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TWO-DIMENSIONAL CREMONA GROUPS
ACTING ON SIMPLICIAL COMPLEXES

DAVID WRIGHT

Abstract. We show that the 2-dimensional Cremona group

CT2=Autkk(X, Y)

acts on a 2-dimensional simplicial complex C, which has as vertices certain

models in the function field k(X, Y). The fundamental domain consists of one

face F . This yields a structural description of Cr2 as an amalgamation of three

subgroups along pairwise intersections. The subgroup GA2 = Aut^klX, Y]

(integral Cremona group) acts on C by restriction. The face F has an edge

E such that the GA2 translates of E form a tree T. The action of GA2

on T yields the well-known structure theory for GA2 as an amalgamated free

product, using SeiTe's theory of groups acting on trees.

1. Introduction

1.1. This discussion sheds light on the relationship between two well-under-

stood automorphism groups. One is the group of k-automorphisms of the poly-

nomial ring k[X, Y], for k is a field. This is often viewed anti-isomorphically

as the group of algebraic automorphisms of the affine plane A2.. The other group

consists of the fc-automorphisms of the rational function field k(X, Y); ele-

ments of this group corresponds to birational automorphisms of A2. , or equiv-

alent^, of the projective plane P£ .

1.2. Sections 2 and 3 summarize existing knowledge of these groups and pre-

sent them as free products with amalgamation (Theorems 2.4 and 3.11). For
Autfc k[X, Y] this draws from the classical theorem of Jung and Van der Kulk,

which asserts that this group is generated by the set of elements which are of
linear or elementary type, and the theorem of Nagata which describes the group

as an amalgamated free product of two groups. For Autick(X, Y), the clas-

sical Noether's Theorem asserts that, for k algebraically closed, this group is

generated by the linear fractional transformations together with the standard

quadratic transformation. However, our conclusions are based on recent re-

sults of Iskovskikh which give a set of defining relations of Aut^ k(X, Y) in

terms of generators slightly different from those of Noether's Theorem. From

Iskovskikh's generators and relations, we deduce that this group is the free prod-

uct of three subgroups amalgamated along pairwise intersections.
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1.3. Although Autkk(X, Y) contains Autkk[X, Y] as a subgroup, the rela-
tionship between the structures of these two groups has long been a mystery. For

although the proofs which yield generators and relations for the two groups seem

related in that they both involve the technique of blowing up points of indetermi-

nacy, it seems that neither theorem can be deduce from the other. The purpose

of this paper, then, is to present a framework which unifies the two structures.

The method is suggested by the fact that both groups admit a description as

amalgamated free products. Topologists have long recognized that such a struc-

ture is tantamount to an action of the group on a simply connected simplicial

complex. We will exhibit these complexes in such a way that their vertices corre-

spond to certain "multiprojective spaces" having function field k(X, Y). The

complex on which Auti(k(X, Y) acts contains the one for Aut^A;[X, Y] in

a way compatible with the containment Aut^ k(X, Y) D Aut^ k[X, Y] ; more-

over there is containment between suitably chosen fundamental domains for

the respective actions.

We begin by introducing some notation and stating the theorems. As above,

k will be a field; we denote by k* the set of nonzero elements of k.

2. The automorphism group of k[X, Y]

2.1. Integral Cremona group. Let GA2(k), or just GA2 , denote the group of

k-automorphisms of the polynomial ring k[X, Y]. This is called the integral

Cremona group.

Letting W = Spec k[X, Y], we see that elements of GA2 correspond anti-

isomorphically to automorphisms of the variety W. In §4 our dicussion will
involve different models in k(X, Y) which contain a fixed A.2, as a Zariski open

set, and we will let this fixed A2, be W. We will refer to W as the standard

A2) (in k(X, Y)).

2.2. Vector representation. An element <p of GA2 can be represented as a

pair of polynomials (F, G), where F = <p(X), G = q>(Y).

2.3. Linear and triangular elements. We denote by Af the subgroup of GA2

consisting of those elements <p = (F, G) for which F and G have total degree

one in X and Y (but are not necessarily homogeneous).

We let BA be the subgroup of GA2 consisting of all <p = (F, G) of the
form

(1) F = aX + b,        G = cY + g(X),

where a, c e k*, b e k, and g(X) e k[X]. Elements of this subgroup are

called triangular, since these are precisely the automorphisms which preserve

the containment k[X] c k[X, Y]. It is clear that the intersection of Af and

BA, which we denote by B, consists of those <p = (F, G) which are of the

form (1) where g(X) has degree < 1.

The well-known structure theorem for GA2 is

2.4. Theorem.  GA2 has the amalgamated free product structure

GA2 = Af *b BA.

(A proof will be given in §4.)
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2.5. Remarks on the origin of this theorem. That GA2 is generated by Af

and BA was first proved by Jung [10] for k of characteristic zero. Van der

Kulk [19] generalized this to arbitrary characteristic and proved a factoriza-

tion theorem which essentially gives the amalgamated free product structure,

although he did not state it in this language. Nagata [12] seems to be the first

to have stated and proved the assertion as it appears above. The techniques in

these proofs require that k be algebraically closed. However, it is not hard to

deduce the general case from this (see [20]).

Some fairly recent proofs have been given which use purely algebraic tech-

niques, and for which it is not necessary to assume k is algebraically closed [3],

[11].

3. The automorphism group of k(X, Y)

3.1. Cremona group. Let Cr2 denote the group of k-automorphisms of the

field k(X, Y). It will be called the (full) Cremona group. This group is anti-
isomorphic to the group of birational automorphisms of the projective (or affine)

plane. (It should be noted that most sources use the term "Cremona group" and

the symbol Cr to refer to the group of birational automorphisms.) Note that

Cr2 contains the integral Cremona group GA2 as a subgroup.

3.2. Homogeneous and nonhomogeneous vector representations. An element q>

e Cr2 can be represented by the pair of rational functions (F, G), where

F = cp(X), G = <p(Y).
Another way to realize elements of Cr2 is as follows: Letting X = x/z

and Y = y/z, k(X, Y) becomes the field of homogeneous rational functions

of degree zero in k(x, y, z). Given tp = (F, G) e Cr2, write F = Fq/Hq ,

G = Go/Ho, where Fn , Go, and Ho are polynomials in X and Y. Now re-

place X, Y by x/z, y/z and homogenize to get F = f(x, y, z)/h(x, y, z),

G = g(x, y, z)/h(x, y, z), where /, g and h are forms of the same degree.

