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STABLE SPLITTINGS OF THE DUAL SPECTRUM OF
THE CLASSIFYING SPACE OF A COMPACT LIE GROUP

CHUN-NIP LEE

Abstract. For a compact Lie group G , there is a map from the G-equivariant

fixed point spectrum of the zero sphere to the dual spectrum of the classifying

space of G, DBG+ . When G is finite, the affirmative solution to Segal's

conjecture states that this map is an equivalence upon appropriate completion

of the source. In the case of a compact Lie group, we obtain splitting results of

DBG+ via this map upon taking p-adic completions.

0. Introduction

Let G be a finite group, A(G) be the Burnside ring of virtual finite G-sets,

and 1(G) be the augmentation ideal of A(G). Recall EG is a contractible
G-CW complex acting freely by G whose quotient EG/G is the classifying

space of G, denoted by BG. Let ( )+ denote the disjoint union with a base

point. G. Segal in 1970 proposed the following

Conjecture. The map of G-equivariant stable cohomotopy groups induced by the

projection EG+ -* S°,

nh(S%G)-^n*G(EG+)^n*(BG+),

is an isomorphism, where ( )f,G, denotes the I(G)-adic completion.

In 1982, G. Carlsson [4] completed the proof of Segal's conjecture for all

finite groups which had been studied previously with the works of Lin, Adams,

Gunawardena, Miller, and May, among others. For more historical background

information, see [4].

As for compact Lie groups, Segal's conjecture can also be formulated as above

with an appropriate modification of the Burnside ring. However, it is known
that in this case the conjecture does not hold in general. Since nG(S°) is ac-

tually computable, we may interpret the Segal conjecture for finite groups as a

statement about n*(BG+). From this point of view, we could ask to what ex-

tent information about n*(BG+) is captured by nG(S°) when G is a compact

Lie group.
We shall state our results in terms of spectra. For general references, see

Adams [1] and Lewis-May-Steinberger [9]. Now suppose G is a compact Lie
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group. The projection EG+ —> S° induces a map of spectra

O : (S°f = F(S°, S°)G -» F(EG+, S°f ~ F(GB+ , S°) = DBG+,

where (S°)G denotes the equivariant fixed point spectrum of the sphere G-

spectrum and F( , ) is the function space spectrum. By the results of torn

Dieck [5, Theorem 2] and Lewis-May-Steinberger [9, Theorem 11.1], we have

the following description:

(S°)G~\/BWHAdW«,

(H)

where WH is NH/H, BWHAdW" is the Thorn spectrum of the adjoint repre-

sentation of WH, and (Ü) ranges over all conjugacy classes of closed subgroups

of G. Notice that the summand corresponding to the trivial group is 5GAd G .

When G is finite, BGAd G = BG+ and the affirmative solution to the Segal

conjecture implies that BG+p" is a summand of DBG+~ given by the map

í> where we completed the spectra at a prime p. When G is a compact Lie

group, following evidence provided by Nishida [13], Ravenel [14], and Miller

and Wilkerson [12], we prove the following:

Theorem 1.1. BGAd G~ is a summand of DBG+p  under <E>.

In fact, we can extend this theorem to other conjugacy classes of finite p-

subgroups of G. Specifically, we have

Theorem 3.1. Let G be a compact Lie group and p be a fixed prime. Suppose H

is a finite p-subgroup of G, then BWHAd w"~ is a summand of DBG+~ under

O. Furthermore, the finite wedge sum of any such spectra splits from DBG+p .

There are technical difficulties in trying to extend Theorem 3.1 to conjugacy
classes of closed infinite subgroups of G. In particular, the homotopy inverse

limit of split cofiber sequences does not necessarily split. Nevertheless, we find

the following weaker result to be true. Recall that a Lie group is said to be

/7-toral if it is an extension of a torus by a p-group.

Theorem 3.12. Let G be a compact Lie group and p be a fixed prime. Then

the following map is an injection:

«,(*):      ©    nt(BWHAdw»;)-^7i*(DBG+;).

(H)CG
H P-toral

Segal's conjecture for a general compact Lie group was first considered by M.

Feshbach in [7]. There he analyzed n°(BG+) and proved the conjecture via a

different completion on nG(S°) together with some additional assumptions at

the prime 2. Consequently, only those closed subgroups having finite index in

their normalizers are being considered. What we accomplish is to give splitting

results corresponding to finite subgroups which do not necessarily have finite

index in their normalizers. Furthermore the corresponding injection result of

Feshbach also holds for higher cohomotopy groups.

As an illustration of our techniques, combined with splitting results of Mit-

chell and Priddy [11], we obtain the following splitting for G = SO(3) at the
prime 2.
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Theorem 4.13.

DBSO(3)+2 ~ S°2 V BSO(3)Ad so^]2

OO oo

V Y[ BO(2)Ad °^2)2 V Y[ BZ2+2 .

i i

The organization of this paper is as follows. In the first two sections, we

shall concentrate on the proof of Theorem 1.1 in order to make the paper more

readable. We first reduce to the case when G is an extension of a torus by a

p-group in §1. Using Segal's conjecture for p-groups, we express DBG+p as a

certain homotopy inverse limit. In §2, we analyze this homotopy inverse limit.

The proof of Theorem 1.1 follows after a homotopy inverse limit of transfer

maps is identified as a Thom spectrum. In the first part of §3, we show the

method of the preceding two sections can be easily generalized to give Theorem
3.1. However, the proof of Theorem 3.12 is much more technical in nature,

although the essential ideas are already contained in the first two sections. The

new ingredient is the construction of a finite filtration of a system of spectra.

The splitting result of G = 50(3) at the prime 2 is the focus of §4. There we
utilize the fact that we have an explicit description of all conjugacy classes of

closed subgroups of 50(3) together with the splitting results of [11]. Combined

with a theorem of Miller and Wilkerson [12], this gives the splitting of DBS3+
at the prime 2.

Throughout this paper, we shall use XG to denote the G-equivariant fixed

point spectrum of a G-spectrum X. Homotopy inverse limits will be de-
noted by lim . (See Chapter XI of Bousfield-Kan [2] for details.) For a given

nonequivariant spectrum X, the p-adic completion of X, denoted by Xp , is

lim X A M(ZP¡), where M(Zpi) is the Moore spectrum of Zpi. Consult [14]

for some of its basic properties.

The author wishes to thank his thesis advisor Professor Gunnar Carlsson

for his constant encouragement and many suggestions without which this paper

might not have been written.

1. Preliminary reductions

Let G be a compact Lie group. Denote by G° the connected component

of the identity. When we say a maximal torus T of G, we shall mean a

maximal torus of G° in the usual sense. Consider the normalizer N of T

in G. It is easy to see that N/T is finite since N/N n G° <-> G/G° = Y is

finite.  Furthermore, we have G°/N n G° -=-> G/N.  For if g e G/N, then

gTg~x, being a maximal torus of G°, would be a conjugate of T in G°.

Therefore, ~g e G°/N f~)G°. In particular, /(G/A) = 1 since it is well known

that /(G°/AnG°)= 1.
Recall we want to prove

Theorem 1.1.  GBAdGÇ is a summand of DBG+p  under 4>.

As a preliminary reduction, we have

Lemma 1.2. Let N be the normalizer of a maximal torus T of G. If BNAd N~

is a summand of DBN+Ç under O, then Theorem 1.1, holds for G.
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Proof. We have the following diagram:

BNAd N -► (S°)N —^ DBN+

A D[Bn]

BGAd G -► (S°)G —*— DBG+

where n is the inclusion N <-> G and tr is the associated bundle transfer

(cf. Mann-Miller-Miller [10] and Nishida [13]). The diagram commutes by [13,
Lemma 2.3] and the naturality of O.

Consider the composite

ßQAd G j£_^ ß/yAd n J^ £/yAd G   Bk i BGAd G

where J is the inclusion Ad N <-> Ad G.
Via Thorn isomorphism, tr*(x(a) • x) = tr*(x), where a = Ad G/Ad N,

X(a) is the Euler class of a, x e H*(BN, Zp), and tr0 is the ordinary Becker-

Gottlieb transfer (cf. [13, Proposition 2.2]). Since j* is multiplication by x(a)

and x(G/N) = 1, it follows that the above composite induces an isomorphism

on cohomology with Zp coefficient. Therefore BGAd Gp -£+ BNAd Np  has a

retraction. Hence by completing the above commutative diagram at a prime p ,

we have the desired result.   D

We are reduced to the case of the normalizer of a maximal torus of G.

Suppose we have the extension

(*) l^T^N -^UW ^ 1,

where T is a torus and W is a finite group.
Let Wp be a p-Sylow subgroup of W and Ap the preimage of Wp in N.

We have

Lemma 1.3. If BNpAd N?p is a summand of DBNp+~, then BNAd Np is a

summand of DBN+p .

Proof. The proof is identical to that of Lemma 2.1 for x(N/Np) £ 0 modp .   □

Consequently, we may assume W in (*) to be a p-group. The following

result by Feshbach is useful in analyzing DBN+ .

Proposition 1.4 [7, Theorem 1.1]. Let \W\ = n, and T be the subgroup of

T generated by all elements of order n. Then there exists a subgroup F of

N such that F n T — T and F/T = W. If V is any invariant subgroup

of T containing T, let F' denote the group generated by V and F. Then

F'r\T=V and F'¡TA* W.

If IT is a /?-group and Tqp consists of all elements of order a power of p

in T, then we have

Corollary 1.5 [7, Corollary 1.2]. There exists a nested sequence {F¡} of finite

subgroups of N such that Fi/F¡ nT =■ W with (J Ft n T = TQp.   We denote

(JFi by Nqp . Furthermore, we can assume F¡ C\ T = {x e T\xp'\w\ = 1} .

Thus we have the following approximation result for DBN+~.
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Proposition 1.6.  DBN+p = lim DBF¡+p .

