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ON THE GENUS OF SMOOTH 4-MANIFOLDS

ALBERTO CAVICCHIOLI

Abstract. The projective complex plane and the "twisted" S3 bundle over Sl

are proved to be the unique closed prime connected (smooth or PL) 4-manifolds

of genus two. Then the classification of the nonorientable 4-manifolds of genus

4 is given. Finally the genus of a manifold M is shown to be related with the

2nd Betti number of M and some applications are proved in the general (resp.

simply-connected) case.

1. Introduction

Throughout the paper, we consider smooth or combinatorial (PL) closed 4-

manifolds indifferently. In fact, a well-known result states that if M is a PL

4-manifold, then M possesses a C°°-differentiable structure compatible with
the triangulation (see [20]).

For the topology of 4-manifolds we refer to [9, 15].

We recall the definition of (regular) genus for a closed (PL) «-manifold as

introduced in [10].
An (n + l)-colored graph is a pair (G, c), where G = (V, E) is a finite

multigraph, regular of degree n + 1, and c: E —> An = {0, 1, ..., n} is an

edge-coloration on G with n + 1 colors (i.e., c(e) ^ c(f) for any pair of
adjacent edges e, f e E). The graph (G, c) is said to be contracted if the

partial subgraph G¡ — (V, c~x(A„ - {/'})) is connected for each color i e A„ .

An «-pseudocomplex (see [14]) K = K(G) can be uniquely associated with

(G, c) so that \G\ becomes its dual 1-skeleton (see [5]). A crystallization of a
closed (PL) «-manifold M is a contracted (« +l)-colored graph (G, c) which

represents M, i.e. \K(G)\ ~pl M.
It is well known that each closed connected (PL) «-manifold admits a crys-

tallization as proved in [17].

Given a crystallization (G, c), the minimum genus of a closed (connected)

surface into which (G, c) regularly imbeds (see [19]) is denoted by g(G). The

regular genus (or simply called the genus) of a closed (PL) «-manifold M is
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defined as the nonnegative integer (see [10])

g(M) = min{g(G)/(G, c) is a crystallization of M} .

Given a closed smooth connected 4-manifold M, the following results are

well known. If g(M) = 0, then M ~PL S4 (4-sphere) (see [6]). If g(M) = 1,
then M ~PL Sx x S3 (see [2]). If TIi (M) is the fundamental group of M, then
g(M) > ranklli(Af) (see [1]). If M is nonorientable, then g(M) is even (see

[10]). In [7] bounds were determined for the genus of any 4-manifold which is

a product of Sx by a closed 3-manifold or a product of two closed surfaces.

Remark. Let (G¡, c¡) be a crystallization of a closed connected «-manifold

M¡ (i = 1, 2), and let fi: \G¡\ —> S¡ be a regular imbedding of G¿ into
the closed connected surface S¡ or genus g(M¡). By direct construction it

is very easy to obtain a regular imbedding of G\ #G2 into the surface Si #S2.

If Afi and M2 are both orientable (resp. nonorientable), then the genus is

subadditive, i.e. g(M\#M2) < g(M\) + g(M2), since the genus of S\#S2 is
exactly g(M\) + g(M2). If M\ is orientable and M2 is nonorientable, then we
have g(Mi#M2) <2g(Mi) + g(M2) since the genus of Si #S2 is just 2g(Mi) +

g(M2).
Now we state the main results of the present paper:

Proposition 1. Let M4 be a smooth (or PL) closed connected 4-manifold of genus

g-
(a) If g = 2 and M is orientable, then M is (PL) homeomorphic to either

the projective complex plane CP2 or the connected sum #2(SX x S3).

(b) If g — 2 and M is nonorientable, then M is (PL) homeomorphic to
Sx x S3 (the "twisted" S3 bundle over Sx).

(c) If g = 4 and M is nonorientable, then M is (PL) homeomorphic to

either #2(SX x S3) or (Sx x S3)#(SX x S3).

Corollary 1.

g(RP*) = g (#(SX x S3)#(SX x S3)) = g(±CP2#Sx x S3) = 6,

where RP4 denotes the real projective 4-dimensional space.

The formulae, used in the proof of Proposition 1, imply the following

Proposition 2. Let M4 be a closed connected smooth (or PL) orientable 4-

manifold of genus g. Then b2(M) < [(5/2)g]. If M is simply-connected,
then b2(M) < [g/2]. Here [x] and bk(M) denote the integer part of x and

the kth Betti number of M respectively.

