. We are now in a position of expanding the positivity

set of u by using the comparison function cp of (4.9).

Remark 6.4. Our results generalize to the case when the right-hand side of ( 1.1 ),

(1.2) is replaced by f(x, t, u) provided 0 < f(x, t,u) < F(l + \u\) for a
constant F . The growth conditions insures the Holder continuity as well as the

sup estimates of §3. The positivity permits the application of the comparison

principle.

Appendix A: on the Holder continuity of solutions

Let « be a locally bounded local weak solution of ( 1.1 ) in Çlj, with no sign

restriction and for any m £ (0, 1). Fix h £ (0, 1), (x, 7) e fir and construct

the cylinder

(A.l) Qfo = {|x-x| < R0} x {l-cox0-mR2,l + hcox0-mR2},

where coo is any positive number satisfying ess ose unw < coo, and Ro is so

small that ßg c fir •
The Holder continuity of u can be established by adapting the arguments of

[6, see also Remark (d), p. 323], leading to

Proposition A. There exist numbers no, Co depending only upon N, m, and h

satisfying:
for given Ro, coo construct the sequences

' Rn = C7^"R0;        con = r¡ocon-X,    «=1,2,...,

(A.2) < and the family of nested cylinders

k Qlh) = BRn x {7 - cox-mR2n , 7 + hcoxn-mR2} .

Then

(A.3) essoscw < eo„,        « = 1,2,....
Qih)

The numbers Co / oo and n0 / 1 as h -> 0.
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The new information contained in Proposition 5.1 is that if u > 0 and if

m > (N - 2)+/N, then h can be taken to be zero. This fact is connected

to Remark 2.2 of §2. Indeed, if Proposition A were to hold with « = 0 and

C0 < oo, no £ (0, 1), then a Harnack estimate would hold for all m e (0, 1).

We will point out, in the course of the proof of Proposition 5.1, where such a

circumstance occurs.

A-(I). Proof of Proposition 5.1. The proof follows mainly the ideas of [6] and

therefore familiarity with that work will be assumed. The new fact is an expan-

sion of positivity (Lemma A.l, below) which is possible because of the compar-

ison function ip of §4.

If R, v > 0 consider the TV-dimensional cube

KR(x, v) = { max |x, - x,| < u{X-m]/2R} ,
[l<i<N J

and the (N + 1 )-dimensional box

CR(x, l;v;coo) = KR(x, v) x {7- coxQ-mR2, 7},

where e^o is any number satisfying

(A.4) ess osc    u < coo.
CiR(x,t;u,w0)

Proposition 5.1 will be a consequence of

Proposition A.2. There exist v > I, no £ (0, 1 ) that can be determined a priori

only in terms of N and m such that

ess ose    u < rjocoo.
CR(x,l;i> ,w0)

Proof. We let v = 2s*, where j* is a large positive integer to be chosen only

dependent on m and N. Without loss of generality we may assume that

„(l-m)/2 _ 2i*((l-m)/2) _ ^

is an integer and, following [6], subdivide K2R(x, 2s*) into v0N pairwise dis-

joint subcubes K2R(Xj, 1), j: = 1, 2, ... , v0N. We consider also the boxes

Cg = K2R(xj, 1) x {7 - cox0-m(2R)2, 7},        j = 1,2, ... ,v».

The proof is based on the following two alternative statements.

Lemma A.l. There exist numbers ao = ao(N, m) and i/o = t]o(N, m) £ (0, 1)
JMC« that,

If for some l<j<v0N,

meas{(x, /) £ C(2R\u(x, t) > coo/2} < aomeasJC^},

then

(A.6) u(x,t)>n0co,        (x, t) £ CR/2(x, 7; 2s*, co0).

Lemma A.2. If (A. 5) fails to hold for all j = 1, 2, ... , v0N, then

(A.7)   u(x, t) <     ess sup     u - (1 - r/o)coo, V(x, /) £ CRß{x, 7; 2s*, coq) .
CR(x,'t;2s* ,w0)
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The proof of Lemma A. 2 follows step by step the same arguments of §5 of

[6] and we omit it.

Proof of Lemma A.l. By adapting the proof of Lemma 3.1 of [6] we deduce

u(x,t)>\coo,        (x,t)£CRJ).

We switch from the cubes Kr(xj , 1), K$R(x, 2s*) to the balls

BR(Xj) = {\x-Xj\ < R},        Bm(x, 2s*) = [\x-x\ < 2i*«1-m>/2>8JR},

and from CRj) and C%R(x, 7; 2s*co0) to the cylinders

Q^ = BR(Xj)x{l-cox0-mR2,l},

QiR(x, 7; 2**, coo) = BSR(x, 2s*) x {1 - cox0-m(8R)2, 7}.