Proof. It is easy to see that H*(BTqp , Zpn) -^-» Ht(BT, Zp„) is an isomor-

phism for n > 1, where i : Tqp —> T is the inclusion. Consider the following

map of extensions:

1 -► TQp -► NQp -► W -► 1

I i
1  -►    T   -►   N   -y W -►  1

The homology with a Zpn coefficient spectral sequence associated with the

diagram induces an isomorphism of E2 terms.   Hence, H*(BNQp, Zpn) -^»

H*(BN, Zpn).    Taking the direct limit of  n   yields   H,(BNQp, Zpoo)   —^>

H*(BN,Zpoc).  Now, since Zp=c = Z[l/p]/Z and H*(BNQp, Z[l/p]) = 0,

we have H*(BNQp, Z) Si Ht+i(BN, Zpoo) or BNQp+ -» BN+ A YrxM(Zp~>) is
an equivalence, where M(Zpoo ) denotes the Moore spectrum of Zpoo.

Hence, DBNQp+ <-=- D(BN+ MrxM(Zpoo)) ~ DBN+p   and therefore we

have lim DBFi+p = DBNQp+p ~ DBN+p  as the desired result.   D

Since the F¡ are p-groups, the affirmative solution to Segal's conjecture for

finite p-groups yields [4]:

n:(S°)F-;^DBFi+;.

Furthermore, we have the commutative diagram:

BFi+;   —?U   DBFi+;

D[Bj]

BFi-\+^ -* DBFi-\+~

Here j is the inclusion F¡-\ ^ F¡ and tr is the transfer associated to j.

Even though BFi+Ç is a summand of DBF¿+p under O, it is not true that

the splitting respects the maps in the inverse system {DBFi+p"} . The method

then is to find appropriate summands in DBFi+p that will respect these maps

in the inverse system. We begin by recalling the following

Definition. A family SF in G is a set of subgroups G which is closed under

conjugation and passage to subgroups.

Fix a closed subgroup V of T. Consider the set

St = {H c N\H n T is a conjugate of T'}.

We have the following finiteness property of J^-.

Lemma 1.7. There are a finite number of conjugacy classes in <fj-' ■

Proof. Recall we have the extension

1 -» T ^ N ^ W->1.
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Since W is finite, it is sufficient to consider the subgroups in J^< whose image

in W is some fixed J . Suppose H is such a subgroup. Let N' be the preimage

of J in N. Since V is normal in N', we have the extension

T      N'
(1.7.1) i-____>/-l.

Now H corresponds to a splitting of (1.7.1). Two such splittings differ from a

crossed homomorphism / -* T/T'. Hence, it suffices to check HX(J, T/T')

is finite. It is now clear that this reduces to showing HX(J, (Sx)n) is finite,

where J acts on (51)" by automorphisms. Of course automorphisms of (51)"

are induced from automorphisms of R" , where (51)" = Rn/Z" . Thus we have

an exact sequence of Z[/]-modules:
O^Z" -*Rn -^(Sx)n -0.

Taking the corresponding long exact sequence yields
0 -» H°(J, Z") -» H°(J,Rn) -» ü°(y, (S1)") -» ü'(7, Z")

^Hx(J,Rn)^Hx(J, (Sx)n)^H2(J, Zn)^H2(J, Ä") ->••• .

Since / is finite and i?" is divisible with no elements of finite order, we

have üm(/, i?") = 0 for m > 1. However, H2(J, Z") is a finitely gen-

erated Z-module with / finite.   Therefore,  H2(J, Z") is finite and so is
Hx(J,(Sx)n).   D

Let Im = {xe T\xPm = 1} . Consider the family Jrm = {Hc N\HnT c Im} .

The following two results from [7] show that for each H e/ra, there exists a

subgroup H' e J'm with H' c NQp and (H') = (Ü).

Proposition 1.8 [7, Theorem 1.4]. Suppose W is a p-group. Let H be a sub-

group of N such that H r\T = Tqp and H/Tqp = W. Then H is conjugate to

NQpin N.

Corollary 1.9 [7, Corollary 1.5]. Suppose H is a subgroup of N such that ün

T c TQp. Then H is conjugate to a subgroup of Nqp .

Now given a family J? in G, there exists a universal G-space E^ such

that the ü-fixed point of EJf is empty if H £ Jf and contractible otherwise

(cf. torn Dieck [6, Proposition 7.2.1]).
Recall we have the family J^¡. E^n+ is an A-space. Upon restriction to

Fi, EJ*n+ becomes an i^-space.

Proposition 1.10.   lim (EJ^+Yç is a summand of DBN+p .

Proof. Recall DBN+p  =  lim DBFi+Ç.   By Segal's conjecture for finite p-

groups, DBFi+p = (S°)F'P ■  Consider the map (ESn+)F' M (S°)F> induced

from E Jrn+ —> 5° . By the naturality of the following splitting due to torn Dieck

[5, Theorem 2],

it?(X)SiQ)n?«(EWH+AXH),
(H)

we see that

j:(Ejrn+)F'~     V    BW'H^   V   BWi,+ ~(S°)F>

(H) (H)
HCFi HCFi

HDTCI„
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is the obvious map of inclusion, where W^ = A,i//Ü, N¡H is the normalizer

of H in Ft.
Suppose we identify each summand above by its corresponding conjugacy

class (Ü). Clearly j has a splitting map which collapses all the summands
whose corresponding conjugacy class (Ü) are such that ün T <£. I„ to the base

point. We claim that this splitting map is compatible with (S°)Fi -^ (50)f/-1

for all sufficiently large i, where y is induced from F¡-1 <-* F¡. The proposition

then follows upon taking homotopy inverse limit.

We will show below that under y , (H) will map to summands of the form
{(Ha n F¿_i)} , where a e F¡ and Ha = aHa~x . Taking this for granted and

using the fact that i„ is normal, it is now easy to check that for all sufficiently

large i, H r\T <£ In implies the same for Ha n F,_i.   D

We verify the claim made during the proof of Proposition 1.10.

Proposition 1.11. Let K\ c K2 be the inclusion of finite groups. Suppose we

identify each summand of (S°)Kl (resp. (S°)K2) by its corresponding conjugacy

class (H). Then under the map (S°)Kl -U (50)*1 > (H) maps to {(W-nK^},

where {#,} is a set of representatives for the double coset space K\ \ ^2 /NKlH.
Furthermore, the map is given by

H+ \   hi  + HS'DKi    + H&DKi    +'

where Cgj is induced from conjugation and N\(HSiC\K\) denotes the normalizer

of H«' n Ki in Kx.

Proof. We first recall that torn Dieck's splitting theorem, mentioned in the proof
of Proposition 1.10, is given by (when G is finite)

n?»(EWH+) A n.(BWH+) À nG(BWH+)

A nG(G+ ANH EWH+) -^ 7tG(5°),

where the first left arrow is Adam's isomorphism, j is the induced map of G —>

{e} , t is the G-equivariant transfer associated to G+ A^h EWh+ —> BWH+ ,
and p is the evident projection map (cf. Lewis-May-McClure [8, Theorem 1]).

We have the following commutative diagram:

nt(BWH+) = n,(BWH+)

A i'
n^(BWH+) -► n^(BWH+)

n^(K2+ ANHEWH+) -► Trf ' (K2+ ANH EWH+)

■i i'

n^(S°) -y »Í' (5°)

where the horizontal maps are induced from K\ >-> K2 .
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Now we recall the construction of the G-equivariant transfer t . First there

exists a G-map f : 5° —» G/H+ , called the pretransfer. Then taking the smash

product with EWH+ and the WH orbit gives t.

In the above diagram, we are interested in understanding the ^-equivariant

transfer as a K\ map. Using the additivity property of transfers, we want to

decompose K2/H as a K\ space. The point is we have such a decomposition

derived from that of K2/NH. So suppose {g{\ is a set of representatives of

the double coset space Kx \ ^2 //y//. of course, by definition we have

K2/NH = \/ K\/((NHY' r\Kx).
(sA

However, it is easy to see that as K\ spaces, we also have

K2/H= \J(Kx/HS>r\Ki) x{{NH)SinKl)/{Hg,nK¡) (WH)*'.

{gA

This observation gives rise to the following commutative diagram:

n«(BWH+) - n^(BWH+)

'«>

n^(K2+ANHEWH+) ©{í(} n^(Kx+ A{NHV¡nK] E(W„)*+)

where 6gi is induced from appropriate equivariant transfers.

By using the commutativity property of transfers, we have the following di-

agram describing 6gi :

n^(BWH+) n**(Ku *{NH),inK¡ E{WH)*>+)

t'oC.

Here r' is the evident transfer.

Combining the above commutative diagrams gives the following:

¿ft „K,  (B ((NH)S'nKA

n*(BWH+)
(*'°Q,}

7t**(BWH+)

n^(K2+ANH EWH+)

p

ji^(S°)

¿E> tt^i  (k      A F(NH)*ir\KK    \
®{g¡) U*    [Kx+ ^{NH^nKi E   Hg¡nKi   +)

[>

KÍHS«)
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Now

Ai+ AiNH)g,nK¡ h  Hg'nK¡   + -► Ä1+ ANí{Hg,nK¡) h   }jg¡nK¡ ' +

I I
D   H^nKi   + n   HmnKi    +

is a pullback diagram. So

„/i, (fíMafiDEú  \        T    ,  ,ii /V     a FJVi(tf*in*i)   \
*•   ^   gun*,    +J   -> *•' ^Ai+ Aiyl(jfwnjc,) -fe    ¿,,-nJC|    +J

Î I
n*   \B   H'tnKi   +)   -'   **   ^Al+A(V//)*.ní:, ¿V.W.   +)

commutes. It is clear that we also have

*?'(*!+ A^^njr, £(^)*+) <-   jrf' (*,+ A(^ijnJfl £^S^+)

n?' (A.1+ A<NH)iinK¡ E   ¡Ig¡nKi'+)

I

where all unmarked arrows are induced from evident inclusions.