Corollary 2.

(1) y(#(5'xS3))=fc,

(2) g(#±CP2^j=2k,

(3) g(#(S2xS2)")=4k.
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Now we can apply the Freedman classification of simply-connected smooth

4-manifolds (see [9]) to obtain the following consequence of Proposition 2:

Proposition 3. If M4 is a closed simply-connected smooth 4-manifold of genus

g < 31, then we have either

M & #(±CP2)    or    M ^ #(S2xS2)
TOP r TOP  r

where r = b2(M).

Other applications of these results and some open questions related with the

4-dimensional Poincaré conjecture complete the paper.

Acknowldgement. The author wishes to thank the referee for his useful sug-

gestions.

2. Proof of Proposition 1: The orientable case

In order to prove Proposition l.a, we recall some constructions and results

given in [2].

Let M be a closed connected orientable smooth (or PL) 4-manifold of genus

g. Let (G, c) be a crystallization of M and {v¡\i e A4} the vertex-set of K =

K(G). If {/, j} = A4-{r, s, t} , then K(i, j) (resp. K(r,s,t)) represents the

subcomplex of K generated by the vertices v¡ and v¡ (resp. vr, vs and vt).

By grst (resp. gij) we denote the number of edges (resp. triangles) of K(i, j)

(resp. K(r, s, t)). It is very easy to see that grst and g¡j also represent the

numbers of components of the subgraphs 6(riSi,j and C7{¿,/} respectively.

Here GB denotes the subgraph (V, c~x(B)) for any subset B of A4 .

If SdK is the first barycentric subdivision of K, let H(i, j) be the largest

subcomplex of SdK disjoint from SdiT(/, j)l>SdK(r, s, t). Then the polyhe-
dron \H(i, j)\ is a closed orientable 3-manifold which splits M into two com-

plementary 4-manifolds N(i, j) and N(r, s, t) with common boundary. Fur-

ther N(i, j) and N(r, s, t) are regular neighborhoods in M of |SdÄ"(i, j)\

and I SdAT(r, s, t)\ respectively.
Following [2], we can always assume that (G, c) regularly imbeds into the

closed orientable surface of genus g and of Euler characteristic 2 - 2g —

goi + gn + g23 + £34 + g4o - ^P, where p is the order of G divided by 2.
As proved in [2], we have

(1) £oi3 = 1+£-g2-&t> (6)      gu = gou + g-gç,,

(2) #023 = 1 + g - g\ - £4 >    (7)   #02 = £012 + g - g\ ,

(3) #024 = 1 + g - g\ - g% ,    (8)   #13 = #123 + g - g2 ,

(4) gm = 1+ S - So - £3 »        (9)     &4 = S234 + g-g%,

(5) g!34= l+g~g0-g2, (10)     #03 = #034 + S - £4 ,

(11)   X(M) = 2-2g + Y,g¡
i

where g~¡ (0 < g¡ < g) is the genus of an orientable closed surface into which

the subgraph G~t (i e A4) regularly imbeds and /(M) is the Euler characteristic

of M.
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If g = 2, then the sum

R = #013 + #023 + 5024 + ^124 + 5l34 = 5 + 5g - 2¿^ g-¡

i

belongs to the set {5,7,9, 11, 13, 15} since R  (R>5) is odd.
Now we show that the cases Ü€{9,13,7,11} give a contradiction, while

the cases R - 5 and R = 15 imply that M is (PL) homeomorphic to the

complex projective plane and the connected sum #2(5'1 x S3) respectively

Case R = 9. If R = 9, then £ ■ g. = 3 and the manifold M is simply-
connected because at least one of the above &,-*'s equals 1 (see [11] for the
generators of the fundamental group of M). This implies that x(M) = 2 +
b2(M) > 2, i.e. a contradiction since #(A/) = 1 by (11).

Case R=13. If R = 13, then £j g. = 1 and %{M) = -1. The fundamental
group of M is trivial or cyclic since at least one of the above 5,^'s must be
< 2 (see [11]). The inequality bx(M) < 1 implies that *(Af) = 2 - 2bx(M) +
b2(M) > b2(M) > 0, i.e. a contradiction.

Case R = 1. If R - 7, then ]£,-5- = 4 and #(Ai) = 2. Because at least
one of the above 5,*/s equals 1, the manifold Af is simply-connected, whence

X(M) = 2 implies that b2(M) = 0.
Now the addendum of the sum R may assume the values listed in Table 1.

