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ON THE RESOLUTION OF A CURVE LYING
ON A SMOOTH CUBIC SURFACE IN P3

SALVATORE GIUFFRIDA AND RENATO MAGGIONI

Abstract. Let C be any reduced and irreducible curve lying on a smooth

cubic surface in P3 . In this paper we determine the graded Betti numbers of

the ideal sheaf J£ .

Introduction

In this paper we continue the study of curves C on a smooth cubic surface

S of P3 begun by the first author in [G and Gl].
We obtain a complete description of the graded Betti numbers of the ideal

sheaf Jc of C in terms of the seven integers which describe C as a divisor

on S.
A consequence of our results is that the graded Betti numbers of a reduced

and irreducible curve C, lying on a smooth cubic (or quadric) surface S, do
not change within the same linear equivalence class, i.e., they are determined by

the class of Pic S to which C belongs. Observe that the starting point of our

argument is the knowledge of Pic S as the group freely generated on a suitable

basis.
We would like to bring the reader's attention on the algorithm of Remark

4.7. This was the key tool which first allowed us to understand the behavior of

generators and syzygies of a curve on S.

As far as we know this kind of problem has been solved, in general, only

for arithmetically Cohen-Macaulay curves in P3 : the characterization of the
graded Betti numbers for these curves was done in [E], where the work begun

in [PS] is completed.
The content of the various sections is the following: in § 1 we review some

basic facts about curves on a smooth cubic and connect the graded Betti numbers

of a curve with its Hilbert function.

In §2 we determine the number of minimal generators of the homogeneous

ideal 1(C), for each degree n , using the intrinsic geometric properties of the
curves on 5e.

In the third and fourth sections we find the numbers of the first and second

syzygies for each degree n , completing in this way the description of the graded

Betti numbers of Jc. Particular attention is devoted to curves generated in
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182 SALVATORE GIUFFRIDA AND RENATO MAGGIONI

degree < h , h + 1, which give some particular problem (h is the least degree

of a surface containing C but not S).

1

Let S be a nonsingular cubic surface in P3 = P3,, where K is any alge-

braically closed field. S is isomorphic to the blow up of P2 in six points

Pi, P2, ... , Pe in generic position [H, V, 4]. If we denote by L the transform

of a generic line of P2 and by F, the exceptional curve (which is a line) cor-

responding to P¡, then Pic S ~ Z7, with free basis [L], [E\], [E2], ... , [E6],

where [L], [E¡] are the linear equivalence classes of L, E¡ respectively.

Let D be a divisor on S and let cfs(D) be the corresponding invertible sheaf.

We say that D (or cfs(D)) is of type (a ; bx, b2, ... , b6) if D ~ «L-£.=1 0iE¡.
Throughout this paper a curve is a locally Cohen-Macaulay scheme of pure

dimension one; a curve on S is an effective divisor; following [H] we say that

a curve is integral when it is reduced and irreducible.

If C C S is a curve of type (a;b\,b2, ... ,b(,), then C has degree d =

3(2 - J^j=i bi and arithmetic genus

"(V)-è(ï).
If C is another curve on S, of type (a' ; b'x, b'2, ... , b'6), then the intersec-

tion multiplicity is given by

6

C • C = aa' - Y, bib'i,
i=i

and the union of the two curves is the divisor of type (a + a' ; b\ + b'x, b2 +
b'2,...,b6 + b'6).

We denote by n the generic plane section of S1 ; this curve is of type (3 ; 1, 1,
1,1, 1,1).

If C c S is a reduced and irreducible curve of degree d > 3, of type

(a;b\,b2, ... ,b(), with b\ > b2 > ■ ■ ■ > b&, then the following numerical
conditions hold (see [HI, Proposition 2.3]):

a > 0,    ¿6 > 0,     a>bi+b2,

W 2«>¿¿,,    a2>J2bf.
7=1 1=1

We shall say that a curve C c S is of type (*) if it is zero, a line, a conic

or, when d > 3 , if the numbers a, b\, b2, ... , bß satisfy the conditions (*).

In fact a curve C is of type (*) if and only if the generic element of the class
[C], to which C belongs, is a smooth connected curve (see [H, p. 407]).

If C is a curve on S we denote by J?c, J* c the sheaves of ideals of C in P3

and in 5 respectively, and by 1(C) = ©„>0#0(P3, Jc(n)) the homogeneous

ideal of C in K[xq , x\, x2, X3]. If C is of type (a;b\,b2, ... ,b(¡), then

J*c is of type (-a; -b\, -b2, ... , -b6) and cfs(C + nn) is of type (a +
3n; b\ + n, b2 + n, ... , b(, + n). For every sheaf ^ on a scheme X we put,
as usual, hl(X, 9") = dim¿ W(X, 9).
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Let C c S be a curve of type (*) ; we denote by H(C, -) its Hilbert

function and by P(C, -) its Hilbert polynomial. If C is an integral curve, then

H(C, -) has been calculated in [Gl]; we shall see that H(C, -) is independent
of the choice of C in its linear equivalence class (see below, Remark 2.5).

Definition 1.1. Let C c S be a curve of type (*). We put

h = min{n : H°(S, ~J\(n)) ¿ 0},

i.e., h is the least degree of a surface containing C but not S.

For any n > h we denote by C'n the curve linked to C in the complete

intersection of S with a surface of degree n containing C but not S. We

denote by k the minimum degree n such that C'n is a reduced curve.

Observe that there exists a natural isomorphism J^c(n) — cfs(C'n) ; in fact

J^c s cfs(-C), and cfs(C'n) ~ ^(«tt - C).
Recall that, for n > k, H(C, n) = P(C, n) (see [Gl, Theorem 1.4]) and

that, for a given curve C c S of type (*), the numbers h and k can be

determined by simple algorithms. To determine h we can alternatively use the
algorithm of Harbourne (see [Ha]), or that of Remark 1.2 in [Gl]. The number

k can be determined even in a simpler way: if C is of type (a;b\,b2, ... ,b(/)

with b\>b2>-->b6, then (see [Gl, p. 278])

k - min <m : m > h; m> b\ - 1; m > a- bs - bß - l; m >2a-y^b¡ - 1> .

In the sequel we suppose, for curves on S, that h > 3, i.e., C is not

contained on a quadric surface (except for Theorem 4.8).

In this paper we use the sequences A'H(C, -) of the ith differences of the

Hilbert function, which are defined in the following way: for each n > 0 we

put

AH(C, n) = H(C, n) - H(C, n - 1),

AH(C, n)=A(A-xH(C,n)).

In particular we shall deal with the sequence A4H(C, -).