Therefore, by combining these commutative diagrams, we see that the sum-

mand corresponding to (Ü) goes to summands corresponding to {(H8i r\K\)}

with the prescribed maps as asserted.   D

For a general compact Lie group, torn Dieck's splitting theorem for nG(S°)

is given as follows:

n™»(EWH+) A n,(BrVHAd w») -» nG(BWHAd w»)

À nG(G+ ANH BWHAd w») -^ nG(G+ ANH EWH+) -U nG(S°),

where í is the pretransfer associated with G/N H —> 1 and t is the dimension-

shifting transfer associated with WH -> 1 (cf. [9, Chapter IV]). The analogue

of the previous proposition is the following

Proposition 1.12. Let K\, H c K2 be inclusions of compact Lie groups. Con-

sider the double coset space Kx \ Kl /NKlH. Let {Ma} be the set of all or-

bit type manifold components of the double coset space. Choose ga e N for

each a which projects into Ma . Suppose we identify each summand of (S°)Kl

(resp. (S°)Kl) by its corresponding conjugacy class (H). Then under the map

(50)*2 -^ (S°)K', (H) maps to {(HgaC\K{)} . Furthermore, each map is given

by x*(Ma) times

BWHAd w" — BWHgaAd w»*° -£♦ BWHAd w»\ -SU BWHAd w»2,
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where x*(Ma) = x{Ma) - x{Ma - Ma) is the internal Euler characteristic,

Cga is induced from conjugation, WH¡ = ((NH)g° n Ki)/(Hga n K\), WHl =
(N\ (H8*nKi))/(H*°nKi), and Ni (H**ç\Kx) denotes the normalizer of H^nK{

in Kx.

Remark. We will omit the proof since it proceeds similarly to that of Proposi-

tion 1.11. Note the internal Euler characteristic comes in when one decomposes
a certain A^2-space as a Kx-space. See Theorem 2.11 of Chapter IV in [9] for

more details.

2. Proof of Theorem 1.1

Consider the map (EJ„+)N~ -U lim (EJn+)Fi~ induced from inclusions
r <-i v

Fi'-* N. Notice that we have

(ESn+i)N;=   V   BWHAdW";.

(H)
HnTCIn

Since BNAd N~ —> DBN+Ç is compatible with y , it therefore follows from

Proposition 1.10 that it suffices to show y is an equivalence. We might add

that it would be enough to assume n = 0 for proving Theorem 1.1. However,

for later purposes, we will prove y is an equivalence for all n .

In order to analyze  lim (EJ^+Y'Ç, we use Lemma 1.7. Let 9[ c &ï be

adjacent families of N contained in J^ , i.e., A?~2 - &[ = (H). We have the

following map of cofibrations:

(E9[+)N -> (E9~2+)N -► (E(^2,^[)+)N

lr                       iy iy
(E91+Y -y (E9-2+)F -y (E&, Fx)+)F,

where the Affixed point of Efâ, &[) is * if (K) £ (H) in N, or 5° if
(K) = (H) in N. By completing the above map of cofibration sequences at the

prime p and taking the homotopy inverse limit, we have the following map of

cofibration sequences:

(E9[+)NP    ->    (E$-2+)N;    -►    (E(9-2,9[)+)Np-

[y [y

\vm.(E?i+)F; -► \im.(ESr2+)F>; -► tiUL^Efä.W+f'f

Hence, it suffices to prove

Proposition 2.1. Let &\ a &~2 be adjacent families of J7n . Then we have the

equivalence

(E(S?2, 9[)+)N; -^ lim (E(ST2, 9[)+Y;.
i

We need some preliminary results. Fix (Ü) =&2—&[. The map

(E(&ï,9[)+)N; -i (E&, 9[)+)F;
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is the same as

(2.1.1) BWHAdW»;^        V        BNi(H')/H'+;,

(H')
H'cFi

(H')=(H) in N

where N¡(H') denote the normalizer of H' in F¡. Notice the map in (2.1.1)

is described by Proposition 1.12.
By Corollary 1.9, we may assume H c Fio for some i0. We give an explicit

description of the (ü')'s in (2.1.1).

Lemma 2.2. The NH orbit of (F¡\N)H with action on the right is in one-to-one

correspondence with {(H')\H' c F¡, (H') = (H) in N}. The assignment is

given by ß : {g} —► (H8), where H c F¡■. In particular, the set {g} is finite.

Proof. Let g e F¡\N be fixed under H. Therefore we have g H = g

or gHg-x c Fj. Furthermore, let k e NH and z e F,■; then Hzgk =
zgkHk~xg~xz~x = zgHg~xz~x c zF¡z~x - F¡. Hence, ß is well defined
since (Hz8k) = (H8) in F¡.

Suppose ~gx, ~2 are two representatives such that (Hg<) = (H82) in F¡. This

implies g2lhgi e NH for some h e F¡. Hence, gx = g2(g2lhgi) or gx ~ ~g2

in the NH orbit of (Fi\N)H . ß is injective.
Clearly if (H') = (H) in N, then H' = H8 for some g e N. Thus,

ß(g) = (H8) with ]f fixed under H. So /? is surjective and we are done.   D

Hence to each i > i0 , we have a set of representatives {g^} in the NH orbit

of (Fi\N)H corresponding to summands of (Effi, &[)+)Fip . From Proposi-

tion 1.11, we get

Lemma 2.3. Let j: (Fi\N)H/NH -» (Fi+l\N)H/NH be the induced map of
Fj <-* Fi+l. Suppose

J      \&a       )) ~ \Sa¡ ' oa2 ' • • ■ ' Sa,J •

Then the summand (H8°+ ) in (Effi, &{)+)F¡+< maps to summands (H8a>),

(H*Q), ..., (H&l) in (E(^2, 9ri)+)Fi under the inclusion F¡ ^ FM .

Proof. Without loss of generality, we may assume ga +1) = gL'¡ = g. Let {zy}

be the set of representatives of the double coset:

Fi\Fi+i/(NH)*nFi+l.

Proposition 1.11 shows that (H8) maps to {(ü^nF,)} in (S°)Fm -> (S°)F .

Hence, we only have to consider those zy such that Hz^8 c F¡. Now j(~zyg) =

g and hence ~zyg € {g® ,...,g^J.   D

Proposition 2.4.

l^(E(^,^)+)F7^lirn(^fiY  .
i y       tr    ^       "       S+p

Proof. From the previous lemma, it is obvious that only the summand corre-
sponding to (Ü) in (E(&"2, A?[)+)Fm will map to the summand corresponding

to (H) in (E(ft,9i)+)F'.  By Proposition 1.11,  B((NH n Fi+l)/H)+  maps
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to B((NH n Fj)/H)+ by transfer. Hence we have the following map of cofiber

sequences:

+p
-2?+1 -> (E(9-2,9[)+)F-; -► b(™^)

I I' I«'
^   -.   (E{9i,9i)^-   -.   B{^)'^

where 3¡+\ and .2/ are the fibers of right horizontal maps.
Now Lemma 2.3 gives us a description of y in terms of the corresponding

representatives {g^} ■ If we can show for a fixed i that there exists d(i) so

that we can choose the ga's belonging to F¿i¡) for all a, then we would be

done. This is because 2Cd{i) —* -2/ would then be the trivial map. Upon taking
the homotopy inverse limit this yields

/A^nF,y -su Km(*«,*)+)*;.

V     V     H     J+p +y
The claim follows from the following lemma.   D

Lemma 2.5. Let {g^} be representatives of (Fj\N)H/NH. There exists d(i)

such that {gal)} can be chosen so that gal) e Fd(i) for all a.

Proof. Since F «-> F,, we can assume each g£ € T. For each x e H, pick

xeF so that Jc-1* e T. Therefore gai]xgaiy{ = x(x-xx)(x-xgai]x)gairi e F¡

since x-1^'^ , x~xx e T. But elements of F¡ n T have order dividing pm

for some fixed integer m. Therefore we have (x~xg^x)pm(ga^)~pm = 1. Or

equivalently, x~x gai)pm xgi^"   = 1. Hence, g(àr   eNHnT.

Next, we show {ga} can be chosen to have finite order. Let z = ga'^. Then

z generates an abelian group L. Since the closure L is a compact abelian

Lie group with a cyclic generator, it therefore has the form of J x Tk with J

cyclic. Similarly, zpm generates L' with L = J' x Tk'. Since y € J x Tk =>■

ypm e J' x Tk', it is clear that L = J' xTk with /' a cyclic subgroup of / .

The above analysis shows that there exists z' e L such that (z')~xz is of

finite order. Furthermore, zpm e AÜ =s> L c AÜ and so z' G Aü. Therefore

we may assume g^ to be of finite order.

So we suppose (gai])M = 1 . Write gai] = (g{J])x-p'(g{J])p'. Also (gai])pl e

AÜ if I > m . We can pick I > m so that (ga )x~p is of order a power of p .

We have proved the lemma.   D

By Proposition 2.4, it suffices to know the map between

BWHAd^; = (E(^2,grx)+f;   and   B (^^)     ■

From Proposition 1.12, this amounts to evaluating the internal Euler character-

istics of the orbit type manifold component corresponding to 1 in F\f* ¡NH.

Proposition 2.6. Let H c K\ c K2 be an inclusion of compact Lie groups.

Denote by NH the normalizer of H in K2. Let M0 be the orbit type manifold
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component corresponding to 1 in K\ \ ^2 /NH. Then M0 is a point. In

particular, x*(M0) = 1.

Proof. Suppose z has the same orbit type as 1. This would mean that K\ n

NH is a conjugate of Kx n AÜ in NH. So K¡z~' n AÜ = Kx n NH for some

y G NH. However, since r/ç^n NH, this implies Ü Ç ATf"1 or Hz CKX.

In other words, z actually belongs to the AÜ orbit of (K\\K2)H . But it was

shown in Bredon [3] that (K{\K2)H/NH is finite. Therefore we can conclude

that z is not in the same orbit type manifold component as 1 unless z = 1.

Therefore M0 is a point.   D

The above discussion together with Proposition 1.12 implies that

(E&, ?i)+)N; - Jim (E(ft, ^)+)F-;
i

is equivalent to

BWHAd w»; JZ. lim B (ZZ£ZY  .

In order to show tr is an equivalence, we need to understand how far off

U,(AünF,) is from NH.

Lemma 2.7.  AÜ = (U,(AÜ n F¡)) • (NH n T)   (H c Fio).

