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BAND SUMS OF LINKS WHICH YIELD COMPOSITE LINKS.
THE CABLING CONJECTURE FOR STRONGLY INVERTIBLE KNOTS

MARIO EUDAVE-MUÑOZ

Abstract. We consider composite links obtained by bandings of another link.

It is shown that if a banding of a split link yields a composite knot then there is

a decomposing sphere crossing the band in one arc, unless there is such a sphere

disjoint from the band. We also prove that if a banding of the trivial knot yields

a composite knot or link then there is a decomposing sphere crossing the band

in one arc. The last theorem implies, via double branched covers, that the only

way we can get a reducible manifold by surgery on a strongly invertible knot is

when the knot is cabled and the surgery is via the slope of the cabling annulus.

Introduction

We consider here the problem of when a banding of a link k yields a com-

posite link. There is a trivial situation in which a composite link is produced.

This is when one of the summands of k is not perturbed by the band, i.e.,

there is a decomposing sphere disjoint from the band. There are other cases

which are not trivial, for example the square knot is a band sum of trivial knots

(Figure 1).

Definitions. A link k is split (or splittable) if there is a sphere Q disjoint from

k which separates its components. Such a sphere is called a splitting sphere.

Note that k is split if and only if S3 - k is reducible.

A link k is composite if there is a sphere P intersecting k transversally in

two points, such that neither of the 3-balls bounded by P intersects k in a

single unknotted spanning arc. Such a sphere is called a decomposing sphere for

k . A link is prime if it is neither composite, nor split, nor trivial.

Let P be a decomposing sphere for a composite link k. Take a tubular

neighborhood n(k') of the component k' of k which meets P. dn(k') - P

consists of two annuli. Attach one of these annuli to P - mtn(k'), to get a

torus T. Call T a swallow-follow torus for k. There is a disk D such that

D n T = dD and k intersects D transversally in one point. By doing 2-

surgery on T with D we recover the decomposing sphere. Note that in this

construction we get two swallow-follow torus.
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Figure 1

Let k be a link in S3. Let b : / x / —> S3 be an imbedding such that
b{I x /) n k = 0(7 x 97). Let kb = {k- b(I x 9/)} U 0(9/ x /). kb is another
link called a banding of k. If k = ko U k\ is a split link, where rCn, k\ are
knots, and è(/ x {/}) n k = b(I x /) n kj■, for i = 0, 1, then kb is called a èa«i/
5MOT of ko and fci .

A band is trivial if there is a sphere in S3 - k which intersects the band in

one arc parallel to b(I x {1/2}). So if kb is a band sum of ko and k\ , b is

trivial if and only if it is a connected sum of ko and acj .

A Seifert surface for a link k is a compact, oriented surface none of whose

components are closed and whose boundary is the link. Define /(&) to be the

maximal Euler characteristic of all Seifert surfaces for k .

Let k be a link, and b a band such that kb is composite. If P is a decom-

posing sphere for kb , then it is possible to isotope P so that it meets kb in two

points not in b(dlxl), and intersects the band in a collection of arcs parallel to

b({l/2} x /). For example, in Figure 1 there is a decomposing sphere crossing

the band in one arc. Our main results are the following.

Theorem 1. Let k be a link and b a band such that S3 - (k U b(I x /)) is
irreducible. If kb is composite then either

(a) there is a decomposing sphere for kb disjoint from the band; or

(b) there is a decomposing sphere for kb which crosses the band exactly in one

arc parallel to ¿({1/2} x /) ;  or

(c) there is a swallow-follow torus for kb disjoint from the band; or

(d) S3 - k is irreducible and there is a Seifert surface S for k with x(S) =

X(k), and such that the band intersects S transversally always in the same di-

rection.

We prove Theorem 1 in §§1-5, using sutured manifold theory and a lengthy

combinatorial argument.

Theorem 2. Let k = fco U k\ be a split link, for knots ko, k\, and let kb be a
band sum of ko and k\. If kb is composite then either there is a decomposing

sphere disjoint from the band, or there is a decomposing sphere crossing the band

in one arc parallel to b({\/2\ x /).

Apply Theorem 1 to the more special case of Theorem 2. Note that under

the hypothesis of Theorem 2, case (d) of Theorem 1 cannot happen. We use
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the combinatorics of [BE] to prove that if (c) happens then this is because we

are in the trivial case (a). This is shown in §6.

Theorem 3. Let k be the trivial knot, and kb a banding of k. If kb is composite

then there is a decomposing sphere which crosses the band in one arc parallel to

¿({1/2} xJ).

Apply Theorem 1 to the case when k is the trivial knot. Note that cases (a)

and (c) of Theorem 1 cannot happen. Making a combinatorial argument we

prove that if (d) happens then (b) also happens. This is shown in §7.

Corollary 1. Suppose k = ko U k\ is a split link, and kb is a band sum of ko
and k\. Suppose kb is a composite knot and that there is no decomposing sphere

disjoint from the band. Then kb has two prime summands, and one of them is

a two-bridge knot.

It is proved in [BE] that if a band sum of trivial knots yields a composite

knot, then one of the summands is a two-bridge knot.

Corollary 2. Suppose k is the trivial knot and kb is a banding of k. If kb
is a composite knot or link, then it has two prime summands, one of them is a

two-bridge knot or link.

S. A. Bleiler [B2] has proved that if k is the trivial knot and kb is composite,

then kb has a two-bridge summand.

Theorems 2 and 3 tell us that most of the knots and links obtained by band-

ings of the trivial knot or a split link are in fact prime, unless there is a summand

which is not perturbed by the band. For example, suppose a banding of the triv-

ial knot or a band sum of a split link yields a composite knot or link, and there

is no decomposing sphere disjoint from the band. Now do some twists to the

band to get a new knot or link; then this new knot or link is in fact prime. This

observation is made more precise in Corollary 3, stated in §7.

Corollaries 1, 2, 3 are proved via Theorems 2, 3, and tangle theory [L].

Corollary 1 is proved in §6, and Corollaries 2, 3 in §7. Theorem 3 has an

interesting consequence on surgery of knots, specifically we have

Theorem 4. Suppose k is a nontrivial strongly invertible knot in S3. If some

surgery on k yields a reducible manifold then k is cabled and the surgery is via

the slope of the cabling annulus.

This is proved using Theorem 3, the fact that the manifolds obtained by

surgery in a strongly invertible knot are double branched covers of S3 [M],

and the fact that a link is prime if and only if its double branched cover is

irreducible [KT]. This is shown in §8.
Throughout the paper we assume familiarity with the theory and the notation

of sutured manifolds as presented in [SC3]. The paper should be interpreted as

being in the P.L. category. We refer to [R] or [H] for standard facts in knot

theory and 3-manifolds.
I would like to express my sincerest gratitude to Professor Martin Scharle-

mann for his supervision of this work which formed part of my Ph.D. thesis at

the University of California at Santa Barbara. I am thankful to the referee for

his suggestions.
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1. Preliminary arguments

1.1. Let ß be the planar "eyeglass" 1-complex consisting of two circles ßo and

ßi and an arc ßa joining them. Regard j? as a complex in E2 c E3, and

let U and W be regular neighborhoods of ß in E2 and E3 respectively, so

that U is a properly embedded planar surface in the genus two handlebody

W. 9 U c 9 W has three components: two of them, denoted by Co and c\,

are parallel in U to ßo and ß\ respectively. Denote the third by ca. (See

Figure 2.)

1.2. Let k be a link in S3 and kb be a banding of k . Let M — S3 - in\r\k .
Embed ß in M in such a way that /?Q runs parallel to b({l/2} x I), and that

ßo and ß\ are parallel to meridian of k ; we have that ßndM = 0. Consider

W as a regular neighborhood of ß in. M. Consider Ai as a sutured manifold,

all of whose boundary is in R+ or 7?_ , denote it by (M, y, ß). Suppose

S3 - (k U b[I x /]) is irreducible; this implies that {M,y, ß) is ^-irreducible
and dM is ^-incompressible, so (M, y, ß) is /?-taut. (M, y) may not be

0-taut, i.e. may be reducible. (0 denotes the empty set, to be 0-taut means to

be taut in the Thurston norm.) With this hypothesis we restate Theorem 1 as

follows.

Theorem 1. Let k be a link and b a band such that kb is a composite link.

Then either
(a) there is a decomposing sphere for kb disjoint from the band; or

(b) there is a decomposing sphere which crosses the band exactly in one arc

parallel to ¿({1/2} x /) ;  or
(c) there is a swallow-follow torus for kb disjoint from the band; or
(d) (M, y) is 0-taut, and there is a ß-taut Seifert surface for k which is also

0-taut; or

(e) (M, y) - (Sl xD2, 0) (i.e. k is the trivial knot), and k bounds a ß-taut

disk.

Note that if (a) happens then (c) also happens, but not vice versa. We include

both cases because they appear in different ways, (a) is just a trivial case.

It is not difficult to see that (d) and (e) of the above theorem imply (d) of

Theorem 1 in the introduction, i.e. if a Seifert surface for k is taut in the

Thurston norm then %(S) = x(k) (f°r a proof see [ST2, 1.2]).

The proof of this theorem will be as follows: First we take a yß-taut Seifert

surface S for k, and a decomposing sphere Q for kb, which will be consid-

ered as a parameterizing surface; then construct a sutured manifold hierarchy,

Figure 2
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starting with S and respecting Q. If the final step in the hierarchy is 0-taut,

we use [Sc4, 2.7 and SC3, 3.3] to get (d) or (e). This is shown in §1. If the
final step in the hierarchy is not 0-taut, then we do a lengthy combinatorial
argument to see how this final step of the hierarchy may look; we rely heavily

on 1.15 and 2.3. This is made in §§2-4. In §5 we use the information gathered

to conclude (b) or (c).

1.3. Let P be a decomposing sphere for kb . Suppose there is no decomposing

sphere disjoint from the band, otherwise we are done. Suppose P intersects

the band in a nonempty collection of arcs parallel to ¿»({1/2} x /) ; suppose this

number of arcs taken over all decomposing spheres is minimal. If the band is

trivial, then obviously there is a decomposing sphere disjoint from the band, so

suppose the band is not trivial. Note that if there is a sphere meeting ß in one

point then the band is trivial.
Assume that the arcs of intersection between P and the band are contained

in W (except by a tiny neighborhood of their endpoints). Let Q = P n (M -

int W). Q is a planar surface which has several components; some of them are

annuli for which one boundary component is in dW and the other is a meridian

of dn(k). By eliminating parallel annuli we can suppose that (Q,dQ) c

(M - int W, dM U 9 W) consist of three components, Qo, Q\ and Qa with
the following properties:

(a) Q\ (Go) is an annulus for which one boundary component is c\ c 9 W

(cq cdW) and the other is a meridian of dn(k).
(b) Qa is a connected planar surface, two of its boundary components are

meridians in dM, and the others are parallel to ca in dW.

According to [SC3, 7.1], Q is a parameterizing surface for (M, y, ß). Note
that Q is incompressible and 9-incompressible in M - int W. This is clear

for Qo and Q\ ■ If Qa were compressible then we could make an isotopy in

S3 - kb to reduce the number of intersections between P and the band. If Qa

were 9-compressible, then by looking to the possible types of 9-compression

disks and doing an argument similar to [E2, 2.6], we could again reduce the

number of intersections between P and the band.