For each curve C c P3 its ideal sheaf Jc has a minimal free resolution

with morphisms of degree zero:

0 _> 0*(-C/) -. 0¿f (-6,) - 0<?(-û,-) - -Se - 0,
¡=i í=i ¡=i

where tf = cf¥) ; this notation will be used throughout the paper. Here r is the

number of elements of a minimal set of generators of the homogeneous ideal

1(C), a¡ are the degrees of these generators; q (resp. p) is the number of a

minimal set of generators of the module of first (resp. second) syzygies and b¡

(resp. c¡) are their degrees.

We assume ai < a2 < ■■■ < ar;b\ <b2<---<bq;c\ < c2 < ■ ■■ < cp, and
for each n we put

an = #{a, : a¡ = n},    ß„ = #{/>, : b¡ = n},    yn = #{c¡ : c¡ = n}.
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The integers a„, ßn, yn are the graded Betti numbers of the ideal sheaf

J*c . From the above resolution one can compute the following numbers: a —
max{« : Hx (P3, J^(n)) ^ 0} , e = e(C) = max{« : H2(V3, J£(«)) ^ 0} .

A curve C c P3 is arithmetically Cohen-Macaulay (shortly ACM) if and
only if p = 0 ; the resolutions of such curves are given by Ellingsrud in [E].

The graded Betti numbers of ACM curves having assigned Hilbert function

have been studied by several authors [GP, C, MR1], and in [S] the graded Betti

numbers of smooth ACM curves are characterized; a general survey on the

relations among the results of these authors is given in [GeMil].

The graded Betti numbers of ACM curves lying on a smooth quadric are well

known (see e.g. [Gl, §6]); the same problem on a smooth cubic surface is solved

in [W, Gl, and P] by different methods. In particular in [Gl] it is shown that

the graded Betti numbers of an ACM curve C lying on a smooth cubic depend

only on the degree and the genus of C ; hence they can be read in an explicit
way from the sequence A4H(C, -) (see (5) of the next lemma). In fact, for

these curves there are no generators and syzygies in the same degree.

Lemma 1.2. Let C c P3 be a non-ACM curve. With the above notation we have:

(1) p + r = q + 1, and - H=i *i + Eli b¡ - Et, c¡■ = 0,
(2) a2 < b\, b2 < C\, bq > ar,

(3) if a > e, then cp > bq,
(4) for every n > 0,

H(C,n)=^+33)-±(ai-ßl + yl)(n-l3+l),

(5) for every n>0, A4H(C, n) = -a„ + ß„ - yn ■

Proof. Items (1) and (2) are standard.

(3) (Ph. Ellia). We prove that bq > cp implies a < e . Splitting the resolution
of Jc we get

(i) 0 - 0^(-c) - ®c?(-bi) - 9 - 0,
;=1 (=1

r

(ii) o-r-^^i-flO^jfc-o
¡=i

where W is a locally free sheaf.

From these short exact sequences, tensoring with cf(n) for suitable n, taking

cohomology and applying Serre duality, we have

//2(P3,g'(«))~//1(P3,^:("))   for any«;

0^H2(V\g(n))^H3 jp3,0ff(-c, + «)] -►•••

thus we see that //'(P3, Jc(n)) = 0 for any n > cp-4. This implies o < cp-4.

From (i) we get

• • • - tf3 (p3 , 0<?(-C/ + bq- 4) j  X H3 (p3 , 0^(-6, + bq- 4) J

^H2(F\ë'(bq-4))-^0.
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Since the resolution of J*c is minimal, whether cp < bq or cp = bq the matrix

of / must have at least one row of zeros, hence the map / is not surjective,

and H3(V3,£(bq-4))¿0.
Similarly, from (ii)

0 -» H2(F3, Jc(^ - 4)) - H3(F3, g(bq - 4))

^H3(v\($)cf(-ai + bq-4)\ -f....

Now, since H3(F3, 0-=1 cf(-a¡ + bq-4)) = 0 (see item (2)), we conclude that

e>bq-4>Cp-4>o.
For item (4) we have

um    \     fn + 3\   s~* fn-ai + 3\ ty-y fn-bi + 3\   v-^ /«-c, + 3\

1=1     x '        1=1     x '        ¡=1

where we assume that ( ™ ) = 0 for m < 3. The assertion follows by definition

of a,, ßi, fi.
The proof of (5) needs explicit computation; the first step is

AH(C, «) = (" J 2) - X>' - ßi + ̂ {n~2 + 2)- {a" ~ß" + 7n)

n + 2\    \^,        „  ,    ,(n-i + 2
;)-¿(a,-A + 7¡)("
' 1=0 ^

Remark 1.3. When C is an ACM curve, it is easy to see that (1), (2), (4), (5)

hold, making the necessary changes.

Lemma 1.4. Let C c S be a curve of type (*) which is not ACM and does not

lie on a quadric. Then o > e.

Proof. First observe that e < h - 1 since C is not a complete intersection;

if o > h - 1 we are done, so we can assume that a < h - 1. We show

that hx(F3,J*c(h - 2)) > 0 and «2(P3, J*c(h - 2)) = 0. By the previous
assumptions AH(C, h) = d (d = degC), and since C is not ACM we have

AH(C,h-l)>d (see [HE, Remark 3.1.1]). Thus H(C, h-l)-H(C, h-2) =
P(C, h - 1) - P(C, h - 2) + hx (P3, J*c(h - 2)) - h2(¥3, J*c(h -2))>d; hence
we have

hx(V3, J*c(h - 2)) - h2(¥3, jrc(h - 2)) > 0.

Now we use the formula [MR, Applications]

«2(P3, Sc(n)) = H(X, ñ) - H(C'n , ñ),

where C, C'h are linked in the complete intersection X of 5 with a surface

of degree h,n = h-l-n. Setting n — h-2 we conclude

h2(V3,J*c(h-2)) = H(X,l)-H(C'h,l) = 0,

because C'h is not a plane curve.   D

By Lemmas 1.2 and 1.4, for non-ACM curves of type (*) on a smooth cubic
surface we always have cp > bq . This fact is frequently used in §§3 and 4. The
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same is true for non-ACM curves lying on a smooth quadric, i.e., for curves of

type (a, b) with 1 < a < b - 1 [GM, Theorem 3.10].

2

Let C c S be a curve of type (*), not contained on quadric surface (see

Theorem 4.8 for curves on a quadric). In this section we find the number a„ of

minimal generators of the homogeneous ideal 1(C), for each degree n. Clearly

a„ = 0 for n < h , n ± 3, and of course «3 > 1 because of S.

