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THE TRANSVERSE HOMOCLINIC DYNAMICS AND
THEIR BIFURCATIONS AT NONHYPERBOLIC FIXED POINTS

BO DENG

Abstract. The complete description of the dynamics of diffeomorphisms in

a neighborhood of a transverse homoclinic orbit to a hyperbolic fixed point is

obtained. It is topologically conjugate to a non-Bernoulli shift called {£, a) .

We also obtain a more or less complete picture, referred to as the net weaving

bifurcation, when the fixed point of such a system is undergoing the generic

saddle-node bifurcation. The idea of homotopy conjugacy is naturally intro-

duced to show that systems whose fixed points undergo the pitchfork, transcrit-

ical, periodic doubling, and Hopf bifurcations are all homotopically conjugate

to our shift dynamics {£, a) in a neighborhood of a transverse homoclinic

orbit. These bifurcations are also examined in the context of the spectral de-

composition with respect to the maximal indecomposable nonwandering sets.

1. Introduction

Let F: Rd -> Rd, d > 2, be an invertible map and Fn(-) := F(F"~l(-))

the nth iterate map of F for all n G Z. Then, by definition, the invariant set
A(F, U) of F with respect to a given subset U c Rd is

A(F,U):= Ç]F"(U).
nez

If the set U contains a fixed point q and a homoclinic orbit to the fixed point,

y(p) := {Fn(p): n e Z}, i.e., F"(p) -> q as n -* ±00, then it must be the

case that {q} U y(p) c A(F, U). Suppose F is a C diffeomorphism with
r > 1 . By reversing the iterate if necessary, one may always assume either

peW™- W" or

(1.1a) perVcsnWa,

where W* and Wu are the standard notation for center stable manifold and

unstable manifold respectively. However, we are not interested in the former

case because the invariant set A must be entirely in the center stable manifold

Wcs. Indeed, in this case U does not intersect any global piece of the unstable

manifold, thus W* is attracting in U and all the relevant dynamics associated
with y(p) take place in a lower dimensional manifold Wcs. For this reason
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Figure 1.1

(1.1a) is referred to as the irreducible condition. Although the reducible homo-

clinic orbits are more common, the irreducible ones do appear in applications,

as shown by an example at the end of this paper. Furthermore, at least in the

case where Rd = R2, the invariant set A for an irreducible orbit is far more

complex and interesting than that of a reducible one, which is simply the ho-

moclinic orbit y(p) together with the fixed point q. See Figure 1.1. Therefore,

our objective is to understand the dynamics, {A(F, U), F} , of such F and

U, where U is a closed set and the interior, int U, contains an irreducible

and transverse homoclinic orbit to a fixed point of hyperbolic or nonhyperbolic

type. By transversality we mean the tangent spaces Tp Wcs, Tp Wu at p span

the whole space

(1.1b) TpWcs + TpWll = Rd.

The case with hyperbolic fixed point. This problem dates back to Poincaré ( 1899)
who realized that the presence of homoclinic orbits extremely complicates the

dynamical structure. It was not until 1927 that the existence of countably many

periodic points in U had been proved by Birkhoff for the case where q is a
hyperbolic saddle point. In this case, of course, p is always irreducible and
Wcs in the transverse condition (1.1b) is understood as the stable manifold

Ws. Thirty-six years later, Smale gave a better description by showing that

there exist an integer P and a closed set R such that the Pth iterate Fp

on the invariant set A(FP, R) is topologically conjugate to the Bernoulli shift

{{1, 2}z, a) . Here {1, 2}z is the space of all doubly infinite sequences of

two symbols and the ith component {a(s))¡ of the image a(s) is defined as

the (i + l)th component si+i of the preimage s = (• - -S-iSo^i • • • ) G {1, 2}z.

By topological conjugacy for two given dynamical systems {X, /} , {Y, g} ,

we mean there is a homeomorphism p : X -* Y such that g° p = p° f.

Illustrated in Figure 1.2 are two essentially different ways to construct the so-

called Smale horseshoe map in R2 near a homoclinic orbit. The invariant set for

the horseshoe (a) (cf., e.g., Smale (1963), Newhouse (1974), or Guckenheimer
and Holmes (1983)) must be in A(F, U) and contain the fixed point q as well

as the homoclinic point p , while that for (b) (cf., e.g., Wiggins (1988)) stays far

away from A(F, U). However, both of them are insufficient for understanding

either the full dynamics of {A(F, U), F} or its bifurcation. For instance,
when the fixed point undergoes, say, a saddle-node bifurcation, in which case
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(a) (b)

Figure 1.2

the fixed point as well as the homoclinic orbit may disappear altogether, the

standard hyperbolic argument for the horseshoe dynamics will fail in case (a).

In case (b), the horseshoe is likely to persist, but it is too far away from the

homoclinic orbit to detect the ongoing bifurcation. Moreover, neither of them

can tell for sure the existence of periodic orbits of those periods which are not

the multiples of the iteration P. With regard to the second question, Sil'nikov

obtained another not so well-known picture.

Theorem 1.1 (Sil'nikov, 1967). Let F: Rd -> Rd be a diffeomorphism having a
transverse homoclinic point p to a hyperbolic fixed point q. Then, there exists

a closed set H whose interior int/7 contains the homoclinic point p such that

the induced Poincaré map XA: D(U) -> H on the invariant set Q := A(n, H) is

topologically conjugate to the Bernoulli shift on the product space {1, 2, ... }z

of doubly infinite copies of the natural numbers.

Here, by definition, the domain H0 := D(U) for the Poincaré return map

n consists of those points z in H that have the first return iterate zK :=
FK(z) g H for some finite integer «: := k(z) . Of course, H(z) := zK(z>. The-

oretically speaking, the set of the natural numbers may be substituted by any

countably infinite set. In particular, however, when {1, 2, 3, ... }z is replaced

by 5 := {Ko, Ko + 1, ...}z, where An is the minimum iteration of points

from Ho, i.e., K0 = min{/c(z): z G H0}, then the symbolic system becomes

more meaningful. Indeed, as will be shown later, the domain is decomposed as

Hq = U/t>/c ^o wi*h trie property that each symbolically labelled (connected

and closed) component Hjf consists of only those points z so that k(z) = k .

As heuristically illustrated in Figure 1.3, the 7/q's form a collection of "hori-
zontal strands" while their images under the Poincaré return map form "vertical

strands." We will loosely refer to this structure as the fishnet, in contrast to the

Smale horseshoe.

In comparison with the horseshoe (a) in Figure 1.2, however, our fishnet

is not flawless. Some crucial points, e.g., p and q, are not in the net, not

to mention the noncompactness of Q. Thus, to understand A(F, U) better,

we have to include the behavior of the dynamics on the stable and unstable

manifolds in H. To do so, let Wf¡ and Wfi be the connected components of

Ws n H and IVa n H, respectively, containing the homoclinic point p . Note
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Figure 1.3

that, as suggested by Figure 1.2, the closure of our fishnet contains precisely

W^j and W^ as the limit set. To continue, let Q+ c Ho be the subset of those

points z G HnWs with the property that there exists an integer n(z) > 0 such

that Ylk(z) g H0 are defined for all -co < k < n - 1, and the «th iterate

n«(z) e W*¡. That is, z g n-"(W*) n f\<„_
is valid for all such possible n > 0, we have

n fc(jF7o) • Thus, as a set which

(1.2a) ÍV U{n-"(^)n( f| n-*(//0))}
n>0 *• ^k<n-\ ' >

Likewise, we define

(i.2b) n-:= [J in-m(w$)n( f| n-^z/o))},
m<0 ■fc>m+l

which is the set of those points in H whose forward iterates under n are all

defined and fall into the unstable manifold W£ only after some finite backward

iterates under Yl. Similarly, Q° denotes the subset of homoclinic points to q

in H such that n*(z) G Ho are defined for all m + 1 < k < n - 1 for every

z g Q° and for uniquely determined m = m(z) < 0 and n — n(z) > 0 with
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nn(z)eWj¡ and nm(z) g Wfi respectively. In other words,

«-i

(i.2c)        q°= (J jn-"W)n    f| n-k(H0)  nn-K)   •
m<0   I \k=m+\ I )
n>0

Notice that the subsets {Y[rn{Wf¿) n (f\<n-i n~*(#o))} in Cl+ are mutually

distinct for all n G Z and for each fixed « it equals the «th preimage of the

same set Wf¡ n (f\<-i n_fc(//o)) • The same observation also applies to £l~

and £2° . In regard to these sets, Sil'nikov has also proved

Theorem 1.2 (Sil'nikov, 1967). Assume the same condition as in Theorem 1.1.

Then Q', i G {+, -, 0}, is in one-to-one correspondence with T', where

T+:= Uil^,...}*"-"-2'"-1},
«>o

T- :=  U{l,2,...}<m'm+1-->,

m<0

T-0 ._ n     t \{m,m+\ ,...,n—\}

m<0<n

For the same reason as applied to il in Theorem 1.1, the set of the natural

numbers {1,2,...} can be replaced by {A"o, Kq + 1, ...} so that the F's

also become dynamically meaningful. Indeed, we will adopt this alternative

interpretation from now on. Notice that the shift dynamics is not ready to be

introduced to these sets, nor to the Qps by this theorem.

Except for the expression for the closure Q of Q,, the following result is

essentially due to Sil'nikov (1967) in the context of differential equations.

Theorem 1.3. Let F: Rd -> Rd be a C, r > 1, dijfeomorphism having a
transverse homoclinic point p to a hyperbolic fixed point q. Then, there exist

closed sets U and H c U satisfying y(p) U {q} c int U and p G int H so that
the closure

Q = Q U Q+ U Q" U Q°,

and _    _

A(jF ,U)=\J F"(Q) = [J F»(Q) = (J F"(ñ) U {q},
nez nez nez

where Cl = A(n, H), and Cl1, i = 0, +, -, are defined as in ( 1.2a)-( 1.2c).

This theorem says that A(F, U) is basically generated by spreading Q

around through the iterations of F and exactly equals the resulting invariant

set subject only to the one-point compactification. The added point is precisely

the fixed point q .

Guided by this structure and the symbolic dynamics {5XA"o), o] for n,
we next derive the corresponding shift dynamical system, called {Z, a}, for

{A, F} . The construction takes three steps. First let {k > K0} := {K0, K0 +

1, ... }U{co} denote the one-point compactification of {A"o, Ä"o +1, ...} in the

discrete topology, with Kq arbitrary but fixed and {k > A"o}z the correspond-

ing doubly infinite product in the product topology. Select only the following
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subspaces S = {KQ, K0+I, . ..}z, T+ , T~ , and 7* , where

r¿ := \J{s: Si > K0, i < n; Sj = oo, j > n},
«>o

TZ> := \J {s: Si > K0, i > m; Sj = oo, j < m},

T^:=    [J   {s : Si > Ko, m < i < n ; s j = oo, otherwise} .

m<0<n

Namely, T¿ is obtained from T+ by augmenting all the leftward infinite se-

quences into doubly infinite sequences with the symbol oo added. A similar

explanation applies to T~ and r¿ . Motivated by the roles of Wf¡ and W^ ,
which lie in the closure of the horizontal strands and the vertical strands respec-

tively (cf. Figure 1.3), and a reason soon to be discussed we need to distinguish
the symbol oo in T¿ and T~ as 00s and oou respectively. This leads to

(1.3)
S+ := [J {s : s¡ > Ko, i < n ; s j = oos, j > n},

n>0

S~ :=  [J {s: Si > Ko, i > m; Sj = oou, j < m},

m<0

S° :=    (J   {s: Si > K0, m < i < n ; Sj — oos, j > n, Sj = oou, j < m}.

m<0<n

That is, S' is derived from TL¿ by replacing all the leftward (rightward) infi-
nite sequences of oo by leftward (rightward) sequences of oou (while all the

rightward ones by oos). We emphasize that oos andoou are treated as dif-

ferent symbols throughout and the introduction of {k > A"o}z above is just a

convenient way to describe the topology for the spaces S, S+ , S~ , and S° .
The necessity of using two symbols oos, oou instead of oo alone may be best

explained by the coding of the homoclinic orbit y(p). More precisely, the split-

ting of oou and oos at the -«th place in a"(---oo\- oo0oo, • •• ) is necessary in

order to distinguish points Fn(p) within the homoclinic orbit y(p). Without

the superscripts all the homoclinic points would nonuniquely correspond to a

single sequence.