Then tp is represented by the triple (/: g: h), uniquely up to common factors

of /, g, and h. We may take /, g, and h to have no common factors.

They serve as the coordinate functions for the birational automorphism of P2
determined by tp.

We will be shifting back and forth between these representation of <p . The

representation <p = (f: g: h) will be called the homogeneous representation;

the representation tp = (F, G) will be called nonhomogeneous.

3.3. Linear fractional transformations. The group PGL^(k) is contained as a

subgroup of Cr2, whereby the class of the matrix

(a   a'   a"\

\b   V   b"     ,
\c   c'   c" )

is identified with the Cremona transformation having homogeneous represen-

tation

(ax + by + cz: a'x + b'y + c'z: a"x + b"y + c"z),

and nonhomogeneous representation

/   aX + bY + c       a'X + b'Y + c' \

\a"X + b"Y + c" ' a"X + b"Y + c") '
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(Note: it may seem to the reader that we should have taken the transpose of the

above matrix. But recall that we are viewing Cremona transformations as field

automorphisms, not as transformations of P2 .) Such elements are sometimes

called linear fractional transformations.

Since k(X, Y) can be identified as the function field of P2. in many ways,

let Proj k[x,y,z], where X = x/z, Y = y/z, be called the standard P2 (in

k(X, Y)). This surface contains the standard A2, W (see 2.1), the comple-

ment of W being the line z = 0, which we will call the line at infinity and

denote /^. Note that the linear fractional transformations correspond to the

actual automorphisms (not just birational automorphisms) of the standard P2 .

3.4. Standard quadratic transformation. Another familiar element of Cr2 is

the standard quadratic transformation a , given by (yz: xz: xy) — (1/X, 1/7).

Clearly o has order 2. The birational automorphism of P2. corresponding to a

can be explained as the blow-up of the points (1:0:0), (0:1:0), (0:0:1)
followed by the blow-down of the proper transforms of the x, y, and z axes.

3.5. Noether's Theorem. For k algebraically closed, Cr2 is generated by

PGL3(A;) together with the standard quadratic transformation a.

3.6. Remarks. This result bears the name "Noether's Theorem" because it was

first claimed by Max Noether [14], although his proof was flawed. The first

correct proof seems to have been given by Castelnuovo [2]; another early proof

appears in [6]. More recent proofs, with modern terminology, can be found in

[16] and [13]. These proofs all assume k is algebraically closed, and unlike the

Jung-Van der Kulk-Nagata Theorem (Theorem 2.3), this hypothesis is essential,

according to some new results of Iskovskikh.

3.7. The standard Fxk x P[ and its automorphism group. There is a unique

model in k(X, Y) isomorphic to P| x P[ whose projection maps correspond
to the inclusions k(X) - k(X, Y) and k(Y) - k(X, Y). We will call this
model the standard P1 x P1 (in k(X, Y)).

The subgroup of Cr2 which corresponds to the automorphisms of the stan-

dard P1 x P1 is (PGL2(/v) x PGL2(fc)) x (t) , where

{{l   S)'(£    Cdl))^GL2(k)xPGL2(k)

is identified with the element

faX + b   a'Y + b'\
\cX + d' c'Y + d'J^^2'

and T = (Y, X). This group will play a key role in our structure theorem for

Cr2.

3.8. Triangular subgroups. We view k(X, Y) as k(X)(Y) and consider ele-

ments of Cr2 which fix k(X). This subgroup is identified with PGL2(k(X)),
where the matrix class

ilfx] S$)«WUW*».
is identified with

/      a(X)Y + b(X)\^^
[X>c(X)Y + d(X))£CT2-
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Note that this subgroup contains the element e = (X, X/Y) = (xy : xz : yz).

This automorphism appears in Iskovskikh's Theorem, stated below.

Let us note that a k-automorphism of k(X), which can be identified with an

element of ~PGL2(k), gives rise to a unique automorphism of k(X, Y) which
fixes Y. In this way, PGL2(k) is identified with the subgroup of elements of

Cr2 of the form

(aX + b   Y\

\cX + d'    )'

where («*) e PGL2(A:).

Letting ~PGL2(k) act on k(X) gives rise to a semidirect product

RGL2(k) x PGL2(A:(*)).

An element

((a   c\    (a'(X)   c'(X)\\

\\b   d)'\b'{X)   d'(X)))'

in this group is identified with the element

faX + b   a'(X)Y + b'(X)\
\cX + d' c'(X)Y + d'(X)J €     2'

and this is the subgroup of Q2 which preserves the containment k(X) c

k(X, Y). Its elements are called triangular automorphisms. Note that this

group contains the direct product PGL2(fc) x PGL2(k), which contains the

standard quadratic automorphism a = (1/X, 1/T).
Note also that this subgroup corresponds to the automorphism group of

vi(x) ■ We wil1 refer t0 the ^-scheme ¥xk{x) as the standard P1 (in k(X, Y)).

3.9. The group G^"x. Crucial to our dicussion in §§4 and 5 are the groups

G«"', n > 1, defined by

Note that G^ is contained in the triangular subgroup of Cr2. Elements of

C7(n) correspond to automorphisms of the classical surface Fn, as described

below.

