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A QUASIREGULAR ANALOGUE OF A THEOREM
OF HARDY AND LITTLEWOOD

CRAIG a. NOLDER

Abstract. Suppose that / is analytic in the unit disk. A theorem of Hardy and

Littlewood relates the Holder continuity of / over the unit disk to the growth

of the derivative. We prove here a quasiregular analogue of this result in certain

domains in n-dimensional space. We replace values of the derivative with a

local integral average. In the process we generalize a result on the continuity

of quasiconformal mappings due to Nakki and Palka. We also present another

proof of the relationship between the growth of the derivative and quasiregular

mappings in BMO.

Hardy and Littlewood prove the following result in [9, p. 426, Theorem 40

and p. 427, Theorem 41]. (See also [4, p. 74].)

1.1.   Theorem. Suppose that f is analytic in D = {z \ \z\ < 1} and 0 < a < 1.

If there exists a constant C\ such that

(i-i) i/'(z)i<c1(i-iziri

for all z e D, then f has a continuous extension to D = {z \\z\ < 1} and

(1-2) \f(z\)-f(z2)\<C2\zx-z2\a

for all zi, z2 e D and some constant C2 which depends only on Ci and a.

Conversely, if there exists a constant C2 such that (1.2) holds for all z\, z2e

D, then (1.1) holds for C\ depending only on C2 and a.

The main result of this paper generalizes a quasiconformal version of Theo-

rem 1.1, due to Astala and Gehring [1, Theorems 1.9 and 3.17] to a quasiregular

version (Theorem 1.2) involving a somewhat larger class of moduli of continuity
than ta , 0 < a < 1.

We assume throughout that ilcfi" is an open connected set whose bound-

ary, t9Q, is nonempty. Also B(x, R) is the open ball centered at x e Í2 with

radius equal to R > 0 and d(x, dQ.) is the Euclidean distance between x and

dQ. If B c R" is a ball, then oB, a > 0, denotes the ball with the same
center as B and with radius equal to a times that of B . When E c R" , \E\

denotes the «-dimensional Lebesgue measure of E and E its closure in R" .
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When /:Q-»iî" is differentiable, we denote its Jacobi matrix by Df and

the norm of the Jacobi matrix as a linear transformation by \Df\. When Df

exists a.e. we denote the local Dirichlet integral of f at x e Q by

Here B = B(x, d(x, dQ.)). When the measure is omitted from an integral, as

here, integration with respect to «-dimensional Lebesgue measure is assumed.

A continuous increasing function X(t): [0, oo) —► [0, oo) is a majorant if

X(0) = 0 and if X(t{ + t2) < X(h) + X(t2) for all h , h > 0.
Liprextension domains are a wide class of domains discussed in §3. Quasi-

regular mappings are discussed in §2.

We prove the following result in §4.

1.2. Theorem. Suppose that f is K-quasiregular in a Lipx-extension domain

Cl. If there exists a constant Ci such that

in, n  (r]<rX(d(x,dQ))
(L3) Df(x)<Cl   d{xdQ)

for all x e SI, then f has a continuous extension to il and

(1.4) \f(Xl) - f(x2)\ < C2X(\Xi - x2\ + d(xx, da))

for all x\, x2 e il. Here C2 is a constant which depends only on C\, K, «,

X and il.
Conversely if there exists a constant C2 such that (1.4) holds for all Jtj, x2 e

il, then (1.3) holds for all x e il with Ci depending only on C2, K, n, X
and il.

If / is analytic and if X(t) = ta, then the conditions (1.1) and (1.3) are

equivalent.

Simple examples show that the term d(x\, <3Q) cannot in general be omitted.

For example f(x) = x|.x|a-1 with a = KxAx~n) is A^-quasiconformal in B =

B(0, 1), Df(x) is bounded over x e B yet f e Lipa(i?) (see [1, Remark
3.12]). However, by suitably modifying a theorem of Näkki and Palka [13] to
the quasiregular case, we obtain the following result.