We further clarify the somewhat mysterious topology of S° . A typical topo-

logical basis element BSm...So...Sll for a given s e S°, for example, satisfies the

following. There may be some ;' with m < j < n such that Sj G {oos, oou}.

Then for such a j there exists an integer bj with the property that the basis

element consists of those sequences s' such that either s¡ = s¡ for all m < i < n
or s¡ = Si for all m < i < n , except for those bj < s'. < oo with Sj G {oos, oou}

and s'j t¿ Sj.

In the second step, we will incorporate the meaning of Kq , the minimum

returning iteration of all z G Ho, into our symbolic system £. To do so, we

need to 'blow up' or 'shift' the symbol s¡ according to the original dynamics F
rather than the Poincaré map. See Figure 1.4. When s¡ ^ oos, oou, s¡ blows

up into a unique string of s, copies of itself:

Si:=sfsj.-.sr\
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Figure 1.4

where, consistently, the superscripts are related to the iterate of the shift map a
starting at sf . When s¡ — 00s or oou , s¡ = s¡, namely, the blow up of infinity

is itself.^
Let S and S' denote the corresponding sets of all the blowups. Parallel to

the structure of A(F, U), we also spread the standard blowups around by the

shift operator and obtain U„6z 0n(S) » U«ez on(S') f°r / G {+, - , 0}.

In the third step, we treat each set of the spread blowups as a subspace of

{k > A"o}z depending on its topology, treating 00s and oou as distinct symbols.

We then equip the union

(J on(S) U (J a"(S+) u (J a*(S-) U |J o»(S°)
nez nez nez nez

with the topology generated by those of the spread blowups. It is easy to see

that a description similar to the topology of S° above also applies to this gen-

erated spread topology. This will be made more precise later on when to deal

with it extensively in the proof of our main result. For the time being, notice

that the resulting space is not necessarily compact. For instance, the sequence

{(• • • 00" ,ooq • • • oo¡Joo*+1 • • ■ )}~ j of the homoclinic orbit y(p) on the local un-

stable manifold W^ does not have any limit point. Motivated by the structure

of A(F, U) of Theorem 1.3, we now complete our construction of L(K0) by

taking the one-point compactification as follows:

(1.4a) l:=\Jan(ß)ö{(o}.
nez
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Here,

(1.4b) ^ = SUS+US-US°,        JF=SUS+US-\JS°,

which are referred to as the standard sequences and the standard blowups re-

spectively, and co is the point added to the compactification that corresponds to

the fixed point {q} and it is defined as a fixed point of the extended shift map,

namely, o(co) := &>.  (One may denote co = (• • •oo_1oooooi • ••).)  One may

also easily check that S? is sequentially compact. This is not at all surprising

since it will be shown later that S? and Cl are homeomorphic to each other.

Note that the dependence of E on K0 is suppressed and will be so throughout

so long as no confusion occurs. We now have the first of our main results.

Theorem 1.4. Assume the same conditions as in Theorem 1.3 and let U, H be

the same closed sets as in that theorem. Then the dynamical system {A(F, U),

F} is topologically conjugate to the extended shift dynamics {L, o), where S =

I(A"o) is defined as in (1.4) and K0 = min{«: W(z) e H, z e Ho).

To distinguish among orbits, we call a periodic orbit y /-periodic if yd Ho

contains only / distinct points. We now have the following important properties

for A.

Corollary 1.5. A(F, U) is a Cantor set (i.e., compact, perfect, totally discon-
nected). It is chaotic in the usual sense, that is, it has

(a) a countable infinity of periodic orbits that is dense;

(b) an uncountable infinity of nonperiodic orbits;

(c) a dense orbit.

Moreover

(d) the set of homoclinic points to q is countably infinite and is dense in A,

(e) there exists a unique I-periodic orbit of every period k > Kq.

The proof of this corollary is trivial when one works with the symbolic sys-

tem {L,a}. Among other things, the properties (d) and (e) distinguish our

dynamics {A, F} from the horseshoe dynamics discussed in the beginning of

this section. The 1-periodic orbits of large periods behave just like the shadow
of the homoclinic orbit. They are expected to disappear together with the ho-

moclinic orbit whenever the fixed point is perturbed away. They also serve as a

criterion for how many symbols are actually needed by a symbolic description

for the perturbed system. This will be made more precise when we deal with

the nonhyperbolic fixed point case later. As another corollary to Theorem 1.4

we have

Theorem 1.6. {A, F} is hyperbolic and structurally stable within the class of

C1 diffeomorphisms having a transverse homoclinic point to a hyperbolic fixed

point.

The case with nonhyperbolic fixed point. Next, we consider the dynamical struc-

ture of Aa := A(F(-, a), U) for a generic one-parameter family of C , r > 4,

diffeomorphisms F(-, a): Rd —► Rd , a G R, d > 2 . F is also assumed C

in both z and a . We assume that F has an irreducible and transverse homo-

clinic point p to a nonhyperbolic fixed point q at a — a0 . Let the closed sets

U and H above be fixed for all the parameters below. Thus, all the definitions
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for the Poincaré map n, its domain H0 , the subspaces Q+ , Q~ , Q° , etc. can

now be extended to the perturbed maps. They depend on the parameter a in

general but the explicit dependence will be suppressed most of the time for sim-

plicity of notation. For the necessary modification of the Q''s, we only need to

interpret W%, Wu in terms of the parametrically dependent ¡Va (a), Wu(a),

in the definitions for W^, W£ and (1.2a)-(1.2c) respectively.

In this introduction, we will only assume the fixed point to be a saddle-node

point. That is,

(1.5a)        1 is the only eigenvalue (counting algebraic multiplicity) of

DzF(q, c*o) on the unit circle of the complex plane.

(1.5b) Let e¡ and er be a left and right eigenvector of I respectively.

Then e¡DzzF(q, a0)(er, er) ^ 0. More specifically, choose them

in such a way that e¡er - 1 and e¡DzzF(q, ao)(er, er) < 0.

The family of F(-, a) is said to be generic if it satisfies

( 1.5c) e¡DaF(q, ao) ^ 0. More specifically, fix the direction a in such

a way that e¡DaF(q, aQ) > 0.

Under this setting, the fixed point q disappears when a < ao, locally, while two

hyperbolic fixed points, say q+ and q- , bifurcate from q when a> ao, locally.

Let q+ be the point for which dim W*+ = dim W™ . Thus, it is necessary that

dim W*_ = dim W*. Here, W* means the stable manifold of q+ , etc. What

has been described above can be obtained through the reduction of the map

to the parametrically dependent center manifold Wc(a). This has much in

common with the spirit of Sotomayer (1974). As the last preparation, notice

that due to the transversality condition (1.1b) and the implicit function theorem

the irreducible 'homoclinic' point p persists for all a near a0 ■ Denote it by

p(a). Then it is Cr and satisfies p(a0) = p. In particular, when a > ao, it

becomes an irreducible, transverse homoclinic point to q+ . See Figure 1.5.

We now consider the structure and dynamics of Aa. Recall Aa =

A(F(-, a), U). To motivate, we heuristically illustrate AQ with d — 2 in
Figure 1.5. This will help us foresee our main theorem for the general case.

We start with a = ao. Intuitively, the fishnet structure is still there. But, less

obviously, Aao is no longer totally disconnected. Indeed, one piece of the center

stable manifold labelled hp in Figure 1.5(b) will remain in U for all the forward

and backward iterates of F(-, ao). Notice that its preimages are designated

as hpm in the picture and their length shrinks to zero as m —> -oo, where

pm = Fm(p). Actually, a closer examination on Q° , the subset of homoclinic

orbits to q , reveals the same behavior, that is, there is a short curve hz C rVcs

rooted at every point zed0 such that hz c AQo. Surprisingly, however, this

kind of fuzzy structure even extends to the entire subspace Or U Q°, the set

of unstable manifold in Aao. But, as will be shown by the theorem below, this

is the only additional feature attached to the net dynamics {I, a}. We now

move to a > ao where the two hyperbolic fixed points q+ and <?_ split. The

structure AQ is pretty much the same as AQo except the length of the hair hz

approaches \q+ - q-\ as z —► q+ on the unstable manifold of q+ . See Figure
1.5(c). Last, when a < a0, our fishnet with a countable infinity of horizontal

and vertical strands together with the hairy structure are gone with the fish.
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(C)

Figure 1.5

Instead, a torn net with only a finite number of strands is left. Repeating this

scenario, but tracing a from left to right instead, we will achieve a reversal of

the structure above. This is referred to as the net weaving bifurcation, which is

now made precise by the following main result.

Theorem 1.7. Let F(-, a): Rd -> Rd, a G R, d > 2, be a generic one-parameter

family of C, r > 4, diffeomorphisms having an irreducible and transverse

homoclinic point p to a saddle-node fixed point q at a = ao, namely, conditions

(l.la,b) and (1.5a,b,c) are satisfied. Then there exist closed sets U and H with

y(p) U {67} c int U, p G int H c int U, and a small number e0 such that the

following holds for \a - a0\ < £o •
There exists a constant Kq so that when a > ao, the invariant set

\jF"(U,a)U{q+}
nez

is topologically conjugate to the shift dynamics {I(A"0), a} and

(1.6)    A(F(-,a),U)=  \jFn(U,a)U{q+}

nez

U \hz: ze (J F"(Q"UQ°, a) I , a>a0.
I nez J

Here, £2 = A(n, H),  Q~ , £1° are the same as in (1.2b,c) except that Ws is
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replaced by Wcs(a), and each hz represents a C-3 curve homeomorphic to the

unit close interval [0, 1] satisfying
(a) the collection of hz is invariant in the sense that F(hz, a) - hF(Z,a) ;

(b) hz C W™(a) for z G U„ez^n("°) I
(c) hz is the connected component in Aa containing z andhz< n hz = 0 if

z' + z\
(d) the length of hz approaches \p+(a) - q^(a)\ as z —> q+(a) with ze W£+,

where q+ = q- = q at a = ao ;

(e) every point from hz - {z}, with z e \JneZF"(Çl°, a), is a reducible

homoclinic point to q at a = ao or a heteroclinic point from cj_ to q+ for

a > ao.

In the case of a < ao, there exists a constant Co > 0 independent of a

so that Aa contains a subspace il* (a) with the property that the Poincaré map

U(a) on fi*(a) is topologically conjugate to the shift dynamics on doubly infinite

sequences of finite symbols {Ko, Ko + I, ... , K\(á)} with K\ satisfying

K\(a) —>oo,     as a —> a^    and   K\(a) <—===.
vl«-«o|

Moreover, in contrast to {Aao, F(-, ao)}, there are no l-periodic orbits of periods

> Co/VIa _Qo| in Aa.

The paper is organized as follows. In §2, we will establish two conditions

which guarantee the existence of certain orbits of the Poincaré map n. In §3,

we will prove our results (Theorems 1.1-1.6) for the hyperbolic fixed point case.
This is done by checking the conditions of the main result, Lemmas 2.1-2.3,

from §2. In §4, we will do very much the same thing as we do in §3 except that

additional analysis on the local center manifold is carried out in order to apply

those lemmas from §2. In §5, the concluding discussion, we will extend our main

result to the transcritical, pitchfork, periodic doubling, and Hopf fixed points
cases. We will also introduce the idea of homotopic conjugacy and show that
the chaotic nature of Aa is best understood at this level of conjugacy. We will

summarize our idea in proving the main theorems by a new proof of the classical
example of Smale's horseshoe map, and derive a structural unstable horseshoe

as well. Last, we will quote an example to which Theorem 1.7 immediately

applies.
As a closing remark, we point out that Theorems 1.1-1.3 first appeared in

Sil'nikov (1967) under the disguise of continuous flows. Moser (1973) appar-

ently was not aware of Sil'nikov's works and independently discovered Theorem

1.1 through a more geometric approach.