1.4. Let 5 be a //-taut Seifert surface for k ; put S in normal position with re-

spect to Q [SC3, 7.2]. (See [Sc3, 7.7] for the definition of a sutured manifold de-
composition respecting a parameterizing surface.) It is not difficult to see and is

implicit in [SC3] that the sutured manifold decomposition (M, y) —> (M\, y{)

is /?-taut and respects Q. Here we use the notion of sutured manifold hierarchy

as presented in [Sc4, 2.1]. Construct a /?-taut sutured manifold hierarchy

(M,y,ß) ^^ (M,, y,, /?,) ^-> (Mn, yn , ßn)

respecting Q [SC4, 2.5] (see also [SC3, 4.19 and SC3, 7.8]). dMn is a collection

of spheres. S meets ßo (ß\) in one point and Qo (Q\) in one arc. Following

[SC3, 2.4(c), Sc4, 2.1] the edges ßo, ßi and ßa can be oriented so that at any
point of intersection with an S¡ (hence with R(y¡) = R+(y¡) Ui?_(9,)) the

orientation points in the direction of the normal vector to S¡. We can suppose

ß has one of the orientations showed in the Figure 3 (the choice of one of them

depends on the orientation of S\ ). The argument for the two cases is more

or less similar, and we will do both together until §4, where some differences
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k(X) = -2

Figure 4

arise. Consider R+(y¡) (R~(y¡)) as the part of dM¡ in which the orientation

points out of (into) M¡. Denote by Q, and /?, the remnants of Q and ß in

M¡. Sometimes for simplicity /?,, R+(y¡), R-(y¡), R(y¡) will be denoted by
ß, R+ , R- , -R(y) respectively.

1.5. Recall from [SC3, 7.4] what the index of a parameterizing surface is, I(Q) —

v + p. + 3Í — 2x(Q), where v is the number of sutures and ß the number of

edges that dQ crosses. For each arc ô of 9Q n n(v), where v is a vertex of

ß , define k(ô) to be -1 if S passes between an edge of ß pointing into the

vertex and one pointing out, and define k(ô) = —2 if ô passes between edges

of ß both pointing into the vertex or both pointing out (see Figure 4). The

curve ca c dW has v = 0, // = 4, and 3? = -6, and the curves Co, c\ each

have v = 0, fi = 1, k = — 1. Hence if Qa has /? boundary components in

9W, x(Qo) = -P and so 7(0») = -2p + 2p = 0. Also I(Q0) = I(QX) = 0.

1.6. Suppose that for an arc À of ß„ , which contains no vertices, there is a disk

D c Qn, such that dD = ô\ U¿2, where ¿i c >/(A), Ô2 c 9Af„ , and ¿2 crosses a
suture; X is called a cancelable arc, and D is called a canceling disk. Then there

is a product disk D' which surrounds X, namely D' = c\(dn(D U X) - dMn).

The sutured manifold decomposition (M„, yn, ß„)-» (M'„ , y'„, ß'„) is yS-taut

[Sc3, 4.2] and it is not difficult to arrange it so that respects Qn . Do enough of

these operations so that the components of Mn which contain the vertices do

not contain cancelable arcs. Still denote the last step as Mn . (Compare to [SC3,

4.3] in which a slight different procedure is made to eliminate cancelable arcs.)

1.7. Denote by Q,„ , i — 0, 1, the parameterizing surface obtained from Q¡

at the end of the hierarchy. Similarly denote by /?,-,„,/= 1, 0, the 1-complex

obtained from /?, at the end of the hierarchy. The parameterizing surface

Qi,n cQi, i = 0, 1, has I(Q,,n) < 0 [Sc3, 7.5, 7.6].

Claim. Each component q of Qin for which 9ß/,„ D rç(/?,,n) ^ 0 isa disk

for which 1(g) = 0. Indeed dqi) ßiy„ is a single arc and dq n 9M„ is a single

arc crossing a single suture.



BAND SUMS OF LINKS 469

Proof. This is similar to [STi, Claim 2]. Note that the surface S\ meets ßo
and ßi.   D

This claim implies that there is a component q of Q¡,n ,Q i° a disk, such

that dq runs through one of the vertices; all the other components of Q¡t„ are

canceling disks for an arc of /?,,„. So the bits of ßo and ß\ which do not

contain a vertex of ß can be eliminated as in 1.6, via the remnants of ß,„ .

1.8. A component of Mn which does not meet ß is a 3-ball with a single suture

in its boundary. We will disregard these trivial components and suppose with

no loss of generality that all the components of Mn meet ß . As a consequence

of this we conclude that every disk component of R± intersects ß . Note that

a component of dMn has sutures, for if there is a sphere S without sutures, it

has to meet ß . But S only can meet ßa , for all the arcs of ßo and ß\ meet

components of dMn which contain sutures. For /¡"-tautness ßa has to meet S

always in the same direction, so if ßa meets S twice or more it will imply that

there is a nonseparating sphere in S3, which is impossible; if ßa meet S once

then the band has to be trivial, contradicting the hypothesis.

1.9 Claim. X(R+(Vn)) = X(R-(7n)) ■

Proof. R± contains no closed component, so by [SC3, 1.1], Xß(R±) = \R± n

ß\ - X(R±) + I disks in R± disjoint from ß\. By 1.8 R+ and R- have the
same number of disks disjoint from ß . Also in our case \R+ n ß\ = \R- n ß\.

By y?-tautness of (M„, y„ , ß„), Xß(R+) = Xß(R-) ■ This implies that x(R+) =

x(R-).  □

1.10 Claim. Either (M, y) satisfies (d) or (e) of Theorem 1 or (Mn, yn) is

not 0-taut.

Proof. If (Mn, yn) is 0-taut then by [Sc4, 2.7] (AT,-, y¡) is 0-taut for all i> 1,
and either (M, y) is 0-taut, and so is irreducible and 9-incompressible or M

is a solid torus (i.e. k is the trivial knot). Now in any case, by [SC3, 3.3] S is
0-taut. This implies (d) or (e) of Theorem 1.    D

So in what follows we made the following

1.11 Assumption.   (M„,yn) is not 0-taut.

1.12. dMn is a collection of spheres, so (M„ , y„) is 0-taut if and only if each

sphere has only one suture and it is the boundary of a 3-ball. Note that if a

component of M„ has only one sphere in its boundary, then this sphere bounds

a 3-ball, for Mn is contained in S3.

1.13   Claim. Some of the surfaces S¡ intersect ßa .

Proof. Suppose that none of the 5,'s meets ßa .

Case 1. The boundary of the component of Mn which contains ßa is a

sphere, say T.

By 1.7, 1.8 there are only two disks components in R(y). If there is only one

suture, then (M„, y„) is 0-taut, which contradicts 1.11. So T contains more

than one suture. Then R(y) consist of two disks and a collection of annuli. By

1.9 x(R+) — X(R-), so it follows that R+   (R-) consist of one disk and m
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Figure 5

annuli. Then the innermost annulus A of i?_ must have /?-norm equal to 1,

because it meets ß once. Using the component q of ß,„ described in 1.7,

it is not difficult to see that there are two disks D\, 7)2 (take disks parallel to

the innermost disk in R+) such that 9(A U D2) = dA, [Dx U D2] = [A] in
Hi(Mn , ^(9^4)), and each one meets ß once. Then Xß(D\ UD2) = 0, but that
implies that R- is not /?-taut.

Case 2. dM„ has two components, say two spheres T\, T2 . A sphere parallel

to T\ meets ßa in one point, implying that the band is trivial.   D

1.14. Following 1.13 there are two components of ß„ which have a vertex.
Denote the component which has two ends in R+ (R-) and one in i?_ (R+)

by A+ (A-). Denote the ends of A+ by a+ , a_ , b, and the ends of A- by
d+, d- , c, where b, c are the ends which are part of ßa . a+, d+, b lie on

R+ , and «_ , úL , c lie on 7f_ . a+, ¿z_ (rf+, d-) are part of ßo (ß\) ■ 1.7
shows that a+ and a_ (i/+ and ¿_) lie in adjacent components of R± and

there is a disk # component of ßo,« (ßi,«) such that dq ndMn is an arc

joining a+ and a-   (d+ and d-) which crosses a suture. See Figure 5.

There is a collection of arcs on A+ going from a+ to b ; each such arc X

is contained in the boundary of a component of Q„ , and for this arc k(X) =

-2. Call the part of A+ which contains these arcs the negative side of A+ .

Analogously, there is a collection of arcs on A+ going from a_ to b. For each

such arc X, k(X) - -1. Call the part of A+ which contains these arcs the

positive side of A+ . In a similar way we define the negative and positive side
of A-.

1.15    Claim. No component of Q„ has negative index.

Proof. If q is a component of Q„ with I(q) = v + ß+3f - 2x(q) < 0, then
because v+p+3? > 0, it follows that x(q) > 0, so q is a disk, v+¡¿+3? = 0,

I(q) — -2, and then dq crosses no suture, and the only arcs of ß that it

can cross are the negative side of A+ or A-  (it cannot cross both of them
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because then dq would cross sutures or other arcs). So dq consist of arcs

which are contained in R+ , say, and arcs over A+ which go from a+ to b.

An application of [SC3, 6.2] shows that either there are compressible /Moops

[SC3, 6.1] for Qa in a+ or b, or there is a sphere intersecting ß in one point,

or dq c R+ . The first contradicts the 9-incompressibility of Qa , the second

implies that the band is trivial, and the third contradicts the fact that q is part
of a parameterizing surface.   D

1.16 Claim. Each component of Qn is a disk or annulus of index zero.

Proof. I(Qn) < I(Q) = 0 and Q„ has no negative index components, then

7(ß„) = 0, and each component of ß„ has index zero. For q a component of

On, J{q) = v + n+3?' -2x(q) = 0, but v+ß+3? > 0, so x(a) > 0, and then
q is a disk or annulus.   □

Note that if q is an annulus component of Qn , then dq crosses no suture,

and the only arcs of ß that it can cross are the negative side of A+ or A- .

The following lemma will avoid possible technical problems in §4.

1.17 Lemma. It can be supposed that in each step of the sutured manifold hier-

archy Qi = Qi-\ - int n(Si).

Proof. According to [SC3, 7.5, 7.6] that is the case except possibly when a prod-

uct disk, product annulus or a disk with boundary in R(y) was used in the

hierarchy. In [SC3, 7.6] is explained what changes are made to the parameter-

izing surface in that case, but in general these changes decrease the index. Let

Si be the first of such surfaces used in the hierarchy. If 7(ß) does not drop

then either there are no arcs of intersection between S¡ and ß,_i whose two

ends lie in R+ (R-), or each such arc bounds a disk in ß,_i which crosses no

suture and no arc of ß. In the last case S¡ can be isotoped to not intersect
Qi-i. After this move the manifold M¡ looks the same as if we had made the
changes mentioned in [SC3, 7.6]. Do the same to each of these surfaces.   D

This observation could be made for any /?-taut sutured manifold hierarchy

in which the index of the parameterizing surface does not decrease.

2. The combinatorial setting

2.1. Let T be one of the sphere components of dMn . The points ß nT and

the arcs 9 Qn n T can be regarded as a graph T in T. A vertex of T is a

point of ß n T and an edge is an arc component of dQnC\T, each one of its

ends is at a vertex. Denote the components of dQa - dM by a\, a2, ... , ap ,

labeled so that a¡ and ai+\ bound an annulus in dW disjoint from Qa, for

1 < i < P - 1. Denote by ea = dQ0t„ n T (ed = dQUn n T) the edge
joining a+ and a_ (d+ and d-), this edge exists for 1.7, 1.14; it crosses a

suture. Label the end of an edge in T, other than ea and z¿, with /' (i*)

if this point is over a¡ n ß in the top (bottom) part of ß (top and bottom

according to Figures 3 and 5). The collection of labels around a vertex in T,

other than a±, d±, looks like 1, 2, ..., p, p*, ... , 1* ; the collection of labels
around a±, d± looks like 1,2, ... , p or \* ,2*, ... , p*. An edge is level if
their ends are equally labeled (ignoring the asterisk). a+, a-, b, c, d+, d- are
named special vertices, any other is called a simple vertex. Call the part of

a special vertex which is contained in the negative (positive) side of A+ or
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A- the negative (positive) side of such vertex (see 1.14). b and c have both

negative and positive sides, a+ and d- have only negative side, <a_ and d+

have only positive side.