1.3. Theorem. Suppose that f is K-quasiregular in a Lip x-extension domain

n where X(t) = ta and 0 < a < KXAX~").

If there exists a constant C\ such that

(1.5) Df(x) < Qd(x, Ôfif"1

for all x eil, then f has a continuous extension to Si and

(1.6) \f(x,)-f(x2)\<C2\Xl-x2\a

for all X\, x2 e Í2.
Here C2 depends only on C\, K, n, a, and Q.

The converse follows from Theorem 1.2.
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In the case that / is quasiconformal, Astala and Gehring prove Theorem 1.2,
with X(t) = ta, and Theorem 1.3 with the operator üf(x) in place of Df(x)

[1, Theorems 1.9, 3.17, and 3.13]. Here, with B = B(x, d(x, dii)),

af{x) = eXP{-nW\jBl0èJ^

where Jf is the determinant of the Jacobi matrix Df. When / is quasi-

conformal, logJf is integrable over each ball B c il. If « = 2 and / is

conformai, then log// is harmonic and Of(x) = \f'(x)\. When / is quasi-

conformal af(x) and Df(x) are equivalent (Lemma 2.7) and because of this,

Theorems 1.2 and 1.3 reduce to the results in [1]. As the example z" shows, the

ratio Df(x)/af(x) may depend on the local topological index and is in general

unbounded for quasiregular /.

We also prove a result corresponding to Theorem 1.2 in the case a = 0.

Although Theorem 1.4 follows from a result of Vuorinen [18, p. 104, Theorem

4.29] the proof given here is similar to the proof of Theorem 1.2.

If / = (f\, h ,-■.,/«): ß - R" , then we write, with B = B(x, d(x, dil)),

We write ||/||, for the BMO norm of / over Q (see §6).

1.4. Theorem. Suppose that f — (f , f2, ..., f„) is K-quasiregular in il. If
there exists a constant C\ so that

(1.7) Dfj(x) < Cxd(x, dil)~x

for some 1 < j < n and all x eil, then

(1.8) \\fj\U < C2 < oo

where C2 depends only on Ci, K, and n.

Conversely, if (1.6) holds for some constant C2 and some 1 < j <n, then

(1.5) holds with C\ depending only on C2, K, and n.

Theorem 1.4 gives a simple proof of Corollary 3 in [10, p. 280], which states

that the BMO-norms of the components of a quasiregular mapping are equiva-

lent.

2.1. Quasiregular mappings. We denote by Wx (il) the Sobolev space of func-

tions /: il —► Rm which are L" -integrable over il and have L" -integrable

distributional first derivatives over il. Wx Xoc(il) = f] Wx(il') where the inter-

section is over all il' compactly contained in il.

2.2. Definition. A function / : il -> Rn is A^-quasiregular in il c R" , 1 <

K < oo, if

(a)feWxAoc(il),

(b) \Df\"/K <Jf< Kl(Df)n a.e. in il where l(Df) = inf{\Dfs\ | |s| = 1} .

When n - 2, f is 1-quasiregular if and only if it is an analytic function.

A homeomorphism in R" is quasiregular if and only if it is quasiconformal in

the usual sense. For information on quasiregular mappings see [3, 12, and 20].
We list here some preliminary results.
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2.3.   Proposition. Suppose that B c R" is a ball and s > n . If f e WX(B),
then there is a constant C, depending only on n, such that

(2.1) !/(*,) - f(x2)\ < -§-|Ä|i-")/*" Qf \Df\^
i/í

for all X\, x2e B.

A proof of Proposition 2.3 can be found in [3, p. 268, Lemma 1.7].

2.4. Proposition. If f e WX(B), where B c R" is a ball, then

(2-2)     (râ/<l/-Ar)""£2<"amB(¿l/»|D/,")""•

Here diam B is the Euclidean diameter of B and fs is the average value of f

over B.

This result is a special case of Lemma 1.5, p. 266, in [3].

Proposition 2.5, which appears in [3, p. 285, Theorem 5.1], shows that Propo-

sition 2.3 can be applied to quasiregular mappings. For quasiconformal map-

pings Proposition 2.5 is due to Gehring [7, p. 274, Theorem 1].