2. Some technical lemmas

In this section, we will derive three technical lemmas which are applicable

to both hyperbolic and nonhyperbolic fixed point cases. The first lemma is

concerned with the doubly invariant set Q while the second one is about, in a

more general context, the forward and backward invariant sets in H separately,

including the behavior of the center stable manifold Wcs and the unstable man-

ifold Wu in H. To do so, we will establish an appropriate one-to-one corre-

spondence between those sets with the fixed points of some systems of 'doubly'
infinite, 'downward' infinite, or 'upward' infinite equations respectively. As a
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result, the fixed points are then parametrized by doubly, leftward, or rightward

infinite sequences of countable symbols accordingly. While a doubly infinite

sequence corresponds to a unique point in Í2, a leftward or rightward one cor-

responds to a manifold which is a graph over IVX™ or W£c respectively. Lemma

2.3, on the other hand, is concerned with the topological structure between the

sequences and the invariant sets. It also gives a nice explanation as to why

the blowup treatment to the symbols is necessary when the dynamics of the

center stable manifold and the unstable manifold in A are taken into consid-

eration. Because of their generalities, the map F here is always parametrically

dependent, as are the invariant manifolds Wc%(a) and Wu(a). However, the

parameter will be suppressed in our exposition most of the time. To begin with,

we fix more notations for the rest of the paper.

Let us shift the fixed point q at a = ao to the origin q = 0 at ao =

0 and choose z = (x, y) as a Cr local coordinate near the origin so that

Wx™ = {y - 0} and W^. = {x = 0} locally. Such a normalization is standard
by the C smooth invariant manifold theory (see, e.g., Hirsch et al. (1977),

Shub (1986), or Vanderbawhede and van Grils (1987)). Fix a closed ¿-box

B{à) = {(x ,y)'-\x\<S, \y\ < a} of the origin. For a given ô, let M — M(ö)
be the number of distinct points from the homoclinic orbit y(p) that lie outside

the ¿-box. Obviously, it must be finite, satisfying M —> oo as ô —► 0. Let

Po G y(p) n W£. n B(S) and px e y(p) n W^c n B(ô) be such that p0 is the

entering point on y(p) in the sense that F~l(p0) is not in the box, while

Px is the exiting point in the sense that F(pi) <£ B(ô). Thus it must be

FM+l(pi) — po . Certainly, one can easily manage to adjust S so that both the

entering and exiting homoclinic points are interior points of B(ô). This leads

us to choose a closed ¿,-box, B(p¡, 0¡), in B(ô) centered at p¡ for each /' = 0

and 1 respectively.

Now, for the consistency of notation, the domain of our return map will lie
in the horizontal box

H:=B(po,ô0),

and for a reason soon to be clear the vertical box is

V:=B{pltôi).

The ¿,'s here are chosen so that H and V are iteratively disjoint in the sense

that

(2.1a) Fi(I)Dl = 0,    forie{l, -1} and I e {H, V}.

Moreover, we will also assume that for a given ôo > 0, ¿i > 0 is chosen so

that the image of V under the (M + l)th iterate falls into H :

(2.1b) FM+i(V)cH.

(The closed set U will roughly be the same as |J¿=i F'(V)UB(ô). This will be
made precise in the proof of our main theorem.)

The third constraint on the choice of öo and ô\ is related to the transverse
intersection of the unstable manifold Wu and the center stable manifold Wc%

at po and p\ . To be precise, let Ylg := FM+i : V —> H be the global return map,

and let (ffi, n£) := n^ be its componentwise representation. To distinguish
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points between H and V, we denote (xm, yin) G H while (xout, yout) G V.

Also, they are normalized so that

(2.2a) (*in, ^in) = 0   at p0       and       (xout, yout) = 0   at px.

See Figure 2.1 for the illustration. Thus, in terms of these local and normalized

coordinates, the global maps read

(2.2b) Ain     ~ 11p^Aout ' >out/ 'gV-^-out ' -'out/ y
j+i

'■*g(xout i ^out)

where, consistently, the superscripts are included for keeping track of iterates

later on and \x{n\, \y(n\ < ô0 and \xJ0Ut\, \yJ0Ut\ < Sx.

Now, recall the definitions Wff and W/fc, which are the connected com-
ponents of Wx™ and Wu in H containing the homoclinic point po. Thus,

wh '■= {(^in, Vin): Pin = 0, |xin| < S0} and Wfi = n.g(W$), where symmetri-

cally W$ := {(Xout, Pout) : *om = 0, |y0ut| < ¿i} (cf. Figure 2.1 ). In this context,

the transversality condition (1.1b) reads

imDyYig(0, 0) + Rd* x {0} = Rd,

where dcs and d" with dcs + du = d are the dimensions of the center stable

manifold and the unstable manifold respectively. Therefore, DyHg(0, 0): Rd"

-> Rd" must be nonsingular. Hence, by the implicit function theorem, yJ0Ut can

< *in..

w„

n =f

,   y+ 1      v+ I,

p0 = (0,0)

Figure 2.1
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be solved from the equation yj*1 = Ylg(xJout, y¿ut) in terms of the other two

variables x¿ut, y/n+1 locally. Let

yL:=nyg(xiut,y£l)

denote the solution function; then it is easy to see that for given ô and ôo, S\

can be chosen so small that, in addition to (2.1a,b), the function Ylg is defined

for all \xJ0J < ôi, |y/n+1| < S0, namely,

\ñg(xL,y{:l)\<¿i,   {oT\xij<ôu \yj:l\<ôo.

This basically concludes the choices of the constants S, So, and S\ . Let us

now deliberately rewrite (2.2b) as

(2.3)     yL = ñyg(xÍM,y¡:1),     x{n+i=nxg(xJ0Ut,nyg(xiut,yjn+l)).

To define our return map n on H, we need to define a local return map

U¡: D(U,) -4 V so that n := Ug o 11/. By definition, the domain D(n¡) c H
consists of those points z e H whose local orbits stay in B(ô) and exit the

¿-box of the origin only through the vertical cVbox V of p\ . In other words,

there exists a Ko = kq(z) such that F>(z) G B(ô) for 0 < j </co, and

Fj(z) G V when j = kq, Define

(2.4a) N:={M+l+j:3z £ D(n¡) such that j = k0(z)} ,

i.e., the subset of the natural numbers whose elements correspond to the first

returning iterations of all points from D(Yl¡). It is important to note that TV

depends not only on the choices of ô, ôo, and ô\ but also on the parameter

a, N = N(S, ôo, ô[, a). As suggested by our Theorems 1.1 and 1.7, the set

N is expected to be either {Ä"o, Ko + I, ...} or just a finite set when a < a0,

or a < 0 in our normalized parameter. To continue, let Hq , in accordance

with § 1, be the subset of D(U¡) such that all the first returning iterations of Hq
equal k G N. Hence,

(2.4b) Ho := D(U,) = \J Hk .
keN

It is trivial to conclude from the iterative disjointness (2.1a) of H and V and

the closedness of H that

(2.4c) H% nflf' = 0   iik^k1, k,k' £N   and   /7¿ are closed.

Next, similar to the global representation (2.2b), we write

(2.5a) *4t = nf(*4,>¿),     y¿ut = ri?(x4,y4),

where (x(a, y(D) e H0.

We are now led to the following crucial condition for our Lemmas 2.1 and

2.2. It is meant to be checked in the proofs of our main theorems later on.

(2.5b)        There are Lipschitz functions x(k, x(n, yout), y(k, x(D, y¿ut) of

all |-x/n| < ^o and \yJout\ < ö\ for each keN such that the
representation (2.5a) for the local map is equivalent to the cross

representation

*4t = *(k, xJiB, yJ0J,       y{n = y(k, xJin, yJ0J

for all \x(J <ôo, \y}out\ <<?i.
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Throughout, A := {& = (x{D,yJ0Ut): \x(n\ < ô0 and |yout| < ¿1} is called the

Sil'nikov domain and Çj the Sil'nikov variable. Note that A is a rectangular
closed set in Rd and is independent of the first returning iteration k of points

in Hq . The virtue of such a hypothetical (at this moment) representation (2.5b)

is to allow us to treat those otherwise less tractable variables x-m and yout as

independent variables. As the last two pieces of terminology, we have

(2.5c)        0&:=(*4,f(*,*Í,:Ó)> "out:_ (x(k, xin, yout), y0ut) »

for |jc/n| < ôo, \yJ0Ut\ < ô\. The former is referred to as the Sil'nikov change

of variables while the latter is the local map on H¡/¡ in the new variable. See

Figure 2.2.
Having obtained the two key ingredients (2.3) and (2.5b) of this section, we

are now in a position to consider the orbit y(z°) = {zj = W(z°): j G Z}

through a point z° e fl. Recall Cl = f]neZTl"(Ho), the invariant set of
n in Hq. Such an orbit uniquely gives rise to a doubly infinite sequence

s = (■■ -S-iSoS\ ■■■) with the property that the 7'th iterate zj = (xfn, yfn) be-

longs to Hqj for a uniquely determined Sj e N since Hq is disjoint for distinct

k by (2.4c). Now, substituting the Sil'nikov change of variable (2.5b) into the

equation (2.3) above and appending the equations with all the j e Z, we are

■Vm

II,

Figure 2.2



30 BO DENG

led to the following system of infinite equations in the Sil'nikov variables:

4+1 = nj(*K>), n^(x(^), y(^j+l))),

yiÜ = ñyg(x(?+l), y(V+2)),    with Í' = fo, 4, yout).

Observe that, if we think of the right-hand side as a map ®s : Az -> Az paramet-

rized by the doubly infinite sequence s of integers G N, then the doubly infinite

sequence of the Sil'nikov variables ( = (••• (x(n, yJ0Ut), (je/n+1, yJ0*t )'") on the

left-hand side must be a fixed point of <t>s. Here, Az denotes the doubly

product space of A and it is complete and metrizable with, e.g., the metric

00     1

d(t,t')= £ 2ü\(K-x'L\ + \yL-y'U)-
7'=—00

The infinite sum here is understood as the limit of Ylj=m as m ~* ~°° and

n -* +00 independently. Also notice that, under this product topology, <I>j

is a uniform contraction mapping for 5 g Nz if each component <I>i is a

contraction mapping having a fairly small contraction constant, say less than |.

If this is the case, there will be a unique fixed point Ç*(s) for every s g Nz and

it depends continuously on 5 by the uniform contraction mapping principle.

Indeed, the last statement follows from the fact that, by the definition of <P5

and the metric d on Az, the function s -» <S>S actually is continuous from

the product space iVz into the space of continuous functions in Az . Thus, we

have

Lemma 2.1. Under the above setting, let

g = g(S):=max{\DF(z)\M+l,\DF-l(z)\M+l},
|z|<<5

L = L(ô, So, Si, N0) = sup{Lipx(fc,-,-), Lipy(k,-,-)}

with \xm\ < ôo,  \youï\ <ôi, k £ No,

where No c N is a subset of N defined as in (2.4a) and Lip denotes the

Lipschitz constant of a given function. Suppose the condition (2.5b) and

(2.7) gL<\

are satisfied. Then, for every s e Nz, the map «P^ defined by (2.6) has a unique

fixed point Ç* = Ç*(s) which is one-to-one. Moreover, let Ç*J = (x*J:, y*¿) be

the j th component of Ç* and 9¡° be the Sil'nikov change of variables defined

by (2.5c) for the initial points in particular. Then the map

<p := 0£ o C*°,       s^ (x*n°(s), y(s0, xg{s), y*(s))),

defines a topological conjugacy from the shift dynamics {Nq, a} onto {im«?i), n},

the dynamics of the Poincaré map on the image im4>.