Give an orientation to Qa ; this orientation induces an orientation in the
boundary components of Qa . Two components of dQa - dM are parallel if

with the induced orientation they are homologous in 9 W, otherwise they are

antiparallel. Put an orientation on T, for example the orientation induced by

R+ , this induces an orientation on the vertices of T. Let v\, v2 be two vertices

of r, other than a± , d± . V\ and v2 are parallel if with the induced orientation

they are homologous on dt](ßa) n dW, otherwise they are antiparallel. V\

is parallel to a+ or a_ if v\ is homologous to a+ U a_ in dn(ßa U A+) n

9 W. Analogously for d+, d- . a± is antiparallel to d± for a+ U a_ is not

homologous to d+ U d- in dn(A+ II ßaU A-) C\ dW. Then all the vertices

in R+ (i?_) with the exception of a+ (d-) are parallel. A vertex in R+ is

antiparallel to a vertex in R- (other than a+, d-). We have the following

parity rule [Sei, 2.2]. Let V\, v2 be vertices of F, i, j e {1,...,p].
(1) If an edge joins parallel vertices v\ and v2 with labels i and j (i and

j*, or i* and j*) respectively, then a¡ and a¡ are antiparallel (resp. parallel,

resp. antiparallel).

(2) If an edge joins antiparallel vertices V\ and v2 with labels i and j

(i and j*, or i* and j*) respectively, then a¡ and a¡ are parallel (resp.

antiparallel, resp. parallel).

2.2. Let T be a subgraph of r, and let x e {1, 2, ... , p, 1*, ... , p*}. We
say that A satisfies condition P(x) if (see [CGLS, 2.6]):

For each vertex y of A there exist an edge of A incident to y with label

x, connecting y to a parallel vertex.

For x G {1, ... , p*} an x-path is a path in Y so that the beginning point

of each edge is labeled with x, and all its vertices are parallel. An x-cycle is

an x-path which is a cycle. A Scharlemann cycle is an x-cycle which is the

boundary of a disk without edges nor vertices in its interior. If a subgraph A

of r satisfies 7>(x) for some x, then it is possible to construct an x-path

beginning at a vertex, and then this will form an x-cycle in A.

2.3 Lemma. Let A be a subgraph of T which consist of the intersection of T

with a disk, and such that all its vertices are parallel, and that satisfies condition

P(x) for some x, then A contains a Scharlemann cycle.

Proof. It is a straightforward modification of [CGLS, 2.6.1, 2.6.2], or [BE,
4.4].   D

2.4 Claim. There is no Scharlemann cycle in Y.

Proof. If T contains a Scharlemann cycle, then either is a loop, which contra-

dicts the 9-incompressibility of Qa, or it has at least two edges, and then a

modification of [Sc2, 5.6] shows that there is a lens space summand in S3. One

of these Scharlemann cycles may be a cycle in which every edge is labeled with

1 and 1* (or n and «*), i.e. a pure level circuit in the terminology of [BE],

but in contrast with the argument there, here a pure level circuit can be used to

construct a lens space because all its vertices are parallel.   D

2.3 and 2.4 imply that there is no subgraph of T consisting of the intersection

of T with a disk, satisfying P(x) and with all its vertices being parallel.
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2.5 Lemma. Suppose that D is a disk component of R(y) which does not con-

tain a± nor d± . Then for each x e {I,... , p*} there is at least one edge with
label x in D which crosses the suture surrounding D. So there are at least 2p

arcs crossing that suture.

Proof. If this does not happen for some x then A = 7> n T has P(x), contra-

dicting 2.3, 2.4.   □

2.6 Lemma. If a disk D of R+ (R-) contains only one of a+, d+ (a- , d-),

then there are at least p edges, other than ea, e¿, crossing the suture surrounding

D.

Proof. If a- or d+ are in D, then the proof is as in 2.5, for they are parallel to

all the other vertices in D. If a+ (d-) is in D, and there are no more vertices

there then the conclusion is obvious. If there are more vertices in D then there

are at least p labels such that no edge adjacent to a+ (d-) has one of these

labels in its other end, now do for these labels the same argument as in 2.5.   D

The following two lemmas will be applied in 3.7, 3.11, 4.1, 4.2, 4.8.
Let 7> be a disk contained in T so that dD cut transversally two special

vertices, and so that either the positive or negative part of such vertices is in

D. Suppose also that all the vertices in the interior of 7> are simple, and all

the vertices in D are parallel, including the special vertices in the boundary.

Suppose that no edge crosses dD. Let A = T n D. Call the labels of the two

special vertices which meet 97), the labels of dD.

2.7 Lemma. Suppose dD is labeled with {1, ... , p, p*, ... , 1*}, in this or-
der, and A looks like Figure 6. Then either there is a Scharlemann cycle which

intersects at most one side of dD, or for each i e {1, ... , p} there is an i-path

beginning at one side of dD and finishing in the other side of dD with label

i*. Furthermore all the edges adjacent to dD have ends labeled i-i*, i.e. they

are level.

Proof. Suppose there is no such Scharlemann cycle. For the label 1, take a

1-path 7i beginning at 97), this path has to finish at the other side of 97),
otherwise there is a 1-cycle (and by 2.3 a Scharlemann cycle); so it finishes

at i\ (i\ > 1). The complementary part of y\ which contains the other
labels /s of dD has P(2), because all the vertices are parallel. Take now a

Figure 6
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Figure 7

2-path 72 beginning at dD, it finishes at dD with label i\, i\ > i\, and the
complementary part of y2 has P(3). So by induction we can take a /c-path yk

beginning at dD, which finishes at dD with label i*k , i*k > i* if k > t, and the
complementary region of yk has />(& + 1). This implies i*k = k* for all k, so

the last edge of each of these paths has labels k-k*. Repeating the argument,

but now beginning the paths at i* in dD, one conclude that the edges of dD

with label i, have the other end with label i*.   D

2.8 Lemma. Suppose dD is labeled with {1*, ... ,p*, 1*, ... , p*}, in this
order (or {1, ... , p, 1, ... , p}), and A looks like in Figure 1. Then there is a

Scharlemann cycle in D; if this cycle contains edges which meet dD then the

cycle does not contain the part of dD between the labels 1* and p* (1 and p).

Proof. Do the same as in 2.7, construct the paths yk.. After reaching the other

end of dD this path can be continued implying the existence of a k*-cycle, and
hence a Scharlemann cycle, unless this path ends with an edge labeled k*-k*

which is not possible for it contradicts the parity rule.   D

3. Possible configurations of (M„ ,yn,ß„)

The goal of this and next section is to show that there are two vertices of

T joined by p parallel level edges, one for each label, and such that these

edges when viewed in ß are bad loops (see 4.3). In this section we prove

that each sphere of dMn has at most two disks components of R(y) and list

a finite number of possible configurations of the arcs of ß in Mn . In this

and subsequent sections R(y), R+ , i?_ will denote R(yn), R+(yn), R-(yn)

respectively.

3.1 Claim. A component N of M„ which does not contain a vertex of ß is

a 3-ball with one suture on its boundary, so is 0-taut.

Proof. The proof is by induction on the number r of arcs of ß that are con-

tained in N. If r — 0 then by /?-tautness N is as required. So suppose

r > 0. Note that by 1.8 each component of dN has sutures. There are two

possibilities:
(a) There is in N an arc ß' which is part of ß0 or ß\. Then /?' is a

cancelling arc via ßo or Q\, and doing the operation described in 1.6, we get
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N', which contains r - 1 arcs of ß . By induction N' is as required, and then

it is not difficult to see that N is also a 3-ball and is 0-taut.

(b) All the arcs in N are part of ßa . Let D be a disk in R(y) ; by 2.5 there
is at least one edge crossing the boundary of D, this edge has to be part of an

index zero disk F, and as F does not meet the vertices of ß, dF crosses

a suture and goes through an arc /?' of ß , so F is a cancelling disk for ß'.

Now proceed as in case (a).   D

We are assuming that M„ is not 0-taut (1.11), and so by 3.1 we can assume

now that all the components of Mn contain a vertex of ß .

3.2 Claim. A disk D in R± must contain special vertices.

Proof. Suppose this is false. Suppose w.l.o.g. that D is in R+. By 2.5 there

are at least 2p edges crossing the suture dD. Each of these edges belong to an

index zero disk, and then these edges have to meet c or d- in its negative part,

otherwise these disks would be cancelling disks. But there are only p negative

labels in c, and if a disk meet one of these labels it also meets the corresponding

label in d- , so in cod- there are room only for p edges coming from D, so the

other p edges have to be part of cancelling disks, which is a contradiction.   D

Claim 3.2 implies that a component of dMn has at most four innermost

sutures, i.e. sutures which bound a disk contained in R± , since a± (d±) lie in

adjacent components of R± .

3.3 Claim. If a disk D in R± contains a special vertex, then the component

adjacent to it also has a special vertex.

Proof. This is clear if D contains one of a+, a_ , d+, d- . So suppose that

D contains b and no other special vertex. By 2.5 there are at least 2p edges

which cross the suture 97). At most p edges come from the negative side of

b, so at least p edges come from a simple vertex or the positive side of b. If

an edge come from the positive side of b, its other end meets either a_ or

the negative side of a special vertex, and if the edge come from a simple vertex
then its other end has to meet the negative side of a vertex, so there is a special

vertex in the component adjacent to D.   D

3.4 Claim. A disk D in R± contains at most two special vertices.

Proof. Suppose D contains three special vertices, say a+, d+ and b. The

component E adjacent to D will contain a+ and d- . If c is in E, then by

3.2 there are no more sutures, and then £ is a disk, so Mn is a 3-ball with a

suture in its boundary, and so is 0-taut by 1.12, which contradicts Assumption

1.11. If c is not in E, then there is another disk 7>' such that c is in D'. D'

cannot be adjacent to E, since both are in R- , so in the area adjacent to 7>'

there is no special vertex which contradicts 3.3.   D

3.5 Claim. A component T of dM„ has at most three disks components of
R(Y).

Proof. By 3.2 T has at most four innermost sutures. So suppose T has four

disks of R(y), call them D\, 7>2, 7>3, T>4 . Then, say, b is in 7>!, c in D2,
a± in T>3, d± in T>4 . Let E- (E+) be the area adjacent to D\ (D2), it contains

special vertices by 3.3. Then E- (E+) contains either a- or d- (a+ or d+)
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Figure 8

and must be adjacent to two disks components of R+ (/?_). It follows that

E- , E+ are three-punctured spheres.

Case 1. d- is in E- .
Then d+ is in T)4, and £_ is adjacent to 7>4. There are, by 2.5, at least

2/7 edges which cross 97>i , and p of them have to meet d- , for only p may

come from the negative side of b . By 2.6 there are p edges which cross 9T>4 ,

and they have to meet a special vertex; but there is no special vertex in To-

other than d- , and there is no place in d- for these p edges. So this case it

is not possible.
Case 2. a- is in £_ .
Then a+ is in 7)3, and £_ is adjacent to D3. There are 2p edges which

cross 9 A . If they come from simple vertices, then they must meet the negative

side of a vertex, but there is no such vertex in 7s_ . Then the 2p edges come

from b ; p of them have to join the positive side of b and a_ . By 2.6 there are

p edges which cross 9 7)3, they cannot come from simple vertices, so the only

possibility left is that these edges come from a+ , cross 9 7)3, dD\ and then
meet the negative side of b. This argument implies that there are no simple

vertices in D\ and 7)3. A similar situation happens in 7>2, 7)4 and E+ . We

have a situation as in Figure 8; now it is not difficult to see that E- is then

compressible, which contradicts /?-tautness.   D

3.6 Lemma. Let D be a disk in R±. Suppose that the area adjacent to D

is an annulus E. Suppose a+ (d-) is the only special vertex in D. Then D

contains simple vertices and E contains either c or d- (b or a+).

Proof,  a- (d+) is in E.

Claim 1. There are simple vertices in D.

If a+ is the only vertex in D, then E is not /?-taut. To see that consider two

disks D\,D2, so that 9T>i U dD2 = dE, and [E] = [7>i U D2], these disks can
be chosen so that D\ meets ß in one point and 7>2 meets ß in as many points
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as E does, say n . Then Xß(E) = n , but Xß(D\ UD2) = n- 1. This contradicts

the /?-tautness of E. Note that this construction can be done because of the

existence of a disk in Qo,n whose boundary go through a+ , a- and crosses a
suture (cf. 1.7).

Claim 2. No edge adjacent to a+ crosses dD (other than ea).

Suppose an edge n adjacent to a+ crosses dD. At most p-\ edges adjacent

to a+ meet simple vertices in D, so there are p + 1 labels which are not the

other end of an edge adjacent to a+ ; for each one of these labels we can find

an edge which crosses 97> (the argument is similar to that of 2.6) and then

there will be at least p + 1 edges coming from simple vertices which cross dD.