2.5. Proposition. If f is K-quasiregular in il, then there are constants, s > «

and C < oo, which depend only on n and K, such that f eWx Xoc(il) and

(2.3) (/|D/|Î)   S<Cd(F,dilYn-^s(J\Df\^

for all compact sets F cil. Here d(F, dil) is the Euclidean distance between
F and dil.

A proof of the next result can be found in [10, p. 277, (5.3)].

2.6. Proposition. If f = (f , f2, ... , f„) is K-quasiregular in il and if B is
a ball with oB dil, a > 1, then there exists a constant C, depending only on

«, such that

,2.4)        (/JO/r)""<«^(¿¿tó-ar)""

for all a e R and all j = 1, 2, ... , n.

The following lemma shows that Theorem 1.2 is equivalent to the result

of Astala and Gehring [1, Theorems 1.9 and 3.7] if / is quasiconformal and
X(t) = ta.

2.7. Lemma. If f is K-quasiconformal in il, then there exists a constant C,
which depends only on n and K, such that

—üf(x) < Df(x) < Ca/(x)

for all x eil.

Proof. Since / is quasiconformal, ||log7/||» < oo [15, p. 261, Theorem 1].

The John-Nirenberg Theorem [15, p. 260, Lemma 1] and [5, p. 230, Theorem
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2.1] implies that there exist positive constants a, b, and C\, which depend

only on « and the BMO-norm || log//||*, so that

(2-5) (mi/'T^'iml/'f"
for all balls R with R c il [15, p. 263, Lemma 3]. Next, by a result of Gehring
[7, p. 271, Lemma 4], there exists a constant C2, depending only on « and K,

such that

(Z6) (wLmT¿cimLm)
for all balls R with R c il. It follows from Holder's inequality (see [10,
Remark on p. 272] that we can improve the exponent in the reverse Holder

inequality (2.6) to obtain

(2-7)       (râi|£,/r)""iCj("-r)(râ/,|B/l')'"
for all balls R with R c il and all r, 0 < r < n. Fix x e il and let
B = B(x, \d(x, dil)). Using the dilatation inequality Definition 2.2(a), (2.7)
with r = na and (2.5) we obtain

l/n /   i      r \ lHna)
¡na

(      ) \-l/(»6)

From Jensen's inequality for convex functions [5, p. 34] we obtain

(2-9)      {w\Lj'bY'b<-^{w\L^])-
If ||u||» < oo and Bo and B\ are balls with B0 c Bx cil, then

(2-10) Iî^t/ "-T^t/ "|<f (iogj|4 + i)||«|U.Il^ol Jb0 \ßl\ JBi    \      ¿ \      \BU        J

See Lemma 5.10 in [2].  Combining (2.8) and (2.9) and applying (2.10) with
B0 = B, B\=2B and u = log // we obtain

Z)/(x)<exp(^(«log2+l)||log7/|u)c5a/(x).

Next using the inequality // < \Df\" a.e. and Jensen's inequality we obtain

(2.11) cxp(j^-J log Jf^<Df{x).

Combining (2.10) and (2.11),

af(x) <exp(^(«log2+ l)\\logJf\\t) Df(x).

3.1.    LipA-classes and Lip^-extension domains. Suppose that f:E -> Rm,

E c R" . If there exists a constant C such that

(3.1) |/(*i)-/(*2)|<CA(|x,-x2|)
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for all Xi, x2 e E, then we write / e LipA(is). We denote the smallest such C

by \\f\\x . If X(t) = ta we write Lipa(2s) and ||/||Q . If there exists a constant
C such that

(3.2) |/(xi) - f(x2)\ < CX(\Xl - x2\ + d(xx, oil))

for all X\, x2e E, then we write / 6 Lip* (is) and denote the smallest such C
by 11/111 • We similarly define Lip*(is) and

If (3.1) holds for all X\, x2 e il with \xx - x2\ < \d(xx, dil) we write

/ 6 locLipA(Q) and ||/|U,ioc- Similarly for (3.2) we write / 6 locLip*(ß)
and D/11* loc. In [11, Theorem 2.17] Lappalainen shows that if (3.1) holds

whenever \xx - x2\ < ad(x\, dil) for some a < 1, then / € locLipA(Q). The
proof shows that a similar result also holds for loc Lip* (Q).