Proof. The first half of the lemma has been proved in the discussion preceding

the lemma. Indeed, the contraction constant of <&s is at most gL < | and



TRANSVERSE HOMOCLINIC DYNAMICS 31

the space Az is a complete metric space. To complete the proof, we only

need to show <j> is a homeomorphism onto its image im (f> which is endowed

with the Euclidean topology. That 0 is one-to-one is trivial by the one-to-one
correspondence between Ç*(s) and its associated orbit in Q, plus the trivial

one-to-one correspondence of the orbit with its initial point. It is also continuous

by the uniform contraction mapping principle. To show the continuity of the

inverse, it suffices to show 4> is an open mapping. But this is due to the following

k

<¡>(Bs_,...So...Sk)= f|n-^)nim0,
j=-i

where Bs_r..So...Sk is the topological basis element of s = (• • • S-¡ • • • So • • • s¿ • • • ) G

Nz which consists of those points s' in Nz so that s'j = Sj for -I < j < k.

In fact, by definition, cj)(Bs_l...So...Sk) consists of those initial points whose y'th

iterate is 6S¿ o Ç'J = (x*¿(s), y(Sj, x*J(s), y*0ít(s))) G H$ for -l < j < k.

Thus, <f>(Bs_r..So...Sk) c Ç]_l<j<kn~j(H0Sj)r\im4>. On the other hand, it is trivial

to see (f)-1 (f)_Kj<kn~J (Hq) n im</>) c Bs_r..So...Sk by definition. This proves

the identity. Moreover, being connected components, Hfi are open in H0.

Hence, the right-hand side set is indeed open in im(/>. This completes the

proof.   D

Next, we introduce another technical lemma which is concerned with forward

and backward invariant sets for the Poincaré map H on H, including those

sets Q+, Q~ , and Q°. To begin with, let us recall Q+ from (1.2a) which

is U„>0{n~"W) ni\k<n-iu~~k(Ho)} in general. Given z° G Cl+, there is

a unique n > 0 such that n"(z°) G Wff. Thus, there is a unique leftward

infinite sequence s = (■ ■ ■ S-\So • • • s„-i) such that ïlJ(z°) e HqJ for -co < j <

n-\. Similarly, if we let UJ(z°) = (x{n, yQ, (x¿ui, y¿ut) = n/(x¿, yJJ , for

; < n - 1, and |x£| < S0 while yfn = 0 for n"(z°) G Wfî = {yiri = 0} locally,
we wind up with the following system of equations with ß = y"n — 0 by (2.3)
and (2.5b):

wg(x(^-2),wg(x(^-2),mn-'))),

with£'' = (Si,x[n,ylouX).

wg(mn-x), ß),

Notice that the discussion above is also valid for all nonzero y"n which is treated

as a new parameter ß in (2.8) and it corresponds to the case where z° G

U-"(H) n i\<„-i n~k(Ho) > namel|y, with wh replaced by H, is a point of

backward invariance in general. See Figure 2.3. Treating the right-hand side

as a map <I>+ „  from the product space nfc<nA into itself implies that the

leftward Sil'nikov sequence (• • • (.x^-2, y"üt2) > (xin_1 > ¿mit1)) must De its fixed

point. Notice that the definition of 0+ „ depends on the integer n which is

suppressed. Since we will present our lemma in a compact form, let us not rush

to state at this moment the obvious conclusion about 0+ „.

(2.8) *in      "

A' =
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ni^'inn2!//^)

Hnnkin («„')

Figure 2.3

To continue, let us recall Q

\J{irm{w%
m<0

from (1.2b):

n  n  n-
k>m+\

AHo)}.

Following the same argument, we have that given a

a unique m < 0 and a sequence s = (sm ■ ■ ■ soS\ ■ ■ ■

nj(x?n ' y?J e Ho   for m ^ J > and in Particular, (x™

c.° , y° )in ' s m s G Q~  there is

)  such that (xJin

y£)eWj}nH¿"

(x,m-\ y^x) = (0, jCt  ) e WZ n Ä(p!, ¿O , and ^ n'(x,ffV-^out

ytn) =

Thus,

, V"
m-lwith x™, = O- Also, the discussion above is valid for all nonzero x,

which correspond to the case where (xP, yfj G U.-m(H) n Dfe>m+i H~k(Ho) •

Therefore, such general points (xXn, y°n) of forward invariance are associated

with the following system of infinite equations of the Sil'nikov variables Ç =

((^in ' yóut) ' (xin+1 ' JCt1) ' ■ • • ) parametrized by the sequences together with

the parameter ß := x^j-1 :

(2.9)

x^=wg(ß,wg(ß,mm))),

xzx = ngmm), mm+x)), with í' = &, xi, y'out).

Again, we have derived a map, called G>~ „ on the one-side infinite product of

the Sil'nikov space Y\m<kA > wfi°se nxed points correspond to the set ïl~m(H)n

Yl~k(HQk). The dependence of <D~ B on m is also suppressed. Last,k>m+\n,_
combining the two arguments above, we conclude that for fixed m < 0 < n ,

the subset {U~m(H) n fCm+i n~k(Ho) n n-"(H^s)}, intersecting Q° , is in

one-to-one correspondence with the fixed points of a map «D0. ̂ in Ylm<k<n ̂

for all possible s = (sm- ■ -sq- ■■ s„-\) and \ß\ < ô\ Here, <D° is defined as
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the right-hand side of the following equations:

x£=ng(ß,Ug(ß,y{Cm))),

yZi = ñyg(x{tm),y(C+i)),       .,. ,,    ,      ,.    ,. ,
(2.10) with {' = (si, x¡n, yout).

y"oat = ng(x(C"-l),0),

Notice that when m = 0 = n , it trivially corresponds to the homoclinic point

Po. We also note that the operators <S>'S ß are continuous in 5 and ß . We now

have

Lemma 2.2. Assume the same conditions (2.5b) and (2.7) of Lemma 2.1. Let
N0, N be the same as in that lemma. Then

(a) for every n > 0, the product space ^ "_2'"_1} x {\ß\ < So} is homeo-

morphicto U~n(H) n f\<„-i n~k(öjeN0Ho) ■ Specifically, let C+(s,ß) be the

unique fixed point of <P+ „ defined by (2.8); then <f>+ := 0*° o £+>° defines the

homeomorphism.

(b) Similar statements hold true for equations (2.9) and (2.10) respectively.

Specifically, for every m < 0 < n, the product N0{m'm+i'") x {\ß\ < ôi}

^N{m,m+\,...,n-\} x r^| < ^ fesp^ & fiomeomorphic to

u-m(H)n f| n-M \Jh¿
k>m+\ \jeN0

n-m(H)n f| n-M (J h¿ I nn-"(w™) resp
k>m+\ \jeN0       J

Then the homeomorphism is defined as <j>~ := 0*° o £- >° (cffi := 0?» of0-0 resp.),

where £'(s,ß) denotes the fixed point of Q>'s ß defined by (2.9) and (2.10).

(c) Moreover, if the Sil'nikov changes of variables (2.5c) awtf" //ze maps n£, f\yg

are Cl, then the functions Ç'(s, ß) are also Cl in ß for i G {+, -, 0}. Fur-

thermore, for every sequence s = (• • • sn-isn-\) (or s = (smsm+\ ■ ■■), or segment

s = (sm---sn-i) resp.)  with Sj G M), the set U~"(H) n f]k^n_xU-k(Hs0k) (or

n-*(tf)nf\>m+1 n-"(H*),or II—(ff)nn£j,+1 n-k(H°>)Ml-»(Wff) resp.)
is diffeomorphic to the C1 vertical (or horizontal resp.) graph

(or

Ug(x(sn^ , x.+nn-\s, '),y^t"-l(s, •)),y*¿H-l(s, ■))   in H

ny(.,y(sm,x-'m(s,.)),y^m(s,-)),

or

¡n      Vo >    !) ! .rout

nyg(',y(sm,xi°nm(s,-)),y°oilm(s,-))

resp. in V).

Proof. The proof is a straightforward application of the uniform contraction

mapping principle to the maps Q>'s „, i G {+, - , 0}, and of the same argument

as in the proof of Lemma 2.1 for the homeomorphic property.   D
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Recall the definitions of the sets of doubly infinite sequences S, S+ , S~ ,

and S° from (1.3) which are incorporated with the symbols 00s and oou.

Replace the symbols s¡ > K0 by s¡ G N0, with No the same as in the lemmas

above, and denote the newly defined sets as S (No), S'(No), i G {+, -, 0} .

Also, let S (No) denote the corresponding standard blowups and equip the union

of blowups

S^(No) := S(No) U {Sl(N0), i G {+, -, 0}}

with the topology generated by that of its components. Then, an immediate

conclusion from Lemmas 2.1 and 2.2 above is that one can define a one-to-

one and onto map y/: 5? -» s/ as y/(s) := (f>(s), or <j>'(s, 0) accordingly for

i G {+, -, 0}, where

sá := Sl(N0) U {Sl'(N0) : i G {+, -, 0}}

and s and s are the standard sequences and the corresponding standard blowup

sequences respectively. Here, obviously in the same logic, Sl(No) and SI'(No)

are the same as SI and SI' defined in (1.2a)-(1.2c) except that H0 here is

replaced by \JkeN Hq . It is also understood that the augmented and doubly

infinite sequences have a natural correspondence to their original and one-sided

infinite sequences. Thus, we did not make the distinction among them when

we wrote <¡>'(s, 0) above. The one-to-one property of y/ follows from the fact

that not only are SI and SI' distinct (i.e., mutually having empty intersection)

but also the components in the union of each SI' are disjoint by the remark

preceding Theorem 1.2. Recall that this is simply due to the iterative disjoint-

ness of the chosen sets H and V from (2.1a). As the last result of this section,

we have

Lemma 2.3. Under the setting above, the inverse of y/ is continuous from sf

onto S?.

Proof. To show the continuity of y/~l it suffices to show y/ is an open mapping.

To do so, let Bs_r..¡0...Sk be a typical topological basis element of 5? which

consists of those points s' such that for all -/ < /' < k either s'¡ = s¡ or
b, <s[<oo only if s[ ^¿ s¡ G {oos, oou} , where the b¡ are some constants to be

specified as follows. If we let n and m - 1 be the least and largest number such

that sn = oos and sm_i = oou respectively, then the basis element is so chosen

that b¡ > max{\k-n\, \l + m\} . We claim that the openness of y/ follows from

the identity

¥(Bs_r..k...h) = í[JH¿UU-^(\jHÍ
1 Xj>b„

n   f|  n-'(/#) n IT" (w* U H¿) n im y,
m<i<n j>b„

where, of course, all s, and j are from No. Indeed, for every given element

s' from the open set either s- = s¡ or the blowup s'n covers the entire segment

from the nth place to the kth one prior to blowing up because of the choice
of b„ . Similarly, if s'm_x ̂  oou then s'm_x covers the segment from the 7th'

place to the \m - l)st' one. This implies n' o y/(s') G Hq' for all m < i < n ,

)
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nw"' o yy(s') G Hq"1"-1  if bm-i < s'm_x ¿ oou , and IP o y/(s') G Wff if s'n = 00s

or Hq if bn < s'n ,¿ 00s. Conversely, it is also clear to see that if z' G im y/

satisfies the properties above, then its associated blowup s' must be in the given

basis element. This proves the identity. To see the openness of the subset of

im y/ on the right-hand side of the identity, observe that since the H¿'s are

connected components, they are both open and closed in |J H¿ U Wff, and

Wff u U/>¿>„ -^o *s °Pen smce *ts complement is the finite union of the closed

sets H¿ with j < bn . Here, j e Nq . Since n is a homeomorphism, the subset

is indeed open in im y/ .   O

3. Proofs of Theorems 1.1-1.6

The key step in proving Theorems 1.1 and 1.2 is to check condition (2.5b).

This in turn is a simple consequence to the following result whose proof can be

found in Deng (1988a,b).