3.10. The surfaces F„ . The reader is referred to [ 13] or [ 16] for a full discus-

sion of these surfaces. Briefly, F„ is a smooth rational surface for n > 0, mini-

mal if n ¿ 1, with F0 = P[ x P[ . There is a map n : F„ -+ P¿ by which Fn is a

P|-bundle over P¿ . For n > 1, n is unique and F„ contains a special section

A„ having the property that (A2) = -n . This curve A„ is the only prime divisor

in F„ having negative self-intersection. All fibers of n are linearly equivalent,

and if / is such a fiber we have (f2) = 0, (/, A„) = 1, Pic F„ = Z.[/]©Z-[A„]
(the free abelian group on the divisor classes of / and A„). Given a point

p e F„, there is an elementary transformation elmp centered at p which trans-
forms F„ to an Fn+X or an F„_x. This consists of first blowing up at p , then
blowing down the proper transform of the fiber containing p . If p e A„ , the

resulting surface is an Fn+X ; if not (and n > 1) it is an Fn_x .
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3.11. The standard F„ .    Fn can are realized as follows. Let

W = Spec k[X, Y]   (the standard A2 (see 2.1 )),

V = Speck[X, Y~x],    IV = Speck[X~x,Y'],     V = Speck[X~x, Y'~x],

where Y' = X~"Y. then W u V u W u V 2 Fn . The complement of W u W
is A„ , and the map n arises from the containment k(X) —> k(X, Y). We call

this model the standard Fn (in k(X, Y)). Note that for n = 0 this is the
standard Pl x P1 (see 3.8). The complement of W in the standard Fn is the

union of A„ and one fiber of n , the latter of which we call the fiber at infinity

(with respect to W) and denote by fn,oo ■ Thus we have

Fn = WuAnufnt00.

For n = 1, this surface is obtained from the standard P2 (see 3.3) by blowing

up the point (0:1:0). The resulting exceptional curve becomes Ai and the

proper transform of 1^ (see 3.3) becomes /i i00 . If we perform the elementary

transformation elmp on the standard Fn , where p = A„ n /„ ; oo , we obtain the

standard Fn+X.

For n > 1, any automorphism of Fn must preserve A„ , since this curve is

characterized by the property A2 = -n . An easy argument using intersection

numbers shows that any such automorphism must carry fibers (of n) to fibers.

From these facts one can show without too much difficulty that, for the standard

Fn , such automorphisms correspond precisely to elements of C'"', so that <j(")

is anti-isomorhic to Aut(F„).

An important breakthough was recently made by V. A. Iskovskikh, who

proved the following:

3.12. Theorem (Iskovskikh). Cr2 is generated by the triangular group PGL2(k)

x PGL2(k(X)) together with the element t = (Y, X). Moreover, a complete set
of relations is given by the group law of the triangular group, x2 = 1, and the

relations
(*)   T • (F, G) • T = (G, F), for all (F, G) e PGL2(/c) x PGL2(fc) ;
(**)  (re)3 = a (where, as above, e - (X, f) and o = (L , L)y

(See [8] and [9].)

(We will comment in 3.14 on the relationship between this theorem and

Noether's Theorem.)
We now state a structure theorem, based on Iskovskikh's result, which pre-

sents Cr2 as a product with amalgamations along pairwise intersections.

3.13. Theorem. Let

Ax = PGL3(k),

A2 = (PGL2(rc) x PGL2(k)) x (t) ,

A3 = PGL2(Â:) x PGL2(k(X)),

(each identified as a subgroup of Cr2 as described in 3.3, 3.7, and 3.8). Then

Cr2 ¿J the free product of Ax, A2, and At, amalgamated along their pairwise

intersections in Cr2.

Proof. The proof appeals to Iskovskikh's Theorem (3.12). Let G be the group

obtained by amalgamating Ax, A2, and At, along their pairwise intersections
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in Cr2 . We clearly have a group homomorphism a : G -» Cr2 restricting to the
identity on Ax U A2 U At, . The map a is surjective, since the image contains

At, and x(e A2), which generate Cr2 according to Iskovskikh's Theorem.

We now wish to define a homomorphism ß : Cr2 —► G. According to

Iskovskikh's Theorem, Cr2 is generated by A3 and {1, t} , the latter lying

inside A2, so we have a map ß from the free product {1, t} * At, to G. We
must show that the relations (*) and (**) of Theorem 3.12 hold in G.

Note that (*) obviously holds, since it takes place in A2.

As for (**), note that the equality e = po , where p = (1/X, Y/X), holds in

Ai, hence in G. Since a and p commute in At, , they commute in G. Since

o and t commute in A2 , they commute in G. Thus we have the following

equations in G :

(1) («)3 = (T/W)3 = (T/>)V.

Observe that x and p lie in Ax, and that (t/j)3 =1 in Ax, hence in G. Since

cr3 = a (in A2, hence in G), it follows from (1) that (re)3 = o in G, as

desired.
Hence ß induces a map ß : Cr2 -» G which restricts to the identity on At,

and {1, t} . Since Cr2 is generated by At, and {1, t} , it is clear that aoß = 1.

It will follow that a is an isomorphism (with a~x = ß) once we show that ß

is surjective.

To see that ß is surjective, note that its image contains At, c G and x e
AxnA2 c G. It is an easy exercise to see that both Ax and A2 are generated by

their intersection with At, (in Cr2) together with x. Therefore Ax and A2 are

in the image of ß , and since G is generated by Ax\jA2\jA-¡, ß is surjective.

The theorem is proved.

3.14. Remark. One easily proves that A2 is generated by its intersection with

Ax together with a . It can be shown (though not so easily) that At, is also gen-

erated by its intersection with Ax together with o . (This is done by Iskovskikh

in [7].) Thus, from Iskovskikh's results one can deduce Noether's Theorem

(3.5), which says that Cr2 is generated by Ax together with o .

4. Tree actions which yield the structure theorem for GA2

4.1. Tree theory. The fact that GA2 has a decomposition as an amalgamated

free product (Theorem 2.4) says that it acts without inversion on a tree (see [15]).

Such a tree can be constructed abstractly, but it is more useful to realize it in

a natural context. This was done by Roger Alperin [1] (see also [3]), where the

vertices of the tree correspond to certain subvector spaces of k[X, Y]. This

section will culminate in a realization of what is essentially Alperin's tree, but

our approach is closer in spirit to that of Gizatullin and Danilov [4] and [5],

which is to consider the GA2 action on a tree whose vertices correspond to

certain smooth compactifications of A2 .

4.2. Let k be an algebraically closed field. Any separated reduced, irreducible

k-scheme whose function field is k(X, Y) can be identified with collection of

local rings in k(X, Y) corresponding to its points. Thus Cr2 (and GA2) acts

on the set of such /c-schemes.