Theorem 2.1. Let C c P3 be an integral nondegenerate curve, s the minimum

degree of a surface S containing C, and let k be the minimum degree of a

surface T containing C but not S, such that C, linked to C in S n F, is a
reduced curve.

Then the homogeneous ideal 1(C) is generated in degree < s + k - 2.

Proof. We need only to show that the ideal sheaf Jc is (s + k — 2)-regular (see

[M, lecture 14]). From the exact sequence

0 -» Jsnr(n) -» J?c(n) - coc<(n - e + 4) - 0,

where coc is the dualizing sheaf of C, e = k + 5, we get

0 -> Hx(P3, Jc(«)) - HX(C, coa(n - e + 4)) - • • •.

By duality

HX(C, coc, (n-e + 4))~ H°(C ,cfc,(e-n- 4))v ,

and the last group vanishes when e - n - 4 < 0, i.e., n > s + k - 3 , since C

is a reduced curve. Hence Hx(P3, Jc(n)) = 0 for n>s + k-3.

Now, from the exact sequence

0 -» J^c(n) - cf(n) ^ cfc(n) ^ 0,

we get

H2(F3, Jrc(s + k-4))~Hx(C, tfc(s + k-4)) = 0,

by the speciality theorem (see [GP, §1]) (if C = SnT, the theorem is trivially

true).

Finally H3(V3, Jrc(s + k - 5)) ~ H3(¥3, cf(s + k - 5)) = 0.   D

When s = 3, the ideal sheaf Jc is (k + l)-regular, so 1(C) is generated in

degree < k + 1, and an = 0 for n > k + 1 .
We shall need the following lemma.

Lemma 2.2. Let C c S be a curve of type (*) or composed with a pencil, and

let L c S be a line intersecting C. Then C + L is a curve of type (*).

Proof. If C = 0 or C is a line, the lemma is true. Let (a;b\,b2, ... ,b(,) be
the type of C ; suppose that L is, say, of type (2 ; 1, 1, 1, 1, 1, 0). We must
check that the 7-tuple (a + 2 ; b\ + 1, ... , 65 + 1, b(,) satisfies conditions (*).
The only nontrivial checks are the following:

5 5

2(a + 2) > £>, + 1),        (a + 2)2 > £>,■ + l)2 + b\.
1=1 1=1
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The first inequality is 2a - Jj¡=i °i > 1, and this is true because L is a secant

for C ; the second one is true because the hypothesis on C gives a2 > E¿=i bf

(see [G, p. 255]), and 2(2a - Y?i=i bi) > 1 because L intersects C.

For lines of different types one can use similar arguments.   D

Let D be an effective divisor on a smooth cubic surface, of type (a;b\,b2,

... , be) ; we want to determine h°(S, cfs(D)). This dimension is already known

(see [Gl]); but we want to show the technique that will be used because it is

interesting in its own right.

Throughout the paper we shall say that a curve D' is a fixed component of

the curve D if D' is a fixed component of the complete linear system |D|.

We say that a curve C c S is isolated if h°(S, c?s(C)) = 1, i.e., if C is

not linearly equivalent to any other curve on S. By Corollary 1.3 and Theorem

1.4 of [G] we see that the integral isolated curves on S are the 27 lines of 5

(recall that for each of these lines L one has L2 = -1 ) ; hence for any effective
divisor D c S the integral fixed components of D are necessarily lines. Now

we want to see how to check when a line L is a fixed component of D : this

happens when L • D = -s < 0 ; in this case L • (D - L) = -s + 1. Hence the

line of type ( 1 ; 1, 1,0,0,0,0) is a fixed component of D, with multiplicity
s, if s = b\ + b2 - a > 0 ; the line of type (2 ; 1, 1, 1, 1, 1, 0) is a fixed

component of D with multiplicity s, if s = Xj=1 b,■ - 2a > 0 ; the line of
type (0 ; -1, 0, 0, 0, 0, 0) is a fixed component of D with multiplicity s, if
s = -b\ > 0. The same is true for the other 24 lines, since they are obtained

from the previous three by permutations.

We add to Lemma 2.2 the following remark: if C c S is any curve and L

is a line on S such that C - L = 0, then L is a fixed component of \C + L\ :

in fact we have L ■ (C + L) = L2 = -1.
By subtracting from D all its fixed components, say L\,L2, ... ,LP, each

with its own multiplicity s\, s2, ... , sp , we get

(1) D = slLi+s2L2 + --+spLp + D,

where either D is a curve of type (*) (but not a line) or it is composed with a

pencil of conies [G, §2]. In any case, if D is of type (a; b\, b2, ... , b(,), one

has [G, Theorem 1.4]

h\S,cfs(D)) = h\S,cfs(D))=(^\1)-J2{hilX).

Recall that one can decide if a curve D, free from fixed components, is
—2

composed with a pencil: this happens if and only if D = 0 (see [G, proof of
Theorem 2.5]).

Remark 2.3. We say that (1) is the Zariski decomposition of D [Z, §7]; for it

the following relevant facts hold:

(i) Li-Lj = 0 (/', j = 1, 2,... , p ; i t¿ j) i.e., the distinct lines which form
the fixed components of \D\ are mutually skew. This is easily seen: if two

of these lines were not skew, say L, • L, = 1, then L, + L, would be linearly

equivalent to a conic, hence it would move in a pencil (see [Gl, Proposition
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2.2]). In this case the linear system \L¡ + Lj + D\ might not have fixed compo-
nents. A consequence of this fact is that p < 6 : in fact it is well known that

on a smooth cubic surface there exist at most six mutually skew lines.

(ii) L,; • D = 0 (i= 1,2, ... , p) i.e., the lines which form the fixed compo-

nent of D are skew with the "moving component" of D. In fact, if L,■ • D > 0,

then the divisor L¡ + D is of type (*) by Lemma 2.2, so the linear system

\L¡ + D\ has no fixed components.

(iii) Observe that hx(S,cfs(D)) = hx(S, Jc(n)), where C is an integral

curve linked to D by a complete intersection of S with a surface of degree n

large enough; hence the superabundance of \D\ is given by: hx(S, tfs(D)) =

2~X=i ( 2 ) (see [Gi> Theorem 2.4]). Note that if D is reduced it has no super-

abundance.