Proof. Let z G AÜ. We can find z eF such that z~xz G T. Since zHz~x =

H and F, H c F¡0, an easy calculation shows that (z~xz)pM G Au n T for

some m depending only on i0. Therefore, as in Lemma 2.5, we can write z~xz

as yiy2, where y\, y2 G T, y\ has order a power of p , and y2 G Au n T.
So z = z(z~xz) = zyxy2, z, y2 e NH => zy\ G Au. But notice that zvi G Fk

for some large k . We are done.   D

We now have the following map of extensions:

Aünr AÜ
1   -y       -       -y       -       -y   J   -y   1

HC\T H

(2.8.1)

AünrnF,- AünF,-
1   -y  -   -y  -  -►  Ji -y   1

ü n t n Fi H n F,

Of course / is finite since NH/NH n F is finite.

Corollary 2.8. For sufficiently large i, Ji -> / is an isomorphism.

Proof. For injectivity, suppose x G AÜ n F¡ such that xh = z G Au n F for

some A G ü. If Ü c F,, then z G F, and thus z g Au n F n F,.
For surjectivity, since / is finite, it suffices to show for each z G / that

there exists z' G J¡ which maps to z for some i. Let y G NH/H map to z.

By Lemma 2.7, we can write y = y'h , where y' G Au n F, and for some /
h G Au n T. Then y' G Au n F¡/H has the same image as y G Aü/Ü in
J.   D

We are ready to prove
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Proposition 2.9.

BWHAd w"; -*♦ lim B (^^)

is an equivalence.

Remark. This will prove Proposition 2.land hence Theorem 1.1.

Proof. Following Nishida [13], it is sufficient to check that

Urn Ü* (*p^)    ,Zp^H\BWHAd^,Zp)

is an isomorphism.

Suppose we are in the following situation. Let

1 —y G\ —y G2 —y G3 —» 1

be an extension of groups. Consider the space FG3 xGj (EG2)/G\, where all

actions are from the left and G3 = G2/G1 acts on (EG2)/G\ via the action of

G2 on FG2. Since FG2 is G2 free, (EG2)/G\ is G2/G1 free. This implies
that EG3 xG} (EG2)/Gi is equivalent to ((EG2)/Gi)/G3 = (EG2)/G2.

Suppose further that we have the following map of extensions:

1 -y Gi -► G2 -► G3 -► 1

G\ -► G2 -y G'3

where i\, i2 are inclusions.   We want to understand the transfer ßG2+ -U

BG'2+ . Recall we have a pretransfer f : 5° -> (G2/G'2)+ , where t is a G2 map.
Taking the smash product with EG2+ and the G2 orbit yields:

t: EG2/G2+ -^^ EG2+ AG2 G2/G'2+ Si EG2/G'2+ .

We claim that the following diagram commutes:

EG3+ AG¡ EG2/GX+ -^t EG3+ AG, EG2/G'X+

proj proj

EG2/G2+ —Ï-» ,FG2/G2+

where x' is the G3 equivariant transfer associated to G\ «-> Gi.

Observe that G2 n Gi = G\ and hence Gi/G\ Si G2/G'2 as Gi spaces. If f'
is the pretransfer associated to 1', then this observation implies that f ' = f.

Hence the diagram commutes.

Now, using 1 Ag3 r', we can filter FG3+ by skeleta to get a map of spectral

sequences with E2 terms:

H*(BGi, H*(BG[, Zp)) -» H*(BGi, H*(BGX, Zp))

converging to

H\BG'2,ZP)^H\BG2,ZP).
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Now, similarly, we have the following maps of spectral sequences when we use

dimension shifting pretransfers

where F = G2/G'2 and A is the adjoint representation of F derived from

{e}.

Now rewrite (2.8.1) as

1  -y    TH   -y    WH   -y  J  ->  1

(2.9.1) | | |

1  -y Tm  -►  Wm -y J¡ -y  1

Applying the previous discussion to (2.9.1) yields a map of spectral sequences
with E2 terms:

H\Jí , H*(Tm , Zp)) ■£+ H*(J, H*(B(TH)Ad™ , Zp))

converging to

H*(Wm , Zp) -£* H*(BWHAd w» , Zp),

where i > M for some large M so that J = J¡. Since the maps in the spectral

sequence are compatible as we vary /, it would be sufficient to show that

Um H*(Ji, H*(Tm , Zp)) -£+ H*(J, H*(B(T„)Ad™ , Zp))
T*

is an isomorphism. But

lim H*(J,, H*(Tm , Zp)) = if (j, lim H*(Tm , Zp)\ .
T* \ t* /

So we are reduced to proving that

lim H*(Tm , Zp) -£+ (B(TH)Ad^, Zp))

is an isomorphism. Notice that Tu is a compact abelian group. Hence, Tu =

C x Tk for some finite abelian group C and a torus of rank k, Tk. But

THd) = C(p) x (Tq n /„(,-)) for sufficiently large i, where C^ is the unique

p-Sylow subgroup of C and n(i) is an increasing function of í. Since we have

cohomology in the Zp coefficient, it suffices to verify that

lim H\TkQp n In(i), Zp) -^ H*(BTkAd T", Zp)

is an isomorphism. Since it is well known that (cf. [13, Proposition 3.2])

lim H*(BZpr, Zp) -£» H*ÇLBSX, Zp)
r

is an isomorphism, we are done.   D
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3. Some generalizations

In this section, we begin by proving an easy splitting result generalizing The-

orem 1.1 to other conjugacy classes of /^-subgroups of G. Afterward, we shall

consider those conjugacy classes of closed infinite subgroups and verify the in-

jection result of Theorem 3.12.

Our first aim is to prove

Theorem 3.1. Let G be a compact Lie group and p be a fixed prime. Suppose

H is a finite p-subgroup of G;   then BWHAd w"p   is a summand of DBG+p

under <P.   Furthermore, the finite wedge sum of any such spectra splits from

DBG+p.

We first give some preliminary results. As before, we continue to assume A

is an extension of a torus F by a /?-group unless stated otherwise.

Let ¿%i denote the wedge of those summands of (S°)F'p whose correspond-

ing subgroup (Ü) is such that Ü n F <£ F}_i n T. Denote by J/*/ the wedge of

those summands in (S°)F'p  that does not belong to ¿%i.

Lemma 3.2. There is a cofiber sequence

lim 3li - lim (S°)FíP -> lim S\.
i i i

Proof. Recall we have I„ = {x e T\xp" = 1}. Since I„ is normal in A,

summands of ¿%i will map to summands of ^,_i under the map (S°)F ->

(5°)f,-'   jhig gives nse to the following diagram:

&i  -► (s°)F7 -> &

I      i      I
¿?,-i -► (S°)F^P  -y Sl-x

Here the right vertical map will collapse to the base point of S'i-x those sum-

mands of 5^i whose corresponding subgroup (Ü) is such that ünF ç£ F¡-2r\T.

Taking the homotopy inverse limit of the diagram will give us the desired cofiber

sequence.   D

Corollary 3.3.

lim^= Y[ BWHAdW"p.

i (H)CN

H a finite P-group

Remark.  ] \ denotes the product of spectra (cf. [1, Part HI]).

Proof. We have the family J^ = {ü|ü nie/,}. Notice that given (ü) G
J'n - J^_i, then (HanFm) g J^ -<fn-\ for all m sufficiently large. It follows

from Lemma 3.2 that
oc

lim ̂  = n lim (E(S„ , Jl-i)+f'Ç .
i n=0     i

This, combined with Proposition 2.1, gives the desired result.   D
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Corollary 3.4. Let fê be a finite collection of conjugacy classes of p-subgroups

in A. Then the following map splits:

<D:    \/   B WH Ad w"p - Urn (S°)FiP - DBN+p .

(if)*

Proof. Let !? be the family of all conjugacy classes of finite p-subgroups of

A. Consider the map

(E^+fp -^ lim (S°)F'p -► lim &.
i i

Corollary 3.3 says this is the inclusion of wedges of spectra into products of

spectra. Since ^ is finite, we therefore have the desired result.   D

Proof of Theorem 3.1. Let Wp be a p-Sylow subgroup of the Weyl group W =

N/T and let Np be its preimage in A. Suppose Ü is any closed subgroup of

G with n0(H) a p-group. From Bredon [3], we have x((Np\G)H) = x(Ap\G)

modp . Since x(Ap\G) ^ 0 modp , this implies that (NP\G)H is not empty.
In particular, Ü is conjugate to a subgroup of Np . Furthermore, he showed

that the AÜ orbit of (NP\G)H is finite. Let {g¡} be a set of representatives.

We then have

(NP\G)H = ]J Au n N*<~\nH.
i

Since x((Np\G)) £ 0  modp, this says ¿(Au n Np' \nH) ^ 0  modp for
some gi. In other words, x(NHgi n Np\NH8i) ^ 0  modp .

Consider the following commutative diagram:

(S°)G; -^ DBG+;

{So)N,7 _iu dbnp+;

Let K be a p-subgroup of Ap . Recall that, under y, the summand correspond-

ing to (K) maps to a finite number of summands corresponding to {(K8° nAp)}

which are also p-subgroups of Np . By Corollary 3.4, it suffices to check y is a

splitting map.

Now K8« n Np is not a conjugate of K in Np unless ]f£' ~ 1 G L —

NP\G/NK. By Propositions 1.12 and 2.6, the map between the summands

(K) of (S°)Gp  and (K) of (5°)^ is the bundle transfer:

B\vKAd w*; -^ B\vKNAd w*»;,

where Wkn = (NKr\Np)/K. Therefore we see that BWKAd Wk^ is a summand

of DBG+p  if tr has a retraction.

From Lemma 1.2 and the previous calculation of the Euler characteristics,

this holds in particular for K = H8i.

Now let ^ be any finite collection of conjugacy classes of p-subgroups in

G. Without loss of generality, we may assume each representation Ü of its
conjugacy class is chosen so that

Ü c Np   and   x(NH n NP\NH) ^ 0 modp.
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Let f" be a collection of such representatives.

We want to show that

\J B\vHAdW»;^     \J    BWK„AdWK»;

HÇ.&' (K)CNP
K a p-group

is a splitting map. This would prove the second part of the proposition. For

convenience, we may suppose that if (K) = (Ü) in Np for Ü G %'', then in

fact K = H.
For each Ü g W, consider the retraction of tr given specifically in Lemma

1.2, denoted by ret//. Let 0 be the map

V    BWKNAdWt«;^   V B\vHAdW»;

(K)CNP (H)£%"
K a p-group

given by ret* if K G W and trivial otherwise. We claim that

(3.1.1) V BWHAdW»;^     \J    bw™w*n;-^ V B\vHAdW»;

HeW (K)CNP H&>
K a p-group

is an equivalence. This would then complete the proof.