4.3. H-admissible models. Let W be the standard A2 (see 2.1). As above,
we identify  W with the set of local rings in k(X ; Y)  corresponding to its
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points; these will be localizations of k[X, Y]. Let S be a complete, nonsingular

surface containing W as a Zariski open subset. We will say that S is a W-
admissible model if S satisfies one of these (mutually exclusive) conditions:

(1) S = P2. (in which case it is automatic that S = W u /, where / is the

"line at infinity" with respect to W), or

(2) S = Fn for some integer n > 1, and S = W u A„ U f„ , where F„ is the

classical surface described in 3.11, A„ is its special section, and f„ is
a fiber of the canonical map n : F„ -> P¿ .

If the first condition holds, we say that S is a P2 (in k(X, Y) ; if the second

condition holds for some n , we say S is an Fn (in k(X, Y)). Note that any

W-admissible model S is a relatively minimal model (in the sense of [16])

unless S is an Fx.

4.4. The graph T (of PT-admissible models). For W = A1 as in 4.3, we

construct a graph f whose vertices consist of all PF-admissible models. An Fn

andan Fn+X are connected by an edge if the Fn+X is obtained from the F„ by

means of the elementary transformation elmp (see 3.11) with center p = f„nA„

(fn and A„ are as in condition (2) of 4.3). This transformation blows up p,

then blows down the proper transform of f„ (see [16, Chapter V, §1] or [13,

§2]). A P2 and an Fx are connected by an edge if the Fx is obtained from the

P2 by blowing up a point on /  (/ is as in condition (1) of 4.3).

4.5. Adjacency in T. Two vertices are called adjacent if they are connected

by an edge. Note that there is precisely one Fn+X adjacent in T to a given Fn .

However, for n > 2, there are many .F„+i's adjacent to a given Fn , since one

such is obtained by performing elmp for any p on/, but not on A„ . Also

note that each Fx is adjacent to precisely one P2 ; but a given P2 is adjacent
to many Fx's—one for each point on /<*,.

4.6. Type of a vertex. It will be convenient for us to say that a vertex S in

f has type n if S is an F„ (n > 1), or has type zero if S is a P2 . Clearly

two adjacent vertices in T have types which differ by one. According to 4.5,

each vertex of type n > 1 is adjacent to precisely one vertex of type n + 1 .

4.7. Paths. A sequence of vertices Vx,...,Vr in T with ^_i adjacent to

Vi for i — 1, ... , r determines a path in T. We say the path has no backtracks

if F,_2 / Vi, whenever 2 < i < r.

4.8. Lemma. Let VQ, ... , Vr, r > 1, be a path in T with no backtracks.
Suppose Vo is an Fx and Vx is a P2. Let O be the discrete valuation ring

which is the local ring of the special section A in V0. Then O dominates the

local ring of a closed point of Vr.

Proof. Note that Vx is obtained by blowing down A to a point q on Vx, and

hence O dominates the local ring of q. If r > 2, V2 is an Fx obtained by

blowing up a point p on Vx, and since V2 ̂  Vq » we have p # q. Thus O

dominates a point on Vx which is not the center of the blow-up that yields V2.

Let Ux, ... , U„ be the subsequence of V0, ... , Vr consisting of all its P2's.

Note that n > 1, since Ux = Vx . If n > 1, then, for /' = 1,...,«- 1, the
path from U¡ to U¡+x has the form

(1) Ui, Sx, S2, ... , om/_i, Sm¡ = oOT., Sm_x, ... , S2 , Sx, Uj+X,



TWO-DIMENSIONAL CREMONA GROUPS 289

with m, > 2 (since there are no backtracks) and Sj, S'j = Fj, for ;' =

1, ... , m,■■. If /' = n , the path from Un to Vr may be extended past Vr

to such a path. Hence it suffices to show O dominates the local ring of a closed
point on each surface in (1).

We may assume by induction that O dominates a closed point q on U¡

which is not the center of the blow-up which yields Sx . (We have observed

that this is the case when / = 1.) Thus q is a point on Sx lying on the

fiber at infinity (with respect to W), but not on its special section. One easily

sees that the local ring of q, and hence O, dominates a point of S2 (= F2)
satisfying the same conditions, and so on up to Sm¡. Moreover, the elementary

transformation leading from Sm¡ to S'm._x does not blow up the center of O,

otherwise we would have a backtrack in the path. Therefore the center of O on

S'm _, is the intersection of its special section and its fiber at infinity, and this

holds for S'm._2 down to S'x. Thus on Ui+X, O dominates a point at infinity

which is not the center of the blow-up which yields the next surface along the

path. This completes the induction, and the proof of the lemma.

4.9. Proposition. (Each connected component of) T is simply connected.

(That T is connected is asserted in Theorem 4.11.)

Proof. This is equivalent to the nonexistence of paths Vq, ... , Vr with r > 2,

no backtracks, and Vo= Vr. Suppose such a path exists. By possibly extending

the path on both ends, one can easily arrange that Vq, ... , Vr satisfies the

conditions of Lemma 4.8. Therefore V0 is an Fx and the local ring O of

its special section dominates a closed point of Vr. But this is absurd, since

Vr = Vo.

4.10. Action of GA2 on T. Let S be a ^-admissible model (hence a vertex

in f), and tp an element of GA2. Extending g> to an automorphism of

k(X, Y), we note that <p carries the set of local rings of W onto itself, and
hence it carries the local rings of S onto those of another ^/-admissible model

5" , with S' being the same type as S (in the sense of 4.6). Thus GA2 acts on

the set of W^-admissible models. Clearly this action preserves adjacency in T,

so we have an action of GA2 on f, since edges in f are determined by their

end vertices

4.11. Theorem.

(1) f is a tree, and GA2 acts on T without version.