Remark 2.4. Let C c S be a curve of type (*) ; we shall often deal with

the Zariski decomposition of the linked curves C'n (see Definition 1.1). It

is easy to verify that if C'n = S\Li + s2L2 + • •• + spLp + C„  then C'n+X =

(ii - l)Li + (s2 - 1)L2 H-\-(sp - 1)LP + C„+i, that is, the fixed components

of C'n+X are those of C'n , each with multiplicity decreased exactly by one (if

Sj - 1, of course, L¡ is not a fixed component of C'n+X). Indeed if C is of type

(a; b\, b2, ... , ¿ô) j then Cn is of type (3n-a; n-b\, n-b2, ... , n-b6), and
C'n+X isoftype (3n + 3-a; n+l-bi, n+l-b2, ... , n+1-bß). If Li isoftype
(1; 1, 1,0, 0,0,0), then ij = (n-bx) + (n-b2)-(3n-a) = a-bx-b2-n > 0,
and (n + 1 - b\) + (n + 1 - b2) - (3n + 3 - a) - a - b\ - b2 - n - 1 = S\ - 1.

A similar computation can be done for any other line.

Remark 2.5. By the above argument one can directly compute the Hilbert func-
tion of C. Indeed from the exact sequence

0 -» J*s(n) -» Jcin) -» J^c(n) -* 0,

where Js is the ideal sheaf of 5" in P3, one has, for any n > 0 :

h°(¥3 ,Jrc(n)) = h°(S, Sc(n)) + ( 3 ) >

so

H(C,n)= (" + 3)-«°(P3,J£("))

= 3(n+2X^ + l-h°(S,cfs(Cn)).

This shows that the Hilbert function of a curve C c S depends only on
the equivalence class to which the curve belongs; that is, on the seven numbers

(a;bi,b2, ... ,b6).
Moreover, since passing from C'n to C'n+X decreases the multiplicity of the

fixed lines exactly by one, the knowledge of the Zariski decomposition of C'h

allows us to determine the number k  (see Definition 1.1); namely, if C'h =

S1L1 + s2L2 H-1- SpLp + Ch   (si > s2 > ■ ■ ■ > sp), then k = h + S\ - 1 when

s\ > 1, k = h otherwise. In fact if si > 1 the curve C'h+S _, is reduced, while

C'h+S _2 is not; if Si = 0 or ii = 1 of course h — k. Then the algorithm used to

calculate the multiplicities i,, together with the above formula, can substitute

for the algorithm (given after Definition 1.1) to find k.
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Proposition 2.6. Let C c S be a curve of type (*). Aline L is a fixed component

of C'n, with multiplicity s, if and only if L is a (n + s)-secant of C.

Proof. Assume that C is of type (a ; b\, b2, ... , b¿), so C'„ is of type (3« -
a; n - b\, n - b2, ... , n - b(,). The line ( 1 ; 1, 1, 0, 0, 0, 0) is a fixed com-
ponent of C'n , of multiplicity i, iff (n - b\) + (n - b2) - (3n - a) = s, that is
iff a - b\ - b2 = n + s, that is iff the line is a (n + i)-secant of C. The same
argument holds for any other line on S.   O

The following result has an important role in the next theorem.

Lemma 2.7. Let C c S be a curve without fixed components. Then the cup-

product morphism

<p : H°(S, cfs(C)) ® H°(S, cfs(l)) - H°(cfs(C + n))

is surjective.

Proof. If C is of type (*) the conclusion follows by [GM, Lemma 3.2]. So we

can suppose that C is composed with a pencil of conies; we know that it is cut

out on S by a pencil of planes having for axis a line L c S. Call T a conic

of the pencil and let C = XT, X>1: then deg C = 2X, h°(S, cfs(C)) = X + 1,
h°(S, cfs(C + n)) = 3X + 4, as one can compute starting with any conic (e.g.
T of type ( 1 ; 1,0,0,0,0,0)). Following the proof of the quoted lemma we
shall produce 3X + 4 independent elements in Im tp .

Let Ci, C2,..., Cx+\ be a basis of H°(S, cfs(C)) ; we prove that the fol-
lowing elements are linearly independent:

Ci7Ti, C27Ti, ... , Cx+i7Ci, X + 1 elements,

Ci 7i2, C2n2, ... , Q+i 712, X + 1 elements,

Ci7T3, C27T3, ... , Ci+i7^3, X + 1 elements,

Ci7t4, 1 element.

Here we choose n\, n2 such that 7ti n n2 = L' c S is skew with L, Q does
not vanish at 7Ti n 7r2 n 713 = {P}, and P £ n4. The elements in the first

two rows are independent; Ci 714 does not vanish at P, while all the others do.

Finally, any element (a\C\ -1-ha^+iCx+i)7i-¡, a¡ e K, vanishes at the generic
point of L' only when a, = 0 since no element of \C\ can contain L' ; the

conclusion now follows.   D

Theorem 2.8. Let C c S be a curve of type (*) not lying on a quadric. Then

the generators of 1(C), besides S, are in number.

ah = h°(S,cfs(Ch)),

and for any n > h

an = h°(S, cfs(Cn)) - h°(S, &s(Cn-X + it)),

where n is the generic plane section of S.
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Proof. From the commutative diagram with exact columns

0 0

i i

H°(F3, Js(n-l))®H°(F3,cf(l)) —» H°(F3, Js(n)) —»        0

i i

H°(F3,Jrc(n-l))®H0(F3,cf(l)) -^ H°(F3, ^(n)) —* Cokertpn — 0

#°(S. ^c("-l))®#°(S, ^s(l)) -^ tf°0S,^c(«)) —» Cokerp„ —» 0

0 0

by the snake lemma we get Coker ç?„ ~ Coker lpn . Hence a„ = dim Coker lpn ;

to find this number we need to know dim Im !/>n .

Suppose n > h and put C'n_x = S\L{ + i2L2 + • • • + spLp + C„_i, with

S\ >s2>-->sp>0. Since Jrc(n) — &s(C'n), we can write

g>n : H°(S, cfs(C'n_x)) ® H°(S, 6fs(l)) -, H°(S, cfs(Cn)).

It is clear that Im^„ contains Ym=\ s¡L¡ in its fixed part, so

lm<pncH°h,cfs(c'n-J2Li)j .

hence we may consider the map

V : H°(S, ̂ (C„_,)) ® Fi°(5, ̂s(l)) - H° U,<?s \Cn - ¿L, j J .

On the other hand we have on S the equivalence Cn - Y%=\ Li~ Cn-i+n so

that we can apply Lemma 2.7 to ip . Now the conclusion follows since

dimlm p„ = dimlm y = h°(S, cfs(Cn -L\-L2-Lp))

= h°(S,(fS(C„-i+7l)).