Proposition 3.1. Let (x, y) = 0 be a hyperbolic fixed point of F G C, r > 1,
and the coordinate (x, y) be normalized in such a way that Wx"c = {x = 0}

and WXoc = {y = 0} locally. Then there exists a ô > 0 such that for every triplet

(I, Xo, yi), with / > 0 any integer and \xo\, \yi\ < S, there is a unique local

orbit y = {(x', y'): 0 < i < 1} contained in the 23-box B(25) satisfying

x° = xo   and  yl =y\.

Denote this correspondence as (x', y')(l, xo, y\). Then xl(l,-,-) and

y°(l, -, •) are C functions which converge in the C uniform norm to x = 0

and y - 0 respectively as I —> +co.

A heuristic illustration of this result is shown in Figure 3.1.

(x0,y»Ux0,y]))

Figure 3.1
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Proof of Theorem 1.1. To check the condition (2.5b), let k = I + M + 1 and
define

(3.1a)   x(k,xin,yout):=x'(l,x0,yi),       y(k, xin, yout) := y°(l, x0, yi),

where (x¡n, 0) is the local coordinate of (xo, 0) from the horizontal box

H = B(po, ôo) and (0, yout) is the local coordinate of (0, y \ ) e V = B(px, ô\ ).

Because of the uniform Cr convergence of xl(l, •, •) and y°(l, •, •) by Propo-

sition 3.1, we can choose and fix a large integer Ko(S, do, ¿i) so that for all

k>K0,

||*(*,-,-)ll<*i.    \\y(k,-,-)\\<ô0,    and

(3'lb) \\Dx(k,-,-)\\ + \\Dy(k,-,-)\\<^,

where the constant g = max|z|<a{|Z)F(z)|M+1, \DF~l(z)\M+l} is the same as

in Lemma 2.1. Choose No = {K0, K0 + 1, ...} , then Lemma 2.1 applies.

Hence, by choosing Hq - \Jk>K Hq , the two dynamical systems {Nz, a) and

{SI, Yl} are topologically conjugate,   o

Proof of Theorem 1.2. Choose x, y, Ko, No, and H0 the same as in the proof

above. It is obvious that N¿'" ' ' ' is in one-to-one correspondence with

{Yl-n(Wfi) n f\<«-i n_i(//o)} by Lemma 2.2. Since these sets are mutually

exclusive for distinct n , the conclusion of Theorem 1.2 for Sl+ follows. Last,

fixing the parameter ß = x"~tl = 0, which corresponds to Wx^c n V , the other

part of the theorem follows immediately.   D

As one might have noticed, Theorem 1.2 is much weaker than Lemma 2.2.

We stated it as it was simply for an accurate count of credits due to Sil'nikov.

Proof of Theorem 1.3. In terms of the Sil'nikov changes of variables (2.5c), we

have the following simple facts:

Ho =    U    graph(j)(Â:, .,yout))   and    V0k =    [j   graph(x(k, xin, •)),

where V0 = n,(//0) and V0k = Yl¡(Hk) ; and thus W¡¡ = l^n// and W$ =

W\L n v are the on^y limiting sets for {H^}k>Ko and {V0k}k>Ko respectively

by the uniform convergence of Proposition 3.1 (cf. Figure 1.3). Namely

(3.2) H0 = H0U Wh   and    V0 = V0 U W$.

Let SI := SI U Sl+ u Sl~ u Sl° . To prove the first half of the theorem we must

show SI = SI. We begin by showing SI c SI which in turn is equivalent to

showing SI' cSl for /' G {+, -, 0} . We start the case with i - + .

For every given z° G Sl+ we may assume, up to some finite iterate of n,

that z° G IVff as well. Then by Lemma 2.2 there is a leftward sequence s =

(• • -s-2s-\) such that z° g IVff n f\<_i Yl~k(HSQk). Also by that lemma z° is

in the vertical graph &+(s, -) of backward invariance in H parametrized by

s, where

&+(s, ß) := nj(*(j_,, X+-V ß), y:u-l(s, ß)),yUT\s, ß)).

In particular, z° = (&+(s, 0), 0) (cf. Figure 2.3). Let zk be the point from

SI  corresponding to the rightward augmented and doubly infinite sequence
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(• ■ • s-2$-\k- ••£•••)• Then zk must tend to z° as k —> oo . Indeed, sharing

the same leftward sequences implies that zk := (x¡n ,£)>„,, ¿0 also belongs to the

graph jf+ for all k > K0 by Lemma 2.2, i.e., xinA: = &+(s, ym,k) ■ But on the

other hand, yÍD¡k = y(k, xin<k, youUk) since zk g Hit. Since y(k, -, •) con-

verges to zero as k —► oo by Proposition 3.1, this implies zk -» (^+(s, 0), 0) =

z° as A: —» oo.

Next, we show Q° c SI. Actually we proceed to show Q° c Q+ , the closure

of Sl+ . For every given z° G Sl° we may similarly assume, up to some finite

iterate of n, that z° G W%. Thus, z' := n-^z0) G W$. Let s = (s0---sn)

correspond to z° by Lemma 2.2 and zk G Sl+ correspond to the leftward

augmented sequence (•••k---kso■■ -s„). By the same lemma again z' and

z'k := U.~l(zk) are in the same horizontal graph 2?°(s, •) in V, where

$\s, ß) := Wg(ß, y(so, x°'°(í, ß), y°J(s, ß))).

In particular, z' = (0, &°(s, 0)). By a similar reason as in the case Sl+ c SI,

we have z'k := (x'mUk, y'outJ() e V0k and x'ouiJc = x(k, x'in k, y'ouXk) - 0

uniformly as k —> oo by Proposition 3.1. Now, the limit z'k —> z' follows from

«ut>fe, ^°(5, x'ouUk)) - (0, ^°(s, 0))   as k - oo.

It is not hard to see now that Sl~ c SI. Indeed, replacing the segment above

by a rightward sequence (soSi ■■•) corresponding to a given point from Sl~ ,
and replacing zk by that from SI corresponding to (• --k-'-ksoSi • ■■), the

same reasoning as in the case Sl° c SI above falls through. This shows Q c SI.

To show ficßwe need the following claim:

(3.3)        If z° g SI U Sl+ U Sl~ U Q°, then there are m < 0 < n such that
either

Un(z°)eH-HoUW^

or

nm(z°)£H-ng(Vouwp).

To prove the claim, we need to be more precise. Indeed, by assumption, z° is

none of the following:
(i) n*(z°) G H0 are defined for all k G Z,

(ii) there is an n > 0 such that nfc(z°) G i/o are defined for all k < n - 1

and n"(z°)G »£,

(iii) there is an m < 0 such that n*(z°) g i/o are defined for all k > m + 1
and nw(z°) G W* = n?(H^),

(iv) there are w < 0 < « such that nfc(z0) G i/o are defined for all m + 1 <

fc < n - 1 and nm(z°) eW% = Hg(W$), Yl"(z°) g Wfr.
But, on the other hand, the negation of (i) implies that z° must satisfy one of

the following:
(a) there is an n > 0 such that nfc(z°) G i/o are defined for all k < n - 1

and Yl"(z°) <£ H0,

(b) there is an m < 0 such that Uk(z°) G i/o are defined for all /c > m + 1
and nm(z°) i n^(Fo),

(c) there are m <0 < n such that n^z0) G i/o are defined for all m + 1 <
fc < n - 1 and W(z°) £ H0, nm(z°) £ n?(K0).
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Now, the claim easily follows from all the combinations of statements (a)-(c)

and (i)-(iv).

We now resume our proof that SI c SI by assuming to the contrary that there

are z° ^ Q, and z¡ G SI such that z¡ -> z° as i -» +00. By the claim, let us

assume it is the case that II" (z°) g H-H0L>W^ for some n > 0. Then by the

closedness of HqUW^ from (3.2) there is a small neighborhood B(Un(z°), e) c

H - H0 U Wf¡. In limit, n"(z,) G B(Un(z°), e) as 1 -► +00, contradicting

Zi G SI. For the other case, we have ß(nm(z°), e) c H - ng(V0 u WJ!) for a
small e > 0. The same contradiction arises.

To complete the proof, we only need to show the identity A(F, U) =

\Jn€ZF"(Sl) u {0} since the other equivalent identities follow from it imme-

diately. Here U is chosen as

M

U = B(Ô)U[JU,,
1=1

where U¡ = F'(V) (cf. Figure 1.2). It is obvious that we only need to show

(3.4) A(F,U)c{JFn(U)U{0}.
nez

Suppose the contrary and let z° G A(F, U) - \JneZFn(SÍ) u W • Tnen> either

z° g Uj0 for some io or z° g B(ô). Since z° ^ 0, up to some finite iterate,

it must be in |J/=i U¡. Thus, without loss of generality, we assume the first

case. Hence, z' := FM+l-i°(z°) G H. Since z' i Si = SI U Q+ U Q~ U Q°, by

the claim (3.3) there are m < 0 < n such that either n"(z') g H - H0 U Wfr
or nm(z') G H - n^(F0 U H^). Suppose it is the first case; then n"(z') will

eventually exit B(ô) but not through the vertical box V by the definition of

üo . Hence, the first exiting point of n"(z') does not belong to any one of the
{7,'s for 1 < / < M. This contradicts nn(z') G A(F, U). The other case with

nw(z') is identical.   D

Proof of Theorem 1.4. We must, of course, define a topological conjugacy, say

p: Z(K0) -* A(F, U). We actually start by defining a map p: \Jn€Z a"^) -»

\Jn€ZFn(Sl) and showing that it is a conjugacy, where 5? is the standard

blowup as in (1.4b). Then, the one-point compactification will naturally take

care of the rest of the proof.

As the first preparation, we point out that the map y/ defined in Lemma 2.3

with si = SI is actually homeomorphic. This is because SI is compact, ¿P is

Hausdorff, and the inverse y/~l is continuous.

As another preparation, we examine the operation of blowups in finer detail.

It is easy to see by definition that, up to only renaming the subscripts, every

element s from \\an(S?) can be written as s = s (I) := (■ ■ -S-iSqjSí ■■■) for

some 0 < / < so - 1 with the properties that 50,/ = so~l " 'so ' "5o°_1_/ ^

So ¥" 00s, oou or 5o,/ = 00s, 00" and / = 0 otherwise; and 5, = sf'"S¡'

if i ^ 0 with s¡ # 00s, oou, or Si = 00s, oou otherwise. Recall that s(l) is

called a standard blowup only if / = 0, or, if s0 is not finite, it must be the

first 00s, namely s_ 1 is finite. In other words, s = (• • • S-\SqSq ■ ■ ■ Sq>~i ■ ■■ ) and

s = (••• s^_x ■ ■■ssSx[~1oosqOo\ ■ ■■) are the only two types of standard blowups.
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As the last preparation, we introduce the standard backward iteration xb for

all se[}an(S^) as follows:

{-/,        if s = s (I) and so ^ 00s, oou,

n + 1,    if s0 = oou and s = (• • • cog • • • ooj^+i • • • ),

m, if s0 = 00s and s = (■••sm-\oosm •••oo0---).

Roughly speaking, rW*^-) maps nonstandard blowups back into standard ones

by the minimum number of 'backward' shifts. Moreover, the same definition

applies to all z g U F "(SI). To be precise, we have

(3.5b)
-/,        the least backward iterations so that F~l(z) e SI,

*b(z) = { n + 1,    the least forward iterations so that F"+l(z) g Whu,

m,        the least backward iterations so that Fm(z) G Wf¡.

For this reason, we will not distinguish these two functions. Similarly, one can

define the standard forward iteration Xf as

{s0 - /,    if s = s (I) and s0 ^ 00s, oou,

n + 1,    if s0 = oou and s = (• • ■ cog • • ■ oo^s„+i • • • ),

m, if So = 00s and s = (• • • sm_ 100^, • • • oo0 • • • ).

It is trivial to see that x/(s) = xb(s) + so if so ^ 00s, oou and Xf(s) = xb(s)

otherwise. The extension of Xf to \JF"(Sl) is identical to xb above. The

important property we will use in what follows is

(îi(î)-l,    if s = s(l), I <s0- 1, or so = 00s, oou,
3.6       xb(a(s)) = \ ...     ,      .

t Xf(s) - 1,    if / = s0 - 1.