(2) A fundamental domain for the action is any geodesic

eo ex e2•--— •- • --— •-• • ,

So Sx S2 S3

where So is a P2 and S¡ is an F¿ for 1 > 1.
(3) The fundamental domain of (2) can be chosen so that So is the stan-

dard P2 (see 3.3), and, S¡ is the standard F¡ (see 3.11). Therefore the
stabilizer of So is Af, and the stabilizer of Fj is the subgroup

BA& = {(aX + b,cY + g(X))}\a ,cek*;bek;

g(X)eK[X]anddegg(X)<i)}.
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Proof. It is clear that any P2 or F¡ is a translate, via some Cremona trans-

formation, of the standard P2 or F¡. Since Af = PGL3 n GA2 and BA^ =
(?(') n GA2 (see 3.9, 3.11), assertions (2) and (3) hold. As for (1), the simple

connectivity of T was established in Proposition 4.9. It remains to show that

T is connected.

The proof of the connectivity is relegated to the appendix, since it uses es-

sentially the same techniques as several of the published proofs that GA2 is

generated by linear and elementary automorphisms. We note, however, the el-

egance with which this framework leads to the proof of the complete structure

theorem for GA2 (not just the fact that GA2 is generated by Af and BA) as

explained below in 4.12.

4.12. Consequence. It follows from Theorem 4.11, and from the theory of

groups acting on trees [15] that GA2 is the free product of the stabilizers of

S¡, i > 0, amalgamated in pairwise fashion along the stablilizer of e¡, i > 0.

The stabilizer of e¡ is the intersection of the stabilizers of S¡ and Si+X, so one
sees easily that the stabilizer of eo is B (as defined in 2.3), and for i > 1 the

stabilizer of e¡ is BA^ , since BA^ c BA^'+X). We thus have GA2 presented

as the amalgamated free product

Af*B BA(X) *BAlt) BA(2) *BA(2) *BA{3) * • • ■ .

Noting that |J,>i ^A(,) = BA (defined in 2.3), we readily obtain Theorem 2.4:

(2) GA2 = Af*BBA,

as a consequence of the GA2-action on T.

4.13. The simplified tree T. Our next step is to obtain from T a tree on

which GA2 acts with a fundamental domain consisting of only one edge, yield-

ing the decomposition (2). Of course, we know such a tree can be constructed
abstractly, using Serre's theory [15]. Moreover, the tree Alperin produces in [1]

has this property. But since f contains the apparatus which so naturally shows

GA2 to be generated by Af and BA , our task seems a worthy goal.

We proceed as follows: Consider the graph Z obtained by removing from

T all vertices of type zero (see 4.6) and all edges which have a type zero vertex

as an end point. Form a new graph T whose vertices consist of the type zero

vertices of T (i.e. the P2's) together with the connected components of Z.

Connect a P2 with a component of Z by an edge if they are connected by an

edge in f. T is clearly a tree, since T is. This construction just amounts to

shrinking the connected components of Z , which are subtrees of T, down to

points. Since the GA2 action on T preserves the types of the vertices, it is

clear that elements of GA2 carry components of Z to components of Z , and
therefore GA2 acts on T. Moreover, it follows from (2) of Theorem 4.11 that

a fundamental domain for the action of GA2 on T consists of an edge

SVj Zrj

where So is the P2 of (2) and Z0 is the connected component of Z containing

the geodesic
ex                e2               e-i•-!- • -=- • -í-• ■

Sx S2 Si



TWO-DIMENSIONAL CREMONA GROUPS 291

of (2). Taking Sq to be the standard of P2 and S¡, i > 1, to be the standard

F¡, the stabilizer of So is Af and the stabilizer of of S¡, i > 1, is BA^ .
We claim that the stabilizer of Zn is BA . It clearly contains the stabilizers

of Sx, S2, Si, ... , , hence contains their union, which is BA . Conversely,

suppose </> e GA2 is in the stabilizer of Zn . Consider the geodesic in T from

Sx to 4> - Sx, which necessarily lies within Zn. Since a vertex of type 1 > 1 in

T is adjacent to precisely one vertex of type i + 1 (see 4.6), this geodesic is of

the form

♦ 'S,

Moreover, it follows inductively that for i = 2, ... , k we must have <p-S¡• = S¡,

since S'i and (f>-S¡ are both the unique type / vertex adjacent to S¡_x . Hence

4> fixes Sk , so <p e BA^k) c BA, and the claim is proved. Thus the tree T has

the desired properties.

4.14. T as a tree of models. In order for us to establish the connection be-

tween the structure of GA2 and that of Cr2, it is useful to realize the tree T

as a tree whose vertices, like those of f, are certain models in k(X, Y). To

do so, it will be necessary to allow as "models" certain rc-schemes which are

not varieties over k .

4.15. P"s in k(X, Y). We consider ic-schemes R such that (1) R s \?XK
where A" is a field containing k and (2) the function field of R is k(X, Y).

Thus k c K c k(X, Y) and K is of transcendence degree 1 over k. It follows

from Luroth's Theorem that K = k(t), with t transcendental over k . We can

view such an R as a certain collection of local rings in k(X, Y), and it becomes

clear that Cr2 acts transitively on the set of such k-schemes. We will call such

a scheme a P1 in k(X, Y). The standard P1 , introduced in 3.8, is the one for

which K = k(X).

4.16. The generic P1 associated to an F„ (n > 1). If S is an F„ in

k(X, Y), the generic fiber R of the map (unique for « > 1) n: S —> P[

is isomorphic to PXK where K is the function field of P¿ . Thus we have sub-

scheme R (not open or closed) of £, canonical if n ^ 0, which is a P1  in
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k(X, Y) (as defined in 4.15). For n > 1 , we call R the generic P1 associated

to S.

4.17. The P1 associated to certain vertices of T. Let S be an Fn, with

n > 1, and let p be any point on the section An of S. The elementary

transformation elmp , which blows up p , then blows down the proper transform

of its fiber, does not disturb the generic P1, call it R, of S. Therefore R is

also the generic P1 of the resulting Fn+X. It follows that if S is an Fn and S'

is an Fm , both corresponding to vertices of T and lying in the same connected

component of Z, then S and S' have the same generic P1, which we can

therefore associate to this component. Since the components of Z are vertices

of T, all such vertices (i.e. those in the GA2 orbit of Zn) have an associated

P1 in k(X, Y).