These edges have to meet the negative side of a vertex, but in the negative side

of a vertex there is room only for p edges, so this is not possible.

Then the p edges which cross dD come from simple vertices and have to

meet the negative side of a vertex, the lemma follows.   D

3.7 Lemma. Let D be a disk in R± . Suppose that the area adjacent to D is

an annulus E. Then a- (d+) cannot be the only special vertex in D.

Proof. Suppose a_ is the only special vertex in D. Then a+ is in E. D

contains simple vertices and no edge adjacent to a_ crosses dD (other than

ea). The proof is similar to that in 3.6. By 2.6, and because at a special vertex

there is room only for p edges, there are exactly p edges which cross dD

(other than ea).

Claim. The p edges which cross dD meet the negative side of b.

The other possibility for these edges is that they meet a+. For each i,

i = I, ... , p , take a /*-path A, starting at a_ . Each path has to cross dD,

and then meet b or a+ . This produce the p edges which cross dD. So suppose

that for some i, X¡ finishes at a+ . X¡ is an z'*-path in DUE which starts in
a- and finishes in a+ , and so that X¡ U ea bound a disk D' c D U E. d+ is not

in D', for then d- would be in D . There is no other vertex in the interior of

E n 7>', for if there are vertices, less than p edges join a+ and these vertices.

So there are more than p labels ; in these vertices, at which no edge coming
from a+ is incident, so for each such label there is a ./-path in E n D' which

has to cross the part of dD lying in D', that is, there are more than p edges

crossing 97), but this is not possible. Either the label (i - 1)* or (/' + 1)* at

a- lie in D', say the label (i - 1)* , i as above (possibly 1* = /'*). It is not

difficult to see that A,-_ i lies in D', and so it finishes at a+ . Continuing in this

way as in the proof of 2.7, we conclude that either there is a Scharlemann cycle

in D, or X\ consists of level edges, starts at a_ and finishes at a+ , and X\ U ea

bound a disk D" with interior disjoint from T. D" can be used, as in 2.4, to

construct a lens space in S3, which is impossible. So we conclude that the p

edges which cross the suture 97) meet the negative side of b .

If p = 1 there is an edge with label 1* at a simple vertex in 7) and label 1 at

b, which contradicts the parity rule. So suppose p > 1. Let r¡\ (r¡p) = (edge

adjacent to b at label 1 (p)) C\E, and let a be the arc in b, which go through

the negative side of b, and which joins the labels 1 and p . Then v\ U^Ua

U (arc on 97) joining r\\ and r\p) bounds a disk F c E. We have two cases:
Case 1. The positive side of b is not in the interior of F .
Then all the edges adjacent to the negative side of b lie in F. No ver-

tex is in the interior of F, for if there is one, then by 2.3 we could find a
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Scharlemann cycle inside F . The negative side of b has labels 1,2,... , p,

and b is antiparallel to all vertices in D. Relabel the negative side of b by

1*, 2*,... ,p* ; with the new labeling the negative side of b appears as a vertex

parallel to all the vertices in 7). Note that the parity rule still holds under the
new labelling. Now an application of 2.8 —where a- and the negative side of

b are considered the boundary vertex—yields a contradiction.

Case 2. The positive side of b is in the interior of F .

Then no edge adjacent to the negative side of b is in the interior of F . a+

must lie in F, for otherwise as the positive side of b is in F, we could find

a Scharlemann cycle in F. a+ has labels 1,2,...,p, and it is antiparallel

to all vertices in F . Relabel a+ by I*, 2*, ... , p* ; with the new labeling a+

appears as a vertex parallel to all the vertices in F . Now an application of 2.8—

where a+ and the positive side of b are considered the boundary vertex—yields

a contradiction.   D

3.8 Lemma. A component T of dMn has at most two innermost sutures.

Proof. By 3.5 a component T of dM„ has at most three innermost sutures,

so suppose T has three disks 7>i, D2, 7)3 components of R(y). The other

components of R(y) are annuli and a three punctured sphere F. By 1.9

X(R+) = X(R-) > so necessarily the disks A , T>2 and F belong to the same
part of R(y), R+ or i?_ , say R+ , and the remaining disk 7)3 belong to R- .

Then F cannot be adjacent to the disks A, / = 1, 2. The area adjacent to

D\ and D2 has to consist of annuli. We can assume that b is in A or 7>2,

for otherwise d+ would be the only special vertex in one of A or D2 con-

tradicting 3.7. So without loss assume that b is in A • If A contains both

special vertices a+ and d+ , then c is in A;, and there will not be a special

vertex in the area adjacent to A > contradicting 3.3. So by 3.7 A contains

only a+ , and a- is in the adjacent annulus.
Case 1. c is in A •
Then by 3.6 the annulus adjacent to A contains d- as well as a- . Then

the annulus adjacent to A could contain no special vertex, again contradicting

3.3.
Case 2. c is not in A •
Then d- is in A and by 3.6 c is in the annulus adjacent to A • Again

there is no special vertex in the annulus adjacent to A •   □

3.9 Lemma. Let D be a disk in R± . Suppose that the area adjacent to D is

an annulus E. Suppose a_ (d+) is in E, and b(c) is the only special vertex in

D. Then either c or d- (b or a+) are in E.

Proof. Suppose a_ is the only special vertex in E. There are 2p edges which

cross the suture dD, none can come from a simple vertex, for there is no special

vertex with negative side in E, so the 2p edges crossing 97) are adjacent to

b. It follows that there is no simple vertex in D. The p edges adjacent to the

positive side of b have to meet a_ . There is an index zero disk q , with dq

running from a_ to b along ß and then running across a suture. Then using

q (as in 3.6, Claim 1), we can find two disks A , A , so that dD\\JdD2 = dE,
and [E] — [A U A] • These disks can be chosen so that A meets ß in one

point and A meets ß in as many points as E does, say n . Then Xß(E) = n ,

but Xß(D\ U A) = n — 1. This contradicts the /?-tautness of E. Then c or

d- are in E.   D
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3.10. Suppose first dMn has only one boundary component. This boundary

component has two innermost sutures, which determine two disks, and by 1.9

one is in R+ and one in R- , denoted by D+ and 7)_ respectively. Denote by

£■_ , E+ the annulus adjacent to 7>+ and 7)_ respectively. Note that there may

be more annuli between E+ and 7s_ . D+ and T>_ contain special vertices by

3.2, and E+ and E- also contain special vertices by 3.3.

3.11 Claim. D+  (T>_) does not contain both a+ and b  (d- and c).

Proof. Suppose D+ contains a+ and b. It contains no other special vertex by

3.4. a- is in E- .
Subclaim 1. No special vertex is in E- , other than <a_ .

If c or d- are in E- then d- or c will be the only special vertex in 7>_

and E+ will contain only d+ , contradicting 3.6 or 3.9.

Subclaim 2. There is no edge joining the positive side of b and a- .

Suppose r\ is such an edge, joining a_ and b and crossing 97)+ . So there

is a zero index disk q whose boundary consists of n plus an arc over ß going

from a+ to b (this is the only possibility, for otherwise I(q) > 0). n plus

the arc joining a+ and a_ divide the complement of D+ in two parts. One of

these parts is a disk E' contained in E- . If E' contains simple vertices then
there would be more than p edges coming from simple vertices and crossing

9 A, but in D+ there is room only for p of these edges, so no vertex is in

E'. It is not difficult to see, using q and ßo, « , that there is a disk F c M„ ,

so that dF = a U X, a is an arc over D+ joining a+ and b , X is an arc over

ß , going from a+ to b , (int/7) n ß = 0 ; use F to isotope D+ and find a
surface homologous to D+ but intersecting ß in fewer points, contradicting

the /?-tautness of D+ (this is the same argument as in [SC3, 6.2], which was

applied in 1.15).
Subclaim 3. No edge adjacent to the positive side of b or a simple vertex

lying in D+ crosses dD+ .
If there were one it had to meet the negative side of a special vertex lying in

£■_ , but there is no such special vertex.
Subclaim 4.  No edge adjacent to a+ crosses the suture 97)+  (other than

ea)-

If there is one, then by an argument similar to 3.6, Claim 2, there are p + 1

edges which cross 97)+ , at least one of them has to come from the positive side

of b or from a simple vertex, which contradicts Subclaim 3.

Then the p edges adjacent to the negative side of b are the only edges which

cross dD+ . a+ has labels 1,2, ... , p and is antiparallel to all other vertices in

A • Relabel a+ by \* ,2*, ... , p*, then now it appears like a vertex parallel

to all other vertices in D+ . An application of 2.8—where a+ and the positive

side of b are considered the boundary vertex—yields a contradiction.   D

3.12 Claim. Suppose that a+ is the only special vertex in A > then we have

the following possible cases:
Case 1. c is in 7)_ , <a_ and d- are in TL , b and d+ are in E+ .

Case 2. d- is in 7)_ , a- and c are in 7L , d+ and b are in E+.

Proof. If a+ is the only special vertex in D+, then by 3.6 there are simple

vertices in D+ and either c or d- are in A > but not both of them. If c is in

£■_ , thenúL is in T>_ , d+ is in E+ , and b has to be in E+ too (by 3.6), so
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we have Case 2. Note that in this case there may be more annuli between E+

and E- .

Suppose now d- is in E- and c is in 7)_ . There are 2p edges which cross

the suture 97)_ .

Subclaim. No edge adjacent to the negative side of c crosses dD- .

Proof. There are p edges which come from T>+ and meet d- , all of them

come from simple vertices (3.6, Claim 2). Let rj be one of these edges. There

is an index zero disk q which contains n in its boundary , dq also contains

an arc on ß joining simple vertices, an arc on ß going from d- to c, and an

arc joining the negative side of c and a simple vertex, which crosses no suture

(this is the only possibility for otherwise I(q) would be positive or there would

be a loop in 7)_, contradicting 2.4). This implies that the edges adjacent to

the negative part of c meet a simple vertex lying in 7)_ , so they do not cross

97>_.
There are 2p edges which cross the suture dD- , which come from simple

vertices or the positive side of c. These coming from simple vertices have to

meet the negative side of a vertex, so b has to lie in E+ . Those edges coming

from the positive side of c, have to meet d+ or the negative side of a vertex.

Meeting d+ is the only possibility left, so d+ has to lie in E+ . Therefore we

have Case 1. Note that in this case there are no more annuli in R(y).   O

Dually we have the following

3.13 Claim. Suppose that d- is the only special vertex in 7)_ , then we have

either Case 2 as in 3.12 or
Case 3. b is in D+, a_ and c are in E- , a+ and d+ are in E+.

3.14 Claim. Suppose that b is the only special vertex in A > then one of the

following cases occur:

Case 3 as in 3.13.
Case 4. a- and d- are in D- , c is in E- , a+ and d+ are in E+.

Case 5. a_ and c are in 7)_ , d- is in E- , a+ and d+ are in E+.

Case 6. c is in T>_ , a_ and d- are in E- , a+ and d+ are in E+.

Proof. Suppose first that a_ is in E- . Then by 3.9 either c or d- are in E- .

If c is in E- , then d- is the only special vertex in 7)_ , and by 3.6 a+ is in

E+, so we have Case 3. If d- is in E- , c is in 7)_ , and a+ and d+ are

in the same component, then because there should be special vertices in E+ it

follows that a+ and d+ are in E+ and so we have Case 6.

Now suppose that a- is not in E- . c or d- are in E- but not both, for

a- would be the only special vertex in 7)_ . If c is in £_ , then d- is in 7>_ ,

and by 3.13 no case is possible if d- is the only vertex in 7)_ , so a- is in 7)_

and we have Case 4.

Subclaim. If d- is in E- then a+ is in the area adjacent to E- .

There are 2p edges crossing 9 D+ , p of them come from simple vertices or

the positive side of b and have to meet d- . The remaining p edges cannot

meet a special vertex in E- , and so come from the negative side of b . Doing

an argument similar to 2.6 (recalling e¿) shows that for each edge adjacent to

the negative side of b we can find a path in E- which eventually has to cross
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dE- and then meet the negative side of a vertex, that is, it has to meet a+ . So

a+ is in the area adjacent to E- .