In the case n = h one has

Cokerp„~//°(5,^c(«)),

hence ah = h°(S, cfs(Cn)).   D

Lemma 2.9. Let D c S be a curve, and let L c S be a line meeting D in I
points, I > 0. If D - L is a reduced curve, then

h°(S, <?S(D -L)) = h°(S, cfs(D)) - 1 - /.

Proof. Consider the exact sequence

0 - c?s(D - L) - cfs(D) -» ¿?L(Z>) - 0,
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and observe that h°(S,cfL(D)) = / + 1, and hx(S, cfs(D - L)) = 0. The last
assertion is true because D - L is a reduced curve (item (iii) of Remark 2.3).

Now the lemma follows taking cohomology.   D

Theorem 2.10. Let C c S be a curve of type (*). For n > h if C'n_x —

S\L\ + i2L2 -I-h SpLp + C„_i, then an = p.

Proof. We have already seen that, for n > h ,

an = h°(S, cfs(Cn)) - h°(S, cfs(Cn -Ll-L2-Lp))

where the lines L\,L2, ... ,LP are the fixed distinct components of C'n_x.

We have two cases.

(1) L, (/ = 1, 2,..., p) is a fixed component of C'n : in this case it is a

zero-secant for Cn (see Remark 2.3(h)).

(2) L, (i = 1,2, ... , p) is not a fixed component of C'n : then L, is a

fixed simple line of C'n_x, hence it is a zero-secant for C'n and for C„ : in fact

L,-C; = Li.(C;_1 + 7T) = -l + l=0.

In any case, we can apply Lemma 2.9 since Cn-L\-L, ~ C„_i + n +

Li+\ H-vLp is a reduced curve (i = 1, 2, ... , p); hence we have

h°(S, tfs(Cn)) - h°(S, cfs(C„ -Lx-L2-Lp))=p.   D

Remark 2.11. The last proposition shows that for curves on S the bound of

Theorem 2.1 is attained in most cases. If h < k then C'k has fixed lines, so

ak+\ > 0. If h = k we have two possibilities.

(1) C'h has p fixed lines (necessarily simple), so we have an+l = p .

(2) C'h has no fixed components. In this case an+i = 0 and the homogeneous

ideal 1(C) is generated by S and by h°(S, cfs(C'h)) polynomials of degree h .

Corollary 2.12. Let C c S be a curve of type (*) not lying on a quadric.Then

<*n < 6 for each n > h .

Proof. In fact, using the terminology of Theorem 2.10, we have an = p; now

p < 6 by item (i) of Remark 2.3.   D

Remark 2.13. We can see that for curves C cS of type (*) generated in degree

h , the number an is not bounded. The curve C'n , linked to C in a complete

intersection (3, h) is a curve without fixed components and such that C'h - n

is not an effective divisor on S.

Let us take a curve D of type (n ; n - 1, 0, 0, 0, 0, 0) : it has no fixed lines

and D - n, of type (n — 3; n - 2, -1, -1, -1, — 1, -1), is not an effective
divisor on S. Choose h > 2«, h > 2; let C be of type (3/z - n; h - n +

1 ,h,h,h,h,h); for this curve we have C'h = D and ah = h°(S, cfs(C'h)) =
2« + 1. So if we set, e.g., h = 2/i, we have a curve of degree 4« - 1 with

a„ = 2n + 1.

We shall see in §4 that for any curve of type (*) one can construct a curve

of type (*) which is generated in degree h by an elements.

3

Let C C S be a curve which is generated in degree < h (h > 3) and is not

ACM; we want to show that the graded Betti numbers of Jc are determined

by the fourth differences of the Hilbert function of C.
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When C is generated in degree h its linked curve C'h has no fixed compo-

nents, however two possibilities can arise: either C'h is of type (*) (i.e., it is
linearly equivalent to a reduced and irreducible curve), or C'h is not connected

and in this case it is composed with a pencil of conies (see below).

If H2(F3, Jc(h - 1)) y¿ 0 then, by the speciality theorem, C is the complete
intersection of S with a surface of degree h : in this case it is well known that

the graded Betti numbers of Jc can be seen in A4H(C, -). Hence we may
assume H2(F3, Jrc(h - 1)) = 0.

Now we want to characterize the curves C such that C'h is not connected:

this precisely happens when HX(F3, Jc(h - 1)) ^ 0. In fact we know that, for

any n , the following equality holds [R, §2]:

hx(F3,Jc'(n)) = hx(F3,jrc(h-l-n)),

and since C'h is reduced it follows that: C'h is disconnected if and only if

hx(F3,Jrc(h - 1)) > 0, and in this case, hx(F3,Jrc(h - 1)) = X - 1, where

X = #{connected components of C'h} , and X > 1.

The components of C'h must be X conies of S belonging to the same pencil

(see [G, Proposition 2.2 and following]). If, for instance, the pencil of conies is

of type (3 ; 1, 1, 1, 1, 1,2), then C'h must be of type (3X; X, X, X, X, X,2X)
so that C is of type (3h -3X; h-X, h-X, h-X, h-X, h-X, h-2X), where
X < A/2 to make C effective. In any case, whatever may be the type of the

pencil of conies, we have d = deg C = 3h-2X, and hx(F3, Jc(h - 1)) - X - 1.
Since H(C, h - 1) = 3(*) + 1 = P(C, h - 1) - X + 1, an easy computation

shows that the sequence A4H(C, -) is the following:

n        0      1      2       3       4      ••■       h-\ h h + \      h + 2      h + 3      h + 4

A4 H      1      0      0      -1      0      • • • 0 -l-\ X I 1 - A        0

Theorem 3.1. Let C c S be a curve of type (*) generated in degree < h, such

that hx(F3, Jc(h - 1)) = X- 1 > 0. Then a minimal free resolution for Jc has

the form

0 - cf(-h - 3)e(A-1) -+ cf(-h - 2)®A ecf(-h - l)®k

-+ tf(-h)®(k+x) e(f(-3) ^J^c^O.

Proof. The number a¿ of generators of 1(C) is already known by Theorem

2.8. By the minimality of the resolution the first syzygies cannot begin before

h + 1, and the second syzygies cannot begin before h + 2; since we know the

Hilbert function, ßn+{ is known (Lemma 1.2). Now we want to check that in

degree h + 2 there are not second syzygies.

By assumption an+2 = 0, so we may have ßn+2 — X + p and yn+2 — p for

some p > 0. We have to prove that p = 0, i.e. that the X first syzygies in

degree h + 1 are not related by second syzygies in degree h + 2. To do this

we choose suitable generators for 1(C) : by the isomorphism H°(S, Sc(h)) ^

H°(S, cfs(C'h)), it is enough to choose X + 1 generators in H°(S, cfs(C'h)).