This can be directly checked by definition.
We now define

(3.7) p(s) := F-T^(y/((TT^(s))).

We need to show it is (1) one-to-one, (2) onto, (3) commutative with F and

a, and (4) homeomorphic.   We start with the one-to-one property.   Let s,

s' G \\an(S?) and suppose z = p(s) = p(s') = z'. Then, by definitions (3.5b)

and (3.7), xb(z) must be xb(s). This implies xb(s) = xb(z) = xb(z') = xb(s').

Therefore, y/(rTTb^(s)) = y/(aTb^'>(s')) G s/ because F is homeomorphic.

Since y/ is homeomorphic, .^'^(s) = ffT*(i)(s'). That is, s and s' give rise

to the same standard blowup. Since two elements of (J an(S?) which have the

same standard blowup are different only by the 'minimum' time of standard

backward iterations, we can conclude s = s' because xb(s) = xb(s') as shown
above.

Second, we show p is onto. This simply follows the reversal definition of

(3.7). To be precise, for a given z g \JF"(SI), let xb(z) be its standard back-

ward iteration. Thus Fz^z\z) g SI. Blow up the corresponding sequence and

obtain y/~l o Fr^z\z). Then apply -xb(z) shifts a~Zb^ . The resulting non-

standard blowup s is what we look for because it is trivial to check by the

definitions xb(s) = xb(z) and p(s) = z .
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To show the commutativity and the homeomorphism property, we need the

following alternative definition of p in terms of the 'minimum' standard for-

ward iteration. We show, indeed,

(3.8) p(s) = F-Tf^(y/(axf^(s))).

When so = 00s, oou, (3.8) immediately follows from (3.5a) and (3.5c) because

of xb(s) = Xf(s). Suppose So # oos, oou . Then, (3.8) follows from the follow-

ing facts:

(i) Xf(s) = xb(s) + s0 by (3.5a) and (3.5c);
(ii) y/(cjSo(s)) = Fs°(y/(s)), that is, y/(as°(s)) is equal to the Poincaré return

of y/(s) which, by definition, takes exactly so iterates of F .

We now have

F-xf(y/(axf(s))) = F~xf(y/ o os°(ox»(s))) = F~Tf(Fs° o y/(atb(s)))

= F-**(y,(o^(s))) = p(s).

We now show the commutativity, using (3.6) and (3.8). When / ^ So - 1, it is

straightforward to have

p o <j(s) = F-x»^S)\y/(oXb{a{s» o o(s)))

= F(F-x^(y/(oTb(i)-i o ct(s)))) = F ° p(s).

On the other hand, when / = so -1, we replace xb(o(s)) by Xf(s) -1. Then the

equivalent definition (3.8) together with the same computation above applies.

Next, we show p is homeomorphic.   To this end, let m and n be the

least and largest number such that sm = oos and s„ = oou respectively for a

given segment s_/ • ■ -So • • -sk . Let b > max{|«|, \m\] . Let B-S_r..¡k be such a

typical topological basis element for \]an(5^) that consists of those s' such

that s'A = sj for all i and j or only for those /' with s, ^ oos or oou, but

s¡J > b , where, recall, s, = sf ■ ■ ■ s^-1 , etc. We claim first that

xb(Bs_r..sk) = constant,     if s0 ^ oou,

if(BS-,-h) ~ constant,     if s0 ^ cos.

If so t¿ oos, oou, then it is trivial by definitions (3.5a) and (3.5c) and the con-

stant is x(s). Suppose So = oos. Then, it is easy to see from the definition of b

that for every s' G B¡_r..¡k, either s0 = oos so that xb(s') — m or s0 ^ cos, but

then the blowup s'¡ must spread across the segment from the wth place to the

initial place since s¡ > b > \m\ for m < i. That is, s' — (■■■ sm-iSQ • Sq • • • )

and xb(s') must be m . The other case where the standard forward iteration

must be constant for so ^ oos is identical. This proves the claim. Now, de-

pending on whether So = oos or cou , we use either xb or xy in the definition

of p so that xb(B) or Xf(B) is constant. Then, the openness of p follows that

of <rT for a fixed x, together with the openness of y/ by Lemma 2.3 and F~T

for a fixed x . This shows that the inverse p~x is continuous. The continuity

of p is similarly obvious by its definition together with the continuity of F,

y/, a , and the identity (3.9).

Finally, taking the one-point compactification for \\an(¿?) and (jFu(Sl)

simultaneously results in the natural homeomorphic extension for p .   a

The proof of Theorem 1.6 is trivial. We omit it.
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As a final remark for this section, let us point out that the proofs of Theorems

1.3 and 1.4 above do not use the hyperbolicity of the fixed point q . Thus, the

conclusion as well as the proof of Theorem 1.4 also holds true so long as (2.5b)
is satisfied. This is precisely the case for the nonhyperbolic fixed point which

we will pursue in the next section.

4. The proof of Theorem 1.7

The key step in proving this theorem is to verify conditions (2.5b) and (2.7).

But, by means of the exponential expansion (Proposition 4.1) from our previ-

ous project, this in turn reduces to the asymptotic analysis on the local center

manifold (Lemma 4.2).
To begin with, let the local coordinates x := (xc, xs) and y be chosen so that

W*{a) = {y = 0} , Wca(a) = {xs = 0} , and Wc(a) = {x, = 0, y = 0} locally.

Here, the parameter is explicitly included, as it is for F = F(z, a). Let us

also use F = (Fc, Fs, Fu) for the componentwise form. Then, the coordinate

is said to be admissible if, in addition, Fc(xc, 0, y, a) = Fc(xc, xs, 0, a) :=

fc(xc, a). Note that an admissible coordinate directly gives rise to 'straight'

invariant foliations on the center stable and center unstable manifolds as Wcs —

U|*c|<i{x = xc, y = 0} and Wm = \JM<x{x = xc,xs = 0} respectively. The

admissible coordinate will be mentioned later in §5. Referring our readers to

Deng (1988b) for its proof, we now state the following result.

Proposition 4.1. There exists a C~2 admissible coordinate such that fc is

Cr and the local orbits admit a C~3 exponential expansion in the follow-

ing sense. Let nc(xc, 0) be the local life span of a center orbit, i.e., nc =

max{A:: \fk{xc<o)\ < à, k > 0} . Then, for every small ô > 0 there is a constant

Ci such that for all 0 < I < nc, |xCj0| < S, \xSyo\ < S, \y\\ < ö, and \a\ < S
there is a unique orbit

y = {(x" , y") = Fn(x°, y°, a): 0 < n < 1} C B(CXÔ)

satisfying (x°, x°) = (xC;0, xi>0) and y' = yx.
Moreover, if we designate this correspondence as

(xc", x," , y") = (xc" , xs", yn)(l ,xc<0, xs,0, yi,a),

then it is C~3 in xo, yi, and a. Furthermore, there exist constants 0 < X <

1 < p and Ci so that

||XS"(/, -,.,., .)||r-3 < C2A", ||y"(/, -,.,., .)||r-3 < C2pn~l,

\\X"C(1, .,-,., •) -Xc"(/, -, 0, 0, .)||r-3 < C2Xnp"-1,

for all 0 < n < I, where \\ • ||r_3 denotes the C~3 norm.

With this result, the validity of condition (2.5b) is straightforward. Indeed,

restricting the variables (xo, 0), (0, yx) to the boxes B(o¡, p¡) for i = 1, 2
respectively and letting k = I + M + 1, we have, similarly to (3.1a),

XC(K , Xcjn , X^in , yout > a) •— Xc(l , Xcq > XjQ > yi > a) ,

(4.2) xs(k, xCiia, xi;in,y0ui, a) ■= x's(l, xc,0, xi>0,yi, a),

y(k, xc-m, Xi,i„, yout, a) :=y°(/, xc,0, xs,0, yi, a).
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To verify condition (2.7), recall the Lipschitz constant L for x and y from

Lemma 2.1. It is easy to see from the exponential expansion estimates (4.1)

that in order for L to be small, it suffices to show that the center Lipschitz

constant Lipxc(k, xcin, 0, 0, a) is small. Since the Lipschitz constant g for

the global map Ug from Lemma 2.1 is independent of ô\, to show gL is small

it suffices to show

(4.3a) Lipxc(k, xCiin, 0, 0, a) < Ciôx

from some constant C3 depending on 6 and So only. To specify the iteration

time k for which (4.3a) holds, we have

Lemma 4.2. Let S, ôo, S\ be small constants as in Lemma 2.1 and Proposition
4.1 above. Let

Kq — max{min{fc: xc(k, xCi¡n, 0, 0, a) < ôx}: \xCyín -xo\ < So, \a\ < 6},

min{max{fc: xc(k, xc,¡n, 0, 0, a) > 0}: |xCj¡n - xo\ < So},

a<0,

00,        a > 0,

max{max{k: xc(k, xCiin, 0, 0, a) > -Si}: |xfiin -x0| < ô0},

a<0,

00,        a > 0.

Then, there are constants C3 = C^(ô, So), Co = Co(ô,ôo,ô\), and so =

eo(S, So, 3\) such that (4.3a) holds for all K0 < k < Kx(a), |xcin - Xo| < ¿0.
and \a\ < eo. Moreover,

(4.3b) ü:i(a)<ü:2(a) < -^==    and   Kx(a) -* +00   as a -» 0~ .
V lQl

Proof. Since the proof has nothing to do with the other components xs, y, we

will simplify our notation by letting x = xc, xc>in = x° with |x° — Xo| < S0

and xc(k, xC)in, 0, 0, a) = f¿(x°, a). Recall that k = I + M + 1 and M
is the number of distinct points of y(p) outside B(S). Also, because of the

assumptions (1.5a,b,c) on the parameter a for the saddle-node bifurcation, we
may assume, without loss of generality,

(4.4a) fc(x,a):=a + x-f(x,a)

with the property that fx(0, a) = 0, fxx(0, a) > 0. More specifically, we

assume, up to rescaling, that

(4.4b) fx(0,a) = 0,     fxx(x,a)>4,        \x\ < Ô.

This implies

(4.4c) f(x, a) > 2x2   and   f < a + x - x2.

Now, our proof will be split into two cases for a > 0 and a < 0.

The a > 0 case. First, we find the fixed point x+ which is to the right of the

origin. Solving fc(x, a) = x by the implicit function theorem, we obtain a

Cr function a = a(x) for \x\ < ô and S « 1 . Indeed, the two branches

(x > 0, x < 0) of fixed points are in one-to-one correspondence with a in the

following way

±V¿=^2-fxx(0,<*) + O(\x\)x.
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Hence, if we let e = s/a, then by the implicit function theorem again, x+(e) can

be solved as a C~2 function of e from the equation above and x+(e) = 0(e).

By making the change of variable x —> x + x+(e), the map under the new

variable x takes the form

fc := f(x + x+(e), e2) - x+(e) = e2 + x - f(x + x+(e), s2).

Using Taylor expansion and e2 = /(x+(e), e2), we have fc(x, a) = X(s)x -

/i(x,e), where X(e) = 1 - fx(x+(e), e2) < 1 since fx(x+(e),e2) > 0 for

fxx>0 and x+(e)>0. Also

(4.5a) f(x, e) := f(x + x+(e), e2) - f(x+(e), e2) - fx(x+(e), e2)x.

We suppress the bars from the new variable in the following. By elementary

calculus together with fx(0, a) > 0 and (4.4b), it is easy to show that

(4.5b) /i(x,e)>2x2   and   fc(x, e) < x -x2.

Let xl = fc(x°, a) and yl = f'(y°) with f = y - y2 . Then, motivated by
the comparison principle for continuous flows together with the monotonicity

of fc(', a) and /, one can easily show

xl < yl   if x° < y°.

See Figure 4.1. Since xl, yl are monotone decreasing because xl - x/_1 =

-fx(x+(e), s) - fi(x'~l, e) < 0 and yl - y/_1 = -(y/_1)2 < °> and positive

because x° > 0 and y° > 0, they must converge to the fixed point x = 0.