The fifteen cases to verify can be reduced to three by cyclic permutations in
the color set. In fact, doing this type of change of names in the color set A4

the permutation of A4 giving regular imbedding of G does not change. Thus

we can only examine the cases 7.1, 7.6 and 7.7.

(n. 7.1) If g023 = 5024 = 5i24 = 5i34 = 1 and g0i3 = 3, then the relations

(1),...,(5) imply that gö = g-x=2 and Sj = g3 = ga = 0. By (6),...,(10)
we obtain g.4 = g0i4 , 5o2 = 5oi2, 5i3 = 5i23 + 2, g24 = 5234 + 2 and g03 =

5034 + 2. Since #134 = 1, then K(0, 2) consists of exactly one edge, hence

A(0, 2) is a 4-ball. Furthermore K(l, 3) and K(l, 4) are also formed by one

edge, each one as ,§024 = 5023 = 1 • Thus all triangles of K(l, 3, 4) have two
edges of K(l, 3) and K(l, 4) in common. The other edge of each triangle
of K(l, 3, 4) is free since go2 = 5012 • Therefore K(l, 3, 4) is a cone which
collapses to a point, i.e. A(l, 3, 4) is a 4-ball. This implies that M is (PL)
homeomorphic to the 4-sphere S4 which is a contradiction since g(S4) = 0.

(n. 7.6) If son = 5023 = 2 and g024 = 5i24 = 5i34 = 1, then gö = g-x= gi =

53 = 1 ,   54 = ° >  514 = 5014 + 1 ,  502 = 5012 + 1 ,  513 = 5123 + 1 ,  524 = 5234 + 1
and #03 = 5034 + 2. The manifold A( 1, 3) is a 4-ball since go24 = 1 • Further

K(0, 2) (resp. K(2, 4)) consists of exactly one (resp. two) edge since #134 = 1

(resp. goi3 = 2). Because gn = gi2i + 1, the pseudocomplex K(0, 2, 4)

contains many triangles but one as there are edges in K(0, 4). The two triangles

of Ä^(0,2,4), which have two edges (v2, V4) and (vq , V4) in common, cannot

have the same boundary since FH2(M) ~ 0 and H2(N(1, 3)) ~ 0 imply that
H2(N(0, 2,4)) ~ 0 (use the Mayer-Vietoris sequence of the pair (A(l, 3),
A(0, 2, 4)). Thus tf(0, 2, 4) collapses to a point, i.e. A(0, 2, 4) is (PL)
homeomorphic to a 4-ball. This gives a contradiction since M ~PL S4 (4-

sphere) and g(M) = 2.
(n. 7.7) If g0i3 = 5024 = 2 and g023 = 5i24 = 5i34 = 1, then we have gö = 2,

g'2  =  53  =  0,   gx   =  g4  =   1 ,   gu  =  5014 ,   502  =  5012  =   1 ,   503  =  5034  =   1,
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Table 1

n.

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

5013   5023   5024   5124   5l34

3

1

1

1

1

2

2

2

2

1

3

1

1

1

2

1

1

1

2

2

2

1

1

1

1

1

1

3

1

1

1

2

1

1

2

1

2

1

2

5i3 = 5i23 + 2 and g24 = 5234 + 2. Because g023 + 1 and (gxu = g134 + 1,

5i4 = 5oh) > the contradiction follows as in the case n. 7.1 by using the pair
(A(l,4), A(0,2,3)).

Case R = 11. If R = 11, then £, g¡ = 2 and *(A/) = 0. The manifold M
cannot be simply-connected since x(M) = 0. Thus we have g¡jk > 2 for any
i, j, k, whence the addendum of R may assume the values listed in Table 2.

Table 2

n.

11.1

11.2

11.3

11.4

11.5

5013       5023

2 2

2

2

3

2

5024

2

2

3

2

2

5124       5134

2 3

3

2

2

2
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All these cases are equivalent to one by the same reason that R = l.