Let Ti, F2, ... , Tx, T'x, T'2, ... , T'x be 2X distinct conies belonging to the

same pencil of the conies of C'h , and let H\, H2, ... , Hx, H'x, H2, ... , H'x be
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the planes containing them: denote by L the axis of this pencil.   Then the

following X + 1 divisors:

Tl+r2 + --- + Tx;

T'x+r2 + --- + Tx,

r1+r2 + -..+rA,

single out a basis for H°(S, J*c(h)), hence X+1 generators of 1(C) of degree

h . In this way we can find X + 1 surfaces F\, F2,... , FM in P3 such that:

Fin5 = c+r1 + r2 + .-- + rA,

F2ns = c + r'1+r2 + --- + r/i,

Fx^S = C + T\+--- + rk_x+Yx,

Fx+inS = C + T'x+Y'2 + --- + F'x.

It is easily seen that the generators of 1(C), F\, F2, ... , F¿+1, S are related
by the following independent syzygies:

(Jïî,-fli,0,...,0,0,<?i),

(0,H'2,-H2,...,0,0,G2),

(0,0,0,...,H'k,-Hx,Gx),

where G\, G2, ... , Gx are suitable surfaces of degree h -2.

These syzygies are not related by second syzygies of degree h + 2, as one can

easily check, so yn+2 = 0 and ßn+2 - X. Finally, by Lemma 1.2, item (3), one

has ßn+i = 0, hence y/,+3 = X - 1.   D

Now consider the case HX(F3, Jc(h - 1)) = 0. Since we assumed that in

degree h - 1 there is no speciality, H(C, h - 1) = P(C, h - 1) ; so the Hilbert
function of C is known and one can compute the sequence A4H(C, -) :

n       ■■■        3       4      ■••      h-2      h-\ h h+\ h + 2 h + 3

A4//     ■■•       -1      0      ••• 0 0 d-3h      6h-2d-3      d - 3/¡ + 3 0

where, as usual, d is the degree of C.

Theorem 3.2. Let C c S be a curve of type (*) generated in degree < h, non-

ACM, and such that hx(F3, Jc(h - 1)) = 0. Then a minimal free resolution of

Jc has the form:

0 _> 0f-h - 2)©(3A-¿-3) _► cf(-h - l)®(6A-M-3)

-► cf(-hf{3h-d) ©cf(-3) -^Jc^O.

Proof. By the minimality of the resolution we have an — 3h - d, and ßn+\ —

6/z - 2d - 3. Now we apply Lemma 1.2, (3) to conclude that yn+2 = 3h-d-3,
since we know (Lemma 1.4) that a > e.   D
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Remark 3.3. Recall that if C c S is an ACM curve generated in degree < h , its

resolution is known (see [Gl, §3]). For these curves, if we except the complete

intersections, we have two possibilities:

( 1 ) Curves linked to a conic. The resolution of these curves may be obtained

by Theorem 3.1 for X = 1.
(2) Curves linked to an ACM cubic curve. In this case d = 3/z - 3, and one

can check that for such curves the conclusion of Theorem 3.2 is still true.

In this section we determine the graded Betti numbers of a minimal free

resolution of any curve C c S of type (*) with h>3.

For each m such that h < m < k + 1 consider C'm and its Zariski decom-

position: C'm = s\L\ + s2L2 -\-h SpLp + Cm. In the sequel we often use the

curves Ym defined in the following way: for each m as above we set

Ym = C + slLl + s2L2 H-+ SpLp.

By Lemma 2.2 we have that Ym is a curve of type (*) since each L, is a

(s¡ + m)-secant of C by Proposition 2.6; moreover it is easy to check that for

these curves the following facts are true:

- Ym is linked to Cm in a complete intersection (3, m), so it is generated in

degree < m . Moreover if m > h then H(Ym , n) = P(Ym, n) for n > m - 1 ;

hence A4H(Ym , n) = 0 for n > m + 3 .

-The minimum degree of a surface containing Ym and not containing S is

still h.
Now we want to compute the Hubert function of Ym . To this end observe

that for n < m we have h°(S,cfs((Ym)'n)) = h°(S, cfs(C'„)) because for a

complete intersection nn containing C, since n < m, we have:   rnt ~ C +

YlPi=\ SiLi + E/=i r¡Li + Cn , and one sees that the curves

p t t

C'n = J2 SiLi + £ nLi + Cn;        ( Ym)'n = £ r,L, + C„ ,
i=i ¡=i i=i

linked to C and to Ym respectively, differ only in their fixed component. In

conclusion we have

f AH(C, n)    for n < m,

AP(Ym, n)   for n > m,

moreover AH(Ym, n) = degFm for n > m, because (Ym)'m_x is already a

reduced curve.

We shall use these curves to determine inductively the graded Betti numbers

of the curve C : by knowing the graded Betti numbers of Y^-i and the Hubert

function of Ym we obtain the Betti numbers of Ym ; in conclusion we describe
the resolution of Yk+l = C. The first step is a somewhat special situation, so
we first consider curves generated in degree < h + 1.

Let C <z S be a curve of type (*), generated in degree < h + 1. Suppose

that ah = 1 and ah+l = X, where 1 < X < 6 (if X = 1, C is an ACM curve
and its resolution is known); in this case C'h is the union of X skew lines, and

C'h+X has no fixed components. By a simple computation one can see that the

sequence A4H(C, -) is the following:

AH(Ym,n) = l
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n        0      1      2       3       4      ■••      h-\       h       h+\      h + 2       h + 3       h + 4

A4//      1      0      0      -1      0      ••• 0 -1        -X 2X        -X+l 0

Proposition 4.1. Let C c S be a curve of type (*), generated in degree < h + 1

and such that ah = 1, an+x = X > 1. Then a minimal free resolution of Jc is

of the following kind

0 -* cf(-h - 3)m{X~x) - cf(-h - 2)m2X

-+ cf(-h - l)®k®cf(-h)®cf(-3)^Jrc^0.

Proof. One has ßn+l = 0 because a complete intersection (3, h) has only one

first syzygy of degree h + 3 ; ßn+2 = 2X since ah+2 = yh+2 = 0 ; finally, by
Lemma 1.2(3), we have yn+i = X - 1.   D

Remark 4.2. We want to give a deeper insight into the above situation: in fact

it happens that the curve Yn has one first syzygy in degree h + 3 (the trivial

one), but C has no first syzygies in this degree. We shall see later that the

trivial syzygy is generated by the 2X syzygies of degree h + 2.

This fact (a first syzygy which "disappears") can take place only when an = 1:

for this reason we want to clarify the geometrical meaning of the situation.