3.2. Definition, ilc R" is a Lipx-extension domain if f e LipA(Q) whenever

f e locLip/l(Q). In other words there exists a constant b such that \\f\\x <

b\\f\\x,locforallf:il^R» >m

A domain il is a LipA-extension domain if and only if there exists a constant

M such that each pair x\, x2 e il can be joined by a continuous curve y cil
which satisfies

(see [11, p. 23, Theorem 4.2]). Here ds is the element of arclength. These

domains were first introduced by Gehring and Martio in the case that X(t) -
ta and called Lipa-extension domains. For certain X(t), the class of Lip¿-

extension domains is large. All uniform domains are LipA-extension domains
if and only if there is a constant A such that

fSMdt<AX(ô)
Jo     l

for all 0 < ô < oo (see [11, p. 28, Theorem 4.17] and [8, p. 204, Theorem
2.2]. In particular, if X(t) = ta, all balls, half-spaces and quasiballs are Lipa-

extension domains for all 0 < a < 1.

3.3. Lemma. If il is a Lip x-extension domain and if f e loc Lip* (il), then

feLip\(il).

The proof is similar to the proof of the characterization of Lipa-extension

domains in [8] and Lip^-extension domains in [11]. We include the proof here

for completeness.

Proof. Fix x\, x2 e il and let y be a curve joining X\ to x2 in il which

satisfies (3.3). Choose balls B(y¡,r¡) = {x\\x-y¡\ < r¡} as follows. Set

y\ = x2, r, = \d(yx, dil) and lx = max{s e [0, /] | y(s) e B(y¡, r.)} where

/ is the length of y. Suppose that y¡, r¡ and /, have been chosen for i =

1,2,... ,k and lk < L Set yk+l = y(lk), rk+l = \d(yk+x, dil) and lk+l =

max{5 e [0, /] | y(s) e B(yk+l, rk+x)} . When lk = I, the process stops and we

write yk+l = xi .
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First suppose that \xx - x2\ < \yk - yk+i\ = \yk - xx\.  Then \xx - x2\ <

\d(yk,dil). Hence

d(xi, dil) > d(yk, dil) - \xi - yk\ > ¡d(yk, dil)

and so |xi - x2\ < ^d(xx, dil). Since / e locLip^Q),

l/(*i) - f(x2)\ < ||/IH,locA(|xi - x2\ + d(xx, dil)).

Hence we can suppose that

(3.4) |yfc-yfc+i|<|xi-x2|.

Next

k

\f(xi)-f(x2)\<Y,\f(yi)-f{yi+i)\

(3.5) ,=1 k

<\\f\\lAoclZm-yi+x\ + d(yi,dil)).
i=\

Let lo = 0 and set A¡ = {s e [/,-_i, /,] | y(s) e B(y¡, /-,)} for z = 1, 2, ... ,

k - 1. Ai c [//_i, /,] is a closed set and \A¡\ > r¿ = \y¡ -yi+x\. Here \A¡\ is
the one-dimensional Lebesgue measure of A¡. Also for each s e Ai,

d(y(s), dil) < \y(s) - y¡\ + d(y¡, dil) < r, + 4r¡ = 5r¡.

Hence, since X(t)/t is decreasing,

X(5r,)     5X(d(y(s),dil))

[     ' Ti    -    d(y(s),dil)

when s e Ai. Using (3.5), (3.4), (3.6), and (3.3) we obtain

k

\f(xl)-f(x2)\<\\f\\iXoc'£^\y-y^\ + d(yl,dii))
i=\

fk-l

< \\ f Wtioc \ ¿Z^\yi-y ^\)+^\yk-yk+i\ + d(yk, dii))
k/=i

rk-\

<Wf\\lAoc\lZX~ï\M+K2\xi-x2\ + d(xx,dH))

< iMt i xt^] ds+»(|* - x*+^ ■^
{JAi   d(y(s),dil)

< 5||/III,,oc {l ¿rf(yff/o"" ds + ¿(I* - x*\ + d(Xx. *Q))}
<5M\\f\\lXocX(\xl-x2\ + d(xl,dil)).