The fundamental group of M is cyclic and nontrivial since b\(M) ^ 0 and

at least one of the above 5¡;vt's equals 2. This implies that H\ (M) ~ H$(M) ~ Z

and FH2(M) ~ 0 (use %{M) = 0).
(n. 11.1) If g0i3 = 5023 = 5024 = 5i24 = 2 and gnA = 3, then we have

5ô = g\ = g2 = ° > 53 = 54 = ! » 503 = 5034 + 1 , 524 = 5234 + 1, 513 = 5123 + 2,

502 = 5oi2 + 2 and gu = 5oi4 + 2 (use (1), ... , (10)). Since g0i3 = 2,
then K(2, 4) is formed by two vertices joined by exactly two edges, whence

A(2, 4) is (PL) homeomorphic to Sx x B3. Here B3 represents a (closed)

3-ball. Furthermore K(l, 3) and K(0, 3) consist of exactly two edges each

one as #124 = 5024 = 2. Because g24 = 5234+1, the pseudocomplex K(0,1,3)

contains many triangles but one as there are edges in K(0, 1). However any

two triangles of K(0,1,3) cannot have the same boundary since FH2(M) ~ 0

and H2(N(2, 4)) ~ 0 imply that H2(N(0, 1, 3)) ~ 0 (use the Mayer-Vietoris
sequence of the pair (A(2, 4), A(0, 1,3)). Thus K(0, 1, 3) collapses to a
circle, whence A(0, 1,3) is (PL) homeomorphic to Sx x B3. By [16, Theorem

2], we have that M ~PL Sx x S3 which is a contradiction since g(Sx x S3) = 1

by [7].

Case r = 15 : The connected sum. #2 (Sx x S3). If R = 15 , then it follows that
5oi3 = 5023 = 5024 = 5i24 = 5i34 = 3 and g¡ = 0 for each / e A4. The rank

of rii(Af) is < 2 as each one of the above gij^s equals 3. This implies that

b\(M) = bi(M) = 2 and b2(M) = 0 since x{M) = -2. Because go24 = 3,
the pseudocomplex K(l, 3) consists of exactly three edges, hence A(l, 3) is

(PL) homeomorphic to the connected sum #2(SX x B3). Furthermore K(0, 2)

and K(2, 4) are also formed by three edges each one as #134 = gon = 3.

Because gn = gm + 2 (use (8)), the complex K(0, 4) has many edges but

two as there are triangles in K(0, 2,4). Since H\(M) ~ H3(M) ~ Z e Z,
FH2(M) ~ 0 and H2(N(1, 3)) ~ 0, the Mayer-Vietoris sequence of the pair

(A(l,3), A(0,2,4)) gives

0-+Z©Z -*Z©Z -> H2(N(0,2,4))^0,

whence H2(N(0, 2,4)) ~ 0, i.e. there are no two triangles of K(0, 2, 4)

with common boundary. Now it is very easy to see that the pseudocomplex

K(0,2,4) collapses to a one-dimensional subcomplex formed by two vertices

joined by three edges. Therefore A(0,2,4) is (PL) homeomorphic to the

connected sum $2(SX x B3).

Thus M ~PL #2(SX x S3) by Theorem 2 of [16]. Now the result in Propo-

sition 1 follows as g(#2(Sx x S3)) = 2 by [7] and the subadditivity of the

genus.

Case R — 5 : The projective complex plane. If R = 5, then goi3 — go23 —

5024 = 5i24 = 5i34 = 1 and x(M) = 3. By (1), ... , (5) it follows that gx = 1
for each / e A4. In fact, suppose on the contrary that g-x = 2 (recall that
gj < 2). Then we have g^ — g2 = 2 and 53 = 54 = 0. This is a contradiction

since 2Z15/ = 5.
Furthermore, if gx - 0, then g0 = g2 = 0 and g$ = g4 = 2 which give a

contradiction as shown above.

Therefore we must have gx = 1, whence g^ = g2 - g$ = g4 = 1 .   By
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(6), ... , (10) the relations gi4 = 5oi4 + 1, 5o2 = 5oi2 + 1, 5n = 5i23 + 1 >
524 = 5234 + 1, and g0i = g034 + 1 hold. Since g024 = 1, then K(l, 3) consists

of exactly one edge, hence A(l, 3) is a 4-ball. Further K(0, 2) and K(2, 4)
are also formed by one edge each one since 5134 = 5013 = 1 ■ Thus all triangles
of K(0, 2, 4) have two edges in common. Because 513 = 5123 +1, the complex

K(0,2,4) has many triangles but one as there are edges in K(0, 4).