Let C c S be a curve of type (*) with ah = 1, an+l = X. We may assume

that the X components of C'n are the exceptional divisors E\, E2, ... , Ex [H,

V, Proposition 4.10]; thus the type of C is

(3h; h+1, ... ,h + l, h, ... , h).

I times

Further we have

C^:(0;-1,...,-1,0,...,0);        Ch : (0; 0, 0, 0, ... , 0) ;

A times

C'h+X:(3;0,...,0, 1,..., 1).

A times

We want to choose X suitable generators of 1(C) of degree h + 1 : it is the
same to take a basis of the vector space

v     H°(S,cfs(C'h+x))

lm<ph+x

where fn+x has been defined in the proof of Theorem 2.8.

Consider the following basis of V :

C, + E2 + F3 + • • • + Ex ; C2 + Ex + E3 + ■ ■ ■ + Ex ;... ;

Cx + Ex+E2 + --- + Ex-\,

where C\, C2, ... , Cx are reduced and irreducible curves of type (3 ; 0, 1, 1,

1, 1, 1), (3; 1,0, 1, 1, 1, 1),...,(3; 1,...,0, 1,..., 1) respectively.



196 SALVATORE GIUFFRIDA AND RENATO MAGGIONI

This basis of V allows us to find X surfaces F{, F2, ... , Fx, of degree h+1,

such that

Fi n S = C + Ci + E2 + F3 + • • • + Ex,

F2nS = C + C2 + El+E3 + --- + Ex,

FxflS = C + Cx + Ex + E2 + ■■ ■ + EX-\.

If we denote by G the generator of 1(C) of degree h, a set of minimal

generators of 1(C) is the following:

S, G, F\, F2, ... , Fx.

To find the syzygies among these generators consider (for i = 1, 2, ... , X)

two planes H¡, H{ in the pencil of axis E¡ and denote T,, T¿ the conies in-

tersected on S by these planes (Ti and T'x are of type (3 ; 2, 1, 1, 1, 1, 1),

and so on). Let us take the quadrics Q¡, Q'¡ which meet S in C, and T,, C,

and T¿ respectively.

We observe that the surfaces H¡F¡ and Q¡G intersect S in the same divisor,

namely C + C¡ + T, + Fi H-V Ex. So we have the following 2X syzygies:

Si = (-Ai,Qi,0,...,-Hi,...,0),

S'i = (-A'i,Q'i,0,...,-H'i,...,0)       (i=l,2,...,X),

where A¡ and A\ are suitable surfaces of degree h - 1.

From the equalities

QiG - HiFi = AiS,     Q'jG - H¡F¡ = A\S,

multiplying the first by H[, the second by H¿, and subtracting, one gets

(H[Qi - HiQ'JG = (H¡Ai - HtA',)S,

so H¡Qj - HiQ¡ = S, H\Ai - HA^ = G since S is irreducible and G does not
contain S. In particular we have obtained the trivial syzygy between S and

G.
Looking at S¡, S'¿ one sees that there are the following X - 1 second syzygies

of degree h + 3 :

H'^Si-i - fli_iJSÎ_i - H¡Si +HíS'í = 0       (i = 2,3,...,X).

Finally, we see that these are the only second syzygies of degree h + 3. In

fact if 52i=l(L¡Si + L'jS'i) — 0, where L, and L\ are linear forms, then the
jtn component (j — 3, ... ,X + 2) is -LjHj -L'jH'j , and this vanishes only if

Lj = H'j, L'j = -Hj.

When C C S is a curve generated in degree < h + 1 and an > 2, we have

no remarkable differences with the general case; we insert the next proposition

for completeness and for a better clarification of the inductive step.

Proposition 4.3. Let C c S be a curve of type (*) generated in degree < h + 1,

with ah > 2. Then the graded Betti numbers of Jc are determined by the

resolution of Jyh and by the sequence A4H(C, -).

Proof. Since C is generated in degree h + 1 the curve C'h is reduced (and has

an+i fixed lines), hence h = k; in this case H(C, n) = P(C, n) for n > k,

thus A4H(C ,n) = 0 for n > h + 4.
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According to the different resolutions of J\ (see §3) there are two possibil-

ities.

(a) HX(F3, J?Yh(h-1)) ¿ 0. By Theorem 3.1 we know a'h, ß'n+x, ß'h+2, y'n+i,

the Betti numbers of Yn . Recalling Lemma 1.2, for the graded Betti numbers

of J'c, one has: ah = a'n and ah+l is given; ßh+l = ß'h+x and ßh+2 =

A4H(C, h + 2). In fact ah+2 - 0 and yh+2 - y'h+2 because (since now) we

have only the syzygies ß', and y'h+2 = 0 by Theorem 3.1 (see the picture).

So to the former ß'h+2 first syzygies (relating the ah generators of degree h)

one must add ß'^+2 = A4H(C, h + 2) - ß'h+2 "new" syzygies which link the

generators of degree h+1. Finally y^+3 = -A4H(C, h+ 3) and, as before, one

can distinguish the y'¿+3 "new" second syzygies from the y'M former ones.

n ••■2     3  4   •••   h       h+l h + 2     h + 3

#gen. 1

#lst syz.

#2nd syz.

AH4(C,-)   •••   0   -1   0   ■■•    -ah   ß'h+l-ah+]      ßh+2      -yM

(b) HX(F3, Jy^h - 1)) = 0. By Theorem 3.2 we know a'h , ß'h+x, y'h+2. So

ah = a'h, an+l is given; applying again Lemma 1.2 we have ßn+l = ß'n+x, ßh+2 =

A4H(C, h + 2) + y'h+2 and of course yh+2 - y'h+2 ; finally one gets yh+3 =

-A4H(C,h + 3).   D

Now the inductive step can be proved without any difficulty.

Theorem 4.4. Let C c S be a curve of type (*). For any n > h + 1 the
graded Betti numbers of Jy„+i are determined by the resolution of Jy„ and by

the sequence A4H(Yn+\, -).

Proof. By assumption we know a\, ß\, y[, the Betti numbers of Jy„, and that

A4H(Y„+i, r) = 0 for r > n + 4 (see at the beginning of this section). For the

graded Betti numbers a,, /?,, y¡ of Jy„+1 one has

a, = a\ for i < n , and an+\ is given,

ßi = ß\ for j < n + 1, and ßn+2 = A4H(Yn+l ,n + 2) + y'n+2,

y i = y¡ for / < n + 2, and yn+3 = -A4H(Yn+i ,n + 3).   D

Remark 4.5. Summing up the results of the last two sections we may observe

the following relevant facts about the graded Betti numbers of a curve C c S
of type (*).