Define %' = {Ü G W'\ \H\ < i] . Observe that since \H& n Np\ < \H\ for

all gal) G L, we can filter (3.1.1) so that it suffices to prove the equivalence

(3.1.2) \J      BWHAdW»p^       \f      BWKNAdfV>c»p

He9¡'-%'_, (K)CN„
K a p-grouP

\K\=i

-^     V    BWHAdw»;.

Hew/-w/_{

Since |ü&" n Np\ = |ü| implies H8« C\NP is a conjugate of Ü in G, the map

6 will map trivially on (H8°' n Ap) unless g^ ~ 1 G L. Therefore (3.1.2) is
a wedge sum of equivalences.   D

Corollary 3.5. The following map is an injection:

n. (<D) : 0        *, (B WHAd w";) - jr. (DBG+;).

(H)
HCG a p-group

We want to extend Corollary 3.5 to conjugacy classes of closed infinite sub-

groups of G. Let ¿%2 be the family of all conjugacy classes of closed subgroups

of A and ¿%\ be the family of those conjugacy classes in A which are finite.

Observe E3S2+ is A-equivariantly homotopic equivalent to 5° .

Lemma 3.6. There is a map ofcofiber sequences:

(E(^2,^)+)N;-► (E^2+)N;-► (E^+)N;

[n [y ly>
lim^i -► lim(S°)FiP  -►     lim^/

where y\ and y2 are induced from y.

1
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Proof. We note that given any closed infinite subgroup Ü of A, Ha n T =

(H(~)T)a has an infinite number of elements. By Corollary 3.3 and Proposition

1.12, this implies that the summand in (E£82+)NÇ corresponding to (Ü) will

project trivially into lim S^ under y .   D

Of course, it is obvious that y\ does not induce an injection on 7t» due to

the fact that there are non-p-groups in 3§\. To correct this, let ¿P be the set

{(H) c N\H p-toral}, and let &>x = & n 3SX and &>2 = & n (^2 - ^i) • We
then have the following map of cofiber sequences:

(3.6.1)
V(H)^BWHAd^p   -y \¡{H)^BWHAdW»~ -► y{„}^BWHAd^p

(E(<%2,¿$X)+)N;   -►        (E^2+)NP        -»        (ea%x+)n;

where the i's are obvious inclusions. Notice that the map y\ o j'j is an inclusion

of wedges of spectra into products of spectra.

Suppose we are given a system of p-completed spectra {3ÏÇ} . Recall from

[2] that we have the following exact sequence of groups:

1 -» limx 7ii+l(2lp) -» 71,(lim &ip) -» lim 7ii(&ip) -» 1.

If each Zi is of finite type, then  lim ' iii+\(3Aip) would be trivial. Applying

this to our situation, it follows that we have the diagram:

1-   0    7it(BWHMWH~)^   0   7r»(W„Ad %~)->   ©    7t,(BW„M w»p)^l
(H)e&2 (H)e3° (W)6á»i

J-2012 )'0| 1-jOl,

1- lim ti, (ßC) -      limn4{S°)F¡p)      -> lim7t»(^) -»1

since lim ' 7t,(¿%¡) is trivial. Therefore in order to show n*(y o i) is injective,

it suffices to show n»(y2o i2) is injective by Corollary 3.5.

To accomplish that, we need to break up lim ^, into pieces more amenable

to calculations. This motivates the following

Definition. Recall we have a nested sequence {F,} of finite subgroups of A

constructed in Corollary 1.5. Let Ü be a subgroup of F,. We define the type

of ü tobe |ü/ünF| and the form of ü tobe |ünF/ünF,_inF| which are
denoted t¡(H) and f(H), respectively. Note that the definition of type and

form is well defined on each conjugacy class in F,. For a general Ü c A,

we can also define its type and form by t(H) = \H/H n T\ and /(Ü) =

lim . \H n F¡ n T/H n F,_! n T\.

Remark. We observe that given Ü c A, i,_1(ünF,_1) < í,(ünF,). Similarly,
fi(HnFi) < fi-!(ü n F,_i) via the power map x -> xp .

Lemma 3.7. There exists a finite number of spectra {%/j} and a sequence of maps

{*j},

* Ji+ Vk J±zL> %k_{ Jizi* ... ^ % = lim 3li,
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such that the cofiber of each k¡ is a homotopy inverse limit of a system consisting

of all the summands having the same type and form.

Proof. It is clear that there are only a finite number of distinct pairs (type of

Ü, form of Ü). By the above remark and the fact that Ü c F, will go to

{(Ha n F,_i)} between consecutive maps in the inverse system, we can filter

the system {^,} so that each successive quotient will be a system having all

summands of the same type and form.   D

Corollary 3.8. Recall 3a is the set {(H) C A|tt0(ü) isa p-group}. Let &>™v =

{(H) G & \t(H) = v, f(H) = v) . Then we can filter V{H)e^ BWHAd w«j- in

a compatible way with the 24 's of Lemma 3.1 so that the map between corre-

sponding cofibers is given by

V    BWHMw»; Ä lim      V     BWJp+;=hm3f¡%.
(H)£&¿°v i      (H),HCF¡ i

t,(H)=v

f¡(H)=u

We are reduced to studying the map yv, „.   Let A be the inverse system

LÇ&v]v} ■ We first want to study the structure of A. Let ^ be a set of rep-

resentatives of conjugacy classes of subgroups of F, with type v and form v

such that given any Ü' c F, with same type and form, there exist (Ü) G ̂

and a G W so that Ü n F = Ha n F. Similarly, we define W as a set of rep-

resentatives of conjugacy classes of closed subgroups in A satisfying the same

condition. Since F is normal in A, 3/¿ and & are well defined.

Rewrite 3¡^}v as V(//)es; &h > where 9¡^ denotes the wedge of all sum-

mands in 3¡v]v whose corresponding representative in ^ is (Ü). It follows

from Proposition 1.12 that ¿&jp will either map to ^¿'^/L m ^ l°r some

a or a map trivially otherwise. Geometrically then, the structure of A is a

directed tree ¡T with each node being represented by some 3¡\\) .

Lemma 3.9. Let (H) be a conjugacy class in AP^V. Then under yv>v, the

summand corresponding to (H) will map to a nontrivial directed path in £T.

Furthermore, distinct conjugacy classes (H) and (H1) with the same type and

form will map into the same directed path in A7~ under yv t „ if and only if ün F

and H' n F are conjugates in A.

Proof. Since F is normal in A and the summand corresponding to (Ü) will

map to summands corresponding to {(ÜQ n F,)} under yVtU , we only need to

show that given a conjugacy class (Ü) in 3°^v , we can pick a representative

ü0 so that

(3.9.1) t(H0) = ti(H0nFi)   and   f(H0) = f(H0nFi)

for all large i. Clearly, by definition, any representative will suffice for the

form of Ü. As for the type of Ü, following a proof similar to the proof of

Proposition 1.4, we can find a subgroup HQp of Ü such that HQp n F consists

of all elements in Ü n F of order a power of p and HQp /HQp n F = Ü/Ü n F.
By Corollary 1.9, Hqp is conjugate to a subgroup of NQp. Let ß G W be

such that ü/j c Nqp . Since Ü is the closure of Hqp in A, this implies that

t(H^) = t,(Hf> n Ft) for all large i.
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It remains to prove that given (ü), (Ü) G ̂ 8~„ such that HnFjHT and

Ü n Fj• n F are conjugates for all large j, then Ü n F and Ü n T are in fact

conjugates. We may assume Ü and Ü satisfy (3.9.1). Since N/T is finite,

there exists a eW = N/T such that Ü n F, n F = Ü"7 n F, n F for infinitely
many y's. Consider the unions

(jHnFjHT,        (jH'TiFjnT.

Since 7To(ü) and no(H') are p-groups, the closure of these unions will give

Ü n T and H'a n F, respectively. Hence we have the equality Ü n F = Ü'CT n

F.    D

Remark. From now on, we will assume the representative of each conjugacy

class in &>™v is chosen to satisfy (3.9.1).

Lemma 3.10. For each (H) e ¿P™v, let Ju be the induced directed path in ¿7~

given by the representative (H n F¡) e S?¡ at each level i. Then the canonical

map

V    US? ^hU - lim 3tf!„
{H)€&    JH i

Jh

induces an injection on nt.

Proof. Given (Ü) G 2?, we claim that there exists an integer r such that Ü n

F¡ n F is not a conjugate of ünF, n F for all i > r if (Ü) ¿(H)e&.lf not,
then it is immediate that we may assume ünF, n F = Ü nF, n F. Let (ün T)0
and (Ü n F)o be the components of 0 in Ü n F and Ü n F, respectively.
Since form = i/, we can write Ü n F = C0 x Tv and Ü n F = C0 x (T')v,

where the C's are cyclic groups.

Suppose Co c In ■ We may choose n so that \C0\ < p" . Pick r such that

Fr n F D i„+i. This r will do the job. We have two cases: T" — T'v or

Tv t¿ T'v . In the first case, the equation \H n F, n F| = |ü' n F, n F| implies

that C0 nF, contains only elements of order less than p" . Hence, C0 c I„ and
Ü n F = Ü' n F. In the second case, since T" ¿ T'v , \C0 n F,| > pm , where

iOT = F, n F. Hence,

|ü n F¡ n F| > (pm!/)(pm) > (pmv)(pn+x) > (pmv)\C0\ = |ü n F,- n T\.

This implies the directed path associated to each (ü) / (Ü) G 2/ will

not intersect 7// from the level r onward. Since 2/ is countable, we can

order 2? as {(H\), (H2 ),...}. Choose integer r, for each (Ü,) as above.

Without loss of generality, we may assume r¡ > r¡ if i > j. For each i, define

%[ = {(H) c Fi \H n Fr, ~ Ü, n F0 G ̂ r>, for some ; such that i > r,} . Let

or«' _ / V(/oe^rß ^+p   if ^ is nonempty,

I * otherwise.