4.18. Lemma. Distinct vertices in T yield distinct ¥x,s.

Proof. Let L and L' be distinct vertices in the GA2-orbit of Z0 . There is a

unique geodesic in T connecting L and L', which is of the form

... V
ux u2 un

with Lo, ... , L„ in the GA2-orbit of Zo and Ux, ... , Un in the GA2-orbit

of So. This means, of course, that Ux, ... , Un are P2's. There exist unique

representative models V of L = Lo and V of L' — Ln which are F^s such

that V is adjacent to Ux (£ P2) in T and V is adjacent to Un in T. The

geodesic in f from V to V contains the vertices Ux, ... , U„ of f, and

goes through the components Lx, ... , Ln-X of Z . For i = 1, ... , n - 1,

there exists a unique path with no backtracks through L, in f from U¡ to

Ui+X. By juxtaposing these we obtain a path in T from V to V satisfying

the conditions of Lemma 4.8. The lemma tells us that the local ring O of the
special section A on F dominates a closed point on V . It follows that O is

the local ring of a point on R, the generic P1 of F (and of L), but is not

the local ring of a point on R', the generic P1 of V (and of L'). Therefore

R^R'.

4.19. ^-admissible P"s. It is clear that a P1 , call it R, in k(X, Y) cor-

responds to a vertex of T if and only if there exist, F, G e k[X, Y] such

that k[F, G] = k[X, Y] and such that R = Speck(F)[G] u Speck(F)[G~x] s
P[,F). If this is the case we say R is a W-admissible P1.

4.20. T as a tree of admissible models. We conclude from the above discus-

sion that T is a tree whose vertices consist of all PF-admissible P2's and P''s

in k(X ,Y). Given S an admissible P2 and R an admissible P1, S and R
are adjacent vertices in T if and only if there is a point p at infinity in S (with

respect to W) such that R is the generic P1 of the Fx obtained by blowing
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up S at p . The fundamental domain for the GA2-action on T becomes

(3) £ = •-•
S R

where S and R may be chosen to be S = Proj k[x, y, z], R = Spec k(X)[Y]U

Speck(X)[Y'x] = fk,x), where X = x/z, Y = y/z. One can reaffirm

that the stabilizer in GA2 of S is Af, and the stabilizer of R consists of

those k-automorphisms of k[X, Y] which preserve the containment k[X] c

k[X, Y]—precisely BA.
We can summarize 4.14-4.20 as follows:

4.21. Theorem. Let T be the graph whose vertices consist of all W-admissible

P2's and P1 's, where S, a P2, is connected by an edge to R, a P1, precisely

when S has a point p at infinity (with respect to W) such that R is the generic

P1 of the Fx obtained by blowing up S at p . Then

(1) T is a tree, on which GA2 acts without inversion.

(2) A fundamental domain for the action is

S R

where S is the standard P2, R is the standard P1 (see 3.3, 3.8).

(3) The stabilizer of S in GA2 is A f; the stabilizer of R is BA.

From this theorem, the decomposition GA2 = Af *b BA is immediate.

5. The simplicial complex which yields

the structure theorem for cr2

5.1. General theory. The amalgamated product group structure of Cr2 laid

out in §3 reflects the fact that it acts on a simply connected 2-dimensional

simplicial complex. This follows from a higher dimensional analogue of Serre's

tree theory. (This is folklore amongst topologists, but see [18] or [17].) We

wish to realize this space in such a way that its vertices again correspond to
models in k(X, Y), and such that it contains the tree T of Theorem 4.21 as

a subcomplex, compatibly with the containment GA2 c Cr2 .

5.2. Admissible models. Consider the set of models S (model now means re-

duced, irreducible, separated k-scheme having function field k(X, Y) ) satisfying

one of these three properties:

(i) s^r2,
(2) S =■ P¿ x P¿ , or

(3) S = ¥XK for some subfield K of k(X, Y) (necessarily of pure transcen-

dence degree 1 over k).

Such a rc-scheme S will be called an admissible model. We say S is a P2 , S

is a P1 x P1, or S is a P1 according to whether (1), (2), or (3), respectively, is

satisfied.

5.3. The complex C. We construct a two-dimensional simplicial complex C

using as vertices the set of admissible models. We declare that three models
S, a P2, FaP'xP1, and R a P1, determine a face when there exist two

distinct points p and q on S such that (a) V is the P1 x P1 (= Fq) obtained
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by blowing up S at p and q, then blowing down the proper transform of the

line in S containing p and q , and (b) R is the generic P1 of the F¡ obtained

by blowing up S at p .
Taking S to be the standard P2 (see 3.3), p = (0 : 1 : 0), and q = (1 : 0 : 0),

the resulting V and R are the standard P1 x P1 and P1, respectively (see

3.7, 3.8). Therefore these standard models form a face, which we will call the

standard face in C .

5.4. Fundamental domain. It is clear from the construction of C that Cr2

acts on C without inverting any edge or rotating any face. Moreover, a funda-

mental domain for the action is given by any one face

V

S"-"R

We may choose (1) to be the standard face (see 5.3). For this choice, the

stabilizers of S, V, and R are, respectively, the groups

Ax S PGL3(/c),

A2 £ (PGL2(fc) x PGL2(fc)) x (x) ,      and

Ai 2 PGL2(Â:) x VGL2(k(X)),

identified as subgroups of Cr2 as in 3.3, 3.8, and 3.9.

5.5.   Theorem. The simplicial complex C is 1-connected.

Proof. This follows, using standard arguments, from the fact that (1) is a fun-
damental domain for the action of Cr2 on C, and the fact that Cr2 is the

amalgamated free product of the stabilizers Ax , A2, and Ai along their pair-

wise intersections (Theorem 3.13). We sketch the proof.

To see that C is connected, consider a face F', and let F denote the

standard face. We will show that there a path from F to F'. If E is a

face in C, then E shares a vertex of F if and only if E = h F for some

h e Ax\JA2liAi. Since F is a fundamental domain, there exists g e Cr2 such

that gF = F'. Let g = gx--- gr be a factorization of g such that gx, ... , gr e

Ax U A2 U Ai. Consider the sequence of faces F = Fq, F\,..., FT = F',
where F¡ = gx--- g¡F , i = 0,... , r. For i = 0,..., r - í, g¡+xF touches

F, as previously observed, hence Fi+X touches F¡ (translating by gx-- ■ g¡).