To estimate the rate of convergence, let, specifically, y° = xo + ¿o be the

right end point of |x° - xo| <So, and let yl be the corresponding upper orbit.

Then we have xl < y' for all |x° - x0| < S0. Thus, for the old variable,

Ijc'I = \xl + x+(e)\ < ô\ is satisfied uniformly for all / > K0(ô, ôo, ô\) - M - 1
and \a\ < £o = £o(à, So, ô\) with some appropriately chosen Äo and eo so

that y' <¿i/2.

f=y-y2

fc =Xx-ftU E)

xO.yO

Figure 4.1
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Next, to show Dxx'(x°, a) —► 0 as k —> co uniformly for |x° - Xo| < ¿o

in the old variable, we show the same thing for the new variable instead since

Dxx'Cx0, a) — Dxx'(x°, a). Again, we suppress the bars from the x-variable

for simplicity of notation. By the chain rule, we have

/-i /-i

X(e)
/i(x",e)

:=//,(4.6a) Dx' = Y[[X(e) - fix(xn ,e)]<H
n=0 n=0 L

where we have used f\x(x, e) > /i(x, e)/x which can be easily proved by

elementary calculus together with the definitions (4.5a) and (4.4b). Observe

x' = X(e)x'~l - f(x'-1, e)

(4.6b)
= [m

Á(x'-l,e)\,

x i-i
= i/-xc

This implies I¡ = x'/x° < y'/(xo - ¿o) < Ct,6\ and therefore implies (4.3a) for
an appropriately chosen C3.

The a < 0 case. We show the estimate (4.3b) first, and then the rest of the

proof is similar in the same spirit as in the a > 0 case above. The idea of

proof is motivated by the comparison between the orbit y(x°) and the solution

y(t, x°, a) of the equation y = a-y2. It is inspired by the fact that x/+1 -xl =

a - f(xl, a) < a - (x1)2. To be precise, we claim

(4.7a)        y(-l, x, a) < fc~l(x, a),    for either x > fc(0, a) = a,

orx<fc\0,a).

That is, a unit time backward integration of y = a - y2 is always bounded

from above by the backward iterate of fc in the shown region. To proceed, let

fc(x, a) substitute for x and a = -e2. Then (4.7a) reads

(4.7b)       y(-l, fc(x, a), a) <x,    íot x >0, or x < f2(0, a) <-2e2.

Here, the last inequality /?(0, a) = fc(-e2, a) < -2e2 is trivial, where f2
means the second iterate of fc. One can directly check by differentiation that

1-1

(4.8) y(t, x, e) = (x - e tan et) 1 +x
tanei

Thus, (4.7b) is equivalent to e(x, e) < 0, where

e(x, e) := fc(x, a) + etane - x Í1 - fc(x, e)-1 .

Recall fc(x, a) < -e2 + x - 2x2 since f(x, a) > 2x2 and tane = e - 5e3 +

0(e5). We have

^e3 + 0(e5)e(x, e) < - e2 + x - 2x2 + e I e

-x{l-[- e2 + x-/(x, e)]
tane

= - x2 (2 - ^ - ie4 + 0(e6) - x[e2 + f(x, e)]

"2     f(x, e)\ tane

tane

= -x
tan e     / e

2-+   — -
e        V x

(e2 | f(x,e)\

\x x     )
3e4 + 0(e6).
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It is trivial to see that e(x, e) < 0 when x > 0. It is also true when x < -2e2

since the leading term of the bracket is greater than \ + f(x, e)/x = 0(\x\)

and |x| < ô.
We now show (4.3b). The limit is trivial. To show the estimate, we begin

with Kx. Let n = K{ - (M + I). Then by definition, x' > x" > 0 for / < n .
Hence, successively applying the claim (4.7b) together with the monotonicity

of y(t, x, a) in / and the monotonicity of xl in /, we have 0 < x" <

y(-l, x", a) < x"~l (cf. Figure 4.2). Since the numerator of y in (4.8) is

positive all the time for t < 0, the denominator will not change its sign. Thus

1 - x" tanen/e > 0, implying

1
Ki < - tan

e
' — + M+K-

xn ~ e
tan

1
+ M+1.

The estimate for K2 is similar. Indeed, let xo be such that fk(xo, a) > -ô\

for k < K2 - (M + 1) := n and let kx := max{k: fk(x0,a) > 0}. Thus

xl = fc(xo, a) < f2(0, a) for all / > k\ + 3 and (4.7b) applies. Hence, tracing

backward n — k\ — 3 times we still have x" < y(-n + k\ + 3, x" , a) < 0 (cf.

Figure 4.2 also). This time, however, the numerator of y remains constant in

signs instead. Therefore, x" + e tane(« - k\ - 3) < 0. This implies

«<-tanJ—- + ki + 3 = 0{-

since k\ also has the order of i by what has just been proved above for the

case K\ . This completes the proof for (4.3b).

y (-». x'x)

n-i

n-1 n

y(-i.x, £)

Figure 4.2
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Next, the remaining proof is similar to the a > 0 case above. The constant

Ko is obtained from the relation xl < yl < ô\ for I > Ko - M - I with yl
the upper orbit with y/+1 — yl - (y1)2 and y° = Sq + xo ■ Of course, we have

used fc(x, a) = -e2 + x - f(x, a) < x - x2 . Last, to show (4.3a) valid for

K0 - M - 1 < / < K\ (a) - M - 1, we also have, similarly to (4.6a), that

l-\ /-i

1-
f(xn , a)

x"
:=//,Dx! = Y[[l-fx(x",a)]<Y[

n=0 n=0

since fx(x, a) > f(x, a)/x. On the other hand, like (4.6b), we have

f(x'-l,aY
x1 = - e2 + 1-

= ••• = -e"

x i-\
A-i

Ax1'1 , a)

x l-\ + •••+    1-
/(x1, a)

x'
+ I,x°.

Since Kx = 0(1 /e) and f(x, a)/x > -1 for -ô < x < 0,

1+1
/(x'-1

+ -..+

< -^[x' + e2 • 2/] < -^[x' + 2e2(^i - Af - 1)]

.-^)]}

< + 0(e)
Xo — So

provided xl <S\, which is certainly the case when I > K0-M-l. This shows

(4.3a).   G

Proof of Theorem 1.7. As we have argued above, Proposition 4.1 and Lemma
4.2 imply all the conditions of Lemmas 2.1-2.3. Hence, when a > ao, the

same arguments for Theorems 1.3 and 1.4 apply and the topological conjugacy

of \Jn€ZFn(Sl, a){q+} to 'L(Ko) follows immediately.
To show the properties (a)-(e) concerning the hair hz attached to z G

\JnezFn(Sl~ uQ°,a), we use Lemma 2.2. To be precise, we may assume

z G Sl~ U Í20 up to some finite iterations. Then, by Lemma 2.2, the forward

invariant set containing z is homeomorphic to a C-3 graph in V over the

(xc, xs)-axis. Since the backward invariant set in the box B(S) is precisely

xc < q+ and xs = 0 (see Figure 4.3), the invariant set can only be their intersec-

tion, which is a closed curve on the C-3 graph parametrized by S\ < xc < q+ .

It is now easy to see that properties (a)-(e) follow immediately. Using the same

argument as in Theorem 1.3, it is also not hard to see ( 1.6) holds. When a < ao,

let A^o and A^i (a) be the same as in Lemma 4.2. Then the invariant subspace
SI* (a) as in the theorem exists and satisfies all the properties by Lemma 2.1.

The nonexistence of 1-periodic orbits of large periods > Co/y/\a - ao\ follows
from Lemma 4.2 above because the largest first returning iteration time in i/o
is at most K2(a). Of course, the asymptotic behavior of K\(a) also follows

from Lemma 4.2.   D

Remark. For the asymptotic behavior of the dynamics yn =yn  ' - (y"  ' )2, we

claim (y° - (y°)2)/n < y" < \/(n + 1), i.e., y" = 0(1/«). Indeed, from our
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Figure 4.3

proof above, 0 < x" < y(-l, x" , a) < xn~l holds for 0 < I < n . Backwards

one more step we have 0 < x" < y(-l, x", a) < xn~l for 0 < / < n + 1 as

long as x_1 exists. But, this is certainly the case provided that Xq + Sq is small

enough so that fc can be iterated backwards at least once on B(xo, So). Apply-
ing the same argument to the extended situation, we have that the denominator

appearing in y also remains positive. That is, 1 -x" tan(« + l)e/e > 0. In limit
at e = 0, it reads x" < l/(« + 1). Starting x" at y" yields y" < l/(« + 1).
(In fact, without using the limit argument, one can obtain the same inequal-

ity by going through the same comparison procedure between y = -y2 and
yn = yn~l - (y"_1)2.) Using these estimates and y" = y"_1 - (y"-1)2, it can

be directly checked that ny" is monotone increasing. This implies ny" > y1 =

y° - (y0)2 . We will refer to these estimates later in §5.

5. Discussion

The idea of establishing certain correspondence between invariant sets and

fixed points of infinite systems is hardly new. Sil'nikov used it on several oc-

casions. The key step in making this idea feasible is the Sil'nikov change of

variables (2.5b) or (2.5c), which first systematically appeared in his works (see,

e.g., Sil'nikov ( 1967)). Our innovation is to generalize his idea in such a way that

our equations (2.8)-(2.10), in contrast to (7.1) and (7.2) of Sil'nikov (1967),
are now applicable to both hyperbolic and nonhyperbolic fixed point situations.

Of course, in the process, our exponential expansion Proposition 4.1 also plays

a fundamental role. What is to be sketched now is the natural appearance of

the cross representation (2.5b) in the classical example of the Smale horseshoe

map, called /: R —> R2, where R = {0 < x < 1, 0 < y < 1} is the closed unit
square box. See Figure 5.1.

Let f~l(R) = i/1 U H2 and f(R) n R = V1 U V2 as shown. Let f = f\w
be the restriction on H'. Motivated by the cross representation of (2.3) and
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(2.5b), let us assume

(5.1)

/«■> im)

fia) f(b)

Figure 5.1

there exist two functions f = (ff , ff): R -> R with Lip(f¡) <
I < 1 for i = 1,2 such that (xk+l,yk+i) = f(xk, yk) is

equivalent to

yk = ff(xk,yK+l), ,k+\ f?(x*,yK+l).

Here, consistently, the superscripts refer to iterates of / and Lip(g) :=

max{\Dxg\ + \Dyg} for differentiable functions. Like equation (2.8), the imme-

diate consequence is that a given orbit y — {fk(x°, y0) G HSk : k G Z} uniquely

gives rise to a fixed point Ç :=(..., (yk , xk+{), ...) of the following system

parametrized by the sequence s = (• • ■ s_iSqSi ■ • • ) :

xk = fsxkJxk~l, yk)

yk = fjk(xk , yk+x)

ck+l = fsxk(xk , yk+l)

sk+l=J7kJxk+i,yk+2)



TRANSVERSE HOMOCLINIC DYNAMICS 44

Give the product space Rz a topologically equivalent metric

rf(cn= E i(i/-/*i+i**+1-*'fc+1i)
fc=-oo

with /i > 1 chosen so that A/z < 1. Then, by definition, it is straightforward to

verify that Xp is a contraction constant for the operator defined by the right-
hand side of the equations. Thus, the uniform contraction mapping principle

again applies and the topological conjugacy between the invariant set A(/, R)

and {1, 2}z follows immediately. Indeed, the topological conjugacy is defined

naturally as </>(s) = (x°(s), y°(s)), where (... , (y-1, x°), (y°, x1), ...)(s)

represents the fixed point, and the homeomorphic property follows from the

identity

k

(5.2) <f>(Bs_r..SQ...Sk) = H /-'(i/*')nim0.

The next question one would naturally ask is, can condition (5.1) be checked

easily? To this end, let us assume that the x-direction of / is contractive and

the y-direction is expansive. Specifically,

(5.3) Up(fx)<i2   and    Lip((/-')J)< i,

where (/_1), is the inverse map from V onto H'. We claim that (5.3) implies

(5.1). Indeed, let (x, y) = (fx, ff)(x, y). Then

(x,y) = ((f-l)x,(rl)ï)(x,y).