Notice that 3¡v]v consists of those summands in ST which go to ^h^f   l°r

some j such that / > r,. Form the inverse system {3¡y%} where the maps are

induced from those of A. This gives a canonical map of systems {2>v%} —>

{3!v%}.  It is clear that   lim .3¡¿]v is a product of homotopy inverse limits,
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and the composite

(H)eS1    Jh i i

Jh

maps distinct wedge summands of the source into distinct product factors of

the target. However, upon taking n*, each wedge summand maps injectively

into its target since an inverse limit of inclusions of groups is an inclusion.

Therefore this gives the desired result.   D

Proposition 3.11. Fix a (H) e 3°™v ■ The following map induces an injection

on 7T* :

yiHl:       V       BW„."w"î -limâ^.
(H1) Jh

(H')~(H)€&

Here y^l is the restriction of yVyU .

Proof. We first prove the proposition for the summand corresponding to (Ü).

For each i, define

3T¡ = {(K) c F¡\(K) ~ (Ü n Ft) G 2?i and (K)

is a conjugate of (Ü n F,) for some t G F}.

Consider the cofiber sequence

where ^ is the cofiber of the left arrow. Notice that under F¡ ^-> F,+i , the

JB¿'s are compatible by Proposition 1.11. Since yi"l restricted to BWHAd w"p

actually factors through the homotopy inverse limit lim \J'iK\£x BW^'+~ , it

suffices to check that

y(vHl:BWHAdw«;^\im   \J   bw£\;
i     (K)€Z,

induces an injection on n*.

Consider the double coset F¡\N/NH. Let L, = {g G F¡\N/NH\ t¡(H8 n F,)
= v , fi(H8 n F¡) = v} . We define an equivalence relation on L, by g\ ~ g2

if Hgl n F, is a conjugate of H82 n F, in F,. It is easy to check that this

equivalence relation is well defined. By definition, each (K) e 2"¡ gives rise to

an equivalence class in L¡.

We claim that for all sufficiently large i, the equivalence relation induces

a well-defined map /: L,/ —► L,+i/ ~ coming from F, <-* F;+1. That is if
gx ~ g2 G Li, then j(gx) ~ j(g2) G Li+i . We may assume gi, g2 G F. Since

g!, g2 are chosen so that t(H) = ti(H8' n F,) = i,(ü^ n F}), we have

Hg* =H8«nFi-H8l<nT = H8l<r\Fl-Hr)T,        k=l,2.

Since Ü n Fqp n F is dense in Ü n F and A/ F is finite, we can find some

sufficiently large m0 such that if a G A normalizes Ü n FWo n F, then a also

normalizes un F. So pick i > m0. If (Ü*1 nF,)«7 = Ü*2 nF, for some a e F¡,
then this implies that (H8> n F,)CT n F = Ü» n F, n F. But gi , g2 e F and thus
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a normalizes Ü n F. Hence, we have Hagl = H82. Consequently, H8' n Fi+\

is a conjugate of H82 n F;+i in F,+i .

Now the analogue in Lemma 2.3 shows that the summand corresponding to

(H8 HFj+i) G Zi+\ will map to summands corresponding to {(i/(a)nF,) ej;}
for all sufficiently large i, where j~l(g) = {g\, g2, ■ ■ •} • Similarly, using the

fact that the types of these groups are all the same, we have the analogue of

Lemma 2.5. In summary, we see that it suffices to verify that

BWHAd^;^ lim BÍN^FínFi)
p     <—    V     ün F,     J+p

is an equivalence.

A priori, by Proposition 1.12, the maps in the homotopy inverse limit above

are compositions of transfers and natural inclusions, i.e.,

A(ünF,+1)nF,+1 ^ tr    A(ünF,+1)nF¿ ^

ünF,+1       +p ünF,       +p

Bi DA(ünF,)nF,- Ä

~"ß     JirTfi     +p-
However, we want to show that for all sufficiently large i,

AünF,= A(ünF,)nF,-.

If this is indeed the case, then A(ünF¡+1)nF, = AünF,+1 nF, = A(ünF;)nF,
and thus

/A(ünFQnF,y /A^nF,

Clearly, AÜ n F, c A(ü n F¡) n F, for all i. As before, we can find some

sufficiently large m0 so that is a G N/T normalizes A n F, n F and i > m0,

then a also normalizes ün F. Since í(ü) = /,(ünF,) for all large /', the

equation Ü = ünF,'ünF, which holds for such fs, implies A(ünF,)nF, c
Aü n F,-.

Henceforth we want to check the following equivalence:

(3.11.1) BWHAd w»; -£♦ lim 5 (^^

Consider the following map of extensions:

Aun F Aü
1   -y        -        -y        -        -y   D

HC\T H

AünFnF,- Aun F,
1   -y  -   -y  -  -► Oi  -y   1

ü n F n Fi H n F,

We claim F), —yD is an isomorphism for sufficiently large /. The argument

used in Proposition 2.8 would then prove (3.11.1).

It is easy to see D¡ ^-> D. So suppose z g Aü . Write z = z • t, where

t G F and z G F. Pick i so that t¡(H n F,) = t(H). This together with

üz n F, = Ü n F, implies that ^  G Aü for some integer k . As in the proof



100 CHUN-NIP LEE

of Lemma 2.5, we could write t - t\ • t2, where t2 G Aü and t\ is of order a

power of p . Therefore we have shown surjectivity.

Hence we have proved the injection result for the single summand corre-

sponding to (Ü). As for other summands, we note that if (ü) 7¿ (Ü) and

Ü' n F = Ü n F, then Ü n F, is not a conjugate of Ü n F, in F, for all
sufficiently large i and all t G F. The proof of this fact is just the argument

used for showing /': L¡/ <■—► L,+i/ ~ is well defined. Now apply the above

analysis of lim \J^K)€Z¡ BW^+Ç to lim f?¡ and combine with Lemma 1.7 to

complete the proof.   □

The generalization of Corollary 3.5 is

Theorem 3.12. The following map is an injection:

M*) :        0        n*(BWHAd w";) -, nt(DBG+;).

(H)CG
n0{H) a P-grouP

Proof. It suffices to show

(3.12.1) 0        n,(BWHAd %) ^ ^(5°;) ^U nt(DBNp+;)

(H)CG
nQ(H) a p-group

is an injection.

By combining Lemmas 3.8 and 3.9 and Proposition 3.11, we notice that the

theorem holds for Np . Recall that, under y, the summand corresponding to

(Ü) of G maps to a finite number of summands corresponding to {(Hg° nAp)}

of Np . As in the proof of Theorem 3.1, we may assume each representative Ü

belongs to Np whenever (Ü) G & . Furthermore, a slight modification of the
proof given there shows that the map

(H)CG
ita(H) a p-group

is an injection. Of course, this does not immediately give us what we want.

Let z be a nonzero element in n*"(S°p). We can rewrite z uniquely as a

sum of x and y, where x ^ 0 comes from summands whose corresponding

conjugacy class (Ü) is such that the dimension of Ü is maximal possible.

Notice the analysis of y o i in (3.6.1) could equally well be applied to y itself

even though we will not have injections in general. Therefore we observe that

the argument presented in the proof of Lemma 3.10 together with Corollary 3.8

actually shows h*(&np)(z) - 0 implies rc*(<!>#„)(x) = 0.

Clearly for (Ü) c G with 7to(ü) a p-group, the dimension of H is greater

than or equal to the dimension of H8° n Np and equality holds only if

n0(H8° n Np) is a p-group. The above discussion then proves (3.12.1) is an

injection.   D

In our discussion up to now we have not mentioned those conjugacy classes of

subgroups of G which are not subconjugates of A. The following proposition

explains the reason.
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Proposition 3.13. Let (H) be a conjugacy class of A. Then under the map

(S»)
0\N    Or

(ST,

the summand corresponding to (H) of (S°)N goes to the corresponding (H) of

(S°)G given by a map induced by the inclusion A#ü <-► A^ü, where t is the

G-transfer 5° -> G/A+ .

Proof. From torn Dieck's splitting, for a given / G n*(BWHAd w"), the image

of / in nG(S°) is the following composite:

/, : 5° -£ BWHAd w" AL, N+ ANnH BWHAd w»

lAr
N+ANnH EWH+^ S\

where pr is the obvious projection map.  If we identify {G/N+, S°}G with

{5°, 5°}^, the above composite becomes:

f2: G/N+AS0 -^U G/N+AS0 -^ 5°.

Now, under the G-transfer 5° -^ G/A+, f2 sends to h = f2°"c. Consider

the following diagram:

BWHM wn

GANaH BWhmwh

1ATA1

G/\NghNgH hNfjHBWH^wH

lAt

G ANcH NGH ANf/H WH AWh EWH+

BW¡,mw'h

-i— GANoHBW^K

lAt'Al

GAVJV(;//A%í/WiM,,''í

lAl'

G ANgHEW¡,+

where PF¿ = NGH/H, x (t') are appropriate transfers (dimension-shifting

transfers), and 7 is induced from inclusions Ad WH «-+ Ad PF¿ and W-// ̂ ->

PF¿ . Since the diagram commutes, we have the desired result.   G

Notice the same argument applies if we replace A by Np in the proposition.

Consider the following commutative diagram:

0\G-
(5°)

(ST*

?0\G~

DB G+P

DBN,p+p

I
DBG4(S ) p —' -^■"«j+p

where / is induced from inclusion and j is induced from t : 5° —» G/Np+.

Observe that the vertical composite of the right side is an equivalence. By the
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preceding proposition and Proposition 1.12, the summand corresponding to

(Ü) will map to summands of the form Ha n Np under the composite j ° i.

If (Ü) t (Np), then (Ha n Np) ¿ (H) for any a. Therefore we conclude that

the results of this section are not far from being optimal.

4.  G = 50(3)

In this section we want to consider the case when G = 50(3). Of course, the

previous sections gave a partial description of DBSO(3)+ at all primes. How-
ever, we can actually do better and obtain an explicit splitting of DBSO(3)+ at

the prime 2.
We note that the proofs of Theorems 1.1 and 3.1 can basically be reduced to

the case when G is an extension of a torus by a p-group. Therefore we begin

by deriving a crude structural theorem of DBG+p  in that case.