4.1..   Proof of Theorem 1.2. First suppose that (1.3) holds for all x eil. Since

/ is .rv-quasiregular there exists s > « , depending only on « and K, such that
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/ e Wx Xoc(il). Fix xi, x2 e il with \xx - x2\ = \d(xx, dil). We apply (2.1)

î/i

with B = B(xi, \d(xx, dil)), and (2.3) with F = B and il = 25 to obtain

\f(xx) - f(x2)\ < -ÇL|£|<'->/C») Qf \Df\^

<Cx(n,K)(jjDf\"^

< Cx(n, K)C2\xx - x2\Df(xx)

< 4Cx(n, K)C2X(d(xx, dil))

< l6Cx(n,K)C2X(\xx-x2\).

Now assume that \xx - x2\ < \d(x\,dil). Let i?i = \d(xx, dil) and

R2 = \d(x2,diï). Now R2 < Ri + \\xx - x2\ < |i?i and R2 > Rx -

^\xx - x2\ > Rx - \xx - x2\. Hence there exists a point x^ with x3 e

dB(xx, Rx) n dB(x2, R2). So we obtain \f(xx) - f(x2)\ < \f(xx) - /(x3)| +
\f(x2) - /(x3)| < C(A(|xi - x3|) + X(\x2 - x3|)) by applying (4.1) to the pairs
xi, x3 and X2, x3. It follows that

l/(xi) - f(x2)\ < C(X(d(xx, dil)) + X(\xx - x2\ + d(xx, dil)))

and so / e loc Lip* (il). Since Q is a Lip¿-extension domain it follows from

Lemma 3.3 that / e Lip*(Q). Next if xn e dil and {x;} is a sequence in il

with lim^oo Xj — Xn we have

\f(xj) - f(xk)\ < CX(\xj - xk\ + d(Xj, dil)).

Hence / tends to a well-defined limit at x0 and (1.4) is satisfied for all Xi, x2 £

ñ.
Next suppose that ( 1.4) holds for all Xi, X2 e il. Fix x G il. We apply

(2.3) with B = B(x, \d(x, dil)), o = \ and a = f(x) to obtain

Using (1.4) we get

(ri /     I/-/WI"        <xA(   sup  |
(4.2) \\ß\J3B/2 ) 2     \yelB/2

< h(2d(x, dil)) < 3X(d(x, dil)).

(1.3) follows by combining (4.1) and (4.2).

5.1. Proof of Theorem 1.3. We use the following definitions and results. A pair
of sets E = (A, C) in Rn is called a condenser when A is open and C c A

is compact. The condenser E is bounded if A is bounded. Its conformai

capacity is defined by

cap£ = inf /   \Vu\"= inf /
" Jr»
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where the infimum is taken over all infinitely differentiable u in A with com-

pact support in A and u(x) > 1 for x e C. If follows from the definition that

if A' c A and C c C , then

(5.1) cap(A,C)<cap(A',C).

For more information concerning condensers see [12, pp. 24-28; 20, pp. 81-

102 and 17]. We next define the spherical symmetrization, E*, of an open
or closed set E c R", about the ray L = {t£, \ 0 < t < oo, £ some point of
dB(0, 1)} as follows. We let Sn~x(r) = dB(0, r). We call sets of the form
B(y, p)nS"~x(r), with y e S"-X(r) and 0 < p < oo, caps of S"~x(r). We

define E* by the conditions:

S"-l(r)nE' = i°-
\sn-

if and only if Sn~x(r) f\ E = 0,

x(r),    if and only if Sn'x(r)cE.