If d- is in E- then c is in 7)_, and by the subclaim a+ and d+ are in

the same component, so E+ has to be adjacent to E- , for otherwise there will

not be special vertices in E+ . Then we have Case 5.   D

Dually we have the following

3.15 Claim. Suppose that c is the only special vertex in 7)_ , then one of the

following cases occur:

Case 1 as in 3.12.
Case 6 as in 3.14.
Case 1. a+ and d+ are in D+, b is in E+, a- and d- are in E- .

Case 8. b and d+ are in D+, a+ is in E+, a- and d- are in E- .

In 3.12, 3.13, 3.14, 3.15 we have described all the cases in which only one
special vertex is in an innermost disk. If an innermost disk contains two of

a±, d± , then the other innermost disk contains only a single special vertex, so

these cases are covered. Therefore the only remaining case is when b and c

are in the innermost disks but are not the only special vertex there. By 3.11

it is not possible that b and a+ are in the same innermost disk, so the only
remaining case is the following:

Case 9. b and d+ are in T>+ > a- and c are in D- > d- is in E-, a+ is

in E+.

3.16. When dMn has only one boundary component the following are all the

possible configurations of the vertices. Recall that this boundary component

has two innermost sutures, one is in R+ and one in i?_ , denoted 7>+ and T>_

respectively, and E- , E+ are the annuli adjacent to D+ and T>_ respectively.

Case 1. a+ is in D+, c is in 7)_ , a- and d- are in E- , b and d+ are

in E+.

Case 2. a+ is in A > d- is in 7>_ , a_ and c are in E- , d+ and b are

in E+.
Case 3. b is in D+ , d- is in 7)_ , a_ and c are in E- , a+ and d+ are

in E+.

Case 4. b is in A » a- and d- are in 7)_ , c is in £_ , a+ and i/+ are
in E+.

Case 5. è is in D+ , a_ and c are in 7)_, d- is in £_ , a+ and 6?+ are
in E+.

Case 6. b is in A » c is in 7>_ , a- and úL are in E- , a+ and úf+ are
in E+.

Case 7. c is in 7>_ , a+ and rf+ are in D+, ¿> is in £+, a_ and d- are

in 7i_ .
Case 8. c is in 7)_ , £ and i/+ are in D+, a+ is in E+, <a_ and d- are

in £_ .

Case 9. è and d+ are in 7)+, a_ and c are in 7)_ , <af_ is in E- , a+ is

in E+.
Note that in Cases 2, 4, 7, 9 there may be more annuli between E- and E+ ,

but in Cases 1, 3, 5, 6, 8 there are not more annuli. See Figure 9.

Suppose now that dM„ has more than one boundary component. Indeed,

by 3.3 there are at most three, but we will shortly see that it has only two.
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case 1 case 2 case 3

case 4 case 5 case 6

case 7 case 8 case 9

Figure 9

3.17    Claim. A component of dMn meets both A+ and A-.

Proof. Suppose a boundary component T meets only A+ . We have the fol-

lowing cases:

Case 1.  T meets only a+ and a- .

Then T has only one suture y, and two disks D+, 7)_ . If T does not

meet simple vertices, then there is a sphere parallel to T meeting ßa in one

point, showing that the band is trivial. If T>+ meets simple vertices, then there

are p edges coming from simple vertices which cross 97)+ and they have to

meet the negative side of a vertex in 7)_ , but there is no such vertex. If 7)_

contains simple vertices and D+ does not, then an argument similar to that in

3.7 (Claim) shows that either there is a Scharlemann cycle in 7)_ or a l*-path

joining a- and a+ , which consists of level edges and bounds, together with

ea , a disk with interior disjoint from F; as in 3.7 this yields a contradiction.

Case 2.  T meets only b.
This contradicts 3.3 (note that by 1.8 T has sutures).

Case 3.  T meets a+ , a_ , and b .

If a+ and b are in the same innermost disk, then because T does not meet
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case 10 case 11

Figure 10

A- , an argument similar to 3.11 yields a contradiction. If b is in an innermost

disk and a+ is in the other, then there is an annulus between these disks, which

only contains a_ , which contradicts 3.9. If b is an innermost disk and a_ is

in the other, then there would not be special vertices in the area adjacent to b,

which contradicts 3.3.   D

3.18. Note that 3.17 implies that dMn has only two components, denote them

by T and V. Applying 3.17 it is not difficult to see that we have only the
following two cases. See Figure 10.

Case 10. T meets a+, a- and c, and V meets d+, d- and b. By 3.6

and 3.7 each sphere contains only one suture; a_ and c are contained in a

disk of T, and a+ in the other; d+ and b are in a disk of V, and d- in the

other.
Case 11.  T meets a+, a_ , d+ , d- and V meets b and c. By 3.3, 3.6 and

3.7 each sphere contains only one suture; a disk of T contains a+ and d+,

and the other contains a_ and d- ; a disk of V contains b and c is in the

other.

4. Finding a set of parallel edges

We will concentrate on Case 4 of 3.16, because it is representative, and the

proofs for the remaining cases are similar.

4.1 Claim. If Case 4 of 3.16 happens then the orientation of ß is as in the

Figure 3(a).

Proof. 2.5 implies that there are at least 2p edges crossing the suture 9A • P

of them come from the positive side of b or from simple vertices and have to

meet c in its negative side, for in the negative side of c there is room only for

p edges. Then 2p edges across dD+, p comes from simple vertices or the

positive side of b, and p from the negative side of b. This implies that no

edge in 7)_ crosses 97)_ (other than za, ed), for otherwise there would be a

component of Qn with positive index. If ß has the orientation of Figure 3(b),

d- has labels 1,2, ... , p . d- is antiparallel to all vertices in 7)_ . Relabel

d- by 1*, 2*,..., p*, so that it comports like a vertex parallel to all vertices
in D- . Note that the parity rule still holds under the new labelling. Apply 2.8
to this situation, considering a- and d-  as the vertex in the boundary.  So

2.8 implies that there is a Scharlemann cycle in T>_ , which is a contradiction.
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Then the orientation of ß is as in Figure 3(a), and the negative side of c is in

the bottom of ß .   D

4.2 Claim. All the edges adjacent to the positive side of b, the negative side

of c, a- and d- are level.

Proof. As in the proof of 4.1, 2p edges cross dD+, p come from simple

vertices or the positive side of b and meet the negative side of c, and p come

from the negative side of b . So no edge crosses dD- (other than ea, e¿). As

ß has the orientation of Figure 3(a), d- has labels I*,2*,...,p*. Relabel
d- by 1, 2, ... , p, so that it comports like a vertex parallel to all the vertices

in D- . Apply 2.7 to this situation, considering a_ and d- as the vertex in

the boundary. Then 2.7 shows that the edges adjacent to a_ and d- are level.

This implies that the edges adjacent to the negative side of c and to the positive

side of b are level.   D

4.3. 7(ß) = 7(ß„) = 0, so by 1.17 we can assume that ßi = ß - int n(S),
Qi = Qi-i -int n(Sj), for all ß, in the hierarchy, and then dQ„ = (QndM„)U
(Qnßn). Also ßnr = 9ß„nr.

Look at the graph A in the planar surface Qa formed by its intersection with

the sphere T c dM„ . A vertex of A is a circle of intersection between ß and

Qa , and the edges are the arcs of intersection between Qa and T. As in 2.1

denote the vertices of Qa by a\, a2 , ... , ap . We say that a loop rç in A is bad

if the two circles of intersection of Qa with dM are in distinct components

of Qa - t], otherwise it is good. Note that a level edge in Y correspond to

a loop in A. Choose one of the boundary components of Qa which lie in

dM, denote it by Y ; define the interior of a loop in Qa as the component

of its complement which does not contain Y. Label the vertices of T with

1,2,...,«; 1 corresponds to a± , 2 to b, n - 1 to c, and n to d±, label

the other vertices in the obvious way. Label the end of an edge in a¡ with j

(j*) if this point corresponds to an intersection between a¡ and the vertex in

T labeled with j, and it lies in the top (bottom) of ß .

4.4 Claim. The level edges adjacent to the positive side of b, the negative

side of c, a- , and d- are bad loops in A.

Proof. We distinguish two cases.

Case 1. There are arcs of ß running from D+ to T>_ . So there are more

vertices in Y.

In this case there are 2p edges crossing dD+ , p coming from the negative

side of b and p coming from simple vertices.

Step 1. The level edges adjacent to the positive side of b correspond to bad

loops in A.
If one of them is a good loop, then there is an innermost one; let n be this

loop, n in T has an end in the positive side of b and the other end in the

top part of a simple vertex, its ends in Y are labeled with i*-i, say. n in

A is a loop based at a¡. n in A looks as in Figure 11. Now because r\ is
not adjacent to a±, d±, the Seifert surface S has to meet Qa in an arc a as

shown in Figure 11, a has one end in ß0 , say, and the other in ßa . If the other

end of a is in the bottom part of ß , this would contradict that the orientation

of ß points in the direction of the normal vector to S ; if this end of a is in

the top part of ß, then o will cut a disk qx , with I(q\) = -2, which will be
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Figure 11

Figure 12

a parameterizing surface in its own right in M\, and then I(qn) < -2, which

contradicts 1.15 (an alternate argument: Note that in this situation there is an

isotopy which moves the Seifert surface intersecting ß in fewer points, which

contradicts the /?-tautness of S).

Note that the loops corresponding to the level edges in a_ are parallel to

these corresponding to b , so they have to be bad loops (this is because there is

a disk q of Q„ which made them parallel).
Step 2. The level edges ending in the negative side of c are bad loops in A.

Each of these edges join c and a simple vertex, with both ends in the bottom

part of these vertices. Suppose one of these edges corresponds to a good loop t

in A ; let r\ be the loop parallel to x which corresponds to a level edge adjacent

to d- , so n is a good loop. We have something similar in Figure 12. Let F be

the disk in Qa bounded by r\. x is inside F and there are no vertices inside

F because each vertex in A has a bad loop by Step 1. Note that r\ in T crosses

no suture. Let S¡ be the first surface in the hierarchy which meets the interior

of F . Then either S, meets F in a closed curve, which will form a disk of ß,

with boundary contained in R(y), contradicting that ß, is a parameterizing

surface, or S¡ meets F in a collection of arcs, each with ends in the bottom

part of ßa . But the two intersections of ß and S¡ corresponding to the ends

of one of these arcs have a different sign, which contradicts the /?-tautness of

S¡. This implies that the loops in A corresponding to the level edges adjacent

to the negative side of c and d- are bad loops.

Case 2. There is no simple vertex in D+ , D- .
Then the positive side of b and the negative of c are joined up by p level

edges, and so are a_ and d- . If one of these level edges corresponds to a good
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Figure 13

loop in A, then there is an innermost one. Let n be a level edge joining b

and c which corresponds to an innermost good loop in A ; let x be the parallel

loop corresponding to an edge joining a- and d- , and note that x crosses

no suture. If n is inside x then proceed as in Step 2 above. So suppose x

is inside r\, we have something similar in Figure 13. Look how the surface S

meets Qa in the vertex in question; it meets Qa in one arc a , with one end in

ßo > and the other end either in ßa or ß{ . In any case S cut a disk q\ with

7(<7i ) = -2 which is a parameterizing surface in its own right in M\, therefore

q„ has negative index, which contradicts 1.15.   D

4.5 Remark. If p > 1, there are two possibilities of how the negative side of

c joins the vertices of D+. Let n\ (np) = (edge adjacent to c at label 1*

(p*)) n E- . Let a be the arc in c, which go through the negative side of c,

and which joins the labels 1* and p*. tji U r\p U a U (arc in 97)+ joining t]\

and np) bounds a disk F c E- . If the positive side of c is in the interior of

F, so are the edges coming from the negative side of b. Doing an argument

as in 4.2 we can show that all the edges adjacent to the positive side of c and

negative side of b are level, and doing an argument as in 4.4 they correspond

to bad loops in Qa . In this case 4.6 and 4.7 are easier. If the positive side of

c is not in F, all the edges adjacent to the negative side of c lie in F, and

no other vertex or edge is in F. In this case we cannot assure that the edges

adjacent to the negative side of b are level. This made the complications of

4.6. Also an edge adjacent to the negative side of b may cross two sutures and

meet a+ . An edge adjacent to the positive side of c may cross a suture and

meet d+.