Let n: J\ -+ J2 be a surjection of finite p-groups with kernel K. We want

to understand the induced map DBJ2+ -^-> DBJ\+ .  By Segal's conjecture

for p-groups, this is equivalent to studying (S°)Jl ~> (S°)J' .

As before, we have a commutative diagram:

n^BW-ñJ = nÁBW-ñJ

'[ \>

ntWWjjJ -y nJABW-n+)

•1 I-
7C^(J2+ANjjEWjj+) -y nJS(J2+ANliEWñ+)

.[ |,

KÍ2(S°) -► 7l£(S°)

where the horizontal maps are induced from J{ -^-> J2 and Ü is a subgroup

of J2 . Let Ü be the preimage of Ü in /[.

Lemma 4.1.  J2+ AN-jjEWjj+ = J\+ Anh EWH+ as J\-spaces.

Proof. Observe that A(ü) =ÄÜ. Hence, J2/N(H) = J{/Kx ÑU = JX/NH
as Fi-spaces. Since N(H)/H = ÑH/H s AÜ/Ü and clearly the action of
AÜ on EWjj is the same as that of AÜ on EWH, we have the lemma.   D

Corollary 4.2. The summand of (S°)Jl corresponding to (H) maps under n to

the summand (H) of (S°)J' via an equivalence induced from n~x.

We can apply this simple result to the following special situation. Suppose

that
1 -» F-> A -» W ^ 1

is a split extension with W a p-group. That is, A is a semidirect product

of W and F, i.e., A = W x T. Recall Im = {x G T\xpm = 1} and let

Nm - W x Im . We have a surjection n: Am+1 —► Nm induced from the power
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( )p
map im+i -y Im . Consider the following commutative diagram:

DBNm+    -Ä DBNm+l+ -y sém+x

(4.3.1) D[Bi) D[Bi]

DBNm„l+ -►   DBNm+   -►   s/m
D[Bn]

where i is the inclusion Nm <-» Am+i and sfm is the cofiber of D[Br¡]. As a

matter of fact, from Corollary 4.2 the map D[Bn] splits and ¿>fm is a wedge

of those summands of (S°)Nmp corresponding to (Ü) such that I\ <£ H. It

is clear then under D[Bi], sfm+\ maps into stfm only. Therefore, the diagram

(4.3.1) splits naturally. Taking the homotopy inverse limit with respect to m

yields

DBN+p -^L, DBN+p -» lim sfm .
m

Here n is induced from  F -► F and of course the sequence splits.   By

iterating D[BJj], we get:

DBN+; -^Q DBN+;        -» Vr'ilim^)

Dim

DBN+;   -^X   DBN+p -»   VÎ(Hmj/m)

where the right vertical map collapses the (n + l)th wedge summand to the base

point. Taking the homotopy inverse limit with respect to n yields the split

cofiber sequence

lim DBN+p -y DBN+p -> f[ ( Jim s/„ ] .
D[ß>f] 1     V   m /

Now

lim F>ßA+~ = D j lim ßA+ J ,

D[BTj] \ Bîj )

where ~ denotes the cocompletion at p or equivalently, the smash product

with the Moore spectrum 2Z~xM(Zp<x). But

lim BÑ+ = lim ( lim BÑm+ J = lim ( lim BNm+ I   = Hm i
BTj Brj    V  Bi / Bi    \ BTj ) Bi

Therefore

DBN+; = DBW+; V f[    lim j/m
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Proposition 4.3. Let 1 —> F —y N —y W —» 1 be an arbitrary extension with W

a p-group, p aprime. Then DBN+p  can be written in the form

oo

DBW+p\fj/'vY[j!/
i

for some p-completed spectra sé and s/'.

Proof. From Proposition 1.4, there exists a subgroup F of A such that Fn F

equals the subgroup F of F generated by all elements of order n = \W\.

Corollary 1.5 says we can find a nested sequence {F,} of finite subgroups of

A such that Fi/Fi n F =■ W with |JF, n F = TQp. Consider the following
diagram:

DB(Fi/f)+    -^U    DBF¡+    -y   âBt

1
DB(Fi_l/f)+ -^ DBF¡-1+ -► m-i

where r: F¡ —> Fi/F is the quotient map and the vertical maps are induced from

F,_ i <—y F¡:. By taking the homotopy inverse limit and observing the naturality

of the splittings, it is immediate that we have

DBN+p = DB(N/f)+p V lim 3Bi.
i

However, the extension

F      A

F      F

splits since F/f = W. Therefore, applying the previous discussion to this

situation results in the assertion.   D

We get the following result of Ravenel [14, Theorem 1.11].

Corollary 4.4.
oo

DBSx+p =S°p\j\\ BSX Ad s'p .

As we shall see later, Proposition 4.3 also recovers a result of Miller and

Wilkerson [12].
We are now ready to describe DBO(2)+p~~. Recall that the dihedral group

Dn of order 2« is given by

gp(s, t\sn = 1 = i2, rxst = s~x),       n>\.

We have the following maps:

/': D2n -> D2n+\,        i the inclusion map given by s —» s2, t —y t,

r: D2n -* D2„-\,        r the reduction map given by s -> 5,  t —» t.

Lemma 4.5. The cofiber W„ of D[Br] is BD2n+2 y BZ2+2 ABZ2+2.
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Proof. The conjugacy classes of subgroups of D2* consist of

T2i =gp(s2"~J), j = 0, 1, ... , n,

D2i = gp(s2"~\ t), ;' = 0, 1, ... , n,

D'2j=gp(s2"~i ,st),       7 = 0, 1,...,«-1.

By Corollary 4.2, Wn , the cofiber of D[Br], is

BWT¡ +2 WBWD¡+2vBWD[+2.

Now

NTV =D2n ,

ND2j =D2j+i    if j¿n,

ND'2J=D'2J+¡   if/^n-1,

AF>2„_, =D2n .

Hence, f„ = BD2n+2 V BZ2+2 V BZ2+2 .   D

Proposition 4.6.
oo oo

DBO(2)+2 = S°2 V BZ2+2 V Yl BO(2)Ad °^2 V ]\ BZ2+2 .
i i

Proof. Notice that
limg'„= \im(E9+)D2"2,

D[Bi] n

where «^ = {Ü c 0(2) | ün F = 1} . Therefore, by Proposition 2.1, lim     . ^„

= (E^+)°{-v>2 . But then &~ only consists of two conjugacy classes, namely (1)

and (DO .  Hence,   lim     . % = BO(2)Ad °^2 V BZ2+2 .  The rest follows

from the discussion after Corollary 4.2.   D

We record the description of the map (E^+)°^2 -^ (E^+)°22 to be needed

later. For convenience, we denote by BD\+2 the summand corresponding to
(D\) in DBD2+2   and by BD'x+2   the summand corresponding to (D[).

Lemma 4.7. In (E9+)°^2 -^ (E^+)°22 , we have

(1) BO(2)Ad°^2  maps to BD2+2  by the bundle transfer and is trivial oth-

erwise;

(2) BZ2+2   maps to BD\+2  and BD'x+2   by the identity;

(3) BZ2+2   maps to BD2+2  by (-l)-Bi, where i:Z2<-^D2.

Proof. The proof follows easily from Proposition 1.12.   D

Given a compact Lie group G with normalizer A of a maximal torus F,

an element x G n*(N) is stable with respect to G if

(4.8.1) p*(Nf)N8,N8)Cg-i(x) = p*(NnN8,N)(x)   for all g G G.

Here p*(H\, H2) is the map n*(BH2) -> n*(BH\) and Cg-\ is the conjuga-
tion isomorphism n*(BN) -> n*(BN8). Let (n*(BN))s denote these stable

elements of n*(BN). From Feshbach [7, Theorem 2.2], we have

(4.8.2) n*(BG)   "{N^G). (n*(BN))s.



106 CHUN-NIP LEE

Applying (4.8.2) to the situation where G = 50(3) and A = 0(2), we have
to understand those g e G which give nontrivial stability conditions (4.8.1).

Recall we have the following list of conjugacy classes of proper closed subgroups

of 50(3) and 0(2) from [6]:

0(2):     (F„)A0(2)F„ = 0(2)

(Dn)N0(2)Dn=D2n,  n>\

(S1) A0(2)5' = 0(2)

50(3):     (F„)A50(3)F„ = 0(2)

(Dn) NS0(3)Dn = D2n , n>3

(D2) NSO{3)D2 = 54

(A4) NSO{3)A4 = 54

(54) Aso(3)54 = 54

(-45) NS0{3)A5 = ¿S
(Sx) NS0{3)SX = 0(2)

(0(2)) AsO(3)0(2) = 0(2)

Notice that closed subgroups in 0(2) of order greater than two which are con-

jugate in 50(3) are in fact conjugate in 0(2). Now (4.8.1) is equivalent to

(4.8.3) Cg-xp*(N n A*, A)(x) = p*(N n A*"', N)(x).

Clearly, 0(2) n 0(2)* is conjugate to 0(2) n 0(2)*"' in 50(3). Using the fact
that 50(3) = SU(2)/±I, it is easy to check that O(2)n0(2)* is not a conjugate

of F2 in 0(2) for all g G 50(3). Therefore, O(2)n0(2)* and 0(2)nO(2)*~'

are indeed conjugate in 0(2). Let (0(2) n 0(2)*)" = 0(2) n 0(2)«"' for some

a G 0(2). Of course, we have

n*(BO(2)) -Ç^        n*(B0(2))

A
n*(BO(2)nO(2)8~l) —^ n*(BO(2)nO(2)8)

Combining this with (4.8.3), it suffices to consider the elements x G n*(B0(2))

such that

(4.8.4) p*(0(2) n 0(2)*, 0(2))(x) = Q-p*(0(2) n 0(2)*, 0(2))(x),

where g' normalizes 0(2) n 0(2)* with g G 50(3). Notice that we only have

to consider one representative from each conjugacy class. Clearly (4.8.4) will

hold if g' g 0(2) or if |0(2) n 0(2)* | < 2 . Hence we want to consider those
closed subgroups of 0(2) with order at least three which has normalizers not

contained in 0(2). From the given list, we see that the only possibility is D2 .