Otherwise, S" x(r) n E* is the cap of the sphere Sn~x(r) such that

(i) the center of the cap is the point S"~x(r) n L.

(ii) mn-X(Sn-x(r)nE*) = mn-X(S"-x(r)nE). Here mn-X is the («-1)-

dimensional Hausdorff measure on Sn~x(r).

(iii) the cap Sn~x(r)nE* is open or closed according as E is open or closed.

Here 0 < r < oo . For the following result see Gehring [6, p. 505, Theorem 1]

and Sarvas [17, p. 522, Theorem 7.5].

5.2. Theorem. If E — (A, C) is a condenser let C* be the spherical sym-

metrization of C about the negative xx-axis and A* = Rn\B where B is the

spherical symmetrization of Rn\A in the positive xx-axis, then (A*, C*) is a

condenser and
cap(^*,C*)<cap(^, C).

Theorem 1.3 follows from Theorem 1.2 and the next result. The quasiconfor-

mal version of Theorem 5.3 appears in Näkki and Palka [13, p. 379, Theorem

1]. Our proof is similar to their proof.

5.3._Theorem. Suppose that f is K-quasiregular in il c R" and continuous

on Q. If there exist constants a, 0 < a < KxAx~n), and Cx < oo such that

(5.2) \f(x)-f(y)\<Cx\x-y\a

for all x e il and y e dil, then f e LipQ(Q) with \\f\\a depending only on
Cx, «, K, and a. If il is bounded and (5.2) holds for some 0 < a < 1, then

f e Lipß(U) with ß = min(a, tfVO-»)).

Proof. Assume that / is not constant. Fix x and y with f(x) ^ f(y). First

suppose that |x - y\ > \d(x, dil). Choose z e dil such that |x - z| =
d(x, dil). Using (5.2) we obtain

\f(x) - f(y)\ < \f(x) - f(z)\ + \f(y) - f(z)\ < 6aC,|x - y\a.

Next_suppose that \x - y\ < d(x, dil)/2. Let B = B(x, d(x, dil)/2) and
C = B(x, \x - y\). Then E = (B, C) is a bounded condenser with capacity

\-n

(5.3) cap£=M„_,(log!^)y
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Here <y„_i is the (« - 1 )-dimensional measure of dB(0, 1). Since / is

quasiregular and nonconstant, / is continuous and open in il. Hence F =

(f(B), /(C)) is a bounded condenser in f(il) and df(B) c f(dB). Since
f(B) is bounded, R"\f(B) contains a, necessarily unique, unbounded compo-

nent Coo with dCoo ¿0. Let £ e dC^,. Since dCx C df(B), £ e df(B).
Since df(B) c f(dB), there is a point z e dB such that f(z) = £. Hence

f(x), f(y) € f(C) and /(x) ^ /(v), while /(z) e C» . Now the capacity of

F is preserved under a similarity transformation T. With / = Tof we assume

that f(x) = 0 and f(y) = (-1, 0, ... ,0) =-ex . Next let /(C)* be the spher-
ical symmetrization of f(C) about the negative Xi-axis and f(B)* = Rn\D

where D is the spherical symmetrization of Rn\f(B) in the positive xi-axis.

By Theorem 5.2

(5.4) cap(/(5)*, /(C)*) < cap(f(B), /(C)).

We denote by Rr(t) the Teichmüller condenser (R"\L2,LX) where Lx is the

line segment from -ex to 0 and L2 is the ray on the xi-axis from tex to 00 .

If t = \f(z)\, then Lx c /(C)* and f(B)* c R"\L2 . Hence by (5.1)

(5.5) capi?r(|/(z)|) < cap(/(5)*, /(C)*).

We also have the following lower bound for the capacity of the Teichmüller

condenser (see [6, p. 518, Lemma 8 and 20, p. 89, Lemma 7.22]).