4.6 Claim. Suppose that there are simple vertices in D+ , 7)_ . Then there is

a vertex v = ax in Qa so that all the edges adjacent to v are loops, except

possibly those with labels 1,2, 3,4 (or («-2)*, («-3)*), and all the loops are
bad loops, except possibly one with labels n, n - 1 or 1,2, which correspond

in T to an edge joining the positive side of c and d+ , or an edge joining the

negative side of b and a+ .

Proof. 4.4 says that in A each vertex has bad loops with one end labeled

1*, 2*, (n - 1)*, n*. Take an innermost vertex v — ax in A, so in one of

the sides determined by the loops at v there are no more vertices. Let n¡ be

the loop at v with one label /'*, for i= 1, 2, n- 1, n . Then either r}\ of nn-\
contains the other three loops in its interior, suppose first that n\ is the outer-

most of these loops. The other end of t]\   (n2) is labeled j (j+l), j < n-2.
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The other end of r¡„-\ (nn) islabeled (k + l)* (k*). If k+2 ^ «-1 then there
is a loop at v with labels s*, t*, k + 2<s<t<n-l but this implies that

in T there are simple vertices joined by an edge with labels x* - x* ; this edge

cannot cross a suture, for no edge joining simple vertices crosses a suture, so the
two vertices are parallel, which contradicts the parity rule. So k + 2 — n - 1,

and r\n-\ is an innermost loop.

Suppose first that there is a good loop in v , with labels n,n-\ (note that

this is the only possible good loop in the interior of r¡\, any other good loop

would contradict the parity rule, as above; this loop corresponds to a level edge

with labels x joining c and d+). So because k + 2 = n - 1 the number of

labels between the labels 2* and k*, which is n - 6, has to be equal to the

number of labels between j + 1 and n - 1, and this forces that j = 3, i.e. all

the edges incident to v are loops, except perhaps those incident to the labels

1,2.
Suppose now that there is no good loop at v . Then incident to the labels n ,

n - 1 are two bad loops, for these labels are the interior of ni. The number

of labels between the labels 2* and k*, which is n - 6, has to be equal to

the number of labels between j + 1 and n*, and this forces that 7 = 5, and

then all the edges incident to v are loops, except perhaps the edges with labels

1,2,3,4.
If n„-\ is the outermost loop then a similar argument shows that all the edges

adjacent to v are loops except perhaps those with labels (n - 2)*, (n - 3)*. The

only possible good loops have ends labeled 1,2 or n, n - 1. This completes

the proof.   D

4.7 Claim. In Y there are two vertices joined by p parallel level edges, one

for each label, which cross no suture, and these edges correspond to bad loops

in A.

Proof. Suppose first that there are simple vertices in D+, 7)_ . Note that in T

two vertices labelled i, i+l are antiparallel, so only one of 3,4 (or n-2, n-3)

can be at D+ . 4.6 implies that there is a label x e {1, ... , p} , so that all the
edges in 7)+ incident to a label x or to a label x* have to be level, except

possibly one, i.e. the incident to the vertex 3,4, n-2 or n-3. But in A

there is the same number of labels x and x*, and there is exactly one edge with

label x (the adjacent to b) and one with label x* (joining a simple vertex and

c) in E+ which cross 9 A , which forces that all the edges adjacent to a label

x* or x are level. Take a x*-path y in D+ beginning at b. It is formed by

level edges and ends at c, but it must meet all the vertices in A , for otherwise

there would be a x*-cycle formed with the vertices missed by the path. Say y

meets the vertices in the order vo = b, V\, v2,... , vm = c. y U (edge incident

to b at label x) separates A in two parts. Take now an (x-l)*-path X (ora

(x+ 1)*) beginning at b ; all its edges lie in one side of y. X eventually crosses

9 A- and meets the negative side of c. If X does not meet the vertices in D+

in the same order as y, then there is a first vertex at which they disagree, say X

meets the vertices in the order v0,Vi, ... ,vk,vs, s / k + 1. If s < k, then

A is a z*-cycle; if s > k , then the part of y from vk to vs and the edge of X

joining vk and vs enclose an area which has P(x - 1), so there would be an

(x - l)-cycle, and then a Scharlemann cycle (cf. Lemma 2.3). Then X meets

the vertices in the same order as y does, so it consists of level edges. Repeat
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the same process for (x - 2)*, etc. This implies that all the edges in D+ are

level and that two consecutive vertices in the path y are joined by p parallel

level edges. In particular this shows that the positive side of b is joined to a

simple vertex by p level edges. By 4.4, Case 1, these edges correspond to bad

loops in A.
If there is no simple vertex in D+, T>_ , then a_ and d- are joined by p

level edges which cross no suture, and by 4.4, Case 2, these edges correspond to

bad loops in A.   D

4.8. Now we outline a proof of 4.6 for the remaining cases. Cases 5, 7, 8 are

similar to Case 4. In these cases b or c is the only special vertex in 7)+ , there

are 2p edges which cross the suture dD± , p come from the negative side of b

or c, p come from simple vertices or the positive side of b or c and meet a

special vertex, and in E^ there is only one special vertex. An argument similar

to 4.1 shows that Case 7 is possible only when ß is oriented as in Figure 3(a),

and Cases 5, 8 are possible only when ß is oriented as in Figure 3(b). Now we

proceed with 4.2, 4.4, 4.6, 4.7, as before, interchanging the roles of b and c

when necessary.

In cases 1, 2, 3, a+ or d- is the only special vertex in D± , so 3.6 implies

that D± has simple vertices and no edge adjacent to a+ or d- crosses the

suture 97)± , so there are p edges which cross dD± , all coming from simple

vertices and have to meet a special vertex in E± . This implies that in Case 1(3)

there are 2p edges which cross dD- (9 A), P come from simple vertices and

meet the negative side of b (c), p come from the positive side of c (b) and

meet d+ (a-). Also in Case 1(3) the p edges adjacent to the positive side of

b (c) have to cross a suture and join a_ (d+). An argument as in 4.1 shows

that if ß is oriented as in Figure 3(a) then we only have Case 2; and if ß is

oriented as in Figure 3(b) we have Cases 1, 3. Now proceed with 4.2, 4.4, 4.6,
4.7 as before.

Now consider Case 6. If there are no simple vertices in A- (D-), then the

2/7 edges adjacent to b (c) cross 97)+ (dD) ; the p edges coming from the

positive side of b (c) meet a_ (d+), by index restrictions. Then there is a disk

D, so that 97) = aUl, a is an arc in 9T joining b and a_ and X is an arc

in n(ß) going from b to a- . An argument similar to 3.6, Claim 1, shows that

E- is not /?-taut, which is a contradiction. Therefore there are simple vertices

in 7)+ (D-). There are 2p edges which cross 97)+ (dD-). If more than p of

these edges come from b (c), then an argument similar to 3.6, Claim 2, shows

that there are more than p edges coming from simple vertices which cross the

suture 9 A (dD-), but in d- (a+) there is only room for p of them. Then p

edges come from simple vertices and meet d- (a+), and p come from b (c).

If an edge a joins a simple vertex in A (T>-) and d- (a+), then a is part

of a index zero disk q , whose boundary consist of a, an arc on the negative

side of A- (A+), an edge in 7)_ (A) joining the negative side of c (b) and

a simple vertex and which crosses no suture, and another arc on n(ß). This

implies that the p edges adjacent to the negative side of c (b) do not cross the

suture dD- (dD-). Hence the p edges adjacent to the positive side of b (c)

cross 97)+ (dD-), and they have to meet a_ (d+). An argument similar to 4.1

shows that Case 6 is possible only when ß is oriented as in Figure 3(a). Now

we follow with 4.2, 4.4, 4.6, 4.7.
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In Case 9, if an edge adjacent to d+ (a-) crosses 9A (dD-), then it

meets d- (a+), which implies that there is a loop at c (b), so no edge ad-

jacent to d+ (a-) crosses 9A (dD-). Take an /-path or z'*-path X¡ starting

at d+ (a-) for each i. This path has to cross 9 A (dD-), and if the edge

crossing 9 A (dD-) is incident in 7)+ (7)_) to a simple vertex or the positive

side of b (c), then that path will finish at d- (a+). Doing an argument as in

3.7 (Claim), X\ or Xp starts at d+ and finishes at d- , and consists of level

edges. X\ n e¿ bounds a disk D with interior disjoint from T, as in 3.7 this

is not possible. Then the edge of the path X¡ crossing 97>+ (dD-) is incident
to the negative side of b (c). Then the p edges adjacent to the negative side

of b (c) cross 9A (dD-). In particular this implies that no edge adjacent

to the positive side of b (c) crosses 9 A (dD-). This also implies that no

edge adjacent to a simple vertex in D+ (DJ) can cross 9A (dD-), by index

restrictions. Then the only edges which cross 97)+ (dD-) are those adjacent to

the negative side of b (c). Doing something like in 4.1 it can be seen that this

case is only possible when ß is oriented as in Figure 3(a). Now follow with

4.2, 4.4, 4.6, 4.7 as before.
Case 10 is similar to Case 9, and Case 11 is similar to Case 4. These cases

are only possible when ß is oriented as in Figure 3(a).

5. Constructing a swallow-follow torus

Recall that P denotes the decomposing sphere from which Qa was obtained.

It was proved in 4.7 that there are two vertices in T (= dM„) which are joined

by p consecutive parallel level edges, one for each label i, i = I, ... , p, and

these edges correspond to bad loops in Qa . Call these vertices V\ and v2. In

what follows we do not distinguish between the labels i and i*.

Denote by e¡ the edge joining V\ and v2 with label /, for i — I, ... , p;

and denote by a, (»/,•) the arc inn V\ (v2) joining the labels i and i + 1, for

i=\,... ,p — 1. Let Ci be the disk in T bounded by a,-, //,, e¡, and ei+\.
The arc e¡ in Qa (or in P) is a loop based at a¡. Choose for each a¡ an arc

y i in a¡ having the same ends as e¿, and so that a,, y,, r\i, y¡+\ bound a disk

in dn(ß). Let 77, be the disk in dn(ß) bounded by a¡, y¡, n,■, yi+\. Then
the interior of 77, and C, do not meet P. Let A¡ be the annulus obtained

by gluing C, and 77, along a, U n¡ ; the interior of A¡ meets neither P nor

int n(ß). Let F¡ be the annulus in P bounded by e,, y¡, e¡+\, y¡+\ ; note that

this annulus may intersect n(ß). It follows that dA¡ = 97/. See Figure 14.

Note that there are two choices for y¡, which produce two choices for 77,, A¡

and F, ; denote by y\, H\, A\, F{ the alternative choice.

Note that A¡ and Ai+i have a component of its boundary in common, so

A j and Ai+\ lie in different side of P in S3. It is not difficult to see that
there is a 7) which is innermost, i.e. its interior misses n(ß) or meets it in

two disks, and in the last case the interior of Fj misses n(ß). Do 2-surgery in

P with Aj ; then we obtain a sphere 7" intersecting kb in two points and a

torus R disjoint from kb. P' and R are isotopic to (P-Fj)uAj, FjUAj,

respectively. If P' is a decomposing sphere for kb , and Fj meets n(ß) in two

disks, then 7" has fewer intersections with n(ß) than P does, contradicting

the minimality of the intersections between P and n(ß) ; if the interior of 7)

misses n(ß), then using A'- instead of A¡, we get a decomposing sphere P"
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Figure 14

(in fact isotopic to 7"), having fewer intersections with n(ß) than P does. So

7" is not a decomposing sphere and the annulus A¡ runs parallel to one arc of

one of the summands of kb . Then R is a swallow-follow torus for kb. If the

interior of Fj misses n(ß) then clearly R is disjoint from n(ß). If 7} meets

n(ß) in two disks, then using A'j instead of A¡, we get a swallow-follow torus

R' (isotopic to R) which is disjoint from n(ß).