Therefore the union of these faces contains a path from F to F'. This shows

C is connected.

To show simple connectivity, we associate a loop to a sequence of faces

Fo, ... , Fr such that F¿ and Fi+X have a common vertex, for i = 0, ... , r-1,

and such that Fo = Fr. We may assume that F0 and Fr are the standard face.

Thus we have a sequence gx, ... , gr e Ax UA2U A¡ such that F¿ = gx- ■■ g¡Fo,

for i = 1, ... , r. Since Fr = F0, we see that gx---grF0 is in the stabilizer

of Fo, which is Axr\A2C\Ai. The fact that Cr2 is the pairwise amalgamated
product of Ax, A2, and Ai (see Theorem 3.13, and §5.4) implies that the

sequence gx, ... , gr can be transformed into the sequence consisting only of
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the element g = gx ■ ■ ■ gr by a series of the following types of changes:

(a) replace a sequence entry h by h'h", where h, h', h" e A¡ and h =

h'h".
(b) replace two successive entries h', h" by h, where h', h" e A¡ and

h = h'h".

An alteration of either of these types replaces the path Fq, ... , Fr by a

homotopic path. Thus the path contracts into the face Fo . This concludes the

proof.

5.6. The Cr2 complex C contains the GA2 tree T. If we choose for the

fundamental domain F of C the standard face, (1) and let W be the standard

A2, which is the complement in S of the line containing p = (0 : 1 : 0) and

# = (1:0:0), then the tree T of §4 is the union of the GA2 translates of the

edge

•-•
S R

of F. Thus the complex C contains the tree T as a subcomplex, and the face

F contains the fundamental domain E of T ,as follows:

W

= F

Ul

•-•      = E
S R

6. Appendix

6.1. Here we sketch a proof of the connectivity of the graph T, which com-

pletes the proof of Theorem 4.11. The reader is assumed to be familiar with

the basic facts about birational maps between smooth surfaces, and with inter-

section numbers and their behavior under the blowing up of points.

As before, all varieties discussed are assumed to be k-varieties, where k is

a fixed algebraically closed field.

6.2. Lemma. Let V be a nonsingular complete surface and co: V -» P[ a

morphism making V a ruled surface (i.e., for some open set U C¥k, co~x(U) =

P|xf7). Then each fiber of a> contains a component having self-intersection
>-l.

Proof. Let W = P¿ x P¿ . Taking n : W -+ P¿ to be one of the projections,
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there exists a birational map y : V —» W such that

V      -U     W
(1) «>\ /n

Pi

commutes.

Suppose D is a fiber of co all of whose components have self-intersection

< —2. We will arrive at a contradiction by resolving y to a morphism. Note

that the commutativity of (1) implies that any curve of V which maps to a

point in W must be contained in a fiber of to, and the same must hold if

we blow up a point of V and replace V by the surface thus obtained. By
successively blowing up points of indeterminacy for y which do not lie on D,

we may assume y is defined at all points not lying on D. (These blow-ups do

not alter the self-intersection of the components of D.)

First we argue that y is not everywhere defined. Since (D2) = 0, D has

more than one component, and the image of D under y lies within a fiber C

of 71. If y were a morphism it would factor into a sequence of blowing downs,

and D would contain a component E with (E2) = -1, in violation of our

assumption.
So let x be a point on D at which y is not defined. We proceed to resolve

y by blowing up x, creating a new surface Vx with exceptional curve Ex,

and induced rational map yx : Vx —» W. Vx is a ruled surface and the proper

transform Dx of D is a fiber whose components are the proper transforms of

the components of D, together with Ex. Note that all the components of Dx,

except Ex, have self-intersection < -2, and (E2) = -1.

Case 1. y! is defined at all points of Ex . In this case we must have yx(Ex) = C ;

for if yx(Ex) is a point, then yx factors through the blowing down of Ex, con-

tradicting the fact that x was a point of indeterminacy for y. It easily follows

that yx is defined everywhere. For if not, we could resolve yx to a morphism

by blowing up more points, and the last exceptional curve must necessarily map
into C (otherwise the last blow-up would have been unnecessary). However a

birational morphism of surfaces cannot carry two distinct curves onto the same

curves. So yx is a morphism, with Dx mapping into C and Ex mapping onto

C. Since yx is the product of blowing downs, and all components of Dx other

than Ex collapse to a point, one of them must have self-intersection -1. This

is a contradiction.

Case 2. There exists a point xx e Ex which is a point of indeterminacy for

yx . We blow up xx to obtain a surface V2 with exceptional curve E2 and

the induced birational map y2 : V2 —» W. V2 has fiber F2 over P| which

is the total transform of Dx ; all of its components, other than E2, have self-

intersection < —2. If 72 is defined along E2 we reach the same contradiction

as in Case 1. Otherwise we again blow up a point of indeterminacy on E2 . This

process must end (in a contradiction) when y is finally resolved to a morphism.

6.3. To show that T is connected, it suffices tc^show that, given any two In-

admissible P2's, So and S, there is a path in T from So to S. (Recall that

W is the standard A2 (see 2.1).) We may assume that So is the standard P2

(see 3.3). Let P, Qe k[X, Y] be a system of variables which define straight
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lines in W relative to the embedding W c S = P2. If P and Q are both
linear polynomials in X and Y, then S = So and there is nothing to prove.
In the general case, let d = deg P ; we will reduce to the case d = 1.

6.4. Let L be the line at infinity (relative to W) in So, and let C be the
closure in So of the curve in W defined by P. Since C n W = A[ , C has

one point x on L, and it is a one place point, i.e., the closure of Cn W in any
smooth complete surface containing W will always have one point at infinity

(relative to W), and that point will have only one tangential direction. Note

that (L-C) = d, by Bezout's Theorem. Let dx = multxC, the multiplicity of x

on C. Since d > 1, L must be tangent to C at x; for otherwise d = dx, and

letting H be the line on So tangent to C at x, we have (H-C) > d, violating

Bezout's Theorem. Let m = d - dx and write d = nm + r with 0 < r < m .