Since D2 is abelian, S4/.D2 = 53 acts on D2 by conjugation. It is easy to
check that in fact 53 gives all the automorphisms of D2. It remains to check

0(2) n 0(2)* = D2 for g g 54-F»4 since the normalizers of D2 in 0(2) is F>4 .

So suppose F>2 c K c 0(2)nO(2)* . This implies that K8~l C 0(2). As before,
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this implies K8 is conjugate to K in 0(2). This means the normalizer of

K in 50(3) is not contained in 0(2). There is only one such conjugacy class,

namely (D2). In summary, we have

Proposition 4.8.

n*(BSO(3)) = {x G 7T*(50(2))| p*(D2, 0(2))(x) is invariant

under the action of Aut(D2)} •

We can interpret the proposition in terms of spectra. That is, DBSO(3)+2

is the summand of DBO(2)+2   whose image in DBD2+2   is invariant under

the action of Aut(F>2). An obvious approach to calculate DBSO(3)+2   is to

split BD2+2   and i?0(2)Ad °^2   in a useful manner that will allow us to see

the action of Aut(F>2) • Recall the following result of Mitchell and Priddy.

Proposition 4.9 [11, Theorem C]. BO(2)+2 = BSO(3)+2\JF, where BZ2+2 is
a summand of F.

Using this, we are able to prove

Proposition 4.10.  BO(2)Ad °^2 = ß50(3)Ad so^2 V F, where F -* BO(2)+2

M BO(2)Ad°W2   and BSO(3)AdS0^2 -^ 50(2)Ad °(2)- are the maps that

give the equivalence. Note j is induced from {e} <^-> Ad 0(2).

Proof. It suffices to prove isomorphism in mod 2 cohomology. Recall we have

H*(BSO(3), Z2) = Z2[ftj2, w3],        H*(BO(2), Z2) = Z2[œ,, co2],

where n*(W2) = œ2 + a>2 , n*(ïï3) = a>\co2, and n: 50(2) —► BSO(3). Via the

Thom isomorphism,

H*(BO(2)Ad °(2), Z2) -^U H*(BO(2),Z2)

can be identified with

H*~l(BO(2), Z2) -^^ H*(BO(2), Z2)

since the Euler class of Ad 0(2) is tu i.

We want to show that

H*(BO(2)Ad0l-2\ Z2) -» ü*(Ä50(3)Ad5O(3), Z2)eü*(F, Z2)

is an isomorphism. Since BO(2)+2 — BSO(3)+2 V F, the kernel of

ü*(i?0(2),Z2)^ü*(F,Z2)

can be identified via Ü* (550(3), Z2) as

Y^aij(œ2o}x)i(w2 + (û\)}.

Hence the kernel of

H*(BO(2)Ad 0(2), Z2) -U* H*(BO(2), Z2) - H*(F, Z2)

can be written as
K = ^a'ijœ2(œ2(û\)i((o2 + a>2)j.



108 CHUN-NIP LEE

We claim tr*(K) ¿0 of K £ 0, where tr: BSO(3)AdB0^2 -* BO(2)Ad0^2)2 .

By Thorn isomorphism, tr* corresponds to

U : H*(BO(2), Z2) -» H*~2(BSO(3), Z2).

Since 50(3)/O(2) = RP2 and i*(co\) = [F], the fundamental class of RP2

where RP2 U 50(2), we have h(œ\) = 1  (cf. [13, Proposition 2.2]).   By

naturality, we have t\(w2x+œ2) = t\(n*(W2)) = t\(\)w2 = 0. Therefore t\(co2) =
1. Hence,

t,(K) = h (5]fl;;.iö2(ca2a)i),'(ta2 + w2)-')

= r, (^a;;W27r*(w3)'rt*(ftJ2v)

^ 0   unless a,'7 = 0 for ail i, j.

To show surjectivity, we just check the Poincaré series of the target and the

source are equal. Therefore we are done.   □

Theorem 4.11 [11, Theorem A], BD2+2 = BA^+2 V F V F, where the first
summand F can be mapped into the second summand F by the automorphism

xo in Aut(F>2) = GL2(Z2) ; here x = (° ¿) and a = {\ j ).

Remark. F coincides with the summand F in the splitting of BO(2)+2 . We

discuss some details of the splitting so that we can understand the action of

Aut(F>2) with respect to this decomposition. First of all, the summands Fi V

F2 (the subscripts are for distinction) come from splitting using idempotents

in Z2[GL2(Z2)]. Specifically, let 7r2 = a + a2, p\ = (1 + xo)(l + t) , and
P2 = (1 + t)(1 + xo). We have n2 = p\ + p2, p\p2 = p2p\ - 0. Then

H*(Fi, Z2) = Imp* c H*(BD2, Z2) for / = 1, 2. We remark that elements
are acting from the right on cohomology.

We claim that Aut(D2) acts as automorphism GL2(Z2) on Fi V F2. To

see the reason, we already know p\, p2 are projection onto the first or second
coordinate while xo switch the coordinates. Consider x. We have p\X — p\ .

This implies that the action of x on F\ maps it to itself. p2xp\ = p2((7T), and
p2xp2 = p2 implies that t maps F2 to F\ V F2 by diagonal. Similarly, we get

all the other elements of GL2(Z2).
As for BAt,+2 , this comes from the transfer associated to D2,—y A4. There-

fore it is obvious that the action of Aut(Z>2) on BA4+2  is trivial.

Lemma 4.12. Let K be a compact Lie group and o G Aut(A'). Then the action

of a on (S°)K is given by BWHAd w» -* BWAd W°H .

Proof. To avoid confusion, write a: Kx -» K2. As a A^i-space, K2/NH =
Ki/o-x(NH) = Ki/N(a~xH). By the naturality of torn Dieck's splitting with
respect to the conjugation isomorphism, we have the result.   D

By the lemma, it is easy to see that Aut(F>2) = 53 acts on DBD2+ by con-
jugation on the summand BD2+ , permuting BZ2+ V BZ2+ V BZ2+ , and leaves

5° alone.
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Theorem 4.13.
DBSO(3)+2 ~ 5°^ V 550(3)Ad so^2

oo :oo

V J] 50(2)Ad °W2 V W BZ2+2 .

i i
Proof. Consider the split cofiber sequence

(4.13.1) DBO(2)+2 -^U BBO(2)+2 -» 50(2)Ad °^2 V BZ2+2 .

We may rewrite (4.13.1) as

DBW+2 V f -^L DBO(2)+2 -* BO(2)Ad °m2 V BZ2+2 ,

where  W = Z2  is the Weyl group of 0(2) and f = UT BO(2)Ad °^2 V
nî° BZ2+2 . Let O be the composite

f^BDW+2Vf -^i DBO(2)+2 -^U F)5F)2+r.

By the commutative diagram

DBO(2)+2   -^i DBO(2)+2

D[Bj] D[Bj]

DBDi+2    -^L   DBD2+2

we see that 8 is a map between f and BZ2+2   if we identify DBD\+2   as

S°2 V BZ2+2 . Consider the map

f -^ fvBW+2^fV DBW+2 -^U DBO(2)+2 -^h DBD2+2 .

By construction, this is the zero map. Thus f is a summand of DBO(2)+2 ,

via id v6, whose image in DBD2+2 is invariant under the action of Aut(Z>2).
Now the summand BZ2+2 maps to DBD2+2 under D[Bj] according to

the description in Lemma 4.7, and BW+2 maps to the summand in DBD2+2

corresponding to (F2) by the identity. From the comment made after Lemma
Hi

4.12, it is clear that we have to analyze the map BZ2+2   —► BD2+2   and

understand how it relates to the bundle transfer tr: BO(2)Ad °^2 —► BD2+2 .

We use the splittings of 50(2)Ad °^2 and BD2+2 from Propositions 4.10 and

4.11 to analyze the bundle transfer map tr.

In [11, Theorem C], it was shown that the summand F of BO(2)+2  factors

through BD2+2   —► BO(2)+2 , where F  maps to the summand F\.   The

composite
BO(2)+; -+ 50(2)Ad °^2 -£♦ BD2+2

is equal to the ordinary transfer associated to D2 «-» 0(2). Therefore we have
the following diagram:

F      -y BO(2)+2   —!—> BO(2)Ad°W2

I I»
BD2+2   ——-y BO(2)+2   ——       BD2+2

Bi tr
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By the double coset theorem, BD2+2  —-> BO(2)+2  —y BD2+2   is the same
Bi tr

as 1 + CTCT . Therefore F of 50(2)Ad °(2^ maps diagonally into Fx v F2 of

BD2+2 . Clearly, the summand 550(3)Ad so^2 of 50(2)Ad °^2 maps to the

summand BA4+ 2  of BD2+2  by bundle transfer.

Since we remarked that BZ2+2 is a summand of F , it is clear then from the

discussion following Proposition 4.11 that the summand FvBZ2+2wBW+2 of

DBO(2)+2 cannot contribute to a stable summand of DBSO(3)+2 . Therefore

we have

DBSO(3)+2 ~S02\Jfy BSO(3)Ad 50(3)f.   D

Recall Miller and Wilkerson proved

Theorem 4.14 [12, Theorem B]. DBS3+2 ~ 553Ad Bs32 V DBSO(3)+2 .

Theorem 4.15 [12, Theorem B]. DBN2+2 ~ BNAdBNl2 V DBO(2)+2 , where

N2 denotes the normalizer of the maximal torus in 53.

Remark. We can recover Theorem 4.15 from Proposition 4.3 for there is no

nontrivial 2-group in A2 whose intersection with the normal subgroup {±i G

53} is trivial.
From Theorem 4.13 and Proposition 4.6, we get

Corollary 4.16.

DBS\2 ~ S°2 V 553Ad BS'2 V 550(3)Ad 50(3)^

00 00

V n 50(2)Ad °(2)2^ V f] BZ2+2 .
1 1

Corollary 4.17.

DBN2+2 = 5°^ V 5Z2+2^ V 5A2Ad BNl2

OO OO

V Y[ BO(2)Ad om2 V Y[ BZ2+2 .

1 1
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