(5.6) capRT(t) > œn-X[logX(t + 1)]\-n

Here A is a constant which depends only on «.   Moreover since / is K-

quasiregular in il

(5.7) capF< KcapE

[12, p. 29, Theorem 7.1].   Notice that  \f(z)\ = \f(z) - f(x)\/\f(y) - f(x)\.
Combining (5.6), (5.5), (5.4), (5.7), and (5.3) we obtain

(5.8)

= cap(f(B),f(C))<Kcon.x

<cap(f(B),f(C))

,   d(x,diiyu
log

2|x-y|

Next choose xn e dil such that |x - x0| = d(x, dil). We have the estimate

l/(y)-/WI + |/(z)-/(x)|
(5.9) < Ci(2|.xo - x\a + \z- x0\a + \y- x0|Q)

<6Cxd(x,dil)a.

Using (5.9) we can rewrite (5.8),

\f(x)-f(y)\ < 6XCx2a'd(x, dil)a-a'\x-y\a'

where a' = KXIA-"). If a < a', then since |x -y\ < d(x, dil)/2 we have / e

LipQ(Q). Otherwise, if il is bounded, then / 6 Lipa,(Q) since d(x, dil) <

Euclidean diameter of il.

Theorem 5.3 also gives the following.
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5.4. Corollary. If f is K-quasiregular in a bounded domain il c R" and if

(1.5) is satisfied for all x e il with 0 < a < 1, then f e Lipß(il) where
ß = min(a,KxA1-")).

5.5. Remark. Because the components of a quasiregular mapping satisfy | V/|

< K\Vfj\ a.e., Theorem 1.3 implies a special case of the main result in [14, p.

705, Theorem 3.8]. Namely the components belong to the same Lipschitz class.

6.1.   Bounded mean oscillation. For / : Q —> Rm we denote the BMO-norm by

hllf-f°= sup
Ben \a

Here the supremum is taken over all balls B cil and fs is the average value

of / over B, (1/\B\)\Bf. In the case that u is harmonic in il, ||zz||* < oo

if and only if |V«(x)| < Cd(x, dil)~x for all x e il and consequently, if and

only if Du(x) < Cd(x, dil)~x for all x e il. Theorem 1.4 is a generalization

of this result. Theorem 6.2 is a special case of the main result in ([18], see

inequality (1.4)). In the case that il is a half space, it appears in [16, p. 4,

Hilfssatz 2].

6.2. Theorem. Iff:il—*Rm satisfies

(6.1) sup -=- / |/-/ß|<oo
2BCÎÎ \tS\ JB

where the supremum is taken over all balls B with 2B cil, then ||/||» < oo.

The next result follows from the John-Nirenberg Theorem [5, p. 233, Corol-

lary 2.3 and 16, p. 32].

6.3. Theorem. If f : ß -» Rm , and if 1 < p < oo, then there exists a constant

C, depending only on n and p, such that

(6-2) (^jB\f-fB\p)   P <C\\f\U

for all balls B cil.

6.4. Proof of Theorem 1.4. Assume that (1.5) holds for all x e il. By The-
orem 6.2 it is sufficient to show that / satisfies (6.1). Let xo e il and

B - B(xo, jd(xo, dil)). Using Holder's inequality and (2.2) we obtain

y¿í J \fj - (fj)B\ < (r¿i J \fj - (/})*r)   " < 2diam5i)/j(xo).

Since diamß = d(xo, dil), (1.7) gives

\B\ Jb
(fj)B\<2Cx

and (6.1) follows.

Next assume that (1.8) holds. Applying (2.4) with a = 2,
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for ail a e R. Choosing a = (f)2B in (6.3) and p = n in (6.2) we obtain

Dfj(xo) < ^"^Q^ < C2C(n,K)d(x0,dil)-x.

Theorem 1.4 provides another proof of the following result which appears in

[10, p. 280, Corollary 3].

6.5.   Corollary. If f' = (f, f2, ... , fn) is K-quasiregularin il, theni/zeBMO-
norms ||/||», j = 1,2,..., n, are equivalent.

Proof. The operators Dfj(x) are equivalent since |V/}(x)| < A"|V/(x)| a.e.

for all i, j = 1,2, ... , n .
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