We will eventually show that r = 0, i.e., m\d. (This is the crux of the proof.)

6.5. We blow up So at x to obtain a fF-admissible surface Si = Fx. Note

that Si is a vertex in T adjacent to So . Let Ex be the resulting exceptional

curve on Si, and let Li and Ci be, respectively, the proper transforms of

L and C. The complement of W in Sx is Ex ö Lx, and Ci intersects this

complement at the point where Ex and Li intersect; call this point xx. We

have (Ex • Cx) — dx — d - m , and an easy argument shows (Lx • Cx) = m .

6.6. If dx > m , then Ex is tangent to Ci at xx,

^c Li

and m = mult*, Ci . In this case, we blow up jci , separating Ex and Li,

and contract the proper transform of Li to obtain a W-admissible surface

S2 = F2, adjacent to Sx in T. Let E2 and C2 be the proper transform of Ex

and Ci in S2, and let L2 be the proper transforms of the exceptional curve

obtained from blowing up xx . The complement of W in S2 is E2 U L2, and

C2 intersects this complement at the point x2 where E2 and L2 intersect. We

have (E2 • C2) = dx - m = d - 2m and (L2 • C2) = m .

6.7. If d - 2m > m , then E2 is tangent to C2 at x2, and m = multX2C2 .

Repeating this process n times, where d = nm+r (possibly proceeding through

the situation d-(n-l)m = m,in case m\d), we obtain a ^-admissible surface

S„ = Fn, connected to So in T by the path S0, Si, ... , S„ . The complement

of W in Sn is E„ U Ln, and C„ is the proper transform of C. Letting xn

be the point where En and Ln intersect, we have (En • C„) = d - mn = r and

(L„ • C„) = m . We have 0 < r < m and x„ lies on C„ if and only if r ^ 0.

In either case, the point at infinity (with respect to W) of C„ lies on Ln . Call

this point q . Then q = x„ if and only if r ^ 0. Note that these conditions
must hold if n — 1 (a situation we later deem impossible).
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6.8. We claim that L„ is not tangent to C„ at q. To prove this, suppose

Ln and C„ do meet tangentially, and consider the rational map a>: S„ —♦ P|

induced by the containment k(F) c k(X, Y). The divisor of F on S„ is

easily seen to be (F) = Cn - dLn - mEn ; it follows that q is the only point

of indeterminacy for co, as it is the only point where neither F nor F~x is

defined. We proceed to resolve co to a morphism co: V —> P| by blowing

up points of indeterminacy, beginning with q. In this process, each time we

blow-up we get an exceptional curve E such that either ( 1 ) E contains at least

one point of indeterminacy, or (2) œ is defined at all points of E. In case (1),

the proper transform of E on V has self-intersection < -2 (since (E2) = -1

and blowing up the point(s) of indeterminacy on E causes its self-intersection

to drop). In case (2) the image of E under co is all of Pxk (for if its image

were a point, the last blow-up would have been unnecessary). It follows that

all components of the complement of W in V, excepting certain curves which

map onto P1, have self-intersection < -2. This is due to the fact that Cn

is tangent to L„ at q, and (L2) = 0. Thus at least two blow-ups occur on

Ln or its proper transforms, so that its proper transform on V also has self-

intersection < -2. As for E„ , we have (E2) = -n, and the only problem

could arise when n = 1. But in this case we have noted that q e E„ , so that
the proper transform of E„ has self-intersection < 2 as well. Let p e P[ be

the point at which F has its pole, and note that co~x(p) lies in the compliment

of IF in V, but obviously does not contain the curve(s) which map onto

P[ . Hence this fiber consists of components having self-intersection < -2, in

violation of Lemma 6.2. The claim is proved.

6.9. We conclude that r = 0, i.e. m\d . For if not then q = xn , as was seen

in 6.7, and the fact that (L„ • C„) = m > r = (E„ • C„) would say that Ln is
tangent to C„ at q, which we know from 6.8 is not the case. Moreover, it
follows from this and from 6.7 that n > 1 . The situation is as depicted below:

Note that m = mult^ Cn . Now we blow up q , separating Cn and Ln , and blow

down the proper transform of L„ to obtain a ^-admissible surface S'n_x =

F„_!, adjacent to S„ in f. Letting E'n_x and C'n_x be the proper transforms

of E„ and C„ , and letting L'n_x be the new fiber at infinity, we have (L'n_x •

C'n_x) = m,and (E'n_x-C'n_x) = 0. The argument of 6.8 shows that L'n_x is not

tangent to C'n_x at their point of intersection, call it qn-X, provided n - 1 > 2.

Thus multin_, C'n_x = m . We repeat this process and thereby continue along a

path in f to arrive at a surface Sj = Fx and the situation depicted below:
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with (C'x -L'x ) = m (but we no longer know, at this step, that L\ is not tangent to

C[ at q'x ). Now we blow down E'x to obtain a W-admissible surface S¿ = P|,

with C the proper transform of C( and L' the proper transform of L\. L'

is the line at infinity with respect to W, and (II • C) = m . Therefore C is a

curve of degree m on S0, and if we write F as a polynomial in variables X',

Y' which define straight lines in S0, its degree is m . Since m < d the degree

of F has been lowered.
The path in T which has been traversed is illustrated below:

*A n- 1

S'o S'y Jn- 1

6.10. We can repeat this procedure until d = 1. Now consider e — deg G,

and assume e > 1. We will perform the same operation as above, with respect

to G instead of F . So now let C be the curve defined by G, and let D be the

curve defined by F, which is a straight line in So , since d = 1. We again let

L be the line at infinity. Since C and D meet once on W, they intersect e -1

times at their common point at infinity. We now trace the proper transform

of D through the path illustrated in 6.9. Note that the proper transform of D

on Si is a fiber of Fx, and this holds at each vertex in the path, through S\.
Thus the proper transform D' of D in S0 is again a straight line. Hence as

a polynomial in X' and Y', F is still linear, and the degree of G has been
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lowered. When we finally achieve d = e = 1, we have S0 = S, and the proof

is complete.
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