Thus inside the cylinder Q»R(x, l;2s*,co0) there exists a cylinder Q^ such

that

(A.8) u(x,t)>co0/4,        (x,t)eQRJ).

Consider the comparison function y/¿(x - x* ; / - /*) defined in (4.13) with

the choices
<k = \coo,        X = 2s'«x-mV2\4R),

(A. 9) < (x*, /*) coincides with the bottom center

lofßy\ i.e.,(Xj,l-cox0-mR2).

The function y/¿ is defined in the annular region

(A.10) ßiA) = {R2 <\x- x.|2 < X2(4R)2} x {/,, /, + X26}.

The condition X2pkm~x/b = R2 implies

hml~m

(A.11) P = ^    ,°        , ,v ' r"       ^3_„¡2s'(I— m) '

and by (4.4) if j* is sufficiently large we choose

(A. 12) X26 = cox0-mR2.

By the comparison principle, in view of (A.8) we have for  |x - x»|2 <
2R2s'{(\-m)l2)   and  u + œl-mR2/4 <t<U+ COX0-mR2 ,

,      , ^ (3\alm coo (t     /too^-» ^^-'d—)\"1/(1"W)

t]o = 1o(N, m,s*).

Remark. The comparison function y/¿ holds for k > 0 and r¡o above depends

upon the constants b, a of Lemma 4.1. From (4.9) and (4.12) it follows that

a -» 0 and b —> oo as k —► 0, so that no -» 0 as k —» 0.

Appendix B: proof of Lemma 4.3

The function x —► ^(x, t) is radial and decreasing, so that writing (1.2) in

polar coordinates we have

&(V) = % - div(|DT|p-2DvI/)

(B-1) = ¥, + (^—1-\ (-Y)p~x -(p- l)(-V')p-2x¥",
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where
d d2

p = \x\,       4" = -^4',        4"' = -rV*'.
dp dp1

We write

(-4")2-^(¥) = (-x¥')2-p'¥t + SIÇV),

(B.2) A7-1
âê(*¥) =-(-4") - (p - 1)4"',

and calculate ¿%Ç¥) as follows.

First we set

, |r|p\i/(p-D

( T" '

w = y(P-i)/(2-P) »      ^ = (i-W2)^-'),   V = wv

Then by direct calculation

(B.3)
(w

P\P

, p    (w\\z\

p  \2 (w\ lzl2 i    p   fwWz\ P2
2-Pj   \P2) &2     2-p\p2) ¥     (2-p)(p-l) \p2) y2'

¡ v' = -^-x(l-p2)x^-x\

P      .4/,2(1 _ /,2)(2-p)/(p-l) _ _?P_(1 _ ^2)1/(1,-1)
(p-rr"v   "; p-1

> —^-(i -pzynp-i).
p - I

We calculate the expressions 1" = tuv' + id'î; and 4"' = w"v + 2w'v' + wv"

from (B.3) and combine them into 307^1) to obtain

Rewrite the first factor in braces on the right-hand side of (B.4) as:

We will impose on \z\ to be so large that

(B.5) f'-2Jhw<0-

This is possible since N(p -2)+p = tc>0.
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The second term in braces on the right-hand side of (B.4) is negative if we

choose \z\ to satisfy (B.5). If N = 1, 2 this is a direct consequence of (B.5).
If N > 3

(P
.. (N-\       2p   \z\     ,1

=   N + '  -(3-2p)l§ + (p-2).
2-p9r) ' 2-p

The first term is negative in view of (B.5) and the second is negative since

p > 2N/(N + 1) > | if TV > 3. We drop the last negative term on the right-
hand side of (B.4) and estimate

(B.6) &(*¥)<
P   \P'2 - v " \ o2 ) y

N-
2-/?y

We return to (B.2) and estimate above the term (-4")2_/'4',.   First using

(B.3)

-4"< w
(  2p
\p-l

Also

Therefore

P \P-

% =

^"'(f
1 \z\ 1--011)7^-.

2-p   y t

(-4")2-p4'i <
w

-P \P

2-p

vw
\z\ 1

We combine this with (B.6) into (B.2) and set

£?*(*¥) = (-Y)2~p[% - div(|£)4/|p-2Z)4/)](2 ~^XP  ,

to obtain

vw\z\

5f*(V)<yw2-pP-+p N-
2-p,

From the definition of w and \z\

w 2-PP"

i + kl

p-i

and

(B.7) ^'(T) < tJtt +

ô1-î'<

-/c +

1

bp~l '

¿p-1     2-p

We will choose \z\ so large that /?/y < K/2- From the construction of the

cylinder ß(0) in (4.21) we have

|x|P/(P-l)fc(2-p)/(p-l)¿ > ^1/ÍP-l) >

and to prove the lemma it will suffice to choose 0 < t < 8 = (ic/2p)p~xp .