(1) The following fact is true in general (i.e., for any n > h if Cn is not

composed with a pencil and an > 1 ; for any n > h + 1 if an = 1 ; for

any n > h + 3 if C„ is composed with a pencil): the graded Betti numbers

ah       ah+\

ßih+l

ß'h+2

ß'h'+2

n+i

y'U
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of Yn+\ are obtained from those of Yn just adding an+l "new" generators,

ßn+2 = A4H(Yn+i, n + 1) + yn+2 "new" first syzygies which link the "new" an+\

generators to the others, and yn+3 = -A4H(Yn+i, n + 3) "new" second syzygies

which link the "new" ßn+2 syzygies to the others (see Theorem 4.4).

The cases that are left out have been explicitly studied in this section.

(2) For any n > h consider the graded Betti numbers of Y„ , say a ■, ß\, y'¡.

If y'n+2 > 0 then ß'n+2 = 0 ; if y'n+2 = 0 then either Yn is an ACM curve or

ß'n+2 > 0 and y'n+3 > 0 (see Theorem 3.1).

Example 4.6. We want to illustrate how one constructs the resolution of a curve

on S.

Consider the curve C : (15; 8, 7, 4, 4, 2, 2). It has degree d = 18 and
genus g = 28. For C we have h = 9, k = 10, and AH(C, -) is the
following:

n ••■       2      3      4        5        6        7        8        9        10      11       12

AH(C,-)     ■■■       6      9      12      15      18      21      24      24      20      18      18

We have C9 : (12; 1, 2, 5, 5, 7, 7) = 2(1 ; 0, 0, 0, 0, 1, l) + 2(2; 0, 1, 1,
1, 1, 1) +(2; 1,0, 1, 1, 1, l) + (4;0_, 0, 2, 2,2,2); so C9 has three fixed

lines with multiplicities 2,2, 1, and Cg : (4 ; 0, 0, 2, 2, 2, 2) is union of two
conies of the same pencil (note that we are not in the general case of Remark

4.5(f). Thus ag = 3, a\o = 3, and cx\\ =2 (see Theorems 2.8 and 2.10).
Yg is of type (23 ; 9, 9, 7, 7, 7, 7) ; by Theorem 3.1 we get for this curve

the following Betti numbers: 09 = 3, ß\$ = 2, ßu = 2, 712 = 1 (see in the

picture below the underlined numbers).
Tio is of type ( 18 ; 8, 8, 5, 5, 4, 4) ; looking at the Hilbert function of C

we get

n 0       1       2      3 4      5      6      7      8      9 10        11       12        13

A4H(Yl0,-)      10      0-100000-3-18        -40

and by comparison with the Betti numbers of Y9 (Theorem 4.3) we obtain

ßu =6, yí2 = 3 (see the barred numbers).

Yn = C: as before we can calculate A4H(C, -)

n ---3 4      5      6      7      8      9 10       11       12      13

A4H(C,-)     •••-100000-3-16        0        -2

and comparing with the previous numbers we have /?i2 = 4, 713 = 2 (numbers

with the hats).
Summing all we have the following graded Betti numbers:
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10 11 12 13

# gen.

#lst syz.

#2nd syz.

2

2 + 6 4

1 + 3

Remark 4.7. In this section we have found an algorithm to determine the graded

Betti numbers of any curve CcS of type (*), based on the curves Ym . Now

we want to explain another algorithm which achieves the same result, perhaps

in a simpler way.

Given a curve C of type (*) which is not a complete intersection compute

first the numbers h and k (see Definition 1.1 and Remark 2.5), and the num-

bers an of generators for each n = h,h + l, ... ,k+l. Then, for_any n such

that h < n_< k + 3, compute h°(S, ¿fs(Cjj_3 + 3n)), h°(S, cfs(Cn-2 + 2n)),

h°(S,cfs(Cn-i + n)), assuming h°(S, tfs(Cn-i + in)) = 0 whenever C„-¡ is

not an effective divisor on S (i = 1, 2, 3), i.e., when n - i < h .

Consider the numbers:

Bn = 4a„_, - h°(S, cfs(Cn-x + n)) + h°(S, cfs(Cn-2 + In)),

Gn = 4/?„_! - [10a„_2 - h°(S, cfs(Cn-2 + 2n)) + h°(S, cfs(Cn^ + 3n))].

Three cases can occur:

( 1 ) Cn is not composed with a pencil and an > 1. In this case we have, for

each n :

ßn = Bn   and   yn = G„ .

(2) Ch is composed with a pencil, say Cn = XT, where Y is a conic on S

and X > 1. In this case we have

ßh+l =^>

ßh+2 = X + Bh+2 .

ßh+3 = Bfi+3 >

ßn = Bn,

y h+2 = o,

7h+3 = X- 1 + Gh+i,

yn = G„, for n > h + 3.

(3) an = 1 . In this case ßn+l, ßh+2, yn+2, yn+i are given in Proposition 4.1;

ß„ = B„ and 7„+i = Gn+\ for n > h + 3 .
The formula for Bn is based on Remark 4.5(1), and on Lemma 2.7: in fact

the number Bn is the dimension of the kernel of the map

\/®H0(S,cfs(l))^\N,

where V is the quotient of H°(S ,fs(Cn-i)) modulo H°(S, ^(C%_2+7r)) and

W is the quotient of H°(S, cfs(C„-i + n)) modulo H°(S, cfs(Cn-2 + 2n)).
Observe that this map is surjective since it is induced by the cup-product mor-

phism on C„_i .
The formula for G„ can be obtained with a similar argument.

Finally we consider curves lying on a smooth quadric; this case is very simple,
since, as we now see, the graded Betti numbers of such curves only depend on

their Hubert function.
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Theorem 4.8. Let C cF3 be a curve contained on a smooth quadric; if C is of

type (a, b), with 0 < a < b - 1, then a minimal free resolution of Jc has the

following form:

0 _ cf(-b - 2)®(i,-fl-1) -♦ cf(-b - i)®W-2a)

-> cf^(-b)®{b~a+x^ ecf(-2) -^Jc^O.

Proof. Recall that ifi = flori = a+l, then C is an ACM curve and its

resolution is known. Computing the Hubert function of C (see [Gl, §6]) we

have the following sequence A4H(C, -) :

n       0       1 2 3       ••■        b-\ b b+\ b + 2 6 + 3

AH4     1       0       -1       0       ••• 0 a-b-\       2b - 2a       a+\-b 0

hence the result follows by Lemma 1.2.   D
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