This construction is possible only if p > 1 ; so we conclude that either p = 1,
or there is a swallow-follow torus disjoint from the band.

This completes the proof of Theorem 1.

6. Band sums of split links which yield composite knots

Theorem 2. Let kb be a band sum of ko and k\, for ko U k\ a split link. If kb
is composite, then there is a decomposing sphere disjoint from the band or there

is a decomposing sphere crossing the band in one arc parallel to ¿>({ 1/2} x 7).
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Proof. Clearly S3 - (ko U k\ U b(I x 7)) is irreducible. Now apply Theorem
1, as stated in the introduction, (d) of Theorem 1 cannot happen because

S3 - (Ico U k\ ) is reducible. If (a) or (b) happen then we are finished, so suppose

(c) happens. Let T be a swallow-follow torus disjoint from the band. T is a

torus in the complement of ko U k\.   T bounds a solid torus T, kb lies in

V . The winding number of k in V is 1, so the algebraic winding number of

/Co U k\ is also 1 ; so at least one of the components of this link is not trivial
inside T.

Let S be a splitting sphere for fcjUfci. Recall that b : I x I -> S3 is a map
such that b~l{ki] = I x {/} , / = 0, 1. Isotope S so that intersects the band

in a collection of arcs parallel to 7 x {1/2} ; take a splitting sphere S which

minimizes this number of arcs.

Claim. T and S can be chosen so that they do not intersect.
Proof of claim. Suppose they intersect in a collection of circles, take one

innermost circle a in S, which is boundary of a disk D. If D lies outside

of V, then because T is an essential torus, a is a trivial curve on T, which

bounds a disk in T, and because S3 - V is irreducible we can isotope D to

remove the circle a. If D lies inside V , then because the winding number of

/Co U k\ in V is 1, 7) cannot be a meridian of V, so a is trivial in T and

is boundary of a disk A c T. Take a curve of intersection between S and

A which is innermost on A ; such a curve is a boundary of a disk D" c A

whose interior is disjoint from S. By doing surgery in S with D" , we get two

spheres, at least one of them is a splitting sphere which has fewer intersections
with T, and it has equal or fewer intersections with the band than S.   D

As T is a swallow-follow torus for kb , there is a meridian disk of V which

intersects kb in one point, call it ß. By isotoping ß, suppose that it meets

the band in a collection of arcs parallel to b({l/2} x I) ; choose ß so that it

minimizes this number of arcs. Now follow the combinatorial route of [BE], the

situation in here is very similar to the situation in there, because the disk ß,

which intersects the knot in one point is like a decomposing sphere for a knot;

note also that S does not meet 9ß. So we consider graphs Ys and Yq , in S
and ß respectively, whose fat vertices are the disks of intersection between a

regular neighborhood of b(I x I) and S and ß respectively, and their edges

are the intersection arcs between S - int n(b(I x I) and ß - int n(b(I x I).

The whole combinatorial argument is now similar to [BE]. The strategy of the

proof is as follows: Use [BE, §4] (which is essentially 2.3, i.e. [CGLS, 2.6.2]) to
find a pure level circuit or a (Scharlemann) cycle X in Ys . If X is a pure level

circuit in Y$, then it corresponds in Yq to a collection of loops; if one of these

loops is good then we do a path threading argument, as in [Sei, §6, 7, BE, 2.8].

If all these loops are bad, then in [BE, §3] X is used to construct two spheres

which meet a composite knot k in two points, and one of them had to be a

decomposing sphere unless k had a two-bridge knot summand. Here the same

construction yields a sphere intersecting kb in two points, and a disk with the

same boundary as ß, intersecting kb in one point, so it is a meridian disk of

V . This new disk has fewer intersections with the band than ß, contradicting

its minimality. \f X is a cycle, we first do 1-surgery on ß to get a punctured

torus, and then do 2-surgery with the disk in S determined by X, to get a new
meridian disk having fewer intersections with the band (see [Sei, 4.7, Sc2, 5.6]

for details of this construction).
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Figure 15

This argument implies that the band does not meet ß. Doing 2-surgery on

T with ß, we get a sphere disjoint from the band which intersects kb in two

points. This is a decomposing sphere for kb, since kb is not a core of T, so

we have (a) of Theorem 1.   D

Remark. Actually we are proving a little more: Suppose k is any split link, and

b is a band such that S3 - k u b(I x I) is irreducible. If the banding kb is
composite then the same conclusions as in Theorem 2 happen.

We refer to [L] or [E2] for definitions and facts about tangles not found here.

Corollary 1. Let kb , ko, k\ be as in Theorem 2. If kb is composite and there is

no decomposing sphere disjoint from the band, then kb has two prime summands,

and one is a two-bridge knot.

Proof. Let N be a regular neighborhood of the band. It intersects ko U /Ci in

two arcs. Its complement can be seen as a locally prime tangle (B, t), i.e. it

does not have local summands for no decomposing sphere is disjoint from the

band. Then kb and ko U k\ can be seen as links obtained by summing a rational

tangle and (B, t). By Theorem 2 there is a decomposing sphere P intersecting

the band in one arc; then P C\N is a single disk, and P n B is disk properly

embedded in (B, /) intersecting the strings of (B, t) in two points. This shows

that (B, t) is a partial sum of two tangles, say (B\, t\) and (B2, t2) (see Figure

15). Note that /coU/cj can be expressed as a tangle sum of (B\, t\) and (B2, t2).

If both tangles are prime, Theorem 1 in [L] implies that ko U k\ is a prime link

which is impossible, so one of them, say (B\, t\) is a rational tangle. Let (N, s)

be the rational tangle obtained by the intersection of kb and N. kb can be

expressed as kb - (B, t) + (N, s) = k\#k2 , where K\ = (B\, t\) + Ri, and
k2 - (B2, t2) + R2, where R\, R2 are rational tangles (see Figure 15). K\ is a

two-bridge knot because it is the sum of two rational tangles. If (B2, t2) is also

a rational tangle then k2 is a two-bridge knot and then it is prime. If (B2, t2)

is a prime tangle, then note that (B2, t2) + (Bi, tt) - ko Uk\ is a split link and

d((B\, t\); R2) > 2 (i.e. the boundaries of the central disks of (By, t\) and
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R2, which lie in dB2 , meet in at least four points, see [E2]), for otherwise K\

would be a trivial knot. Then Theorem 2 in [E2] implies that k2 = (B2, t2) + R2

is a prime knot.   D

It is proved in [BE] that if kb is a composite knot and ko and k\ are trivial,

then one of the summands of kb is a two-bridge knot. (In fact, we do not need

the fact that ko and k\ are trivial knots, but only that no decomposing sphere

is disjoint from the band.)

7. Bandings of trivial knots which yield composite links

Theorem 3. Suppose k is the trivial knot and kb is a banding of k. If kb is

a composite knot or link, then there is a decomposing sphere which crosses the

band in one arc parallel to ¿({1/2} x 7).

7.1 Proof. Apply Theorem 1, as stated in the introduction, (a) cannot happen

because this would imply that k has a nontrivial summand. (c) does not happen

for there is no essential torus in the exterior of k. So either (b) or (d) happens.

If (b) holds we are finished, so suppose we have (d).

7.2. So assume that:
There is a disk Q' with 9 Q' — k , so that it has a minimal number of inter-

sections with the band among all such disks, and such that the band intersects

it always in the same direction.

Remark. Let (M, y, ß) as in 1.2. Note that the sutured manifold decompo-
Ql

sition (M, y, ß)-► (M\ ,y\,ß\) is /?-taut, dMx is a sphere with only one

suture, and then (M\, y\) is 0-taut; i.e. the sutured manifold hierarchy as

constructed in 1.4 consist of only one step.

7.3. Let P' be a decomposing sphere for kb. In what follows we want to

prove that either the band meets 7" in one arc, or that 7.2 is impossible. Let

N be a regular neighborhood of k U b(I x I). The last is homeomorphic to

a 3-ball with two 1-handles. By general position 7" can be isotoped so that
7" n b(I x I) = b({a¡} x I) for some finite {a¡} c int(7). Similarly, by general

position, Q' can be isotoped so that Q' n b(I x I) = b(I x 97) U b(I x {bs}),
where {bs} is some finite subset of 7. Suppose P' has a minimal number

of intersections arcs with the band. Let P = 7" - int(TY), Q = Q' - int(N) ;

P, Q are connected planar surfaces in the complement of N. dP consist of

n curves a\, ... , an , plus two curves a+ , a- , which are meridians of the 1-

handles, as in Figure 16. 9ß consist of m curves b\, ... ,bm, plus one curve

bo which goes once over the 1-handles; we have a situation as in Figure 16. See

[Sei, SC2] for more details over N and the positions of the boundary curves of

P and Q.
Give an orientation to P and ß. This induces an orientation in their bound-

aries. Two curves a, and a¡ are parallel if with the induced orientation they

are parallel in 97V, the same for the 6,'s. By 7.2 we may assume that all the

b¡\ 1 < / < m, are parallel, bo also has an induced orientation, a, and b¡

meet in two points, one in the front of N and one in the back. Label the point

with / in ß, and with j in P, if this point is in the front of N, and label it

with /* in ß and j* in P if it is in the back of N, for 1 < i < n, 1 < j <m.
Label the point of intersection between bo and a¡ with / in ß and with 0
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(a)

(b)

Figure 16

in P if it lies in the top of N, and label it with / in ß and m + 1 in P if
it lies in the bottom of N. Denote the points of intersection between bo and

a+, a- with +, - in both P and Q. See Figure 17. Consider the graphs of
intersection between P and ß like in [Sei], denote them by Yp, Yq . Define

loop, good loop, bad loop, circuit, cycle, /-path, Scharlemann cycle, level edge,

etc., as in [Sei] or as in 2.2, 4.2. Define the interior of a circuit or path going

from bo to bo in Yq as the component of its complement which does not

contain the point x on the east of bo as in the Figure 17.

7.4. We have two cases, that is, kb is either a knot or a link of two components.

Case 1. kb is a link.
In this case N appears as in Figure 16(a). a+ , a_ lie in the same 1-handle,

suppose they lie in the west side of N, as in Figure 16(a). The top (bottom)

part of bo with the induced orientation is either parallel to the front part or to

the back part of the ¿,'s. Suppose with no loss of generality that the top part of

bo is parallel to the front part of the /j,'s and the bottom part of bo is parallel

to the back part of the ft,'s. Relabel a point of intersection between bo and a¡

with / in ß and with 0 in P if this point lies in the top of N, and label it
with i* in ß and with (m + 1)* in P if it lies in the bottom of N. It is not

difficult to see that Yq appears as in Figure 18.

7.5. Here we have the same parity rule as in 2.1. Note that in Yq there is no

edge with labels /-/ (/*-/*), i.e. a level edge has to be labeled /-/*. Note

that the top part of bo has labels 1,2,...,«, and the bottom has labels

1*, 2* ,...,«*. This implies that a loop in Yp has ends labeled i-j*.
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(-)

x

Figure 18

7.6 Lemma. A loop (good loop) in Yq   (Yp) has interior vertices.

Proof. It is as in [Sc2, 5.1] or [E1; 3.2].   D

7.7 Lemma. There is no i-cycle in Yq . So there is no Scharlemann cycle in

Yq . In particular there is no loop in Yq .

Proof. It is the same as in 2.3, 2.4.   o

The following lemmas look like 2.7, 4.6 and 4.7.

7.8 Lemma. There is a 1 -path (or a I*-path) which starts at bo and finishes

at + or at - .

Proof. Take a 1-path y starting at 60 • Because there is no 1-cycle, y either

finishes at + or -, or in the other side of bo ■ If y finishes at the bottom part

of bo, take a l*-path y' starting at bo, y' is in the interior of y. y' either

finishes at +, - or at bo.  If y' finishes at bo then y and y' are just the
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same path, and they have all their edges labeled 1-1*. In this case if there are

vertices in the interior of y, there will be an i (/*)-cycle, for some /, unless

n — 1, and so we will be done; if there is no vertex in the interior of y, then

there is a loop joining + and -, which contradicts 7.6. So either y or y'

finishes at + or - .   D

Suppose without loss of generality that there is a 1-path y which starts at bo

and finishes at + . Note that this path cannot be just an edge joining bo and

+ .