Therefore K(0,2,4) collapses to a combinatorial 2-sphere, formed by ex-

actly two triangles T\, T2 of K(0,2,4), with common boundary. Then

we have that H0(N(0, 2,4)) ~ H2(N(0,2,4)) ~ Z and i/,(A(0, 2, 4)) ~
7/3(A(0, 2, 4)) ~ 0. By isotopy we can always suppose that T\ is the standard

2-simplex in M. Let T\ be the barycenter of T\ and Sd2 K be the second
barycentric subdivision of K = K(G). Then A(0,2,4) is the orientable bor-

dered 4-manifold obtained by adding a 2-handle (a regular neighborhood of T\

in Sd2 K) onto the boundary of a 4-ball (a small regular neighborhood of T2

in M) along a knot A. Since the surgery is given by attaching 2-handles in

dimension 4, the surgery coefficient associated to A must be an integer and by

homological reasons equal to ±1. Therefore dN(0, 2, 4) = S3 so by Gordon

and Luecke1, Theorem 2, A is the trivial knot and the manifold A(0, 2,4) is

(PL) homeomorphic to ±CP2-(4-ball), whence M is the projective complex

plane as required. Now the proof is completed because a crystallization of CP2

with genus 2 is really constructed in [12].

3. Proof of Proposition 1: The nonorientable case

Let M be a closed smooth (or PL) nonorientable connected 4-manifold of

genus h . As proved in the orientable case, we can obtain the following relations:

5oi3 = 1 + h/2 - g2 - g4,        gi4 = gnu + h/2 - g0,

5023 =l + h/2- gx- g4,        g02 = 5012 + h/2 - gx,

5024 =l+h/2-gi-gi,        5i3 = 5i23 + h/2 - g2,

5124 = 1 + h/2 - g6 - gi , g24 = &>34 + h/2 - g$ ,

gl34 = 1 + h/2 - gö - g2 , g03 = g034 + h/2 - g4,

X(M) = 2-h + J£g¡-

i

(Statement l.b). If h = 2, then the sum

R = 5013 + 5023 + 5024 + 5124 + 5l34 = 10 - 2 ]T g¡

i

is even, hence R belongs to the set {6, 8, 10} as R > 6 and g¡ > 0. Now

we show that the cases R = 6 and R = 8 give a contradiction, while the case

R = 10 implies that the manifold M is (PL) homeomorphic to the "twisted"

S3 bundle over Sx, i.e. M ~PL Sx x S3. If R = 6 or R = 8, then at least

one of the above gijks equals 1. Thus the fundamental group of M is trivial

so that M is orientable, i.e. a contradiction.

If R = 10, then we have x(M) = 0 and g- = 0 for each / e A4. Fur-
thermore the relations gm = g0i3 = 5o23 = 5024 = 5i34 = 2 imply that

1C McA. Gordon and J. Luecke, Knots are determined by their complements, Bull. Amer. Math.

Soc. (N.S.) 20 (1989), 83-89.
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Yl\(M) ~ H\(M) ~ Z . Since £024 = 2, then K(l, 3) consists of two vertices

joined by two edges, hence A(l, 3) ~PL (Sx x B3) or Sx x B3 (the "twisted"

B3 bundle over Sx) and ôA(l, 3) ~PL Sx x S2 or Sx x S2 respectively. The

Mayer-Vietoris sequence of the pair (A(l, 3), A(0,2,4)) gives

0 -+ FHi(M) -* FH2(dN(l, 3)) ~ Z -» H2(N(0, 2, 4))

-* H2(M) -^Z ^Z® Hi(N(0, 2,4)) — Z ^ 0,

whence H2(N(0, 2, 4)) ~ 0 since FH3(M) ~ Z and FH2(M) ~ //2(A/) ~ 0
(note that üj (A(0, 2, 4)) ~ Z). In this case the relations gi4 = #014+1, 5o2 =

5012 + 1, 5i3 = 5i23 + 1, 524 = 5234 + 1 and g03 = 5034 + 1 hold too. Now the

formulae 5013 = 5i34 = 2 and 513 = 5123 +1 imply that K(0, 2, 4) collapses to

a circle since H2(K(0, 2, 4)) ~ 0. Therefore the manifold A(0, 2, 4) is (PL)
homeomorphic to either Sx x B3 or Sx x B3. Since M is nonorientable, it

follows that M ~PL Sx x S3 by Theorem 2 of [ 16]. Now the proof is completed

because a crystallization of Sx x S3 with genus 2 is shown in [13, Figure 1, p.