Applying substitution, we have the identity

y = (r')j(y;x(x,y),y).

It is easy to see that by (5.3) and the implicit function theorem (of course, / is

assumed C1 as usual), y can be solved as a function, say ff , of x and y . Let

ff = ff('> ffi', ')) ; we obtain the desired functions and it is straightforward
to check (5.1) by the implicit function theorem.

As mentioned earlier in the introduction, the horseshoe theorem in Figure

1.2(a) cannot directly apply to the saddle-node fixed point case where the uni-

form contraction assumption (5.2) fails on the center manifold. However,

the topological argument used by, e.g., Moser (1973) can be modified to cope

with this nonhyperbolicity. To see this, let us recall that for a given right-

ward sequence s = (soSj • • • ) there is associated a forward invariant set / :=

{z°: Gk(z°) G HSk , k > 0}, where G := Fp (with F and P as in the in-

troduction). Thus, I = f]k>0G~k(HSk). Similarly, for a leftward sequence

s = (■ ■ ■ s-2s-is0) we have f:= {z°: Gk(z°) e Vs", k < 0} = f]k<oG-k(VSk).

We claim that the width of all the vertical strips G~k(VSk), k < 0, and the

height of all the horizontal strips G~k(HSk), k > 0, are of order 0(1/k).
Being in the noncenter direction, the estimate is trivial for all the horizontal
strips. In fact, they shrink at an exponential rate. Hence, it only remains to

check the width of G~k(V). But, in our admissible variables of Proposition
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4.1, its vertical boundaries for G~k(V) n Vx are more or less straight lines

x = 0 and x_fc(xo) = f~k(xo), k < 0, with the same notation as in Lemma

4.2 and the remark afterwards. Thus, by the remark, the width is approxi-

mately x~k(xo) < l/(\k\ + 1). Therefore, it is not hard to see the width of

G~k(V) n VJ is of order \/\k\. This completes the order estimate. Finally, as
the topological argument goes, I f) J is a unique invariant point parametrized

by the doubly infinite sequence (■ • ■ s_iSoSi • • • ). Denote this correspondence as

4>: {1, 2}z —► R. The identity (5.2) also holds, showing the topological conju-

gacy. Thus, a structurally unstable horseshoe is obtained. Similar to the hairy

structure of A(F(-, a0), U) for the saddle-node case as in Theorem 1.7, one

can also derive a hairy horseshoe by expanding the rectangle R in Figure 1.2(a)

to the left of the origin a little bit.
Speaking about the hairy structure of A(F(-, a), U) of Theorem 1.7 for

a > a0, it is easy to see that there is a natural homotopy from the full invariant

set to its subspace \Jn€Z Fn(Sl, a) U {q+} , shrinking the hairs to their roots on

(J„6Z Fn(Sl~ UQ°, a) through a deformation retraction. It in turn is homotopic

to our symbolic space l,(Ko). Denote this homotopy equivalence as y>. Then an

obvious property of y> in terms of the dynamics is the commutativity: <p o F =

a o <p . Indeed, this follows from the invariant property of the hair F(hz, a) —

nF(z,a) by (a) °f Theorem 1.7. We are now naturally led to the following: Two

dynamical systems {X, f} and {Y, g} are homotopically conjugate if there

is a homotopy equivalence <p : X -» Y such that the diagram

X —f—> X

'[ lv
Y —^-^ Y

commutes. We feel that the notion of homotopy conjugacy is most appropri-

ate and natural when the 'ordinary' bifurcations become secondary and thus

negligible in regard to the onset of chaos in which they are embedded. With

this new terminology, it will be a lot easier for us to describe next the dynamics

{A(F(-, a), U), F(-, a)} of other types of nonhyperbolic fixed points to which

there is an irreducible and transverse homoclinic orbit.

To begin with let us point out the obvious generalization of Lemma 4.2 to

the cases where, in the notation of that lemma, the center dynamics fc is (a)

transcritical, x + (ax - f(x)), (b) pitchfork, x + x(a - f(x)), or (c) periodic

doubling, -x - x(a - f(x)), with f > 0 and f(x) = 0(x2), or even more

generally with an appropriate / with f(x) — 0(x") for some finite n > 2 (cf.
Guckenheimer and Holmes (1983) on those nonhyperbolic fixed points). Let us

take the pitchfork case for example. Mimicking the same procedure as in the

proof of Lemma 4.1, we first shift the bifurcated fixed point, say x+(a), which

is on the right side of the origin, to the origin by changing x -► x + x+ and
obtain the new dynamics

fc := X + (x + x+(a))[a - f(x + x+(a), a)] := X(a)x - f (x, a).

By direct differentiation, one can easily check that
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A(a)=l-x+/*(x+,a)<l,

/i(0,o) = /i»(0,o) = 0,

fixx(0, a) = 2/x(x+ , a) + fxx(x+ , a)x+

= 3fxx(0,a)x+ + O(\x+\2)>0,

fxxx(0, a) = 3fxx(x+ , a) + fxxx(x+ , a)x+ > 0.

Similarly x;(x°, a) converges to zero uniformly for x° G B(xq, So) by the

same argument, using the upper orbit yl = y/_1 - (y/_1)3 with y° = xo + ¿o •

Since we also have fx(x) > f\(x)/x, the estimate (4.6a) holds. Hence (4.6b)

together with xl —> 0 uniformly implies Dxl —> 0 uniformly. Since we always

have a fixed point on the center manifold in all the cases considered, we do not

have to go through the second half of the proof of Lemma 4.1. Once this lemma

on the convergence rate of the center flow is established, all other arguments

work similarly. As a consequence of this, the fishnet will never be torn in con-

trast to the saddle-node case. Back to our discussion on homotopy conjugacy,

we now can easily state that the dynamical systems {A(F(-, a), U), F(-, a)}

are homotopically conjugate to the shift dynamics {L(Ko), a] for all small a,

regardless of whether the parameter is generic or not generic to the bifurcation.

In other words, {L(Kq) , a] is homotopically invariant for (degenerate or non-

degenerate) transcritical, pitchfork, and periodic doubling bifurcations of the
fixed points. It is even true when the fixed point undergoes Hopf bifurcation.

See Figure 5.2 for an illustrative explanation. In this sense, the saddle-node-

irreducible-homoclinic bifurcation of Theorem 1.7 is a truly genuine one in

regards to either of the two notions of conjugacy equivalence.

Another way to look at these bifurcations is through tracking down all the

irreducible nonwandering sets in Aa . A nonwandering set Q (excuse our slight

abuse of notion here) of a map F consists of points p so that for every open

neighborhood U of p there is an n G Z and Fn(U)f\U^0. A nonwan-

dering set is indecomposable if it contains a dense orbit. Take, for example,

the saddle-node case. At a = ao the only nonwandering set Qo is Aao itself

with all the hair cut off. {SIq, F(-, a0)} is nonhyperbolic but it is conjugate

to {L, a} anyway. When a > a0, Aa contains two maximal indecompos-

able nonwandering sets Qo and Sli . Qo here is the stablized counterpart of

Aao and Qi = {<?_} is just the other bifurcated fixed point. In other words,

a nonchaotic nonwandering set Sl\ pinches itself off from a chaotic and non-
hyperbolic nonwandering set Qo. Moreover, all the hair hz forms a dense

connecting set from Qi to Qo . Notice that this description is a specific lo-

cal picture of the spectral decomposition of diffeomorphisms by Smale (1967).

As we have seen above, when a < ao we have only partially understood the

changes of Qo. We end this paragraph by asking can a chaotic nonwandering

set bifurcate from a chaotic and nonhyperbolic nonwandering set?
As an application, let us remark that Schecter (1987) showed that for almost

all frequency a> the Poincaré map (time 2n/a> mapping) in the phase space

((f), </>) of the following equation

ß<j> + (/> + sin 4> = p + e sin cot

satisfies all the conditions of Theorem 1.7 at the equilibrium point near </> =

n/2, (¡> = 0, p = 1 for some constant ßo and all 0 < |e| < 1. Here a = 1 - p
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Figure 5.2

with ao near 0 is the relevant parameter in terms of Theorem 1.7. This gives

us the first concrete example of our net weaving bifurcation scenario. We note

that this equation models the pendulum equation with linear damping q\, a

constant applied torque p, and a small sinusoidal applied torque e sin cot. It

also describes the AC-DC current-driven point Josephson junction.

Finally, we would like to point out that our complete description for A(F, U)

is just local in comparing with the horseshoe structure of Figure 1.2(b) which

may locate outside the neighborhood U . We do not know at this point how the

global dynamics are built upon our core dynamics A(F, U). We do not know

either if the irreducible homoclinic point becomes tangential. In regards to the

second question, some partial results in R2 have been obtained by Gavrilov

and Sil'nikov (1972, 1973), Newhouse (1974), Robinson (1983), and others. It
is characterized by an infinite cascade of periodic sinks attached to an onset of

chaos. Like the hairy structure of our fishnet dynamics, is the appearance of

infinitely many sinks simply a secondary structure associated to a core dynamics

whose homotopy dynamics is still unknown but probably not too hard to obtain?

Acknowledgment

The author of this work has benefitted from many stimulating discussions

with J. K. Hale, N. Sternberg, K. Sakamoto, M. Kwapisz, G. Meisters, and

S. Dunbar. He also thanks the referee for his many constructive and useful

suggestions.



transverse homoclinic dynamics 53

References

G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., Amer. Math. Soc, Providence,

R.I., 1927; revised 1966; reprinted 1983.

B. Deng, Sil'nikov problem, invariant manifolds and X-lemma, preprint, 1988a.

_, Homoclinic bifurcations with nonhyperbolic equilibria, SIAM J. Math. Anal. 21 (1990), 693-

720, 1988b.

N. K. Gavrilov and L. P. Sil'nikov, On the three dimensional dynamical systems close to a system

with a structurally unstable homoclinic curve. I, Math. USSR-Sb. 17 (1972), 467-485; II,
Math. USSR-Sb. 19 (1973), 139-156.

J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems and bifurcation of vector

fields, Springer-Verlag, 1983.

M. Hirsch, C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Math., vol. 583, Springer-

Verlag, 1977.

J. Moser, Stable and random motions in dynamical systems, Ann. of Math. Studies, no. 77, Princeton

Univ. Press, 1973.

S. Newhouse, Diffeomorphisms with infinitely many sinks, Topology 13 (1974), 9-18.

H. Poincaré, Sur le problème des trois corps et ces équations de la dynamique, Mémoire Couronné

du Prix de S. M. le Roi Oscar II, Paris, Acta Math. 13 (1890), 1-271.

C. Robinson, Bifurcations to infinitely many sinks, Comm. Math. Phys. 90 (1983), 433-459.

S. Schecter, Melnikov's method at a saddle-node and the dynamics of the forced Josephson junction,

SIAM J. Math. Anal. 18 (1987), 1699-1715.

M. Shub, Global stability of dynamical systems, Springer-Verlag, 1987.

L. P. Sil'nikov, On a Poincaré-Birkhoffproblem, Math. USSR-Sb. 3 (1967), 353-371.

S. Smale, Diffeomorphisms with many periodic points, Differential and Combinatorial Topology

(S. S. Cairns, ed.), Princeton Univ. Press, 1963, pp. 63-80.

_, Differential dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817.

J. Sotomayer, Generic one-parameter families of vector fields, Inst. Hautes Études Sei. Publ. Math.

43(1974), 5-46.

A. Vanderbauwhede and S. van Gils, Center manifold and contractions on a scale ofBanach spaces,

J. Funct. Anal. 17 (1987), 209-224.

S. Wiggins, Global bifurcations and chaos: Analytic methods, Springer-Verlag, 1988.

Department of Mathematics and Statistics, University of Nebraska-Lincoln, Lin-

coln, Nebraska 68588-0323

E-mail address: deng@hoss.unl.edu