7.9 Lemma. All the edges adjacent to the top part of bo are level, i.e., for each

i, 1 < / < «, there is an edge with label i at bo and label i* at some other

vertex.

Proof. Take a l*-path / staring at bo ■ It finishes at - or at the other side of

bo . Suppose first that it finishes at the other side of bo ■ Take now an /*-path

starting at bo for each / > 1. As in the proof of Lemma 2.7 each one of these

paths finishes at bo with a level edge /*-/, for / > 1. Suppose now that y'

finishes at - . So - is not in the interior of y ; this implies that all the edges

of y are level and that there is no vertex in its interior, for otherwise there will

be a 1*-cycle in its interior. In particular the edge adjacent to bo with label

1 has label 1* in its other end. Take now an /"-path starting at bo for each

/ > 1, these paths finish at the other side of bo, and as before each of these

paths finishes with a level edge /-/*.   D

7.10 Lemma. Each vertex in YP has m bad loops, its labels m and 1* are

the only ones which are not adjacent to loops.

Proof. 7.9 implies that each vertex in Yp has a loop, and then all the loops

are bad, for if there was a good loop there will be one with no interior vertex,

contradicting 7.6. All the loops at the same vertex are concentric. There is an

edge n joining a\ and a+, n has label i at a i , say, / ^ 0, m + 1. Then
because there is a loop in a\, there must be a loop with labels / - 1, / + 1 ;

this contradicts the parity rule unless i = m. So r¡ has label m at a\, and

there is a loop with labels m - 1, («? + 1)* ; by 7.9 there is a loop in a\ with

labels 0,7*. The only way that this is possible is that j* = 2*, and so 1* and

m are the only labels at a\ not adjacent to some loop; then there are m loops

at a\. Let «i be the edge adjacent to a\ at the label 1*. If «i meets a_
then « = 1, for otherwise there would be good loops, so suppose r¡\ meets a

vertex a¡. Repeating for a¡ the argument made for a\, we get that r\\ has

label 1* or m at a, ; the first is not possible for it implies that there is a loop

in Yq . Then we conclude that r\\ has label m at a¡, and that all the labels at

a¡ are adjacent to loops except 1*. Repeating the same argument for the other

vertices completes the proof.   D

7.11 Conclusion of Case 1. 7.10 shows that all the edges in Yq with one end

labeled 1, have their other end labeled with 1*, except at bm , which has an

edge adjacent at its label 1 which meets +. Similarly, all the edges with one end

labeled 1* have the other end labeled 1 except the edge adjacent to b\ , which

has its other end at bm labeled j. This implies that the 1-path y has all its

edges with labels 1-1*, except the last one which joins bm and + . Take a 1*-

path / starting at bo ■ y' has to reach b\ , for otherwise it could be continued

indefinitely. So y' reach b\ and the next vertex it meets is bm . 7.10 implies
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Figure 19

Figure 20

that there is an edge e joining b\ and - , with label /* in b\, for some /, but

this is impossible, as can be seen from Figure 19. This contradiction implies

that if kb is a link and 7.2 happens then « = 1, that is, the band meets the
decomposing sphere P' in one arc.

7.12 Case 2. kb is a knot. In this case we have a situation as in Figure 16(b).

The top and bottom part of bo with the induced orientation are both parallel

either to the front part or to the back part of the 6,'s. Suppose without loss of

generality that they are parallel to the front part of the bis. Relabel the points

of intersection between bo and a¡ with / in Yq and with 0 or m + 1 in Yp,

depending if such point is in the top or bottom of N. It is not difficult to see

that Yq appears as in Figure 20. It can be seen without difficulty that 7.5, 7.6,

7.7 apply here. Note that bo has only labels 1,2,...,«, i.e. it has no labels
r,...,«*.

7.13 Lemma. For each i, there is an i-path starting at bo and finishing at +

or at -.
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Proof. For each /, take an /-path starting at the top side of bo, say. If the

path reaches the other side of bo, then its label there is not /, and then the

path can be continued, and because there is no /-cycle in Yq , that path has to

reach +. or - .   D

7.14 Lemma.  YP has at most two vertices.

Proof. Lemma 7.13 implies that « < #{+, -}.   O

It can be assumed that there is a 1-path y{, starting at the top of part of bo

and finishing at + , which is in the west of bo ; and there is a 2-path y2 , starting

at ¿»o and finishing at - .

7.15 Lemma. y\ has only level edges, it has no vertices in its interior, and it
has two or more edges.

Proof. If there are vertices in the interior of y\ or some edge of y\ is not level,

then all vertices in the interior of y\ (including these vertices in y\ which have

interior labels) have a label 1*, and then there is a 1*-cycle, for a label 1*

cannot be joined to - . If y\ is just an edge joining bo and +, this contradicts

the fact that all the loops have interior vertices.   D

7.16 Conclusion of Case 2. Lemma 7.13 implies that there is an edge n in YP

joining a\ and a+, and 7.15 implies that there is a loop X in a\ with labels

O,;'*. If the label of r\ in a\ is /, then there should be a loop at a\ with

labels i — 1, / + 1, but this contradicts the parity rule unless / = m + 1 (/ = 3

in our case). So « has label m + 1 at a\ . This implies that there is an edge

n in Yq joining the bottom side of bo and + . This is in contradiction with

7.15, for both y\ and n reach +, but by construction n cannot be part of

y\. This shows that when kb is a knot 7.2 cannot happen. This completes the

proof of Theorem 3.   D

Corollary 2. Suppose k is the trivial and kb is a composite knot or link. Then

kb has two prime summands, and one of them is a two-bridge knot or link.

Proof. It is similar to the proof of Corollary 1. Here we apply [Ei] (or [E2,

Theorem 6]) to prove that one of the summands is prime.   D

S. A. Bleiler has proved in [B2], using a purely combinatorial argument, that

if a banding kb of a trivial knot k is composite, then kb has a two-bridge

summand.

7.17. It is asked in [L] how many ways there are of summing a rational tangle

to a given prime tangle to get a nonprime knot or link. The first examples of

prime tangles admitting two different summings of a rational tangle which yield

a nonprime knot or link were given in [Bi]. In [E2, Corollary 1] it is shown

that there are at most three such summings of rational tangles, and they are at

a distance 1 from each other, i.e. they differ by a half twist. Theorems 2, 3 give

the following refinement:

Corollary 3. Let (B, t) be a prime tangle. Suppose it can be summed with a

rational tangle to get the trivial knot or a split link. Then there is at most one

more way of summing a rational tangle to get a nonprime knot or link (in fact it

has to be a composite one). If this happens then (B, t) is a partial sum of two

tangles, one of them a rational tangle.
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Proof. Suppose that (B, t) + (B\ ,t\) = k\ is the trivial knot or a split link, for

(B\, t\) a rational tangle. If there is another way of summing a rational tangle

(B2, t2) to (B, t) to get a nonprime knot or link k2, then by [E2, Theorem 3],

[Sei] or [BS] k2 has to be composite. Now by [E2, Theorems 2, 6], (B\, ty)
and (B2, t2) are at distance 1, then k2 is obtained by a banding of k{. So

by Theorems 2, 3 there is a decomposing sphere 7*2 for k2 so that 7*2 n B2

is a single disk, and P2n B is a disk meeting / in two points, so (B, t) is

a partial sum of two tangles, and as in the proof of Corollary 1 one of the

tangles is a rational one. If for another rational tangle (B$, ¿3) we have that

(B, t) + (53, /3) = &3 is another nonprime link, then as before £3 is composite,

(2?3, /3) is at distance 1 from (B\, t\), and there is a decomposing sphere P3

for k$ such that P3 n B3 is a single disk. By [E2, Theorem 1] (B2, t2) and

(2?3, /3) are also at distance 1. Now it is not difficult to observe that it is

not possible that both decomposing spheres P2 and P3 intersect B2 and 53

respectively in one disk. This observation also follows from [E2, 2.6, 2.7].   D

Remark. In the case when we have a trivial knot and a composite link, the disk

which realizes the partial sum of the tangles intersects only one of the strings

of (B, t), so this is not a partial sum in the sense of [L].

This corollary shows that if there is a prime tangle which yields three non-

prime knots or links by attachments of rational tangles, then these knots and

links have to be composite, but it is still unknown if such a tangle exists. A pos-

itive solution to the following conjecture would imply that such a tangle does

not exist.

Conjecture. Let k be a link and b a band. Suppose that k and kb are both

composite. Suppose that there is no decomposing sphere for k or kb disjoint

from the band. Then there is a decomposing sphere for k or one for kb which

intersects the band in one arc parallel to b(I x {1/2}) or to ¿({1/2} x 7).

8. Surgery on strongly invertible knots

In this section we apply Theorem 3 to surgery on a knot. We refer to [R] for
definitions and facts about Dehn surgery.

It is known that (pq, 1) surgery on a (p, <7)-cable knot gives a nonprime

manifold with a lens space summand (see [G]). It is conjectured in [GoS] that
those are all the surgeries on a knot which yield a reducible manifold. In other

words, the conjecture says that if surgery on a knot in S3 yields a reducible 3-

manifold then the knot is cabled, with the cabling annulus part of the reducing

sphere. The conjecture has been proved for several classes of knots, in fact

it was recently proved for alternating knots [MT]. See [Sc4] or [E3] for more

references in this problem. Here we prove the conjecture for strongly invertible

knots.

Definition. A knot k in S3 is strongly invertible if there is an orientation

preserving involution of S3 which carries k to itself, reversing its orientation.

Waldhausen [W] shows that such an involution is equivalent to a ^-rotation

whose axis meets k in exactly two points.

Theorem 4. Suppose k is a nontrivial strongly invertible knot in S3. If some

surgery on k yields a reducible manifold then k is cabled, and the surgery is via

the slope of the cabling annulus.
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Proof. Let M (k ; r) denote the closed 3-manifold obtained by Dehn surgery

with coefficient r on k. As k is strongly invertible, M(k ; r) double branch

covers the 3-sphere [M]. Furthermore the base space and branch set B(k ; r) of

the double branch covering p : M(k ; r) —> S3 decomposes, in an appropriate

projection, as the r-rational tangle attached to a locally prime tangle B — (B, t),

and so that B plus the 1/0-rational tangle is the trivial knot [Bi]. B is in fact

a prime tangle if k is nontrivial.

Let M = M(k ; r) be a reducible manifold. Let tc denote the knot or link

of two components which is the branch set of the respective cover. Suppose

first that M = S1 x S2#M'. [KT, Corollary 4] says that a link is prime if and
only if its double branch cover is irreducible. So k is either split or composite.

If k is composite but nonsplit, say k = k,\#k2 , then its double branch cover is

M = Mi#M2 , where M¡ is the double branch cover of /c,, so this would imply

that S1 x S2 is the double branch cover of a nonsplit link, which contradicts

the fact that S1 x S2 uniquely double branch covers the unlink [T]. So k is a

split link, and k is obtained by summing B and the 0-rational tangle. But B

plus the 1/0-rational tangle is the trivial knot, so this says that the unknot can

be obtained by a band sum of a split link; [Sei] implies that the band and the

split link have to be trivial, and then B is in fact a trivial tangle, implying that

k is the trivial knot.
Suppose now that M is reducible but does not contain S1 x S2 as a sum-

mand. Then [KT, Corollary 4] implies that k is a composite link, k is obtained

by summing B and the r-rational tangle, then [Ei] implies that r is an inte-

ger. This is equivalent to saying that k is obtained by a banding of the trivial

knot. Theorem 3 implies that there is a decomposing sphere P for k so that

P n (r-rational tangle) is a disk disjoint from k , and P n B is a disk meeting k

twice. A = p~x (PnB) is an annulus, and each one of its boundary components

is a circle of slope r on dn(k), where r is integer. It is not difficult to see that
then A: is a cable knot and the slope of the surgery which yields M is that of

the annulus.   D

Theorem 2 and [E2] can be used to get results about Dehn fillings on mani-

folds which are double covers of a prime tangle (B, t) branched along / ; see

[E3]
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