155].
(Statement l.c) By the "subadditivity" of the genus we have that

g (#(SX x S3)) < 2g(Sx xS3) = 4

and g(Sx x S3#SX x  S3) < 2g(Sx x S3) + g(Sx x  S3) = 4. If h = 4, then

the sum R = 15 - 2£,5; is odd, whence R e {5, 7, 9, 11, 13, 15}. We
show that the cases /?e{5,7,9,ll,13} give a contradiction while the case

R = 15 implies the statement (c) in Proposition 1.

Ifi?e{5,7,9}, then at least one of the g¡jk's in R must be one, so that
rii(M) = 0 and M is orientable, i.e. a contradiction.

If R — 11, then ]£,- g¡ = 2 and x(M) — 0. Thus the addendum of R may
assume the values listed in the table n. 11 (§2). Since these cases are equivalent

to one, we can suppose that g0i3 = 5023 = 5o24 = 5i24 = 2 and gi34 = 3.

As in the case n. 11.1 (§2), the formulae gç, = g\ = g2 = 0, g$ = g4 — 1,

503 = 5034+ 1, 524 = 5234+ 1, 5i3 = 5i23 + 2, 5o2 = 5oi2 + 2 and g{4 = #014 + 2

hold too. Since g0i3 = 2, then rk Yli(M) < 1, whence b\(M; Z2) < 1 and
X(M) = 0 = 2-2bi(M;Z2) + b2(M; Z2) implies that H2(M; Z2) = 0. Then
by the same arguments used in the proof of n. 11.1 (§2), we have that A(l, 4)

and A(0,2,3) are both (PL) homeomorphic to either Sx x B3 or Sx x B3.

Since M is nonorientable, it follows that M ~Pl Sx x  S3 by Theorem 2 of

[16]. This is a contradiction because g(Sx x S3) = 2 .

If R = 13, then ¿Z¡g-¡ = l and x(M) = -1- Since the manifold M
cannot be simply-connected, at least one of g¡jks in R equals 2. Thus we

have rkn,(M) < 1, bx(M;Z2) < 1 and *(A/) - -1 = 2 - 2bx (M ; Z2) +
b2(M; Z2) > 0, which is a contradiction.

If R = 15, then gQX3 = g023 = g024 = 5i24 = 5i34 = 3 and g¡ = 0 for each

/ e A4. The rank of U{(M) is < 2 as each one of the above g¡jk's equals 3.

This implies that H(M; Z2) = H3(M; Z2) = Z2®Z2 and H2(M; Z2) = 0
since x(M) = -2. Then by the same arguments used in the case R — 15 (§2),
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it follows that A(l, 3) and A(0, 2, 4) are both (PL) homeomorphic to either

#2(51 x  B3) or Sx x B3#SX x  B3. Note that the case #2(SX x B3) can be

avoided since M is nonorientable.   Thus we have M ~PL #2(SX x   S3) or

M ~pL Sx x S3#SX x S3 as required.

Now Corollary 1 directly follows from Proposition 1 and the "subadditivity"

of the genus (see §1). Furthermore there exists a crystallization of RP4 with

genus six as shown in [11].

4. The general case

Proof of Proposition 2. The sum

R = 5134 + 5124 + 5024 + 5023 + 5oi3 = 5 + 5g - 2 ^2 g'i
i

is odd (resp. even) whenever g is even (resp. odd). Therefore it follows that

0<5><[(5/2)5],

whence

2 - 2g + b2(M) < 2 - 2bi (M) + b2(M)

= x(M) =2-2g + Y/gî<2-2g + [(5/2)g]
i

since b\(M) < g (see [1]). If M is simply-connected, then the inequality

2 + b2(M) = x(M) <2-2g + [(5/2)g]

implies that b2(M) < [g/2] as required.   D

Proof of Corollary 2. (1) Use g(Sx x53) = l (see [2]), the subadditivity of the
genus and

g (#(SX x S3)\ > rankn, (#(SX x S3)) = k

(see [1]).

(2) Since CP2 is simply-connected, we have

k = b2(#±CpA <[g/2],

whence g >2k. Now the relation g(CP2) = 2 (see [2]) and the subadditivity

of the genus prove the statement.