Appendix C: proof of Lemma 3.3

Let |x| = p so that

g
(e2-p2K

pN\lnp2\"i '
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2 ^ „2

Dg = -f2Fx,

DF-x =

Dgm =

4a2

(Inp2)2-i2 +

M
4fli/>2

e2 - p2

N+2o2 + 2axp

+

Inp2

4axp4

e2-p2 }•

(e2 - p2)2 '

.T£-Fx      A2m-^-tX,      ¡Xg     -        2

where

= mF2 -(N- 2)F +
4a2 4axp2 4axp4

(Inp2)2

We estimate 7%? below by using the fact that

N-2

£2-^2 (e2~P2)2

m =
N

We have V/?2 < e2

>{-^F2-(N-2)F

N>3.

4axp2 4axpA

N (e2 - p2)+     (e2 - p2)2+

>4ax

+

„,<^>-i
N

2ax(N-4)p2

(e2-p2)+
+ 8axa2

(e2-p2)2+

(N-2)

+
2(N-2)a2

Inp2

„2

N     (Inp2)(e2 - p2)+

Choose

(C.l) ax =
2N

,} _ 2e-^k,
N-2'

where ü2, k > I will be chosen later. Then if kü2 > In4

at™       ,ir
ln/>2 (e2-/J2)+ 11

+
N-4     4N-2

(C.2)

(e2-/J2)+  '2 fc    /V

On the set lf¡ = {e~ka2 < p2 < e2} , we have p2/(e2 - p2)+ > 1 and

4(N-2)     A p2        ¡N-2     2(N-2)'" (*2> - + ^TT2 -p2)Ak '(e2- p2)+ \

Thus we may choose k so large that

(C.3) X>0   in^î

On the set §2 = {P2 < e~kai} , we have

Nk

(C.4) >
2(N - 2)a2       8/Y

Inp2 N-2(e2-p2- n2\

(4-N)+     2(N-2)
Nk

Next if Z = (1 - ht)+g, by computation we have

^f(Z) = Zt-AZm hg-(l-ht)™^

g{-h-(l-ht)^
m-\

'}•
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On %i in view of (C.3), 3*(Z) < 0. On the set r2

ç?tZ)<J  A,       rn(e2-p2)rl
-*(¿)^g\     «+/>jV(m_1)+2|ln/,2|«2(m-l)

2(N-2)a2     JN_  __p±_   /(4-/V)+     2(N-2)

|ln/?2|      ' N - 2 (e2 - p2) \      2 Nk

Since Ar(m - 1) + 2 = 0, we may select a2 = N/2 to find &(Z) < g{-h + C}
where C is a constant depending only upon N (and the choices of ax, ü2 , k).

To prove the lemma we take h = C.

Appendix D: about the comparison principle

One of the main tools in the proof of the Harnack estimate is the compar-

ison principle. Let cp > 0 be a smooth subsolution of ( 1.1 ) and consider the

cylindrical domain

ß = 0,x(ii,/2),        fi.cfi,        <9Q* smooth,        0<tx <t2<T,

whose parabolic boundary is r = dßn{/</2}- If u> cp on Y then u > cp

in ß. This fact holds trivially if ut £ L^Clj) by L1 techniques. In the weak
formulation of

(d/dt)(<p-u)+-A(<pm-um)+<0   inß,

we take as testing function an approximation of sign(^m - um)+ to yield, after

standard calculations and limiting processes, (<p - u)+ = 0 in Q.

If ut £ L/^fir) we first observe that, since Dum £ L^ÇIt) , and u is

locally Holder continuous, u is locally unique.

This can be seen by adapting the method of Oleinik-Kalashnikov-Yui-Lin

Chzhou [19]. If u, ü both solve (1.1) in Q and u = ü on T, then in the weak
formulation of

(d/dt)(u - u) - A(um -um) = 0,

we may take the testing function

n= f   (um-Hm)(-,x)dx,        tx<t<t*<t2,

to deduce «(•, /*) = «(•, /*), Vtx < t < t* < t2 , (see [19] for details).
Then within ß, we work with the smooth approximations

f §-tu£-Aunt = 0   inß,

I u£\r = u + e,       e £ (0, 1),

and deduce ue > cp in Q, Ve £ (0, 1). By the results of [6], ue £ Ca(Q)

uniformly in e, for some a £ (0, 1), depending only upon N, m . Thus u > cp

in Q.
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