(3) Since #k(Sx x S2) is simply-connected, we have

2k = b2(#(S2xS2fj<[g/2],

whence g > 4k. Then the statement follows by g(S2 x S2) < 4 (use the

crystallization shown in [7]) and the subadditivity of the genus.   D

Proof of Proposition 3. Since r < [g/2] < [31/2] = 15, the intersection form
coM , induced on M by the cup product, has rank < 15 . Recall that % may

only be either odd or indefinite even whenever M is smooth. In the last case the
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signature a (M) of M is divisible by 16 (see [3, 4, 9] and the Rohlin theorem).

Furthermore com is equivalent (over the integers) to either (±1)©---©(±1)

(r times) or a E&® b(°xx0) where a is even, b ¿ 0 and a, b e Z (see

[3, 4]). Since the rank of a £g © b(°x ¿) is 8|a| + 2\b\, it follows that a = 0,
(use rank <yat < 15 and a even). Now the Freedman classification of simply-

connected smooth 4-manifolds implies the statement (see [9]).   D

Corollary 3. ( 1 ) Let M4 be a smooth homotopy 4-sphere. Then there exists an

integer k such that

g (m##(S2 x S2)\ =4k.

(2) If Vn is an algebraic nonsingular hypersurface of degree n in CP3, then

n3 - 4n2 + 6« - 2 < [g/2].
(3) If V is a simply-connected complex surface, then 12pg + 10 - c2[V] <

[5/2].'
If V is minimal elliptic, then 12pg + 10 < [5/2].

Here pg and C\[V] denote the geometric genus and the first Chern class of V

respectively.

Proof. (1) If M is a homotopy 4-sphere, then there exists an integer k such

that M##k(S2 x S2) -Dm? #k(S2 x S2). Now use Corollary 2.

(2) Recall that b2(V„) = n3 - 4«2 + 6« - 2 (see [15]). Now use Proposition

2 as Vn is simply-connected.

(3) It is well known that b2(V) = I2pg + 10- c2x[V] (see [15]). Furthermore

we have that c2[V] = 0 for the minimal elliptic case. Now we use Proposition

2.    D

5. Relations with the Poincaré conjecture

Let P(4) be the Poincaré conjecture of 4-dimension. Now we state some

conjectures which are related with P(4).

Conjecture C(l). If M is a closed smooth simply-connected 4-manifold, then

g(M) = 2b2(M).

Conjecture C(2). The genus is additive with respect to the connected sum of

simply-connected smooth (or PL) 4-manifolds.

The conjecture C(2) and its relation with P(4) are also established in [8].

We prove that C(l) and C(2) are equivalent:

C(l) => C(2). Let Mi, M2 be closed smooth (or PL) simply-connected

4-manifolds. Then we have \g(Mx#M2) = b2(Mx#M2) = b2(Mx) + b2(M2) =

\g(Mx) + x2g(M2), whence g(M{#M2) = g(Mx) + g(M2).

C(2) => C(l). If M is a closed smooth (or PL) simply-connected 4-

manifold, then there exist two integers p, q e Z such that

M##CP2##(-CP2)   ~   #CP2##(-CP2)
P Q DIFF a b

where
a = p + \(b2(M) + o(M)),

b = q+x2(b2(M)-o(M)),

o(M) = signature of M,
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(see [15]). Thus we have

g (m##CP2##(-CP2)\ =g(#CP2#(-CP2)) = 2(a + b)

= 2(p + q) + 2b2(M) = g(M) + g(# CPH #(-CP2))

= g(M) + 2(p + q),

whence g(M) = 2b2(M) as required.   D

Obviously C(l) (or C(2)) implies P(4) as follows. Let M be a closed
smooth (or PL) homotopy 4-sphere. Since b2(M) = 0, we have g(M) —

2b2(M) = 0, whence M ~PL S4 (4-sphere).

We also have the following

Conjecture C(3). If M is a smooth (or PL) homotopy 4-sphere, then

g((M)##(S2 x S2)) > g(M) + 4k
k

for any integer k.

We prove that P(4) and C(3) are equivalent.

C(3) => P(4). If M is a homotopy 4-sphere, then there exists an integer

k (see Corollary 3) such that 4/c = g(M##k(S2 x S2)) > g(M) + 4k, whence

g(M) = 0 and M ~PL S4 .

P(4) => C(3). If M is a smooth homotopy 4-sphere, then M ~PL S4,

whence

g (m##(S2 x S2)\ = g (#(S2 x S2)\ =4k> g(M) + 4k

since g(M) = 0.
We conclude the paper by noting that it is an open question whether the

number of closed smooth (or PL) connected 4-manifolds of a fixed genus g is

finite or not.
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